

560 Sipson Road
West Drayton

Drainage Strategy

560 SIPSON ROAD

WEST DRAYTON

DRAINAGE STRATEGY

For

PHULL EMPIRE

JULY 2022

REV: P02

P18-403

18403-RLL-22-XX-RP-C-001

Document History

Prepared by : Alex Parkes

Position : Senior Engineer

Date : 30th June 2022

Authorised by : Matt Leask

Position : Principal Engineer

Date : 30th June 2022

Document Status : Preliminary

Revision : P01

Revision	Date	Comment	Editor	Checked by
P01	30/06/22	Issued for comment	AP	ML
P02	12/07/22	Drawing updated	AP	ML

Contents

1	Introduction and Brief	2
2	Site Description and Flood Risk	3
3	Proposed Developed Site Surface Water Strategy	4
4	SuDS	6
5	SuDS Maintenance	7
6	Proposed Developed Site Foul Water Strategy	8

Appendices

Appendix A **Topographical Survey**

Appendix B **Surface Water MicroDrainage Calculations**

Appendix C **External Works Drawing**

1 Introduction and Brief

- 1.1.1 Rodgers Leask Ltd has been commissioned by Phull Empire to undertake a Drainage Strategy for a site off Sipson Road in London.
- 1.1.2 The proposed development will include the construction of a seven-storey hotel with basement parking.
- 1.1.3 This report has been commissioned in support of a full planning application to Hillingdon London Borough Council.
- 1.1.4 This report will consider both foul and surface water drainage and will make recommendations regarding proposed points of connection. For surface water, consideration will be given to proposed contributing impermeable areas and any attenuation requirements.
- 1.1.5 This report is to be read in conjunction with Rodgers Leask Drawing 18403-RLL-19-XX-DR-C-2000 External Works.
- 1.1.6 This report has been produced on behalf of the client and no responsibility is accepted to any third party for all or any part. This report should not be relied upon or transferred to any other parties without the express written authorisation of Rodgers Leask Ltd.

2 Site Description and Flood Risk

- 2.1.1 The site is located adjacent to Sipson Road, north of Heathrow Airport and has an overall area of approximately 0.13 hectares; the site previously housed a Royal British Legion club which has since been demolished.
- 2.1.2 A topographical survey of the site has been undertaken and is included within **Appendix A**. Levels on site are generally flat at around 25.50mAOD.
- 2.1.3 Surface water runoff generated by the site currently drains via overland flow to the historical positive drainage network serving the site.
- 2.1.4 The site is located wholly within Flood Zone 1, and the long term flood risk mapping does not identify any significant areas of surface water flood risk; the site is also not at risk of reservoir flooding.
- 2.1.5 As the site area is below 1 hectare and there are no significant sources of flood risk, a detailed flood risk assessment has not been undertaken as part of this report.

3 Proposed Developed Site Surface Water Strategy

- 3.1.1 A historical site investigation was undertaken on the site, dated September 2016, which identified made ground over sands and gravels over London clay underlying the site. Due to the presence of a basement level, however, drainage via infiltration is not considered to be a suitable means of surface water discharge for the site.
- 3.1.2 As there are no watercourses in close proximity to the site, an outfall to the adjacent surface water sewer has been chosen as the preferred outfall in accordance with the hierarchy for SuDS. Attenuation has been calculated based on a restricted discharge rate of 2l/s.
- 3.1.3 A 40% allowance for climate change has been included within the calculations in line with the assumed 60-year design life of the scheme; this is in accordance with the Environment Agency's 'climate change allowances' guidance.
- 3.1.4 It is proposed that the surface water system to serve the site will provide sufficient attenuation to ensure that there is no off-site flooding for return periods up to and including the 1 in 100 year plus 40% climate change event. This will ensure that post development, the risk to adjacent properties is effectively reduced.
- 3.1.5 The surface water network has been modelled up to and including the 100 year + 40% allowance for climate change using MicroDrainage software, the results of which can be viewed in **Appendix B**; as the drainage network is split over 3 levels with significant elevation changes between each level, dummy pipe runs have been used to represent the network with a conservative base flow of 1.9l/s to represent the pumped flow from the basement.
- 3.1.6 It is proposed to attenuate flows within a blue roof system, and within the permeable sub-base and 2no below ground tanks on the podium deck outside the building entrance.
- 3.1.7 Overland flow routes will be carefully considered for blockage and exceedance events to ensure that routing is away from both existing and proposed properties.
- 3.1.8 It is considered that by adhering to the strategy outlined above, the additional volumes of surface water runoff generated by the redeveloped site will be managed such that the residual risk to adjacent properties is negligible. As such, it is considered that the site will be at a low risk of flooding from either flows generated on-site, or from overland flows from off-site.

- 3.1.9 It is proposed that the on-site surface water pipe network would remain private.
- 3.1.10 A copy of the Drainage Strategy drawing (18403-RLL-19-XX-DR-C-2000) is contained within **Appendix C**.

4 SuDS

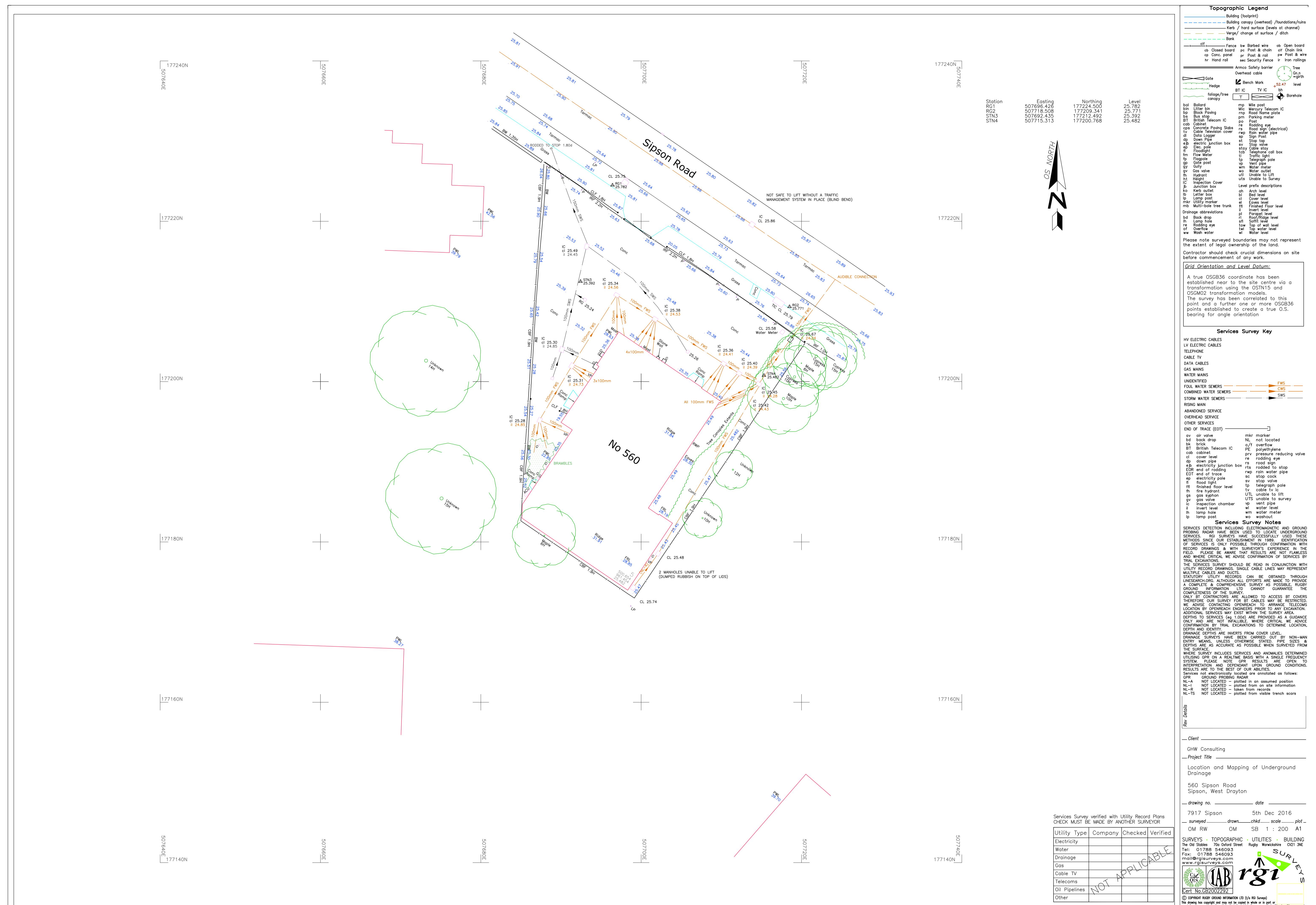
- 4.1.1 SuDS have been considered as part of the drainage solution. Typically, SuDS techniques are used to mimic the natural drainage of the land, infiltrating surface water into the ground or discharging it into a local water course. Where this occurs, it is important to ensure that the quality of water is as clean as possible to prevent the spread of any pollutants. This is also the case when discharging surface water to a surface water sewer, as in most cases these types of sewers discharge into water courses.
- 4.1.2 Permeable paving was reviewed as part of the drainage strategy, however it is considered that permeable surfacing within the vehicular trafficked areas to the front of the proposed building is likely to be subject to trafficking by delivery vehicles up to 7.5t and would therefore be prone to premature failure. An impermeable surface with positive drainage into an underlying permeable sub-base has therefore been proposed to maintain the water treatment characteristics of a permeable paved system.
- 4.1.3 Rainwater harvesting is also proposed via a 12m³ storage tank in the basement in accordance with Policy SI 5 of the London Plan 2021.
- 4.1.4 Water treatment will generally be provided via the underdrained swale and permeable sub-base on the podium slab.
- 4.1.5 In accordance with CIRIA C753, the vehicular trafficked are the highest risk areas in terms of potential pollutants, with pollution hazard indices of 0.5, 0.4 and 0.4 for total suspended solids, metals and hydrocarbons respectively. These areas drain via the permeable sub-base, the mitigation indices for which are set out in the table below:

Type of SuDS component	Mitigation indices		
	TSS	Metals	Hydrocarbons
Permeable pavement*	0.7	0.6	0.7

**The mitigation indices for a permeable pavement have been chosen to represent treatment provided by the permeable sub-base as outlined in paragraph 4.1.2 above.*

- 4.1.6 It is therefore considered that by adhering to the SuDS strategy above, the necessary treatment will be provided to allow compliance with CIRIA C753 guidance.

5 SuDS Maintenance


- 5.1.1 The SuDS features will be maintained by a private management company.
- 5.1.2 The below ground attenuation serving the site will require regular maintenance including:
 - Inspections after every major storm event, at the end of winter, at the end of summer, and after autumn leaf fall to check for debris build-up.
 - Catchpits, gullies and channels feeding into the attenuation tank, and the control chamber at the outfall should be cleaned and emptied as necessary to prevent build-up of silt within the system.
- 5.1.3 The underdrained swale serving the site will require regular maintenance including:
 - Regular litter removal
 - Grass cutting and removal of cuttings
 - Clearing of debris and settlement from inlets, culverts and outlets
 - Repair of eroded or damaged areas
 - Clearing blockages from perforated pipework as required
- 5.1.4 The orifice flow control unit should be maintained in accordance with the manufacturer's recommendations.

6 Proposed Developed Site Foul Water Strategy

- 6.1.1 It is proposed to pump foul flows from the site via a private pumping station within the basement. The pumped flows will outfall to a break chamber within the site boundary before draining via gravity to the existing Thames Water foul sewer in Sipson Road.
- 6.1.2 Discussions will be held with Thames Water at the detailed design stage to establish an acceptable discharge rate into the existing foul sewer; this will then inform the design of the private pumping station.

Appendices

Appendix A - Topographical Survey

Appendix B – Surface Water MicroDrainage Calculations

Rodgers Leask Limited		Page 1
St James House Mansfield Road Derby DE1 3TQ		
Date 28/06/2022 18:01	Designed by alex.parkes	
File SW Network 280622.MDX	Checked by	
Micro Drainage	Network 2020.1.3	

STORM SEWER DESIGN by the Modified Rational Method

Design Criteria for Storm

Pipe Sizes STANDARD Manhole Sizes STANDARD

FSR Rainfall Model - England and Wales

Return Period (years)	100	PIMP (%)	100
M5-60 (mm)	20.000	Add Flow / Climate Change (%)	40
Ratio R	0.400	Minimum Backdrop Height (m)	0.200
Maximum Rainfall (mm/hr)	50	Maximum Backdrop Height (m)	1.500
Maximum Time of Concentration (mins)	30	Min Design Depth for Optimisation (m)	1.200
Foul Sewage (l/s/ha)	0.000	Min Vel for Auto Design only (m/s)	1.00
Volumetric Runoff Coeff.	0.750	Min Slope for Optimisation (1:X)	500

Designed with Level Soffits

Network Design Table for Storm

PN	Length (m)	Fall (1:X)	Slope	I.Area (ha)	T.E. (mins)	Base Flow (l/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
1.000	10.000	0.200	50.0	0.038	5.00	1.9	0.600	o	150	Pipe/Conduit	🔓
2.000	10.000	0.200	50.0	0.004	5.00	0.0	0.600	o	150	Pipe/Conduit	🔓
1.001	10.000	0.200	50.0	0.000	0.00	0.0	0.600	o	150	Pipe/Conduit	🔒

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)	Foul (l/s)	Add Flow (l/s)	Vel (m/s)	Cap (l/s)	Flow (l/s)
1.000	50.00	5.12	2.200	0.038	1.9	0.0	2.8	1.43	25.2	9.9
2.000	50.00	5.12	2.200	0.004	0.0	0.0	0.2	1.43	25.2	0.8
1.001	50.00	5.23	1.025	0.042	1.9	0.0	3.0	1.43	25.2	10.6

Free Flowing Outfall Details for Storm

Outfall Pipe Number	Outfall Name	C. Level (m)	I. Level (m)	Min I. Level (m)	D, L (mm)	W (mm)
1.001		2.700	0.825	0.000	0	0

Rodgers Leask Limited St James House St Mary's Wharf Mansfield Road Derby DE1 3TQ		Page 2
Date 28/06/2022 18:01 File SW Network 280622.MDX	Designed by alex.parkes Checked by	
Micro Drainage Network 2020.1.3		

Simulation Criteria for Storm

Volumetric Runoff Coeff	0.750	Additional Flow - % of Total Flow	0.000
Areal Reduction Factor	1.000	MADD Factor * 10m ³ /ha	Storage 2.500
Hot Start (mins)	0	Inlet Coefffiecient	0.800
Hot Start Level (mm)	0	Flow per Person per Day (l/per/day)	0.000
Manhole Headloss Coeff (Global)	0.500	Run Time (mins)	60
Foul Sewage per hectare (l/s)	0.000	Output Interval (mins)	1

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0
 Number of Online Controls 1 Number of Storage Structures 2 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model	FSR	Profile Type	Summer
Return Period (years)	100	Cv (Summer)	0.750
Region	England and Wales	Cv (Winter)	0.840
M5-60 (mm)	20.000	Storm Duration (mins)	30
Ratio R	0.400		

Rodgers Leask Limited St James House St Mary's Wharf Mansfield Road Derby DE1 3TQ		Page 3
Date 28/06/2022 18:01 File SW Network 280622.MDX	Designed by alex.parkes Checked by	
Micro Drainage	Network 2020.1.3	

Online Controls for Storm

Orifice Manhole: 3, DS/PN: 1.001, Volume (m³): 2.1

Diameter (m) 0.028 Discharge Coefficient 0.590 Invert Level (m) 1.025

Rodgers Leask Limited St James House St Mary's Wharf Mansfield Road Derby DE1 3TQ		Page 4
Date 28/06/2022 18:01 File SW Network 280622.MDX	Designed by alex.parkes Checked by	
Micro Drainage	Network 2020.1.3	

Storage Structures for Storm

Swale Manhole: 2, DS/PN: 2.000

Warning:- Volume should always be included unless the upstream pipe is being used for storage and/or as a carrier

Infiltation Coefficient Base (m/hr)	0.00000	Length (m)	13.0
Infiltation Coefficient Side (m/hr)	0.00000	Side Slope (1:X)	2.0
Safety Factor	2.0	Slope (1:X)	0.0
Porosity	1.00	Cap Volume Depth (m)	0.000
Invert Level (m)	2.325	Cap Infiltation Depth (m)	0.000
Base Width (m)	0.2	Include Swale Volume	Yes

Tank or Pond Manhole: 3, DS/PN: 1.001

Invert Level (m) 2.075

Depth (m)	Area (m ²)	Depth (m)	Area (m ²)	Depth (m)	Area (m ²)
0.000	145.3	0.300	145.3	0.301	0.0

Rodgers Leask Limited		Page 5
St James House Mansfield Road Derby DE1 3TQ		
Date 28/06/2022 18:01	Designed by alex.parkes	
File SW Network 280622.MDX	Checked by	
Micro Drainage	Network 2020.1.3	

Summary of Critical Results by Maximum Level (Rank 1) for Storm

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000
 Hot Start (mins) 0 MADD Factor * 10m³/ha Storage 2.500
 Hot Start Level (mm) 0 Inlet Coeffiecient 0.800
 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (l/per/day) 0.000
 Foul Sewage per hectare (l/s) 0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0
 Number of Online Controls 1 Number of Storage Structures 2 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR Ratio R 0.400
 Region England and Wales Cv (Summer) 0.750
 M5-60 (mm) 20.000 Cv (Winter) 0.950

Margin for Flood Risk Warning (mm) 300.0
 Analysis Timestep 2.5 Second Increment (Extended)
 DTS Status ON
 DVD Status OFF
 Inertia Status OFF

Profile(s) Winter
 Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720,
 960, 1440
 Return Period(s) (years) 1, 30, 100
 Climate Change (%) 0, 0, 40

US/MH PN	US/MH Name	Return Storm	Climate Period	First (X) Surcharge	First (Y) Flood	First (Z) Overflow	Overflow Act.
1.000	2	1440 Winter	100	+40%	30/1440 Winter		
2.000	2	1440 Winter	100	+40%	30/1440 Winter		
1.001	3	1440 Winter	100	+40%	1/15 Winter	100/960 Winter	

US/MH PN	Water Level	Surcharged Depth	Flooded Volume (m ³)	Flow / Overflow Cap. (l/s)	Half Drain Time (mins)	Pipe Flow (l/s)	Status	Level Exceeded
1.000	2	2.607	0.257	0.000 0.14		3.1	FLOOD RISK	
2.000	2	2.600	0.250	0.000 0.01	995	0.2	FLOOD RISK	
1.001	3	2.600	1.425	3.245 0.09		2.0	FLOOD	2

Appendix C – External Works Drawing

Rodgers Leask Limited & Rodgers Leask Environmental Limited
01332 285000 • rlderby@rodgersleask.co.uk • rodgersleask.co.uk
St James House, St Mary's Wharf, Mansfield Road, Derby DE1 3TQ
Seven House, 18 High Street, Longbridge, Birmingham B31 2UQ