

[Print](#)[Close Report](#)

Greenfield runoff rate estimation for sites

www.ukuds.com | Greenfield runoff tool

Calculated by:	Cham Ariyaratne
Site name:	Denville Hall
Site location:	HA6 2SB

This is an estimation of the greenfield runoff rates that are used to meet normal best practice criteria in line with Environment Agency guidance "Rainfall runoff management for developments", SC030219 (2013), the SuDS Manual C753 (Ciria, 2015) and the non-statutory standards for SuDS (Defra, 2015). This information on greenfield runoff rates may be the basis for setting consents for the drainage of surface water runoff from sites.

Site Details

Latitude:	51.61047° N
Longitude:	0.44005° W
Reference:	429300956
Date:	Nov 16 2022 22:44

Runoff estimation approach

IIH124

Site characteristics

Total site area (ha): 0.874

Methodology

Q_{BAR} estimation method: Calculate from SPR and SAAR

SPR estimation method: Calculate from SOIL type

Soil characteristics Default Edited

SOIL type: 4 4

HOST class: N/A N/A

SPR/SPRHOST: 0.47 0.47

Hydrological characteristics Default Edited

SAAR (mm): 669 669

Hydrological region: 6 6

Growth curve factor 1 year: 0.85 0.85

Growth curve factor 30 years: 2.3 2.3

Growth curve factor 100 years: 3.19 3.19

Growth curve factor 200 years: 3.74 3.74

Notes

(1) Is Q_{BAR} < 2.0 l/s/ha?

When Q_{BAR} is < 2.0 l/s/ha then limiting discharge rates are set at 2.0 l/s/ha.

(2) Are flow rates < 5.0 l/s?

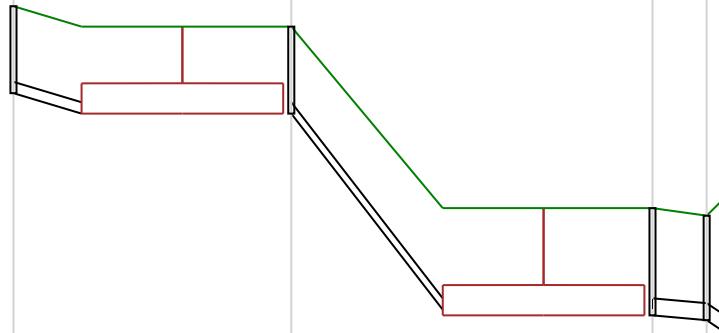
Where flow rates are less than 5.0 l/s consent for discharge is usually set at 5.0 l/s if blockage from vegetation and other materials is possible. Lower consent flow rates may be set where the blockage risk is addressed by using appropriate drainage elements.

(3) Is SPR/SPRHOST ≤ 0.3?

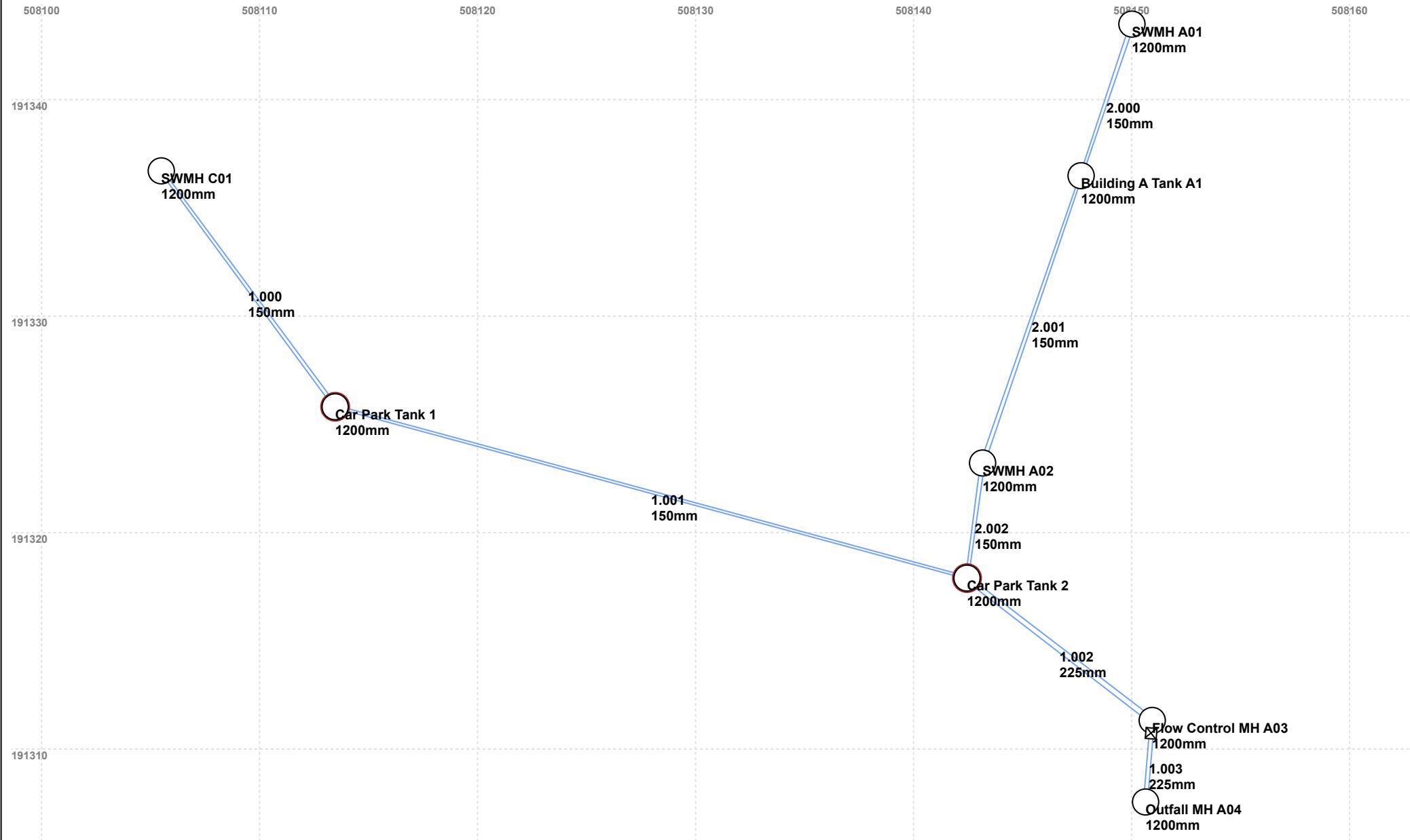
Where groundwater levels are low enough the use of soakaways to avoid discharge offsite would normally be preferred for disposal of surface water runoff.

Greenfield runoff rates Default Edited

Q_{BAR} (l/s): 4 4


1 in 1 year (l/s): 3.4 3.4

1 in 30 years (l/s): 9.2 9.2


1 in 100 year (l/s): 12.77 12.77

1 in 200 years (l/s): 14.97 14.97

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.ukuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at www.ukuds.com/terms-and-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

Node Name	SWMH C01	Car Park Tank 1	Car Park Tank 2
A4 drawing			
Hor Scale 1500			
Ver Scale 100			
Datum (m) 63.000			
Link Name	1.000	1.001	1.0021.
Section Type	150mr	150mm	225n2.
Slope (1:X)	50.0	11.6	167.92
Cover Level (m)	71.270	71.000	68.600 68.500 68.750
Invert Level (m)	70.120 69.850	69.850 67.257	67.182 67.157 67.666 67.666
Length (m)	13.506	30.045	10.73.

Node Name	SWBLH1AC3MTH1PA2	Tank 2
A4 drawing		
Hor Scale 1500		
Ver Scale 100		
Datum (m) 62.000		
Link Name	2.02.0012.0	
Section Type	15C150mr15	
Slope (1:X)	36.100.999	
Cover Level (m)	68.800 68.600 68.600 68.600	
Invert Level (m)	67.450 67.450 67.311 67.311	
Length (m)	7.314.0205.3	

Design Settings

Rainfall Methodology	FEH-13	Minimum Velocity (m/s)	1.00
Return Period (years)	100	Connection Type	Level Soffits
Additional Flow (%)	0	Minimum Backdrop Height (m)	0.200
CV	0.750	Preferred Cover Depth (m)	1.000
Time of Entry (mins)	5.00	Include Intermediate Ground	✓
Maximum Time of Concentration (mins)	30.00	Enforce best practice design rules	✓
Maximum Rainfall (mm/hr)	50.0		

Nodes

	Name	Area (ha)	T of E (mins)	Cover Level (m)	Diameter (mm)	Easting (m)	Northing (m)	Depth (m)
	SWMH A01	0.048	5.00	68.800	1200	508150.017	191343.488	1.150
	Building A Tank A1			68.600	1200	508147.686	191336.485	1.150
	SWMH A02			68.600	1200	508143.166	191323.214	1.289
	SWMH C01	0.057	5.00	71.270	1200	508105.491	191336.709	1.150
	Car Park Tank 1	0.014	5.00	71.000	1200	508113.468	191325.811	1.150
	Car Park Tank 2	0.104	5.00	68.600	1200	508142.452	191317.896	1.418
	Flow Control MH A03			68.500	1200	508150.948	191311.321	1.382
	Outfall MH A04			68.750	1200	508150.643	191307.554	1.800

Links

Name	US Node	DS Node	Length (m)	ks (mm) / n	US IL (m)	DS IL (m)	Fall (m)	Slope (1:X)	Dia (mm)	T of C (mins)	Rain (mm/hr)
2.001	Building A Tank A1	SWMH A02	14.020	0.600	67.450	67.311	0.139	100.9	150	5.31	50.0
2.002	SWMH A02	Car Park Tank 2	5.366	0.600	67.311	67.257	0.054	99.4	150	5.40	50.0
1.002	Car Park Tank 2	Flow Control MH A03	10.743	0.600	67.182	67.118	0.064	167.9	225	5.57	50.0
1.003	Flow Control MH A03	Outfall MH A04	3.779	0.600	67.118	66.950	0.168	22.5	225	5.60	50.0
1.000	SWMH C01	Car Park Tank 1	13.506	0.600	70.120	69.850	0.270	50.0	150	5.16	50.0
1.001	Car Park Tank 1	Car Park Tank 2	30.045	0.600	69.850	67.257	2.593	11.6	150	5.33	50.0
2.000	SWMH A01	Building A Tank A1	7.381	0.600	67.650	67.450	0.200	36.9	150	5.07	50.0

Name	Vel (m/s)	Cap (l/s)	Flow (l/s)	US Depth (m)	DS Depth (m)	Σ Area (ha)	Σ Add Inflow (l/s)	Pro Depth (mm)	Pro Velocity (m/s)
2.001	1.000	17.7	6.5	1.000	1.139	0.048	0.0	63	0.925
2.002	1.008	17.8	6.5	1.139	1.193	0.048	0.0	62	0.928
1.002	1.006	40.0	30.2	1.193	1.157	0.223	0.0	146	1.103
1.003	2.770	110.1	30.2	1.157	1.575	0.223	0.0	80	2.374
1.000	1.426	25.2	7.7	1.000	1.000	0.057	0.0	57	1.258
1.001	2.976	52.6	9.6	1.000	1.193	0.071	0.0	43	2.266
2.000	1.662	29.4	6.5	1.000	1.000	0.048	0.0	48	1.337

Pipeline Schedule

Link	Length (m)	Slope (1:X)	Dia (mm)	Link Type	US CL (m)	US IL (m)	US Depth (m)	DS CL (m)	DS IL (m)	DS Depth (m)
2.001	14.020	100.9	150	Circular	68.600	67.450	1.000	68.600	67.311	1.139
2.002	5.366	99.4	150	Circular	68.600	67.311	1.139	68.600	67.257	1.193
1.002	10.743	167.9	225	Circular	68.600	67.182	1.193	68.500	67.118	1.157
1.003	3.779	22.5	225	Circular	68.500	67.118	1.157	68.750	66.950	1.575
1.000	13.506	50.0	150	Circular	71.270	70.120	1.000	71.000	69.850	1.000
1.001	30.045	11.6	150	Circular	71.000	69.850	1.000	68.600	67.257	1.193
2.000	7.381	36.9	150	Circular	68.800	67.650	1.000	68.600	67.450	1.000

Link	US Node	Dia (mm)	Node Type	MH Type	DS Node	Dia (mm)	Node Type	MH Type
2.001	Building A Tank A1	1200	Manhole	Adoptable	SWMH A02	1200	Manhole	Adoptable
2.002	SWMH A02	1200	Manhole	Adoptable	Car Park Tank 2	1200	Manhole	Adoptable
1.002	Car Park Tank 2	1200	Manhole	Adoptable	Flow Control MH A03	1200	Manhole	Adoptable
1.003	Flow Control MH A03	1200	Manhole	Adoptable	Outfall MH A04	1200	Manhole	Adoptable
1.000	SWMH C01	1200	Manhole	Adoptable	Car Park Tank 1	1200	Manhole	Adoptable
1.001	Car Park Tank 1	1200	Manhole	Adoptable	Car Park Tank 2	1200	Manhole	Adoptable
2.000	SWMH A01	1200	Manhole	Adoptable	Building A Tank A1	1200	Manhole	Adoptable

Manhole Schedule

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connections	Link	IL (m)	Dia (mm)	
SWMH A01	508150.017	191343.488	68.800	1.150	1200		0	2.000	67.650	150
Building A Tank A1	508147.686	191336.485	68.600	1.150	1200		1	2.000	67.450	150
SWMH A02	508143.166	191323.214	68.600	1.289	1200		1	2.001	67.311	150
SWMH C01	508105.491	191336.709	71.270	1.150	1200		0	1.000	70.120	150
Car Park Tank 1	508113.468	191325.811	71.000	1.150	1200		1	1.000	69.850	150
Car Park Tank 2	508142.452	191317.896	68.600	1.418	1200		1	2.002	67.257	150
Car Park Tank 2	508142.452	191317.896	68.600	1.418	1200		2	1.001	67.257	150
Flow Control MH A03	508150.948	191311.321	68.500	1.382	1200		0	1.002	67.118	225
Flow Control MH A03	508150.948	191311.321	68.500	1.382	1200		1	1.003	67.118	225

Manhole Schedule

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connections	Link	IL (m)	Dia (mm)
Outfall MH A04	508150.643	191307.554	68.750	1.800	1200	1	1	1.003	66.950 225

Simulation Settings

Rainfall Methodology	FEH-13	Drain Down Time (mins)	240	30 year (l/s)	1.0
Summer CV	0.750	Additional Storage (m³/ha)	20.0	100 year (l/s)	1.0
Analysis Speed	Normal	Check Discharge Rate(s)	✓	Check Discharge Volume	x
Skip Steady State	x		2 year (l/s)	1.0	

Storm Durations

15 | 30 | 60 | 120 | 180 | 240 | 360 | 480 | 600 | 720 | 960 | 1440

Return Period (years)	Climate Change (CC %)	Additional Area (A %)	Additional Flow (Q %)
2	0	0	0
30	0	0	0
100	0	0	0
100	20	0	0
100	40	0	0

Pre-development Discharge Rate

Site Makeup	Greenfield	Growth Factor 30 year	1.95
Greenfield Method	IH124	Growth Factor 100 year	2.48
Positively Drained Area (ha)		Betterment (%)	0
SAAR (mm)		QBar	
Soil Index	1	Q 1 year (l/s)	
SPR	0.10	Q 30 year (l/s)	
Region	1	Q 100 year (l/s)	
Growth Factor 1 year	0.85		

Node Flow Control MH B02 Online Hydro-Brake® Control

Flap Valve	x	Objective	(HE) Minimise upstream storage
Replaces Downstream Link	x	Sump Available	✓
Invert Level (m)	0.000	Product Number	CTL-SHE-0049-1000-0800-1000
Design Depth (m)	0.800	Min Outlet Diameter (m)	0.075
Design Flow (l/s)	1.0	Min Node Diameter (mm)	1200

Node Flow Control MH A03 Online Hydro-Brake® Control

Flap Valve	x	Objective	(HE) Minimise upstream storage
Replaces Downstream Link	x	Sump Available	✓
Invert Level (m)	67.118	Product Number	CTL-SHE-0091-3000-0400-3000
Design Depth (m)	0.400	Min Outlet Diameter (m)	0.150
Design Flow (l/s)	3.0	Min Node Diameter (mm)	1200

Node Building B Tank B1 Depth/Area Storage Structure

Base Inf Coefficient (m/hr)	0.00000	Safety Factor	2.0	Invert Level (m)	0.000
Side Inf Coefficient (m/hr)	0.00000	Porosity	1.00	Time to half empty (mins)	

Depth (m)	Area (m ²)	Inf Area (m ²)	Depth (m)	Area (m ²)	Inf Area (m ²)	Depth (m)	Area (m ²)	Inf Area (m ²)
0.000	30.0	0.0	0.800	30.0	0.0	0.801	0.0	0.0

Node Car Park Tank 1 Depth/Area Storage Structure

Base Inf Coefficient (m/hr)	0.00000	Safety Factor	2.0	Invert Level (m)	69.850
Side Inf Coefficient (m/hr)	0.00000	Porosity	1.00	Time to half empty (mins)	0

Depth (m)	Area (m ²)	Inf Area (m ²)	Depth (m)	Area (m ²)	Inf Area (m ²)	Depth (m)	Area (m ²)	Inf Area (m ²)
0.000	74.9	0.0	0.400	74.9	0.0	0.401	0.0	0.0

Node Car Park Tank 2 Depth/Area Storage Structure

Base Inf Coefficient (m/hr)	0.00000	Safety Factor	2.0	Invert Level (m)	67.182
Side Inf Coefficient (m/hr)	0.00000	Porosity	1.00	Time to half empty (mins)	

Depth (m)	Area (m ²)	Inf Area (m ²)	Depth (m)	Area (m ²)	Inf Area (m ²)	Depth (m)	Area (m ²)	Inf Area (m ²)
0.000	279.7	0.0	0.400	279.7	0.0	0.401	0.0	0.0

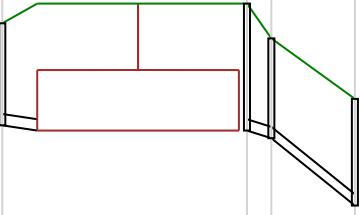
Results for 2 year Critical Storm Duration. Lowest mass balance: 99.93%

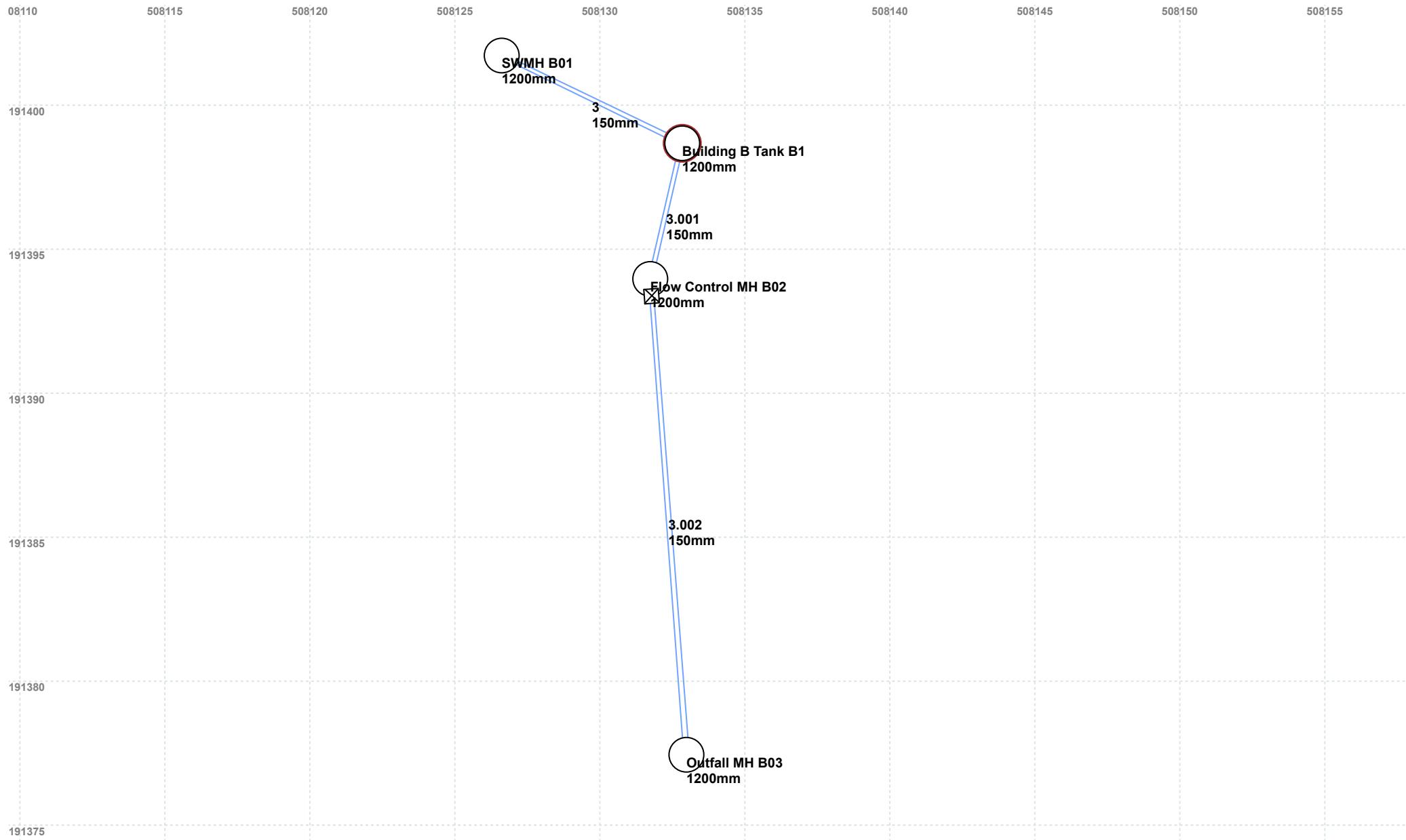
Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (l/s)	Node Vol (m³)	Flood (m³)	Status
15 minute summer	SWMH A01	10	67.698	0.048	6.3	0.0947	0.0000	OK
15 minute summer	Building A Tank A1	10	67.514	0.064	6.2	0.0719	0.0000	OK
15 minute summer	SWMH A02	11	67.378	0.067	6.2	0.0753	0.0000	OK
15 minute summer	SWMH C01	9	70.188	0.068	7.4	0.1439	0.0000	OK
30 minute summer	Car Park Tank 1	21	69.882	0.032	8.2	2.4264	0.0000	OK
240 minute summer	Car Park Tank 2	160	67.256	0.074	9.8	21.0104	0.0000	OK
240 minute summer	Flow Control MH A03	160	67.256	0.138	3.0	0.1562	0.0000	OK
240 minute summer	Outfall MH A04	160	66.975	0.025	3.0	0.0000	0.0000	OK
Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (l/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
15 minute summer	SWMH A01	2.000	Building A Tank A1	6.2	1.045	0.213	0.0442	
15 minute summer	Building A Tank A1	2.001	SWMH A02	6.2	0.850	0.349	0.1021	
15 minute summer	SWMH A02	2.002	Car Park Tank 2	6.2	0.871	0.349	0.0383	
15 minute summer	SWMH C01	1.000	Car Park Tank 1	7.5	1.740	0.296	0.0621	
30 minute summer	Car Park Tank 1	1.001	Car Park Tank 2	5.0	1.871	0.096	0.0811	
240 minute summer	Car Park Tank 2	1.002	Flow Control MH A03	3.0	0.221	0.074	0.1986	
240 minute summer	Flow Control MH A03	1.003	Outfall MH A04	3.0	1.155	0.027	0.0097	35.9

Results for 30 year Critical Storm Duration. Lowest mass balance: 99.93%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (l/s)	Node Vol (m³)	Flood (m³)	Status
15 minute summer	SWMH A01	10	67.746	0.096	18.0	0.1890	0.0000	OK
15 minute summer	Building A Tank A1	11	67.600	0.150	17.8	0.1693	0.0000	OK
15 minute summer	SWMH A02	11	67.456	0.145	17.3	0.1639	0.0000	OK
15 minute summer	SWMH C01	10	70.250	0.130	21.4	0.2754	0.0000	OK
15 minute summer	Car Park Tank 1	12	69.914	0.064	26.5	4.9136	0.0000	OK
240 minute summer	Car Park Tank 2	200	67.391	0.209	22.9	58.9972	0.0000	OK
240 minute summer	Flow Control MH A03	200	67.391	0.273	3.1	0.3083	0.0000	SURCHARGED
15 minute summer	Outfall MH A04	71	66.976	0.026	3.0	0.0000	0.0000	OK
Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (l/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
15 minute summer	SWMH A01	2.000	Building A Tank A1	17.8	1.242	0.606	0.1082	
15 minute summer	Building A Tank A1	2.001	SWMH A02	17.3	1.031	0.979	0.2455	
15 minute summer	SWMH A02	2.002	Car Park Tank 2	17.2	1.062	0.965	0.0868	
15 minute summer	SWMH C01	1.000	Car Park Tank 1	21.3	1.964	0.847	0.1483	
15 minute summer	Car Park Tank 1	1.001	Car Park Tank 2	19.2	2.701	0.365	0.2133	
240 minute summer	Car Park Tank 2	1.002	Flow Control MH A03	3.1	0.219	0.079	0.4204	
240 minute summer	Flow Control MH A03	1.003	Outfall MH A04	3.0	1.159	0.027	0.0098	71.1

Results for 100 year Critical Storm Duration. Lowest mass balance: 99.93%


Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (l/s)	Node Vol (m³)	Flood (m³)	Status
15 minute summer	SWMH A01	11	67.902	0.252	23.5	0.4961	0.0000	SURCHARGED
15 minute summer	Building A Tank A1	11	67.749	0.299	21.5	0.3377	0.0000	SURCHARGED
15 minute summer	SWMH A02	12	67.505	0.194	20.9	0.2192	0.0000	SURCHARGED
15 minute summer	SWMH C01	11	70.404	0.284	27.9	0.6033	0.0000	SURCHARGED
15 minute summer	Car Park Tank 1	13	69.928	0.078	33.2	5.9399	0.0000	OK
240 minute summer	Car Park Tank 2	240	67.484	0.302	30.5	85.3485	0.0000	SURCHARGED
240 minute summer	Flow Control MH A03	240	67.484	0.366	3.2	0.4138	0.0000	SURCHARGED
60 minute summer	Outfall MH A04	293	66.976	0.026	3.0	0.0000	0.0000	OK
Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (l/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
15 minute summer	SWMH A01	2.000	Building A Tank A1	21.5	1.274	0.731	0.1299	
15 minute summer	Building A Tank A1	2.001	SWMH A02	20.9	1.190	1.185	0.2468	
15 minute summer	SWMH A02	2.002	Car Park Tank 2	21.0	1.196	1.180	0.0912	
15 minute summer	SWMH C01	1.000	Car Park Tank 1	26.7	1.954	1.062	0.1801	
15 minute summer	Car Park Tank 1	1.001	Car Park Tank 2	26.6	2.934	0.505	0.2721	
240 minute summer	Car Park Tank 2	1.002	Flow Control MH A03	3.2	0.221	0.079	0.4273	
240 minute summer	Flow Control MH A03	1.003	Outfall MH A04	3.0	1.158	0.027	0.0098	69.9


Results for 100 year +20% CC Critical Storm Duration. Lowest mass balance: 99.93%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (l/s)	Node Vol (m³)	Flood (m³)	Status
15 minute summer	SWMH A01	11	68.084	0.434	28.2	0.8538	0.0000	SURCHARGED
15 minute summer	Building A Tank A1	12	67.887	0.437	25.1	0.4945	0.0000	SURCHARGED
240 minute summer	SWMH A02	240	67.557	0.246	8.0	0.2778	0.0000	SURCHARGED
15 minute summer	SWMH C01	11	70.570	0.450	33.5	0.9541	0.0000	SURCHARGED
15 minute summer	Car Park Tank 1	13	69.938	0.088	39.3	6.6798	0.0000	OK
240 minute summer	Car Park Tank 2	240	67.557	0.375	36.6	105.7228	0.0000	SURCHARGED
240 minute summer	Flow Control MH A03	240	67.556	0.438	3.2	0.4954	0.0000	SURCHARGED
240 minute summer	Outfall MH A04	240	66.976	0.026	3.0	0.0000	0.0000	OK
Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (l/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
15 minute summer	SWMH A01	2.000	Building A Tank A1	25.1	1.426	0.855	0.1299	
15 minute summer	Building A Tank A1	2.001	SWMH A02	24.4	1.388	1.382	0.2468	
240 minute summer	SWMH A02	2.002	Car Park Tank 2	7.9	0.841	0.446	0.0945	
15 minute summer	SWMH C01	1.000	Car Park Tank 1	31.5	2.049	1.250	0.1910	
15 minute summer	Car Park Tank 1	1.001	Car Park Tank 2	31.9	3.058	0.607	0.3137	
240 minute summer	Car Park Tank 2	1.002	Flow Control MH A03	3.2	0.222	0.079	0.4273	
240 minute summer	Flow Control MH A03	1.003	Outfall MH A04	3.0	1.163	0.028	0.0099	72.9

Results for 100 year +40% CC Critical Storm Duration. Lowest mass balance: 99.93%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (l/s)	Node Vol (m³)	Flood (m³)	Status
240 minute summer	SWMH A01	200	68.417	0.767	9.4	1.5085	0.0000	SURCHARGED
240 minute summer	Building A Tank A1	200	68.417	0.967	9.4	1.0936	0.0000	FLOOD RISK
240 minute summer	SWMH A02	200	68.416	1.105	9.4	1.2501	0.0000	FLOOD RISK
15 minute summer	SWMH C01	11	70.747	0.627	39.0	1.3312	0.0000	SURCHARGED
15 minute summer	Car Park Tank 1	13	69.947	0.097	45.2	7.4038	0.0000	OK
240 minute summer	Car Park Tank 2	200	68.416	1.234	42.5	115.2257	0.0000	FLOOD RISK
240 minute summer	Flow Control MH A03	200	68.414	1.296	5.1	1.4663	0.0000	FLOOD RISK
240 minute summer	Outfall MH A04	204	66.983	0.033	5.1	0.0000	0.0000	OK
Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (l/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
240 minute summer	SWMH A01	2.000	Building A Tank A1	9.4	1.162	0.319	0.1299	
240 minute summer	Building A Tank A1	2.001	SWMH A02	9.4	0.868	0.534	0.2468	
240 minute summer	SWMH A02	2.002	Car Park Tank 2	9.0	0.841	0.506	0.0945	
15 minute summer	SWMH C01	1.000	Car Park Tank 1	36.1	2.279	1.432	0.2003	
15 minute summer	Car Park Tank 1	1.001	Car Park Tank 2	37.1	3.154	0.706	0.3535	
240 minute summer	Car Park Tank 2	1.002	Flow Control MH A03	5.1	0.222	0.129	0.4273	
240 minute summer	Flow Control MH A03	1.003	Outfall MH A04	5.1	1.341	0.046	0.0144	86.5

Node Name	SWMH B01	Building B01	Building B03
A4 drawing			
Hor Scale 1500			
Ver Scale 100			
Datum (m) 66.000			
Link Name	3	3.0	3.002
Section Type	15C	15150mm	
Slope (1:X)	10C	47	18.6
Cover Level (m)	73.000	73.260 72.800	72.000
Invert Level (m)	71.680	71.480 71.480 70.589	72.000
Length (m)	6.9	4.16.570	

Design Settings

Rainfall Methodology	FEH-13	Minimum Velocity (m/s)	1.00
Return Period (years)	100	Connection Type	Level Soffits
Additional Flow (%)	0	Minimum Backdrop Height (m)	0.200
CV	0.750	Preferred Cover Depth (m)	1.000
Time of Entry (mins)	5.00	Include Intermediate Ground	✓
Maximum Time of Concentration (mins)	30.00	Enforce best practice design rules	✓
Maximum Rainfall (mm/hr)	50.0		

Nodes

	Name	Area (ha)	T of E (mins)	Cover Level (m)	Diameter (mm)	Easting (m)	Northing (m)	Depth (m)
	SWMH B01	0.046	5.00	73.000	1200	508126.616	191401.725	1.350
	Building B Tank B1			73.260	1200	508132.841	191398.678	1.679
	Flow Control MH B02			72.800	1200	508131.738	191393.968	1.320
	Outfall MH B03			72.000	1200	508132.985	191377.445	1.411

Links

Name	US Node	DS Node	Length (m)	ks (mm) / n	US IL (m)	DS IL (m)	Fall (m)	Slope (1:X)	Dia (mm)	T of C (mins)	Rain (mm/hr)
3	SWMH B01	Building B Tank B1	6.931	0.600	71.650	71.581	0.069	100.4	150	5.12	50.0
3.001	Building B Tank B1	Flow Control MH B02	4.837	0.600	71.581	71.480	0.101	47.9	150	5.17	50.0
3.002	Flow Control MH B02	Outfall MH B03	16.570	0.600	71.480	70.589	0.891	18.6	150	5.29	50.0

Name	Vel (m/s)	Cap (l/s)	Flow (l/s)	US Depth (m)	DS Depth (m)	Σ Area (ha)	Σ Add Inflow (l/s)	Pro Depth (mm)	Pro Velocity (m/s)
3	1.003	17.7	6.2	1.200	1.529	0.046	0.0	61	0.915
3.001	1.457	25.7	6.2	1.529	1.170	0.046	0.0	50	1.202
3.002	2.346	41.5	6.2	1.170	1.261	0.046	0.0	39	1.689

Pipeline Schedule

Link	Length (m)	Slope (1:X)	Dia (mm)	Link Type	US CL (m)	US IL (m)	US Depth (m)	DS CL (m)	DS IL (m)	DS Depth (m)
3	6.931	100.4	150	Circular	73.000	71.650	1.200	73.260	71.581	1.529
3.001	4.837	47.9	150	Circular	73.260	71.581	1.529	72.800	71.480	1.170
3.002	16.570	18.6	150	Circular	72.800	71.480	1.170	72.000	70.589	1.261

Link	US Node	Dia (mm)	Node Type	MH Type	DS Node	Dia (mm)	Node Type	MH Type
3	SWMH B01	1200	Manhole	Adoptable	Building B Tank B1	1200	Manhole	Adoptable
3.001	Building B Tank B1	1200	Manhole	Adoptable	Flow Control MH B02	1200	Manhole	Adoptable
3.002	Flow Control MH B02	1200	Manhole	Adoptable	Outfall MH B03	1200	Manhole	Adoptable

Manhole Schedule

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connections	Link	IL (m)	Dia (mm)	
SWMH B01	508126.616	191401.725	73.000	1.350	1200		0	3	71.650	150
Building B Tank B1	508132.841	191398.678	73.260	1.679	1200		1	3	71.581	150
Flow Control MH B02	508131.738	191393.968	72.800	1.320	1200		1	3.001	71.581	150
Outfall MH B03	508132.985	191377.445	72.000	1.411	1200		1	3.002	71.480	150

Simulation Settings

Rainfall Methodology	FEH-13	Drain Down Time (mins)	240	30 year (l/s)	1.0
Summer CV	0.750	Additional Storage (m³/ha)	20.0	100 year (l/s)	1.0
Analysis Speed	Normal	Check Discharge Rate(s)	✓	Check Discharge Volume	x
Skip Steady State	x	2 year (l/s)	1.0		

Storm Durations											
15	30	60	120	180	240	360	480	600	720	960	1440

Return Period (years)	Climate Change (CC %)	Additional Area (A %)	Additional Flow (Q %)
2	0	0	0
30	0	0	0
100	0	0	0
100	20	0	0
100	40	0	0

Pre-development Discharge Rate

Site Makeup	Greenfield	Growth Factor 30 year	1.95
Greenfield Method	IH124	Growth Factor 100 year	2.48
Positively Drained Area (ha)		Betterment (%)	0
SAAR (mm)		QBar	
Soil Index	1	Q 1 year (l/s)	
SPR	0.10	Q 30 year (l/s)	
Region	1	Q 100 year (l/s)	
Growth Factor 1 year	0.85		

Node Flow Control MH B02 Online Hydro-Brake® Control

Flap Valve	x	Objective	(HE) Minimise upstream storage
Replaces Downstream Link	✓	Sump Available	✓
Invert Level (m)	71.480	Product Number	CTL-SHE-0049-1000-0800-1000
Design Depth (m)	0.800	Min Outlet Diameter (m)	0.075
Design Flow (l/s)	1.0	Min Node Diameter (mm)	1200

Node Building B Tank B1 Depth/Area Storage Structure

Base Inf Coefficient (m/hr)	0.00000	Safety Factor	2.0	Invert Level (m)	71.581
Side Inf Coefficient (m/hr)	0.00000	Porosity	1.00	Time to half empty (mins)	120

Depth (m)	Area (m ²)	Inf Area (m ²)	Depth (m)	Area (m ²)	Inf Area (m ²)	Depth (m)	Area (m ²)	Inf Area (m ²)
0.000	37.5	0.0	0.800	37.5	0.0	0.801	0.0	0.0

Results for 2 year Critical Storm Duration. Lowest mass balance: 100.00%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (l/s)	Node Vol (m³)	Flood (m³)	Status
15 minute summer	SWMH B01	9	71.718	0.068	6.0	0.1230	0.0000	OK
120 minute summer	Building B Tank B1	80	71.648	0.067	3.9	2.6073	0.0000	OK
180 minute summer	Flow Control MH B02	116	71.652	0.172	3.1	0.1949	0.0000	SURCHARGED
15 minute summer	Outfall MH B03	1	70.589	0.000	0.9	0.0000	0.0000	OK

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (l/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
15 minute summer	SWMH B01	3	Building B Tank B1	6.0	1.318	0.340	0.0347	
120 minute summer	Building B Tank B1	3.001	Flow Control MH B02	2.7	0.300	0.103	0.0612	
180 minute summer	Flow Control MH B02	Hydro-Brake®	Outfall MH B03	0.9				7.3

Results for 30 year Critical Storm Duration. Lowest mass balance: 100.00%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (l/s)	Node Vol (m³)	Flood (m³)	Status
120 minute summer	SWMH B01	104	71.813	0.163	7.6	0.2960	0.0000	SURCHARGED
120 minute summer	Building B Tank B1	100	71.813	0.232	7.5	8.9655	0.0000	SURCHARGED
120 minute summer	Flow Control MH B02	100	71.813	0.333	2.4	0.3765	0.0000	SURCHARGED
15 minute summer	Outfall MH B03	1	70.589	0.000	0.9	0.0000	0.0000	OK

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (l/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
120 minute summer	SWMH B01	3	Building B Tank B1	7.5	0.813	0.425	0.1220	
120 minute summer	Building B Tank B1	3.001	Flow Control MH B02	2.4	0.375	0.093	0.0852	
120 minute summer	Flow Control MH B02	Hydro-Brake®	Outfall MH B03	0.9				15.0

Results for 100 year Critical Storm Duration. Lowest mass balance: 100.00%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (l/s)	Node Vol (m³)	Flood (m³)	Status
180 minute summer	SWMH B01	168	71.931	0.281	7.6	0.5089	0.0000	SURCHARGED
180 minute summer	Building B Tank B1	168	71.931	0.350	7.3	13.5077	0.0000	SURCHARGED
180 minute summer	Flow Control MH B02	168	71.931	0.451	3.3	0.5095	0.0000	SURCHARGED
15 minute summer	Outfall MH B03	1	70.589	0.000	0.9	0.0000	0.0000	OK

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (l/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
180 minute summer	SWMH B01	3	Building B Tank B1	7.3	0.780	0.411	0.1220	
180 minute summer	Building B Tank B1	3.001	Flow Control MH B02	3.3	0.373	0.129	0.0852	
180 minute summer	Flow Control MH B02	Hydro-Brake®	Outfall MH B03	0.9				20.6

Results for 100 year +20% CC Critical Storm Duration. Lowest mass balance: 100.00%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (l/s)	Node Vol (m³)	Flood (m³)	Status
180 minute summer	SWMH B01	176	72.027	0.377	9.1	0.6824	0.0000	SURCHARGED
180 minute summer	Building B Tank B1	180	72.026	0.445	8.7	17.2049	0.0000	SURCHARGED
180 minute summer	Flow Control MH B02	180	72.026	0.546	3.1	0.6177	0.0000	SURCHARGED
15 minute summer	Outfall MH B03	1	70.589	0.000	0.9	0.0000	0.0000	OK

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (l/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
180 minute summer	SWMH B01	3	Building B Tank B1	8.7	0.821	0.493	0.1220	
180 minute summer	Building B Tank B1	3.001	Flow Control MH B02	3.1	0.383	0.119	0.0852	
180 minute summer	Flow Control MH B02	Hydro-Brake®	Outfall MH B03	0.9				20.4

Results for 100 year +40% CC Critical Storm Duration. Lowest mass balance: 100.00%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (l/s)	Node Vol (m³)	Flood (m³)	Status
180 minute summer	SWMH B01	180	72.125	0.475	10.6	0.8609	0.0000	SURCHARGED
180 minute summer	Building B Tank B1	180	72.125	0.544	10.2	21.0083	0.0000	SURCHARGED
180 minute summer	Flow Control MH B02	180	72.125	0.645	3.0	0.7291	0.0000	SURCHARGED
15 minute summer	Outfall MH B03	1	70.589	0.000	0.9	0.0000	0.0000	OK

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (l/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
180 minute summer	SWMH B01	3	Building B Tank B1	10.2	0.825	0.574	0.1220	
180 minute summer	Building B Tank B1	3.001	Flow Control MH B02	3.0	0.355	0.116	0.0852	
180 minute summer	Flow Control MH B02	Hydro-Brake®	Outfall MH B03	0.9				20.7

1. Project & Site Details	
Project / Site Name (including sub-catchment / stage / phase where appropriate)	Denville Hall
Address & post code	62 Duck's Hill Rd, London, Northwood HA6 2SB
OS Grid ref. (Easting, Northing)	E 508107 N 191341
LPA reference (if applicable)	
Brief description of proposed work	demolition of no. 48 and no. 60 Ducks Hill Road, a derelict garage and wooden storage unit and the erection of 12 assisted-living units (Class C2) in two separate buildings (Buildings A and B) and proposed ancillary communal space, including café and
Total site Area	8729 m ²
Total existing impervious area	2124 m ²
Total proposed impervious area	3079 m ²
Is the site in a surface water flood risk catchment (ref. local Surface Water Management Plan)?	
Existing drainage connection type and location	To surface water sewer
Designer Name	C Ariyaratne
Designer Position	Director
Designer Company	Chathom Limited

2a. Infiltration Feasibility		
Superficial geology classification	None recorded	
Bedrock geology classification	Lambeth Group - Clay, Silt and Sand	
Site infiltration rate	m/s	
Depth to groundwater level	m below ground level	
Is infiltration feasible?	No	
2b. Drainage Hierarchy		
		Feasible (Y/N)
		Proposed (Y/N)
1 store rainwater for later use		N N
2 use infiltration techniques, such as porous surfaces in non-clay areas		N N
3 attenuate rainwater in ponds or open water features for gradual release		N N
4 attenuate rainwater by storing in tanks or sealed water features for gradual release		Y Y
5 discharge rainwater direct to a watercourse		N N
6 discharge rainwater to a surface water sewer/drain		Y Y
7 discharge rainwater to the combined sewer.		N N
2c. Proposed Discharge Details		
Proposed discharge location	Surface water sewer located onsite	
Has the owner/regulator of the discharge location been consulted?	Yes	

3a. Discharge Rates & Required Storage				
	Greenfield (GF) runoff rate (l/s)	Existing discharge rate (l/s)	Required storage for GF rate (m^3)	Proposed discharge rate (l/s)
Q_{bar}	4	XX	XX	XX
1 in 1	3.4	36.5		4
1 in 30	9.2	91.2		4
1 in 100	12.77	134.9		4
1 in 100 + CC	XX	XX		4
Climate change allowance used	40%			
3b. Principal Method of Flow Control	Vortex flow control x 2			
3c. Proposed SuDS Measures				
	Catchment area (m^2)	Plan area (m^3)	Storage vol. (m^3)	
Rainwater harvesting	0	XX	0	
Infiltration systems	0	XX	0	
Green roofs	0	0	0	
Blue roofs	0	0	0	
Filter strips	530	0	0	
Filter drains	0	0	0	
Bioretention / tree pits	0	0	0	
Pervious pavements	0	0	0	
Swales	0	0	0	
Basins/ponds	0	0	0	
Attenuation tanks	3549	XX	147	
Total	4079	0	147	

4a. Discharge & Drainage Strategy		Page/section of drainage report
Infiltration feasibility (2a) – geotechnical factual and interpretive reports, including infiltration results		2.5
Drainage hierarchy (2b)		3.6
Proposed discharge details (2c) – utility plans, correspondence / approval from owner/regulator of discharge location		3.7, appendix A
Discharge rates & storage (3a) – detailed hydrologic and hydraulic calculations	3.7, appendix C	
4c. Supporting Information		Page/section of drainage report
Proposed SuDS measures & specifications (3b)	3.6, 3.7, appendix C	
4b. Other Supporting Details		Page/section of drainage report
Detailed Development Layout	Appendix B	
Detailed drainage design drawings, including exceedance flow routes	3.6, 3.7, appendix C	
Detailed landscaping plans	Appendix B	
Maintenance strategy	Appendix D	
Demonstration of how the proposed SuDS measures improve:	4	
a) water quality of the runoff?		
b) biodiversity?		
c) amenity?		

Appendix D – SuDS Maintenance Plan

As the maintenance of the communal SuDS features will be carried out via a Management Company, the form of agreement should include the required maintenance listed below. Should the maintenance be transferred at a later date to a public body, then the model agreement SuDS MA1 should be used, details of which can be found in the CIRIA guidance C625.

The following section describes the required maintenance for each feature in turn. The SuDS maintenance requirements listed below should be reviewed after the first 5 years, with a view to agreeing a new regime for the ongoing maintenance.

Notwithstanding the routine inspections and maintenance requirements, after severe storm events all features shall be inspected to clear debris and repair damaged structures or features. Records of the maintenance carried out shall be prepared by the Management Company.

Green Roofs

Maintenance schedule	Required action	Typical frequency
Regular inspections	Inspect all components including soil substrate, vegetation, drains, irrigation systems (if applicable), membranes and roof structure for proper operation, integrity of waterproofing and structural stability	Annually and after severe storms
	Inspect soil substrate for evidence of erosion channels and identify any sediment sources	Annually and after severe storms
	Inspect drain inlets to ensure unrestricted runoff from the drainage layer to the conveyance or roof drain system	Annually and after severe storms
	Inspect underside of roof for evidence of leakage	Annually and after severe storms
Regular maintenance	Remove debris and litter to prevent clogging of inlet drains and interference with plant growth	Six monthly and annually or as required
	During establishment (i.e. year one), replace dead plants as required	Monthly (but usually responsibility of manufacturer)
	Post establishment, replace dead plants as required (where > 5 % of coverage)	Annually (in autumn)

Maintenance schedule	Required action	Typical frequency
	Remove fallen leaves and debris from deciduous plant foliage	Six monthly or as required
	Remove nuisance and invasive vegetation, including weeds	Six monthly or as required
	Mow grasses, prune shrubs and manage other planting as required- clippings should be removed and not allowed to accumulate	Six monthly or as required
Remedial actions	If erosion channels are evident, these should be stabilised with extra soil substrate similar to the original material, and sources of erosion damage should be identified and controlled	As required
	If drain inlet has settled, cracked or moved, investigate and repair as appropriate	As required

Swales

Maintenance schedule	Required action	Typical frequency
Regular maintenance	Remove litter and debris	Monthly, or as required
	Cut grass- to retain grass height within specified design range	Monthly (during growing season), or as required
	Manage other vegetation and remove nuisance plants	Monthly at start, then as required
	Inspect inlets, outlets and overflows for blockages, and clear if required	Monthly
	Inspect infiltration surfaces for ponding, compaction, silt accumulation, record areas where water is ponding for >48 hours	Monthly or when required
	Inspect vegetation coverage	Monthly for 6 months, quarterly for 2 years, then half yearly
	Inspect inlets and facility surface for silt accumulation, establish appropriate silt removal frequencies	Half yearly

Maintenance schedule	Required action	Typical frequency
Occasional maintenance	Reseed areas of poor vegetation growth, alter plant types to better suit conditions, if required	As required or if bare soil is exposed over 10 % or more of the swale treatment area
Remedial actions	Repair erosion or other damage by re-turfing or reseeding	As required
	Relevel uneven surfaces and reinstate design level	As required
	Scarf and spike topsoil layer to improve infiltration performance, break up silt deposits and prevent compaction of soil surface	As required
	Remove build up of sediment on upstream gravel trench, flow spreader or at top of filter strip	As required
	Remove and dispose of oils or petrol residues using safe standard practices	As required

Bioretention Systems

Maintenance schedule	Required action	Typical frequency
Regular inspections	Inspect infiltration surfaces for silting and ponding, record de-watering time of the facility and assess standing water levels in underdrain (if appropriate) to determine if maintenance is necessary	Quarterly
	Check operation of underdrains by inspection of flows are rain	Annually
	Assess plants for disease infection, poor growth, invasive species etc and replace as necessary	Quarterly
	Inspect inlets and outlets for blockage	Quarterly
Regular maintenance	Remove litter and surface debris and weeds	Quarterly
	Replace any plants, to maintain planting density	As required
	Remove sediment, litter and debris build up from around inlets or from forebays	Quarterly to biannually

Maintenance schedule	Required action	Typical frequency
Occasional maintenance	Infill any holes or scour in the filter medium, improve erosion protection if required	As required
	Repair minor accumulations of silt by raking away surface mulch, scarifying surface of medium and replacing mulch	As required
Remedial actions	Remove and replace filter medium and vegetation above	As required but likely to be > 20 years

Filter Drains

Maintenance schedule	Required action	Typical frequency
Regular maintenance	Remove litter (including leaf litter) and debris from filter drain surface, access chambers and pre-treatment devices	Monthly or as required
	Inspect filter drain surface, inlet/outlet pipework and control systems for blockages, clogging, standing water and structural damage	Monthly
	Inspect pre-treatment systems, inlets and perforated pipework for silt accumulation, and establish appropriate silt removal frequencies	Six monthly
	Remove sediment from pre-treatment devices	Six monthly or as required
Occasional maintenance	Remove or control tree roots where they are encroaching the sides of the filter drain, using recommended methods (e.g. NJUG, 2007 or BS 398:2010)	As required
	At locations with high pollution loads, remove surface geotextile and replace, and wash or replace overlying filter medium	Five yearly or as required
	Clear, perforated pipework of blockages	As required

Storage Tanks

Maintenance schedule	Required action	Typical frequency
Regular maintenance	Inspect and identify any areas that are not operating correctly. If required, take remedial action	Monthly for 3 months, then annually
	Remove debris from the catchment surface (where it may cause risks to performance)	Monthly
	For systems where rainfall infiltrates into the tank from above, check surface of filter for blockage by sediment, algae or other matter; remove and replace surface infiltration medium as necessary	Annually
	Remove sediment from pre-treatment structures and/or internal forebays	Annually, or as required
Remedial actions	Repair/rehabilitate inlets, outlet, overflows and vents	As required
Monitoring	Inspect/check all inlets, outlets, vents and overflows to ensure that they are in good condition and operating as designed	Annually
	Survey inside of tank for sediment build-up and remove if necessary	Every 5 years or as required

Permeable Paving

Maintenance schedule	Required action	Typical frequency
Regular maintenance	Brushing and vacuuming (standard cosmetic sweep over whole surface)	Once a year, after autumn leaf fall, or reduced frequency as required, based on site-specific observations of clogging or manufacturer's recommendations – pay particular attention to areas where water runs onto pervious surface from adjacent impermeable areas as this area is most likely to collect the most sediment
Occasional maintenance	Stabilise and mow contributing and adjacent areas	As required

Maintenance schedule	Required action	Typical frequency
	Removal of weeds or management using glyphosphate applied directly into the weeds by an applicator rather than spraying	As required – once per year on less frequently used pavements
Remedial Actions	Remediate any landscaping which, through vegetation maintenance or soil slip, has been raised to within 50 mm of the level of the paving	As required
	Remedial work to any depressions, rutting and cracked or broken blocks considered detrimental to the structural performance or a hazard to users, and replace lost jointing material	As required
	Rehabilitation of surface and upper substructure by remedial sweeping	Every 10 to 15 years or as required (if infiltration performance is reduced due to significant clogging)
Monitoring	Initial inspection	Monthly for three months after installation
	Inspect for evidence of poor operation and/or weed growth – if required, take remedial action	Three monthly 48 h after large storms in first six months
	Inspect silt accumulation rates and establish appropriate brushing frequencies	Annually
	Monitor inspection chambers	Annually

Other Drainage items

Product Type	Period	Responsibility	Maintenance Methods
Standard Manholes/ Inspection Chambers	As necessary	Owner/ Maintenance Company	Remove and clean any soil and vegetation that covers the manhole cover to prevent blockage of the drainage system at the manhole. Renew/replace any damaged/missing bolts and damaged/missing manhole covers
Drainage pipes	Six monthly intervals	Owner/ Maintenance Company	Inspect underground drainage pipes to ensure that the distribution pipework arrangement is operational and free from blockages. If required, take remedial action
Flow control	Annually	Maintenance Company for communal areas	Renew any missing/broken items Cleaning out Check outlet spigot