



**UK Flood Risk**  
**Flood Risk Consultants**

# ***Site Drainage Assessment & Sustainable Drainage Systems (SuDS)***

**Black Horse Yard, Church Walk,  
Hayes UB3 2RN**

**Project Ref: QFRA 2629**

**Version: 1.0**

**Date: 17/02/2025**

**UK Flood Risk**  
Unit 019 The Base  
Dartford Business Park  
Victoria Road  
Dartford DA1 5FS

Tel: 020 3797 6380

Email: [ukfloodrisk@gmail.com](mailto:ukfloodrisk@gmail.com)  
[www.ukfloodrisk.co.uk](http://www.ukfloodrisk.co.uk)

## Revision Records

| Issued        | Report Version | Comments              | Issued to                 |
|---------------|----------------|-----------------------|---------------------------|
| February 2025 | 1.0            | 1 <sup>st</sup> Issue | V-Design CAD Services Ltd |
|               |                |                       |                           |

|             |    |                              |            |
|-------------|----|------------------------------|------------|
| Prepared by | SG | Senior Flood Risk Consultant | 17/02/2025 |
|-------------|----|------------------------------|------------|

Issue Date: 17/02/2025

## DISCLAIMER

This document has been prepared solely as a Technical Report for the owner of this site. UK Flood Risk Consultants accepts no responsibility or liability for any use that is made of this document other than by the owner for the purpose for which it was originally commissioned and prepared.

**UK Flood Risk**  
Unit 019 The Base  
Dartford Business Park  
Victoria Road  
Dartford DA1 5FS

## Executive Summary

UK Flood Risk Consultants has been commissioned to undertake drainage assessment and develop a Sustainable Drainage Systems (SuDS) Strategy in support of a proposal consisting of a residential development with the erection of two detached dwellings located at Black Horse Yard, Church Walk, Hayes UB3 2RN.

The main sources of information to develop the SuDS strategy are the guidelines of the National Planning Policy Framework (NPPF, September 2023) and the Environment Agency's Flood Risk Assessment (FRA) Guidance Notes along with the best practice guidance in flood risk and drainage including the Non-Statutory Technical Standards for Sustainable Drainage Systems (March 2015).

The overall risk of surface water flooding to the site is low.

The surface runoff will be improved by implementing appropriate SuDS measures.

Due to underlying soil condition mostly composed of silt and clay with low infiltration capacity, the potential for a Soakaway to discharge the surface runoff from the site is low. Also, there are no watercourses in the vicinity of the site.

An open ground attenuation storage will not be feasible at the site due to the limited space available. Therefore, in line with the SuDS drainage hierarchy policy, two identical underground geo-cellular storages (Length = 4m, Width = 3m, Depth = 0.40m) will be implemented in order to temporarily store the runoff water from the site.

Thames Water sewer asset map shows that there is a surface water sewer on the road (i.e. Church Walk). In line with the SuDS drainage hierarchy the controlled outflow from the attenuation storage will be discharged into this SW sewer using a 150mm linear pipe. In order to minimise the risk of flooding, the maximum discharge rate will be controlled by using a discharge control unit such as hydrobrake, so that it is not more than 0.40 litres/sec which is the greenfield runoff rate for the site.

In addition, permeable paving will be implemented in the front yard area and the side and rear patio area to further improve the surface runoff from the site.

The landowners will be fully responsible for the repair and management of the implemented SuDS throughout the lifetime of the proposed development.

## Contents

|                                                                   |           |
|-------------------------------------------------------------------|-----------|
| <b>1.0 BACKGROUND.....</b>                                        | <b>1</b>  |
| <b>2.0 SURFACE WATER DRAINAGE REQUIREMENTS .....</b>              | <b>1</b>  |
| <b>3.0 GENERAL DESCRIPTION OF THE SITE AND THE PROPOSALS.....</b> | <b>2</b>  |
| 3.1. Description of the site .....                                | 2         |
| 3.2. Proposed Development .....                                   | 2         |
| <b>4.0 SUSTAINABLE DRAINAGE SYSTEMS POLICY.....</b>               | <b>3</b>  |
| 4.1. Flood and Water Management Act 2010 .....                    | 3         |
| 4.2. Drainage Hierarchy.....                                      | 3         |
| 4.3. Strategic Flood Risk Assessment (SFRA) .....                 | 4         |
| <b>5.0 ASSESSMENT OF SURFACE RUNOFF FLOOD RISK.....</b>           | <b>4</b>  |
| <b>6.0 SUSTAINABLE DRAINAGE SYSTEMS (SuDS).....</b>               | <b>5</b>  |
| 6.1. Existing Drainage .....                                      | 5         |
| 6.2. Greenfield Runoff Estimation .....                           | 5         |
| 6.3. Estimation of Permeable and Impermeable Areas .....          | 6         |
| 6.4. Estimation of peak surface runoff rates .....                | 7         |
| 6.5. Hierarchy of SuDS Measures.....                              | 9         |
| 6.6. Potential for Infiltration SuDS .....                        | 10        |
| 6.7. General Assessment of SuDS Measures for the site .....       | 11        |
| 6.8. Proposed SuDS .....                                          | 12        |
| <b>7.0 OUTLINE DRAINAGE DESIGN .....</b>                          | <b>12</b> |
| 7.1. Proposed Drainage System .....                               | 12        |
| 7.2. SuDS Management and Maintenance Plan.....                    | 15        |
| <b>8.0 CONCLUSION.....</b>                                        | <b>18</b> |

## Appendices

|                                                       |      |
|-------------------------------------------------------|------|
| APPENDIX A COLLECTION OF MAPS.....                    | I    |
| APPENDIX B GEOLOGICAL MAP.....                        | II   |
| APPENDIX C EXISTING SITE AND PROPOSED PLANS.....      | III  |
| APPENDIX D TOPOGRAPHIC MAP OF THE SITE.....           | IV   |
| APPENDIX E SURFACE WATER FLOOD MAPS.....              | V    |
| APPENDIX F GREENFIELD RUNOFF RATES.....               | VI   |
| APPENDIX G SEWER ASSET MAP/DATA.....                  | VII  |
| APPENDIX H GEOINFILTRATION REPORT.....                | VIII |
| APPENDIX I RAINFALL RUNOFF SUMMARY.....               | IX   |
| APPENDIX J OUTLINE DRAINAGE PLAN.....                 | X    |
| APPENDIX K ATTENUATION STORAGE MODELLING SUMMARY..... | XI   |
| APPENDIX L EXCEEDANCE FLOW ROUTES.....                | XII  |

## Abbreviations

| Abbreviation | Description                                         |
|--------------|-----------------------------------------------------|
| mAOD         | Metres Above Ordnance Datum                         |
| DEFRA        | Department for Environment, Food, and Rural Affairs |
| EA           | Environment Agency                                  |
| FRA          | Flood Risk Assessment                               |
| LLFA         | Lead Local Flood Authority                          |
| NPPF         | National Planning Policy Framework                  |
| SFRA         | Strategic Flood Risk Assessment                     |
| SuDS         | Sustainable Drainage Systems                        |

## 1.0 **Background**

UK Flood Risk has been commissioned to undertake drainage assessment and develop a Sustainable Drainage Systems (SuDS) Strategy in support of a proposal consisting of a residential development with the erection of two detached dwellings located at Black Horse Yard, Church Walk, Hayes UB3 2RN.

The Sustainable Drainage Systems (SuDS) Strategy has been developed in accordance with the guidelines and the requirements of the National Planning Policy Framework (NPPF, December 2024) and the Environment Agency's Flood Risk Assessment (FRA) Guidance Notes along with the best practice guidance in flood risk and drainage including the Non-Statutory Technical Standards for Sustainable Drainage Systems (March 2015).

## 2.0 **Surface Water Drainage Requirements**

A surface water drainage assessment should be undertaken to demonstrate that surface water runoff from the proposed development can be effectively managed without increasing flood risk elsewhere. A surface water drainage assessment should include the following:

- Assessment of whether the development will increase the overall discharge from the site by calculating the change in area covered by roofs and hard-standing.
- Details of how overland flow from the new development can be intercepted to prevent flooding of adjacent land.
- Details of how additional onsite surface water attenuation can be provided to mitigate against known flooding problems or as a result of incapacity on the drainage systems.
- Demonstration that overland flows will not increase flood risk to both existing development and receiving watercourses.

## 3.0 General Description of the Site and the Proposals

### 3.1. Description of the site

The proposal site is located at Black Horse Yard, Church Walk, Hayes UB3 2RN approximately centred on the OS NGR TQ 09444 81187(**Appendix A Figure 1**). The site is located within the administrative boundary of London Borough of Hillingdon, which is also the Lead Local Flood Authority (LLFA) responsible for the management of surface water flooding in the area.

The site comprises small storage buildings along with hardstanding and soft landscaping area. The site occupies an area of approximately 362m<sup>2</sup>. Approximately 75m<sup>2</sup> of area is occupied by the building footprints and 267m<sup>2</sup> is covered by hardstanding. Approximately 20m<sup>2</sup> area is covered by soft landscaping (**Appendix B**).

The access to the site is via Church Walk. The surrounding area consists of predominantly residential use (**Appendix A Figure 2**).

The British Geological Survey's geological maps are provided in **Appendix C**. The geological maps show that the bedrock of the site comprises London Clay Formation - Clay, Silt and Sand that formed between 56 and 47.8 million years ago during the Palaeogene period. The superficial deposits consist of Boyn Hill Gravel Member - Sand and Gravel that formed between 423 and 126 thousand years ago during the Quaternary period.

There are no major watercourses in the vicinity of the site.

The site topography is relatively flat and level with the general elevations varying from 38.10mAOD to 38.17mAOD (**Appendix D**). Further details about the existing site are provided in **Appendix C**.

### 3.2. Proposed Development

The proposal comprises a residential development with the erection of two detached dwellings. The total footprint area of the proposed buildings is approximately 170m<sup>2</sup>. Further details about the proposals have been provided in **Appendix C**.

## 4.0 Sustainable Drainage Systems Policy

### 4.1. Flood and Water Management Act 2010

The method of drainage of surface water from the site is bound by the Flood and Water Management Act 2010. Schedule 3 Paragraph 5 of the Flood and Water Management Act 2010 states that the following hierarchy is to be applied to surface water runoff in the following order or priority:

- Discharge into the ground (infiltration)
- Discharge to a surface water body (lake, river, drain);
- Discharge to a surface water sewer, highway drain or another drainage system; or Discharge into a combined sewer.

### 4.2. Drainage Hierarchy

Development proposals should aim to achieve greenfield run-off rates and ensure that surface water run-off is managed as close to its source as possible in line with the following drainage hierarchy as set out by the Non-Statutory Technical Standards for Sustainable Drainage Systems (March 2015):

1. rainwater harvesting (including a combination of green and blue roofs),
2. infiltration techniques and green roofs,
3. rainwater attenuation in open water features for gradual release,
4. rainwater discharge direct to a watercourse (unless not appropriate),
5. rainwater attenuation above ground (including blue roofs),
6. rainwater attenuation below ground,
7. rainwater discharge to a surface water sewer or drain,
8. rainwater discharge to a combined sewer.

### 4.3. Strategic Flood Risk Assessment (SFRA)

The West London Strategic Flood Risk Assessment (SFRA) undertaken by the boroughs of Barnet, Brent, Ealing, Harrow, Hillingdon and Hounslow is a comprehensive study that assesses the potential risks and impacts of flooding in the boroughs. The SFRA provides important information to support land use planning, development control, emergency planning, and community resilience. The SFRA considers a range of potential flood risks, including those from rivers, surface water, and groundwater sources. The study includes detailed flood risk maps that identify areas at risk of flooding and the potential consequences of flooding, such as property damage, business disruption, and loss of life.

The SFRA also provides guidance on flood risk management strategies and measures that can be implemented to mitigate the potential impacts of flooding. The SFRA has provided SuDS a high priority. SuDS are designed to manage and reduce the impact of surface water runoff in urban areas. SuDS incorporate several measures to slow down and manage the flow of rainwater. By doing so, they help prevent surface water runoff overwhelming drainage systems and causing flooding downstream.

## 5.0 Assessment of Surface Runoff Flood Risk

The surface water flooding arises when the infiltration capacity of land or the drainage capacity of a local sewer network is exceeded and the excess rainwater flows overland. The severity of surface water flooding depends on several factors such as the degree of saturation of the soil before the event, the permeability of soils and geology, hill slope steepness and the intensity of land use.

Information on the risk of surface water flooding is held by the Environment Agency. The Environment Agency's Surface Water Flood Risk Maps are provided in **Appendix E Figure 1 and Figure 2** which indicate that the risk of surface water flooding to the site is 'low'.

## 6.0 Sustainable Drainage Systems (SuDS)

The London Borough of Hillingdon has a robust policy regarding the implementation of Sustainable Drainage Systems (SuDS) to manage surface water runoff and mitigate the risk of flooding, in alignment with the London Plan and national legislation. SuDS are designed to replicate natural drainage processes, reducing the volume and rate of surface water runoff, which can otherwise overwhelm traditional drainage systems.

The Borough requires that SuDS be integrated into the design of new developments and major redevelopments to ensure that the infrastructure can handle stormwater efficiently and sustainably. This is in line with the National Planning Policy Framework (NPPF) and London Plan policies, which emphasize the importance of managing surface water at source.

### 6.1. Existing Drainage

The proposal site comprises existing buildings along with hardstanding and soft landscaping area. The surface runoff from the hardstanding infiltrates into the nearby soft landscaping area. Most of the surface runoff from the soft landscaping area infiltrates into the ground. The excess runoff is discharged into the SW sewer located on the road (i.e. Church Walk).

### 6.2. Greenfield Runoff Estimation

The estimation of the Greenfield Runoff rate has been undertaken using the HR Wallingford's Greenfield Runoff Estimation tool available on the website: [http://www.eksuds-.com/greenfieldrunoff\\_js.htm](http://www.eksuds-.com/greenfieldrunoff_js.htm). The aim of the tool is to provide flow rate information based on a minimum amount of data so that anybody can use the tool. The methodology is built around the concept that a flow rate discharge constraint is needed for storm water runoff from a site, resulting in attenuation volume being needed. In addition, current drainage criteria include the requirement for the 100 year 6hr volume to be controlled. The tool is based on the results of simple model analysis and correlating the results against key known site parameters. As such the results need to be treated as providing indicative information only and should not be used to produce final designs of drainage systems without additional modelling being carried out.

The peak flow estimation can now be estimated using two different formulae.

- 1) The formula developed in IH124 (IH 1994) and use of the FSSR growth curve information for regions of the UK (FSSR 14),

2) The use of FEH statistical correlation equation revised in 2008.

However, only the IH124 method can be used without providing specific parameter values. Therefore, this method has been used for estimating greenfield runoff rate from the proposed development site.

Details about the parameters used in the estimation are provided in **Appendix F** and the results are summarised in **Table 1** below. A site area of 0.10ha has been used, which is the minimum site area required for this technique.

The proposed development has considered the greenfield runoff rates for addressing surface water discharge requirements from the developed site. The greenfield runoff rates have been utilised for developing the drainage strategy for the site.

**Table 1 – Greenfield Runoff Rates**

| Events        | Greenfield runoff rates (l/s)<br>(Estimated) |
|---------------|----------------------------------------------|
| Qbar          | 0.42                                         |
| 1 in 1 year   | 0.36                                         |
| 1 in 30 year  | 0.96                                         |
| 1 in 100 year | 1.34                                         |

### 6.3. Estimation of Permeable and Impermeable Areas

The land cover type plays a significant role in the generation and behaviour of surface water runoff. Different land cover types affect how much rainwater is absorbed into the ground, how much runs off the surface, and how quickly this runoff reaches watercourses or drainage systems.

The changes in land cover have been summarised in **Table 2** below. It can be seen that the proposed development will lead a reduction in the impermeable area by approximately 141m<sup>2</sup>. This means the surface runoff will not be increased as a result of the proposed development.

**Table 2 Changes in Land Cover Areas**

| Land Cover               | Pre-development, m <sup>2</sup> | Post-development, m <sup>2</sup> | Change, m <sup>2</sup> |
|--------------------------|---------------------------------|----------------------------------|------------------------|
| Impermeable Surface Area |                                 |                                  |                        |
| Hard standing            | 267                             | 31                               |                        |
| Building footprint       | 75                              | 170                              |                        |
| <b>Total Impermeable</b> | <b>342</b>                      | <b>201</b>                       | <b>(-) 141</b>         |
| Permeable Surface Area   |                                 |                                  |                        |
| Grass cover              | 20                              | 58                               |                        |
| Permeable paving         | 0                               | 103                              |                        |
| <b>Total Permeable</b>   | <b>20</b>                       | <b>161</b>                       | <b>(+) 141</b>         |
| <b>Total Area</b>        | <b>362</b>                      | <b>362</b>                       |                        |

## 6.4. Estimation of peak surface runoff rates

### Pre-development Peak Runoff Rates (based on land cover)

The Rational Method has been used in order to estimate the peak surface runoff from the site.

The Rational Equation is given by:

$$Q = Ar \times P \times Ri$$

Where, Ar = Effective catchment area, m<sup>2</sup>

P= Impermeability factor

Ri= Rainfall Intensity, mm/hr, Q= Peak surface runoff, m<sup>3</sup>/s

The peak surface runoff rates for the existing site condition are summarised in **Table 3** below. An impermeability factor of 0.90 has been used for the site. Information on the maximum rainfall intensity for a range of return period events has been taken from the Micro Drainage Model developed for the site which is provided in **Appendix H**. The impermeable surface areas in **Table 2** have been used as catchment for the calculations.

**Table 3 Estimation of Peak Runoff Rates from the site (Pre-development condition) based on the land cover area**

| Return Periods      | Max Rainfall Intensity, $R_i$ mm/hr | Catchment Area, $A$ m <sup>2</sup> | Impermeability factor, $P$ | # Peak Runoff, $Q$ , m <sup>3</sup> /sec | Peak Runoff, $Q$ , litres/sec |
|---------------------|-------------------------------------|------------------------------------|----------------------------|------------------------------------------|-------------------------------|
| 1/ 1 year           | 32.979                              | 342                                | 0.9                        | 0.00282                                  | 2.82                          |
| 1/2 year            | 42.605                              | 342                                | 0.9                        | 0.00364                                  | 3.64                          |
| 1/5 year            | 54.767                              | 342                                | 0.9                        | 0.00468                                  | 4.68                          |
| 1/10 year           | 63.716                              | 342                                | 0.9                        | 0.00545                                  | 5.45                          |
| 1/30 year           | 80.99                               | 342                                | 0.9                        | 0.00692                                  | 6.92                          |
| 1/50 year           | 90.546                              | 342                                | 0.9                        | 0.00774                                  | 7.74                          |
| 1/100 year          | 105.34                              | 342                                | 0.9                        | 0.00901                                  | 9.01                          |
| 1/100 year + 40% CC | 147.48                              | 342                                | 0.9                        | 0.01261                                  | 12.61                         |

\*  $Q = (R_i/1000 \times A \times P)/3600$

\*  $R_i$  taken from MicroDrainage model (**Appendix I**).

#### **Post-development Peak Runoff Rates (with attenuation storage)**

An outflow control rate of 0.40 litres/sec has been used with the implementation of the attenuation storage system. The surface runoff rates for the site post-development are summarised in **Table 4** below.

**Table 4 Summary of Peak Runoff Rates from the site (Post-development condition with the provision of attenuation storage)**

| Return Periods      | Peak Runoff Rates, $Q$ , litre/sec |
|---------------------|------------------------------------|
| 1/ 1 year           | 0.40                               |
| 1/2 year            | 0.40                               |
| 1/5 year            | 0.40                               |
| 1/10 year           | 0.40                               |
| 1/30 year           | 0.40                               |
| 1/100 year          | 0.40                               |
| 1/100 year + 40% CC | 0.40                               |

## 6.5. Hierarchy of SuDS Measures

The surface runoff from the site will be improved by implementing appropriate SuDS. The requirements for SuDS will ensure that any redevelopment or new development does not negatively contribute to the surface water flood risk of other properties and instead provides a positive benefit to the level of risk in the area. It will also ensure that appropriate measures are taken to increase the flood resilience of new properties and developments in surface water flood risk areas, such as those identified as being locally important flood risk areas.

The SuDS hierarchy and management train has been discussed in the SuDS Manual (C753) which aims to mimic the natural catchment processes as closely as possible. The general hierarchy of the SuDS measures is provided in **Table 5** below.

**Table 5 General Hierarchy of SuDS Measures**

| Measures         | Definition/Description                                                                                                   |
|------------------|--------------------------------------------------------------------------------------------------------------------------|
| Prevention       | The use of good site design and housekeeping measures to prevent runoff and pollution (e.g. rainwater harvesting/reuse). |
| Source control   | Control of runoff at or very near its source (e.g. soakaways, porous and pervious surfaces, green roofs).                |
| Site control     | Management of water in a local area on site (e.g. routing water to large soakaways, infiltration or detention basins)    |
| Regional control | Management of runoff from a site or several sites (e.g. balancing ponds, wetlands).                                      |

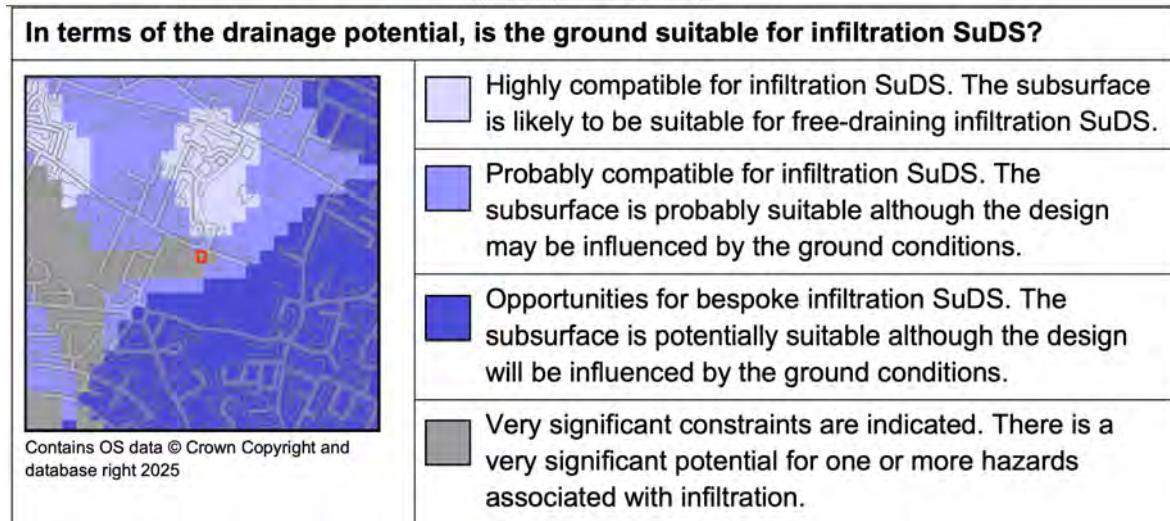
The Borough follows a SuDS hierarchy to determine the best solutions:

- Infiltration: Where possible, water should be allowed to soak into the ground (using techniques such as soakaways or permeable paving).
- Attenuation: If infiltration isn't feasible, SuDS that slow the flow of water, such as detention basins or attenuation ponds, should be used.
- Discharge to watercourses: Where neither infiltration nor attenuation is viable, surface water runoff can be discharged to a watercourse or sewer, but this must be done in a way that minimizes impact on flood risk.

## 6.6. Potential for Infiltration SuDS

Infiltration-based Sustainable Drainage Systems (SuDS) are often the preferred approach for managing surface water runoff, as they allow water to soak directly into the ground, mimicking natural processes. However, whether infiltration SuDS are a viable option depends on several factors related to the specific site conditions and local environmental factors. Infiltration is most effective in areas with permeable soils (e.g., sandy soils) that allow water to move through them easily. High groundwater tables can limit the ability to use infiltration SuDS. If the groundwater table is close to the surface, it can prevent water from being absorbed by the ground because the soil is already saturated. This can lead to surface water pooling or flooding.

Infiltration SuDS require space for installation. Techniques like soakaways and infiltration trenches require sufficient land area to allow water to seep into the ground without causing harm to the surrounding environment. In more densely developed urban areas like the site, space for large-scale infiltration systems may be limited. In these cases, smaller-scale solutions such as permeable paving could be more practical.


The British Geological Survey's geological map in **Appendix B** shows that the bedrock of the site comprises London Clay Formation, which is not considered appropriate for Infiltration SuDS such as a Soakaway. Also, field observations indicated that the underlying soil is mostly composed of silt and clay which has a low permeability potential. It implies that Infiltration SuDS like a Soakaway would not be appropriate due to the underlying soil condition.

In addition, information on the infiltration potential was obtained from the British Geological Survey. Infiltration SuDS GeoReport for the site is included in **Appendix H**. The Maps indicate the drainage potential of the ground, by considering subsurface permeability, depth to groundwater and the presence of floodplain deposits. The Suitability of Infiltration SuDS in terms of the Drainage Potential for the site is shown in **Figure 1** below. It can be seen that there are very significant constraints at the site. The site is located in an area with very significant potential for one or more hazards associated with infiltration.

The possibility of using infiltration-based SuDS at the site depends on a combination of soil characteristics, groundwater levels, topography, land availability, and pollution considerations. From the assessment of the Infiltration SuDS GeoReport for the site, information from the British Geological Survey map and field observations, it is reasonable to conclude that the potential for infiltration SuDS is very limited at the site

due to poor soil conditions and high groundwater levels. Therefore, alternative SuDS techniques like attenuation storage have been considered.

**Figure 1. Suitability of Infiltration SuDS in terms of the Drainage Potential.**



## 6.7. General Assessment of SuDS Measures for the site

**Table 6** below presents the feasibility assessment of several SuDS measures for the site.

Table 6 General Assessment of SuDS measures for the site

| SuDS Measures                                                                                                                                                       | Issues/Description                                                               | Feasibility for the site                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| <b>Source Control</b><br>Porous and pervious materials/soakaways/green roof/infiltration trenches/disconnect downpipes to drain to lawns or infiltrate to soakaway. | Permeable paving improves the surface runoff from the site.                      | Yes. There is a potential for permeable paving in the front yard area to improve the surface runoff.                 |
| <b>Site and Regional Control</b><br>Infiltration/detention basins/balancing ponds/wetlands/underground storage/swales/retention ponds.                              | Open surface Balancing pond will not be feasible due to limited space available. | No. The potential for balancing pond is low as there is very limited space available for open ground balancing pond. |

|  |                                                                                                                                                                                               |                                                                                                                                                                                                       |
|--|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  | <p>Geo-cellular underground storage will improve the surface runoff conditions by temporarily storing the surface runoff from extreme rainfall event (1 in 100 year plus climate change).</p> | <p>Yes. A Geo-cellular underground storage system can be implemented in the front yard area in order to attenuate the surface runoff from the extreme event of 1 in 100 year plus climate change.</p> |
|--|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

## 6.8. Proposed SuDS

Based on the general assessment of the potential SuDS measures above, underground attenuation storages will be implemented in order to attenuate the surface runoff from the design 1 in 100-year 6-hour rainfall event plus 40% Climate Change. In addition, permeable paving will be implemented in the front yard area and the side and rear patio area to further improve the surface runoff from the site.

# 7.0 Outline Drainage Design

## 7.1. Proposed Drainage System

### Attenuation Storage

An open ground attenuation storage will not be feasible at the site due to the limited space available. Therefore, an underground geo-cellular storage will be implemented at each of the two sites in order to temporarily store storm water from the site.

The proposed scheme will therefore include an underground Geo-cellular attenuation storage for each of the buildings with the controlled outflow discharge by using a Hydrobrake. The size of the proposed attenuation storage is as follows:

Area = 24m<sup>2</sup>, Depth = 0.40m for the two identical building sites.

Therefore, for each of the building sites, the following size is proposed.

Area = 12m<sup>2</sup>, Depth = 0.40m (Length = 4m, Width = 3m, Depth = 0.40m)

The Greenfield Runoff rate for the site is 0.42 litres/sec (**Table 1**). Therefore, a maximum flow control of 0.40 litres per second has been adopted for all events up to and including 1% AEP + 40%CC with no flooding. The proposed SuDS drainage layout plan has been provided in **Appendix J**.

There are no open-surface watercourses near the site. Therefore, discharging the surface runoff to watercourses is not a viable option.

Also, discharging the surface runoff via infiltration such as a Soakaway will not be viable due to underlying soil condition as discussed above.

Thames Water's sewer asset map shows that there is a Surface Water sewer on the road (i.e. Church Walk) (**Appendix G**). Therefore, in line with the SuDS drainage hierarchy the controlled outflow from the attenuation storages will be discharged into this sewer using a 150mm linear pipe as shown in **Appendix J**.

## Hydraulic Modelling

The proposed drainage scheme has been modelled by using Micro Drainage Source Control to understand the evolving flow regime under flood conditions and the potential for flooding. The catchment area used for the modelling is 0.020ha which is the total area of hard standing proposed development (**Table 2**).

The attenuation storage has been modelled considering the 1 in 100 year (1%AEP) plus 40% climate change event. Both summer and winter profiles of the storm events have been considered for a range of duration, from 15 minutes to 8640 minutes. All input parameters (i.e. rainfall and model details) have been provided in **Appendix K**. The summary of the model output for the 1 in 100 year plus 40% climate change event is provided in **Table 7** below.

It can be seen from **Table 7** that for the maximum volume of 9.50m<sup>3</sup> will be generated by the 120 minutes Winter event, and there will be no overflow and flooding for this event. Therefore, the proposed attenuation storage system will provide full storage for the surface water runoff generated from the 1 in 100 year plus 40% climate change design event.

Table 7 – Summary of Model Output (1 in 100 year plus 40% climate change).

| Events                       | Rainfall<br>mm/hr | Max<br>Volume<br>M <sup>3</sup> | Discharge<br>Volume<br>M <sup>3</sup> | Overflow<br>Volume<br>M <sup>3</sup> | Flooded<br>Volume<br>M <sup>3</sup> |
|------------------------------|-------------------|---------------------------------|---------------------------------------|--------------------------------------|-------------------------------------|
| 120 min<br>(Winter)          | 34.920            | 9.50                            | 11.70                                 | 0.0                                  | 0.0                                 |
| 1 in 100 year<br>plus 40% CC |                   |                                 |                                       |                                      |                                     |

The location and layout of the proposed storage and its dimensions (area and depth) can be changed to suit the site conditions. This will be to the client's discretion ensuring that the required attenuation storage volume is provided within the site. Thames Water's sewer asset map shows that there is a Surface Water sewer on Church Walk (**Appendix G**). Therefore, in line with the SuDS drainage hierarchy the controlled outflow from the attenuation storage system will be discharged into this sewer using a 150mm linear drainage pipe as shown in **Appendix J**.

### Exceedance Flow Paths

It is inevitable that as a result of heavy or extreme rainfall, the capacities of sewers and other drainage systems will be exceeded on occasion. Drainage exceedance will occur when the rate of surface water runoff exceeds the inlet capacity of the drainage system, when the receiving water or pipe system becomes overloaded, when the outfall becomes restricted due to flood levels in the receiving water, or due to poor maintenance of the SuDS features.

The proposed attenuation storage has been designed for the 1 in 100 year plus 40% climate change event. Any extreme event greater than this design event may lead to the situation where the rate of surface water runoff exceeds the inlet capacity of the drainage system. In such circumstances, the flow routes from the site will naturally follow to the south towards the rear garden area as this will be the only open area for the floodwater to flow across the site. The exceedance flow routes are shown in **Appendix L**.

## 7.2. SuDS Management and Maintenance Plan

The owners will be fully responsible for regular repair and maintenance of the proposed SuDS measures as required for the lifetime of the development. The SuDS at this site have been designed for easy maintenance to comprise:

### Geo-cellular Storage System

Remedial work for repairing damage will be carried out whenever necessary. The repair and maintenance will include regular inspection of silt traps, manholes, pipework and pre-treatment devices, with removal of sediment and debris as required. **Table 8** provides further details on the regular maintenance of the Geo-cellular storage system.

**Table 8 Regular Maintenance and remedial measures for Geo-cellular storage system**

| Regular Maintenance | Actions/Remedial measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Monthly             | <ul style="list-style-type: none"> <li>Inspect and identify any areas that are not operating correctly. If required, take remedial action. (for 3 months following installation)</li> <li>Debris removal from catchment surface (where may cause risks to performance)</li> <li>Inspect systems as specified by the manufacturer</li> <li>Where rainfall infiltrates into blocks from above, check surface of filter for blockage by silt, algae or other matter. Remove and replace surface infiltration medium as necessary.</li> </ul> |
| Six monthly         | <ul style="list-style-type: none"> <li>Inspect and identify any areas that are not operating correctly. If required, take remedial action (following initial 3 month period).</li> </ul>                                                                                                                                                                                                                                                                                                                                                  |
| Annually            | <ul style="list-style-type: none"> <li>Remove sediment from pre-treatment structures (e.g. upstream silt- traps or Vortex flow control upstream) and</li> </ul>                                                                                                                                                                                                                                                                                                                                                                           |

|                                  |                                                                                                                                                                             |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                  | <p>geocellular system where required<br/>(High pressure water jetting)</p> <ul style="list-style-type: none"> <li>Inspect and document the presence of wildlife.</li> </ul> |
| Following all significant storms | <ul style="list-style-type: none"> <li>Inspect and carry out essential recovery works to return the feature to full working order.</li> </ul>                               |

### Flow control structures

Remedial work for repairing any damage to flow control structures/devices will be carried out whenever necessary. **Table 9** provides further details on the regular maintenance of the flow control structures/devices.

Table 9 Regular Maintenance and remedial measures for flow control structures

| Regular Maintenance              | Actions/Remedial measures                                                                                                                                                                                     |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Monthly                          | <ul style="list-style-type: none"> <li>Inspect and identify any areas that are not operating correctly. If required, take remedial action (for 3 months following installation).</li> </ul>                   |
| Six monthly                      | <ul style="list-style-type: none"> <li>Inspect and identify any areas that are not operating correctly. If required, take remedial action.</li> <li>Remove sediment from pre-treatment structures.</li> </ul> |
| Following all significant storms | <ul style="list-style-type: none"> <li>Inspect and carry out essential recovery works to return the feature to full working order.</li> </ul>                                                                 |

## Permeable Paving

The landowners will be fully responsible for regular maintenance of the proposed permeable paving. **Table 10** provides further details on the regular maintenance of the proposed Permeable Paving.

Table 10 Regular Maintenance and remedial measures for permeable paving

| Regular Maintenance                    | Actions/Remedial measures                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Monthly                                | <ul style="list-style-type: none"> <li>Refer to manufacturer specifications,</li> <li>For sealed systems, inspection of outfalls should be undertaken.</li> </ul>                                                                                                                                                                                                                                                           |
| Six Monthly                            | <ul style="list-style-type: none"> <li>Brushing and vacuuming to manufacturer requirements. Re-grit where necessary after brushing.</li> </ul>                                                                                                                                                                                                                                                                              |
| As Required                            | <ul style="list-style-type: none"> <li>Inspect/check all inlets, outlets, inspection chambers, surface and overflows (where required) to ensure that they are in good condition, free from blockages and operating as designed. Take action where required (for 3 months following installation)</li> <li>Removal of weeds where required,</li> <li>Stabilizing and mowing of contributing areas where required.</li> </ul> |
| Following all significant storm events | <ul style="list-style-type: none"> <li>Inspect and carry out essential recovery works to return the feature to full working order</li> </ul>                                                                                                                                                                                                                                                                                |

## 8.0 Conclusion

The proposals a residential development with the erection of two detached dwellings located at Black Horse Yard, Church Walk, Hayes UB3 2RN.

The overall risk of surface water flooding to the site is low.

The surface runoff will be improved by implementing appropriate SuDS measures.

Due to underlying soil condition mostly composed of silt and clay with low infiltration capacity, the potential for a Soakaway to discharge the surface runoff from the site is low. Also, there are no watercourses in the vicinity of the site.

An open ground attenuation storage will not be feasible at the site due to the limited space available. Therefore, in line with the SuDS drainage hierarchy policy, two identical underground geo-cellular storages (Length = 4m, Width = 3m, Depth = 0.40m) will be implemented in order to temporarily store the runoff water from the site.

Thames Water sewer asset map shows that there is a surface water sewer on the road (i.e. Church Walk). In line with the SuDS drainage hierarchy the controlled outflow from the attenuation storage will be discharged into this SW sewer using a 150mm linear pipe. In order to minimise the risk of flooding, the maximum discharge rate will be controlled by using a discharge control unit such as hydrobrake, so that it is not more than 0.40 litres/sec which is the greenfield runoff rate for the site.

In addition, permeable paving will be implemented in the front yard area and the side and rear patio area to further improve the surface runoff from the site.

The landowners will be fully responsible for the repair and management of the implemented SuDS throughout the lifetime of the proposed development.

## Appendix A Collection of Maps and Figures

## **Appendix B Geological Map of the Site**

## Appendix C Existing Site and Proposed Plans

## Appendix D Topographic Map of the Site

## Appendix E Surface Water Flood Maps

## **Appendix F Greenfield Runoff Rates Estimation**

## Appendix G Sewer Assets Map Data

## Appendix H Geofiltration Report

## **Appendix I Rainfall Runoff Summary**

## **Appendix J Outline Sustainable Drainage Systems (SuDS) Plan**

# **Appendix K Attenuation Storage Modelling Summary**

## Appendix L Exceedance Flow Routes

## **Appendix A Site Location Maps and Figures**

**Figure 1 Site Location Map**  
(Source: Ordnance Survey Online Maps)

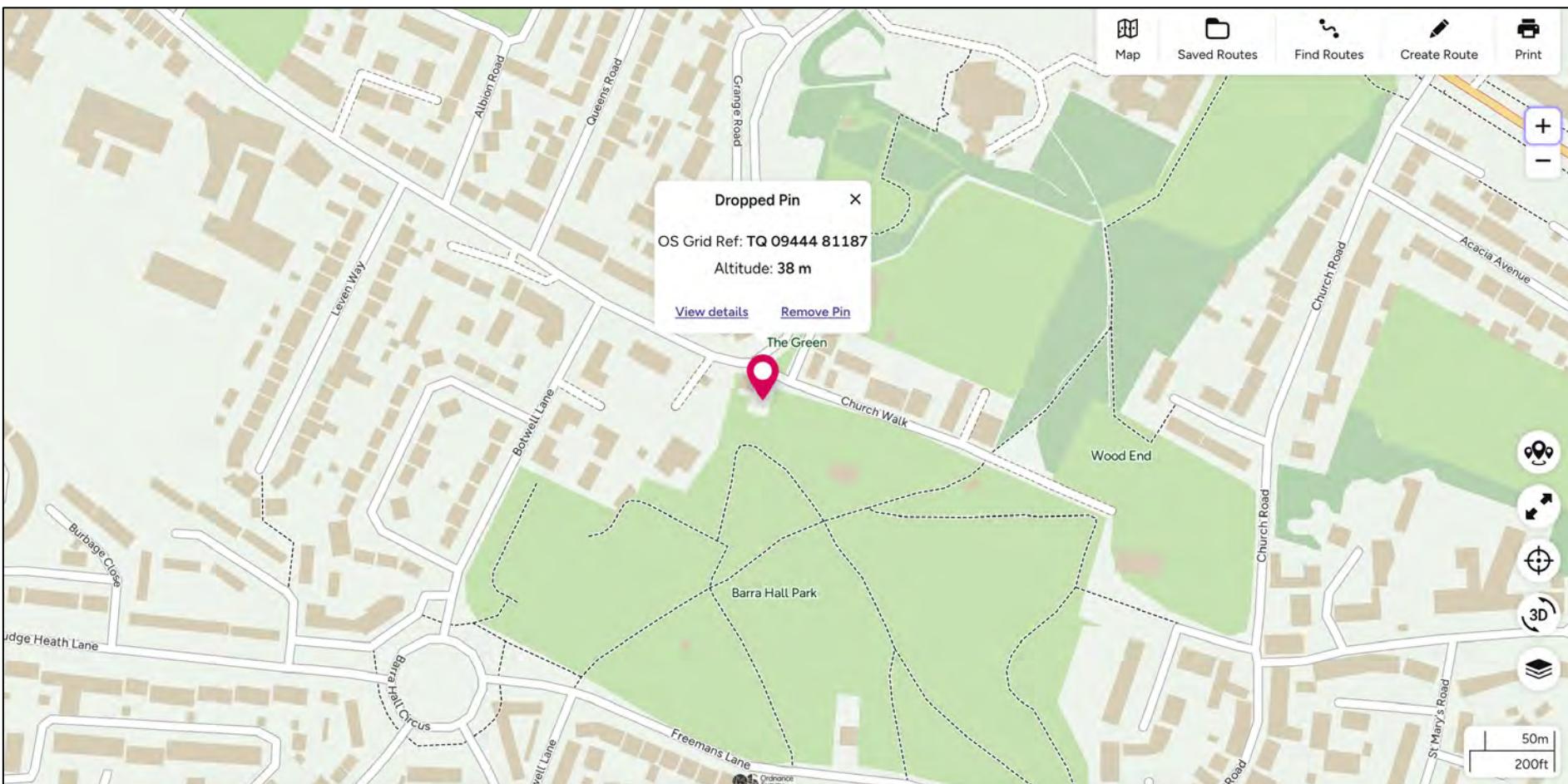
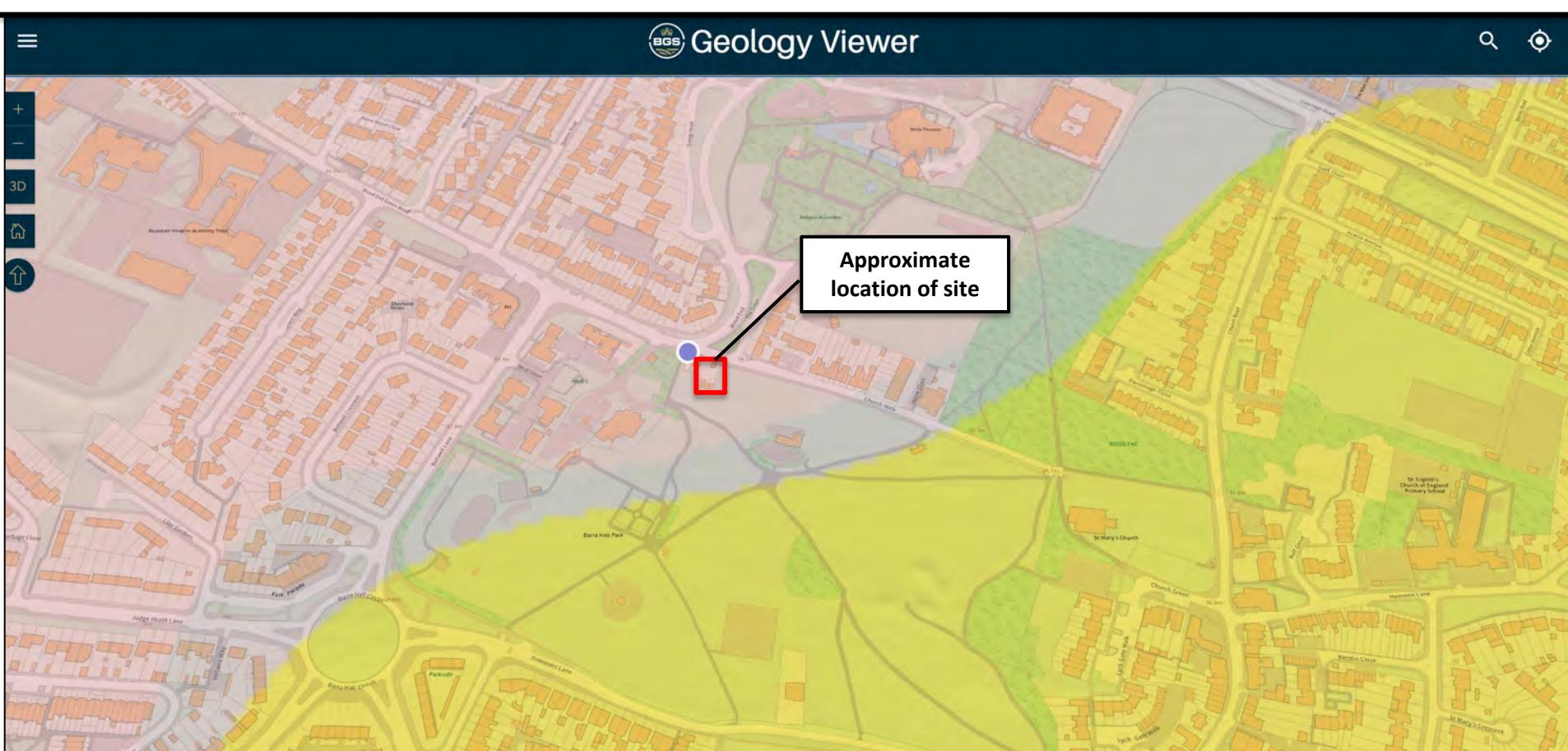



Figure 2 Site Location Map

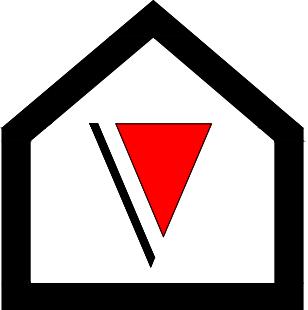

(Source: Google Maps)



## **Appendix B Geological Map of the Site**

## Figure 1 Geological Map of the Site

(Source: British Geological Survey Geological Britain Viewer)




## Site Geology

**Bedrock geology description:** London Clay Formation - Clay, silt and sand. Sedimentary bedrock formed between 56 and 47.8 million years ago during the Palaeogene period.

**Superficial deposits description:** Boy Hill Gravel Member - Sand and gravel. Sedimentary superficial deposit formed between 423 and 126 thousand years ago during the Quaternary period.

## **Appendix C Existing Site and Proposed Plans**



**V - Design**

Website: V-Design CAD Services Ltd  
Email Address: info@vdesigncad.co.uk

IMPORTANT NOTES:

Dimensions to be verified on site  
DO NOT SCALE FROM THIS DRAWING.  
Any areas indicated on this drawing are for guidance only.  
No responsibility is taken for their accuracy.

This drawing is the property of **V-DESIGN CAD Services Ltd**  
Copyright is reserved by them and the drawing is issued on the condition that it is not copied, reproduced, retained or disclosed to any unauthorized person, either wholly or in part without the consent in writing of **V-DESIGN CAD Services Ltd**

Email: vishal.p@vdesigncad.co.uk Mobile: 07971083395

PROJECT:

Black Horse Yard,  
Church Walk,  
Hayes, UB3 2RN

CLIENT:

LEGENDS:

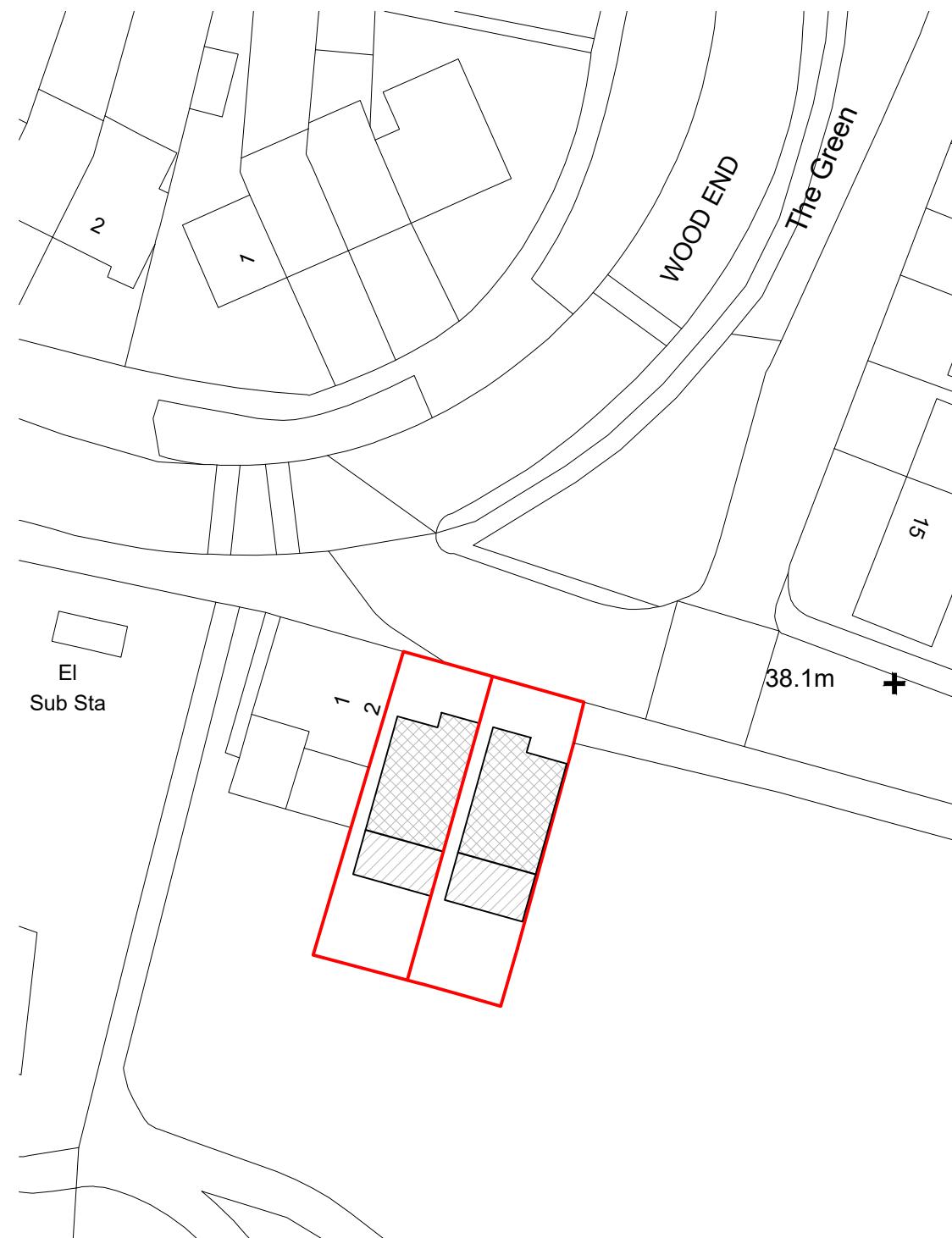
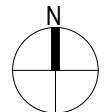
| EXISTING:     | PROPOSED:     |
|---------------|---------------|
| Existing Wall | Proposed Wall |
| Internal Wall | Internal Wall |
| Site Boundary | Site Boundary |
| Windows       | Windows       |
| Doors         | Doors         |

Drawing Title:

Block and Location Plans

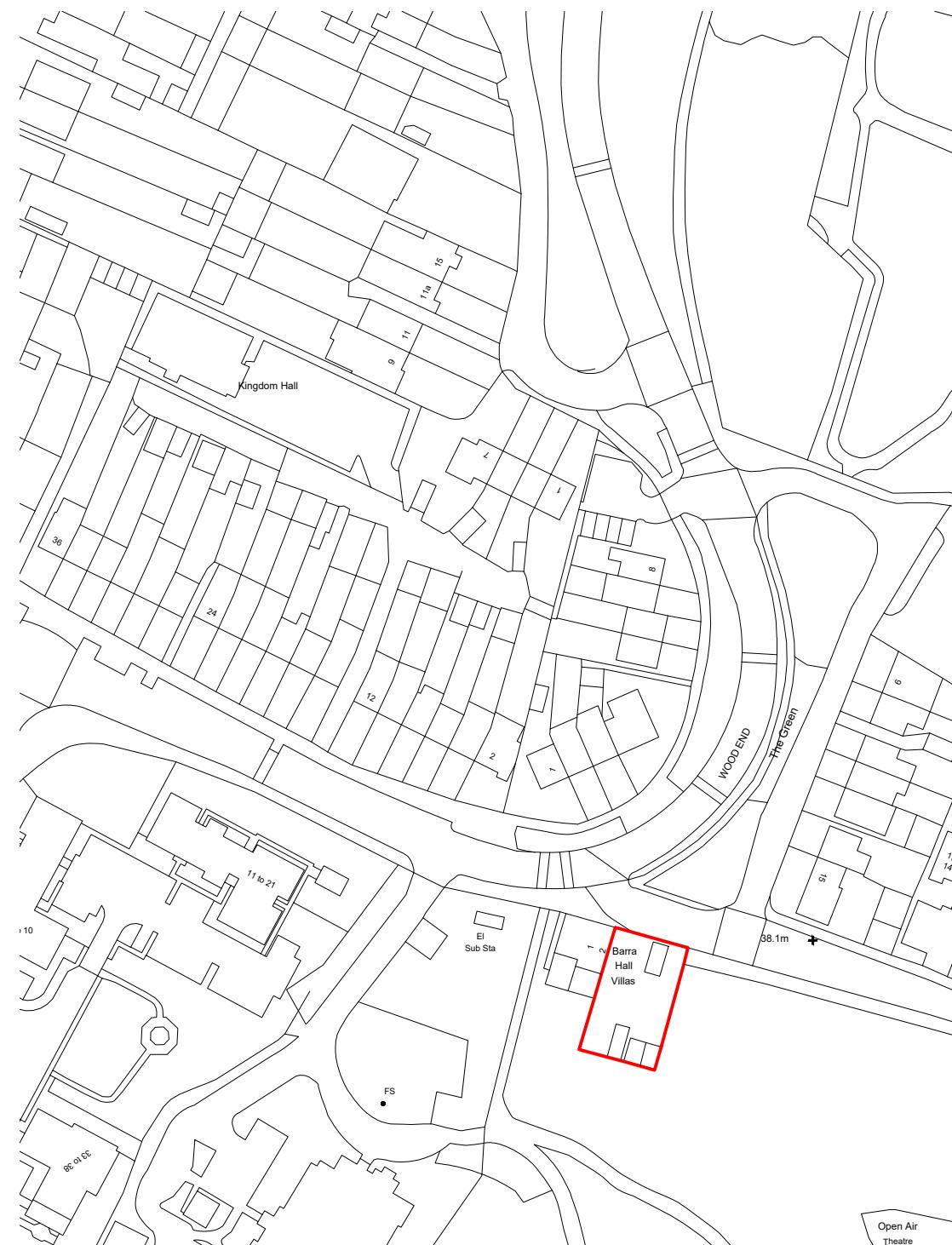
Scale: 1:500, 1:1250 Paper Size: A3

REVISION/ COMMENTS :



| No: | Comments: | Date: |
|-----|-----------|-------|
|     |           |       |
|     |           |       |
|     |           |       |
|     |           |       |

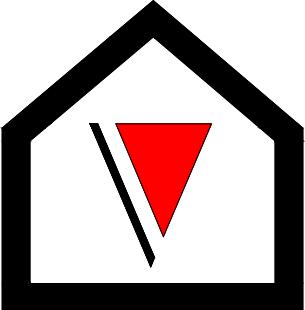
Drawn By: VP

Job Ref: 24035


Date: Dec 2023

Drawing No. PL - 01.1




Block Plan

0 5 10 15 20 25  
metres 1:500 scale



Site Location

0 10 20 30 40 50  
metres 1:1250 scale



# V - Design

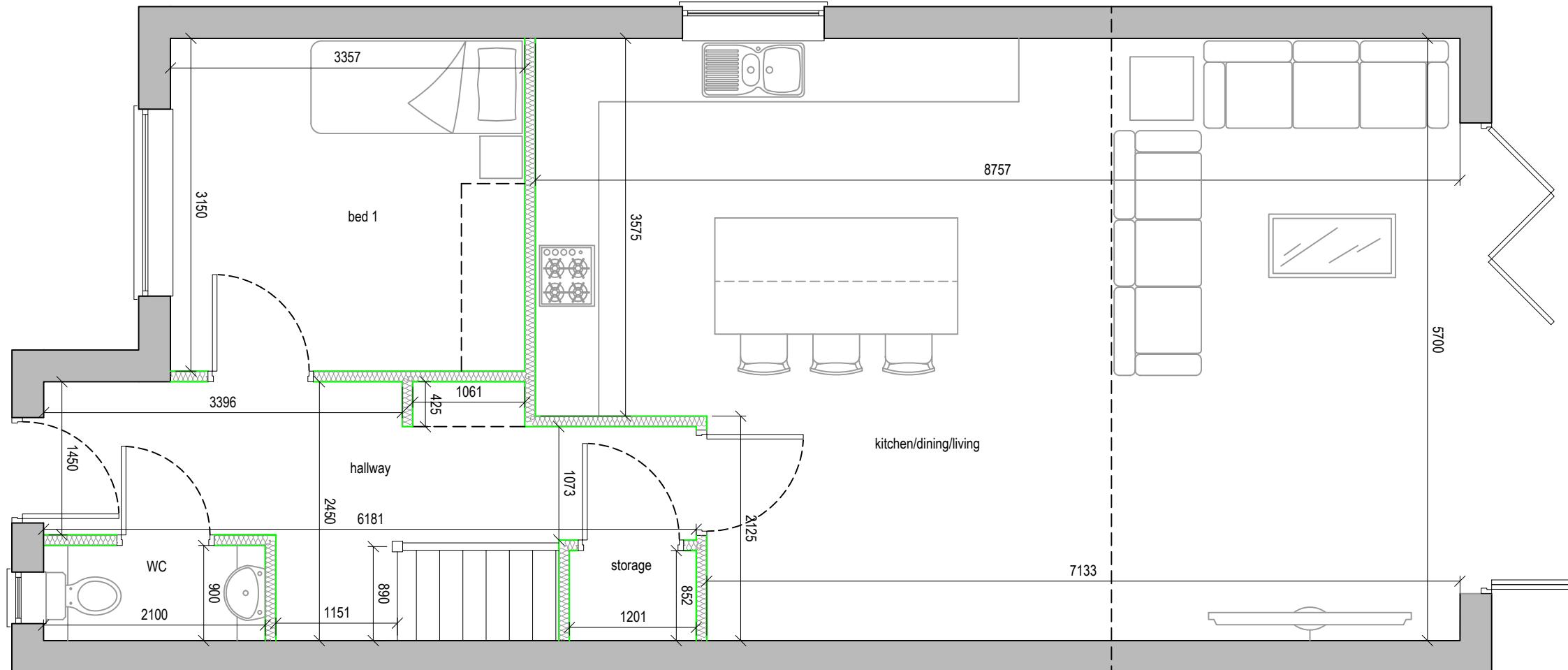
Company: V-Design CAD Services Ltd  
Website: [www.vdesigncad.co.uk](http://www.vdesigncad.co.uk)  
Email Address: [info@vdesigncad.co.uk](mailto:info@vdesigncad.co.uk)  
Tel : +44 20 3488 4890  
Mobile: +44 7312015617

#### IMPORTANT NOTES:

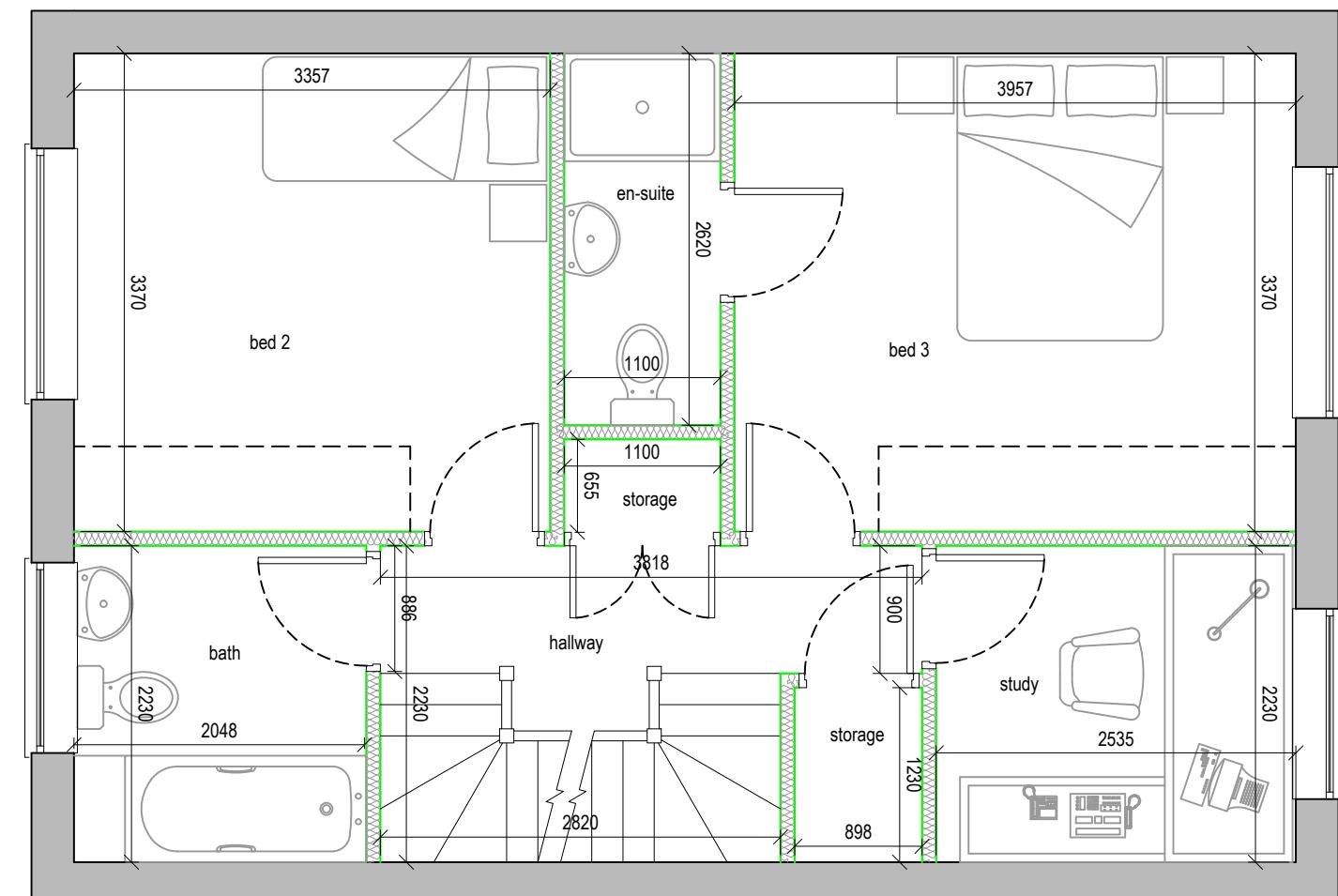
Dimensions to be verified on site  
DO NOT SCALE FROM THIS DRAWING.  
Any areas indicated on this drawing are for guidance only.  
No responsibility is taken for their accuracy.

This drawing is the property of **V-DESIGN CAD Services Ltd** Copyright is reserved by them and the drawing is issued on the condition that it is not copied, reproduced, retained or disclosed to any unauthorized person, either wholly or in part without the consent in writing of **V-DESIGN CAD Services Ltd**

Black Horse Yard,  
Church Walk,  
Hayes, UB3 2RN


---

## LEGENDS:


| EXISTING:     | PROPOSED:     |
|---------------|---------------|
| Existing Wall | Cavity Wall   |
| Internal Wall | Internal Wall |
| Site Boundary | Site Boundary |
| Windows       | Windows       |
| Doors         | Doors         |
|               |               |
|               |               |
|               |               |

|                |           |
|----------------|-----------|
| Drawing Title: | Site Plan |
| Scale:         | 1: 100    |
| Paper Size:    | A3        |

|             |           |
|-------------|-----------|
| Drawn By:   | JM        |
| Job Ref:    | 24035     |
| Date:       | Dec 2024  |
| Drawing No. | PL - 02.1 |



0 0.5 1.0 1.5 2.0 2.5  
metres 1:50 scale



0 0.5 1.0 1.5 2.0 2.5  
metres 1:50 scale



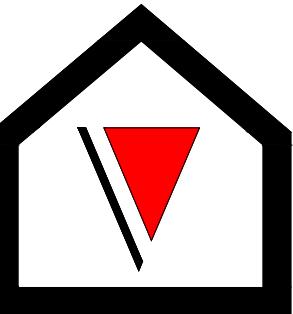
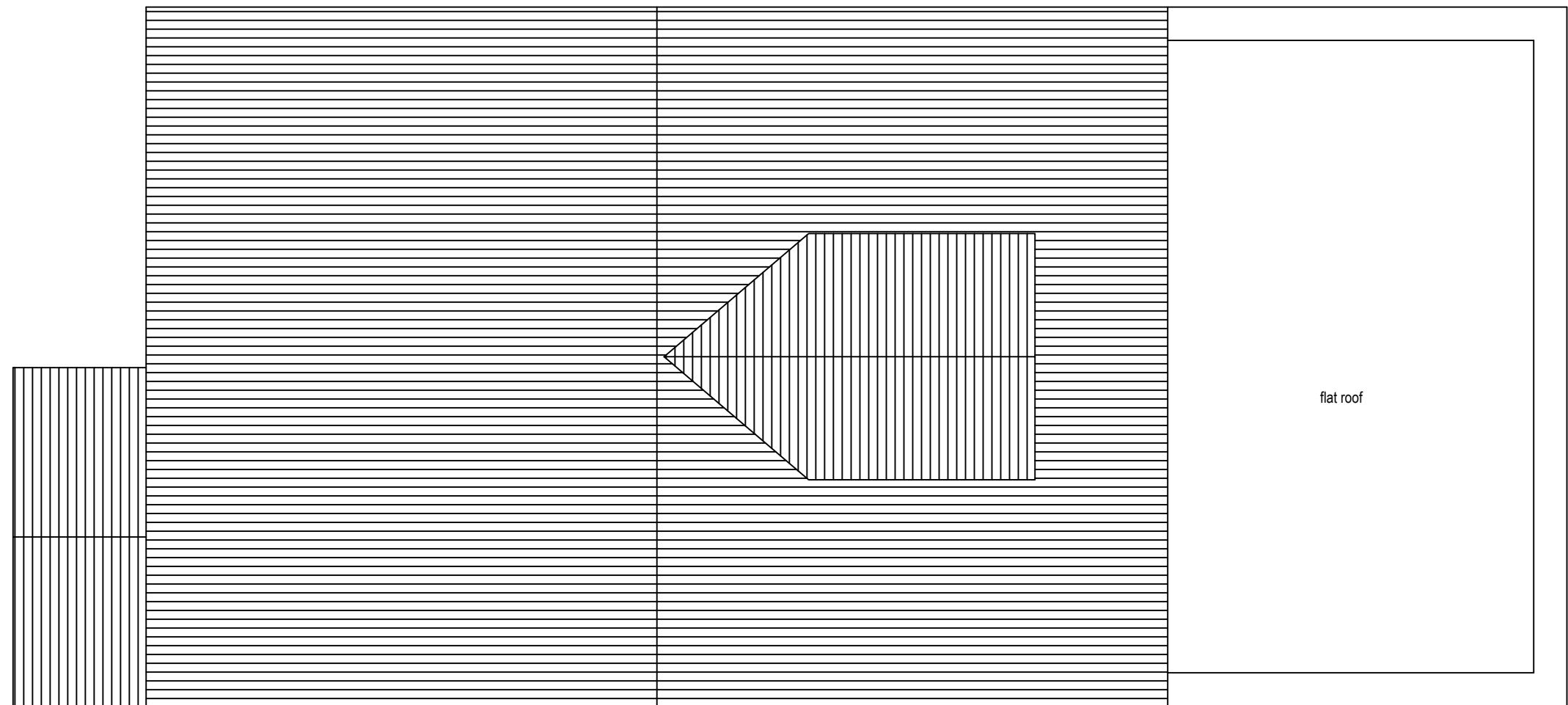
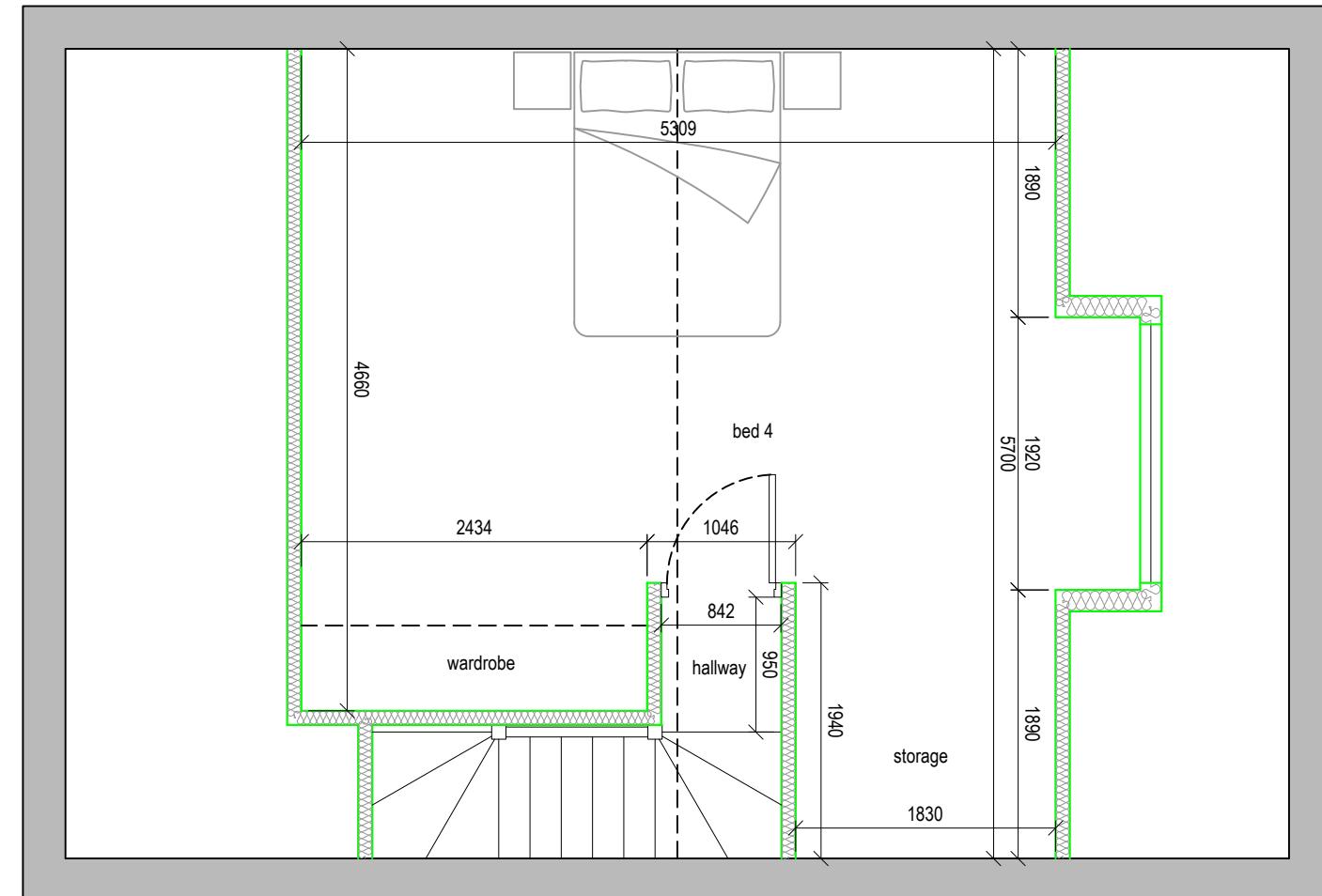
**V - Design**

Company: V-Design CAD Services Ltd  
Website: [www.vdesigncad.co.uk](http://www.vdesigncad.co.uk)  
Email Address: [info@vdesigncad.co.uk](mailto:info@vdesigncad.co.uk)  
Tel : +44 20 3488 4890  
Mobile: +44 7312015617

IMPORTANT NOTES:  
Dimensions to be verified on site  
DO NOT SCALE FROM THIS DRAWING.  
Any areas indicated on this drawing are for guidance only.  
No responsibility is taken for their accuracy.

This drawing is the property of **V-DESIGN CAD Services Ltd**. Copyright is reserved by them and the drawing is issued on the condition that it is not copied, reproduced, retained or disclosed to any unauthorized person, either wholly or in part without the consent in writing of **V-DESIGN CAD Services Ltd**.

Black Horse Yard,  
Church Walk,  
Hayes, UB3 2RN




LEGENDS:

| EXISTING:     | PROPOSED:     |
|---------------|---------------|
| Existing Wall | Cavity Wall   |
| Internal Wall | Internal Wall |
| Site Boundary | Site Boundary |
| Windows       | Windows       |
| Doors         | Doors         |

|                            |                |  |
|----------------------------|----------------|--|
| Drawing Title:             |                |  |
| Proposed Ground Floor Plan |                |  |
| Scale: 1: 50               | Paper Size: A3 |  |

|                      |           |       |
|----------------------|-----------|-------|
| REVISION/ COMMENTS : | Comments: | Date: |
|                      |           |       |
|                      |           |       |
|                      |           |       |
|                      |           |       |

Drawn By: JM  
Job Ref: 24035  
Date: Dec 2024  
Drawing No. PL - 03.1



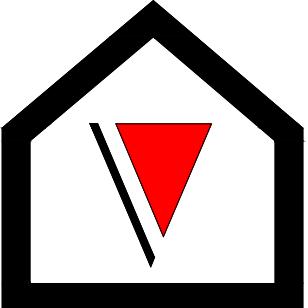
**V - Design**

Company: V-Design CAD Services Ltd  
Website: [www.vdesigncad.co.uk](http://www.vdesigncad.co.uk)  
Email Address: [info@vdesigncad.co.uk](mailto:info@vdesigncad.co.uk)  
Tel : +44 20 3488 4890  
Mobile: +44 7312015617

IMPORTANT NOTES:  
Dimensions to be verified on site  
DO NOT SCALE FROM THIS DRAWING.  
Any areas indicated on this drawing are for guidance only.  
No responsibility is taken for their accuracy.

This drawing is the property of **V-DESIGN CAD Services Ltd**. Copyright is reserved by them and the drawing is issued on the condition that it is not copied, reproduced, retained or disclosed to any unauthorized person, either wholly or in part without the consent in writing of **V-DESIGN CAD Services Ltd**.

Black Horse Yard,  
Church Walk,  
Hayes, UB3 2RN


LEGENDS:

| EXISTING:     | PROPOSED:     |
|---------------|---------------|
| Existing Wall | Cavity Wall   |
| Internal Wall | Internal Wall |
| Site Boundary | Site Boundary |
| Windows       | Windows       |
| Doors         | Doors         |

|                    |                |
|--------------------|----------------|
| Drawing Title:     |                |
| Proposed Loft Plan |                |
| Scale: 1: 50       | Paper Size: A3 |

|                      |           |       |
|----------------------|-----------|-------|
| REVISION/ COMMENTS : |           |       |
| No:                  | Comments: | Date: |
|                      |           |       |
|                      |           |       |
|                      |           |       |
|                      |           |       |
|                      |           |       |

|             |           |
|-------------|-----------|
| Drawn By:   | JM        |
| Job Ref:    | 24035     |
| Date:       | Dec 2024  |
| Drawing No. | PL - 05.1 |



**V - Design**

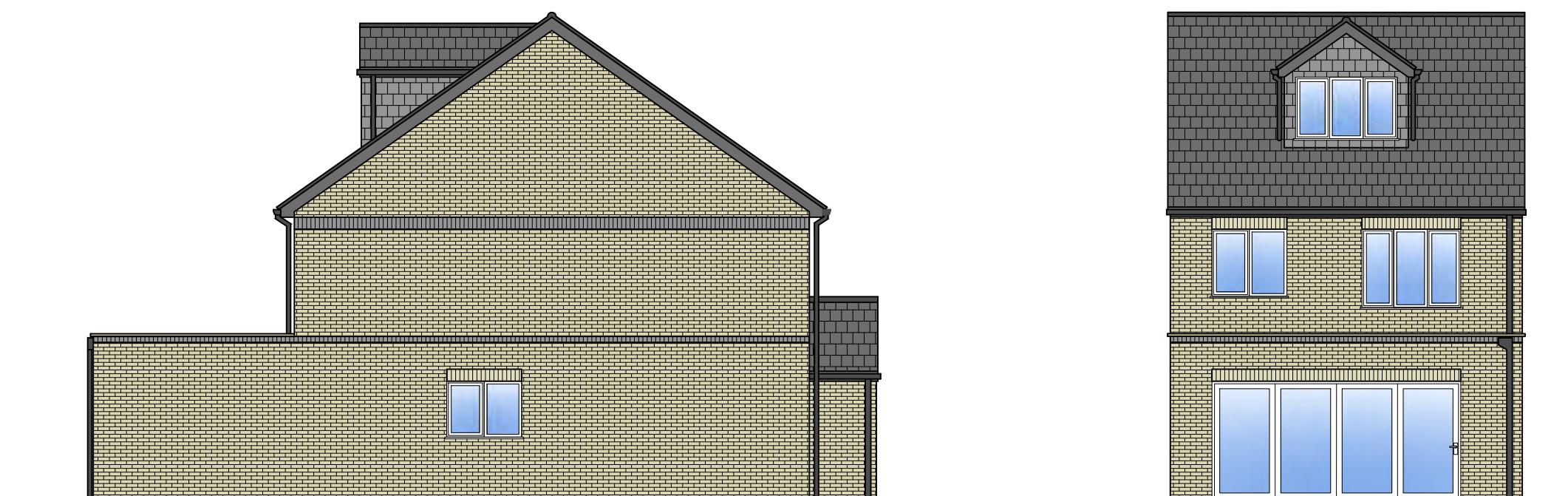
Company: V-Design CAD Services Ltd  
Website: [www.vdesigncad.co.uk](http://www.vdesigncad.co.uk)  
Email Address: [info@vdesigncad.co.uk](mailto:info@vdesigncad.co.uk)  
Tel : +44 20 3488 4890  
Mobile: +44 7312015617

IMPORTANT NOTES:

Dimensions to be verified on site  
DO NOT SCALE FROM THIS DRAWING.  
Any areas indicated on this drawing are for guidance only.  
No responsibility is taken for their accuracy.

This drawing is the property of **V-DESIGN CAD Services Ltd**. Copyright is reserved by them and the drawing is issued on the condition that it is not copied, reproduced, retained or disclosed to any unauthorized person, either wholly or in part without the consent in writing of **V-DESIGN CAD Services Ltd**.

Black Horse Yard,  
Church Walk,  
Hayes, UB3 2RN




Front Elevation

0 1 2 3 4 5  
metres 1:100 scale

Side Elevation

0 1 2 3 4 5  
metres 1:100 scale

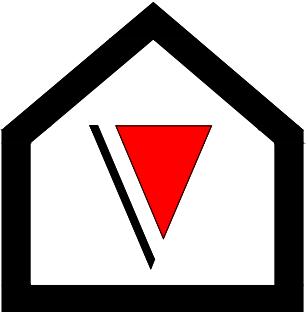


Side Elevation

0 1 2 3 4 5  
metres 1:100 scale

Rear Elevation

0 1 2 3 4 5  
metres 1:100 scale


LEGENDS:

| EXISTING:     | PROPOSED:     |
|---------------|---------------|
| Existing Wall | Cavity Wall   |
| Internal Wall | Internal Wall |
| Site Boundary | Site Boundary |
| Windows       | Windows       |
| Doors         | Doors         |

|                    |                |
|--------------------|----------------|
| Drawing Title:     |                |
| Proposed Elevation |                |
| Scale: 1: 100      | Paper Size: A3 |

|                      |           |       |
|----------------------|-----------|-------|
| REVISION/ COMMENTS : |           |       |
| No:                  | Comments: | Date: |
|                      |           |       |
|                      |           |       |
|                      |           |       |
|                      |           |       |
|                      |           |       |

Drawn By: JM  
Job Ref: 24035  
Date: Dec 2024  
Drawing No. PL - 06.1



**V - Design**

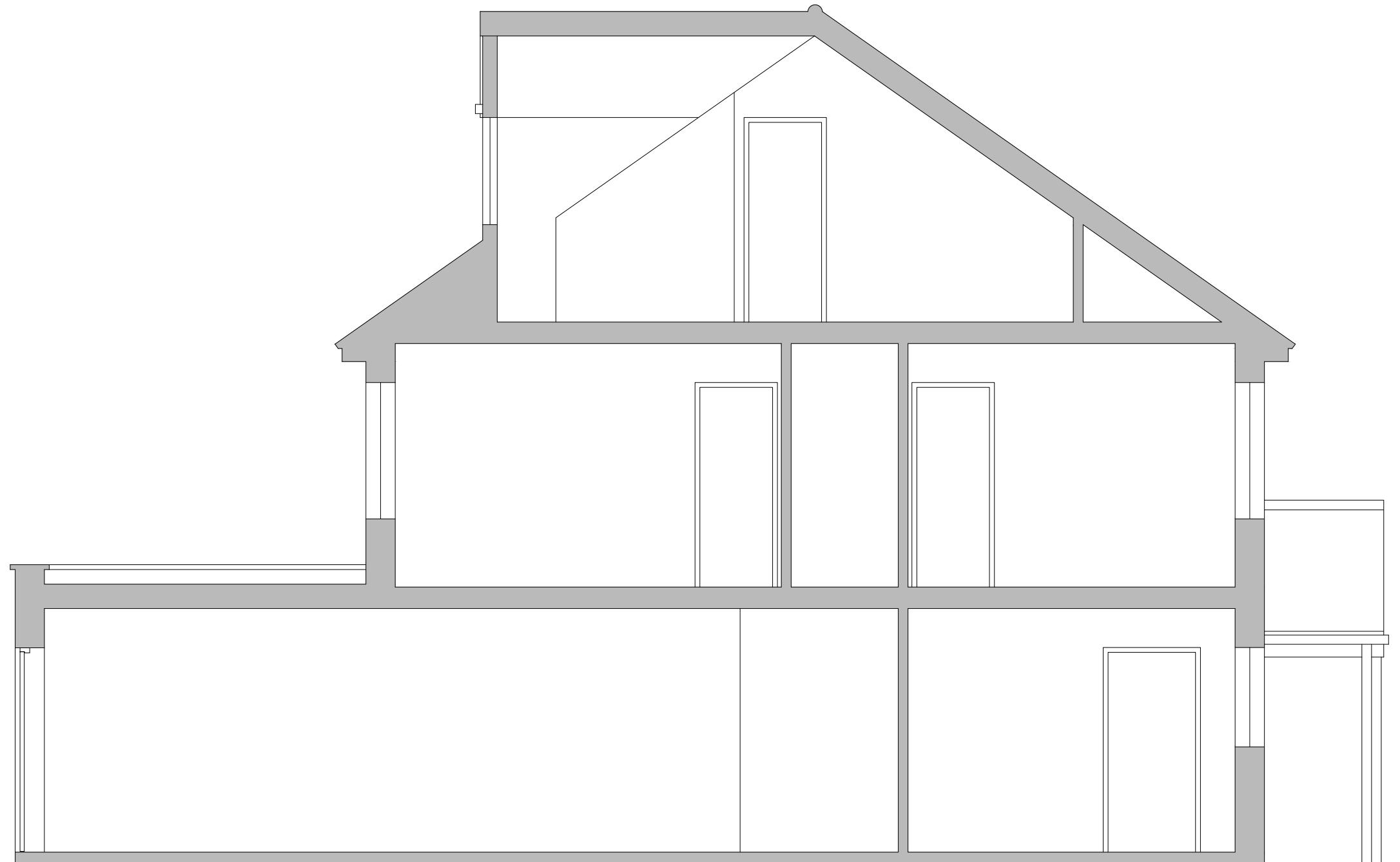
Company: V-Design CAD Services Ltd  
Website: [www.vdesigncad.co.uk](http://www.vdesigncad.co.uk)  
Email Address: [info@vdesigncad.co.uk](mailto:info@vdesigncad.co.uk)  
Tel : +44 20 3488 4890  
Mobile: +44 7312015617

IMPORTANT NOTES:

Dimensions to be verified on site  
DO NOT SCALE FROM THIS DRAWING.  
Any areas indicated on this drawing are for guidance only.  
No responsibility is taken for their accuracy.

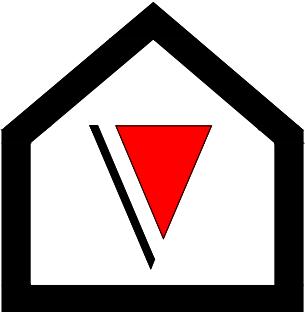
This drawing is the property of **V-DESIGN CAD Services Ltd**. Copyright is reserved by them and the drawing is issued on the condition that it is not copied, reproduced, retained or disclosed to any unauthorized person, either wholly or in part without the consent in writing of **V-DESIGN CAD Services Ltd**.

Black Horse Yard,  
Church Walk,  
Hayes, UB3 2RN


LEGENDS:

| EXISTING:     | PROPOSED:     |
|---------------|---------------|
| Existing Wall | Cavity Wall   |
| Internal Wall | Internal Wall |
| Site Boundary | Site Boundary |
| Windows       | Windows       |
| Doors         | Doors         |

|                  |                |
|------------------|----------------|
| Drawing Title:   |                |
| Proposed Section |                |
| Scale: 1: 50     | Paper Size: A3 |


|                      |           |       |
|----------------------|-----------|-------|
| REVISION/ COMMENTS : |           |       |
| No:                  | Comments: | Date: |
|                      |           |       |
|                      |           |       |
|                      |           |       |
|                      |           |       |
|                      |           |       |

Drawn By: JM  
Job Ref: 24035  
Date: Dec 2024  
Drawing No. PL - 07.1



Proposed Section

0 0.5 1.0 1.5 2.0 2.5  
metres 1:50 scale



**V - Design**

Company: V-Design CAD Services Ltd  
Website: [www.vdesigncad.co.uk](http://www.vdesigncad.co.uk)  
Email Address: [info@vdesigncad.co.uk](mailto:info@vdesigncad.co.uk)  
Tel : +44 20 3488 4890  
Mobile: +44 7312015617

IMPORTANT NOTES:

Dimensions to be verified on site  
DO NOT SCALE FROM THIS DRAWING.  
Any areas indicated on this drawing are for guidance only.  
No responsibility is taken for their accuracy.

This drawing is the property of **V-DESIGN CAD Services Ltd**. Copyright is reserved by them and the drawing is issued on the condition that it is not copied, reproduced, retained or disclosed to any unauthorized person, either wholly or in part without the consent in writing of **V-DESIGN CAD Services Ltd**.

Black Horse Yard,  
Church Walk,  
Hayes, UB3 2RN

LEGENDS:

| EXISTING:     | PROPOSED:     |
|---------------|---------------|
| Existing Wall | Cavity Wall   |
| Internal Wall | Internal Wall |
| Site Boundary | Site Boundary |
| Windows       | Windows       |
| Doors         | Doors         |

Drawing Title:

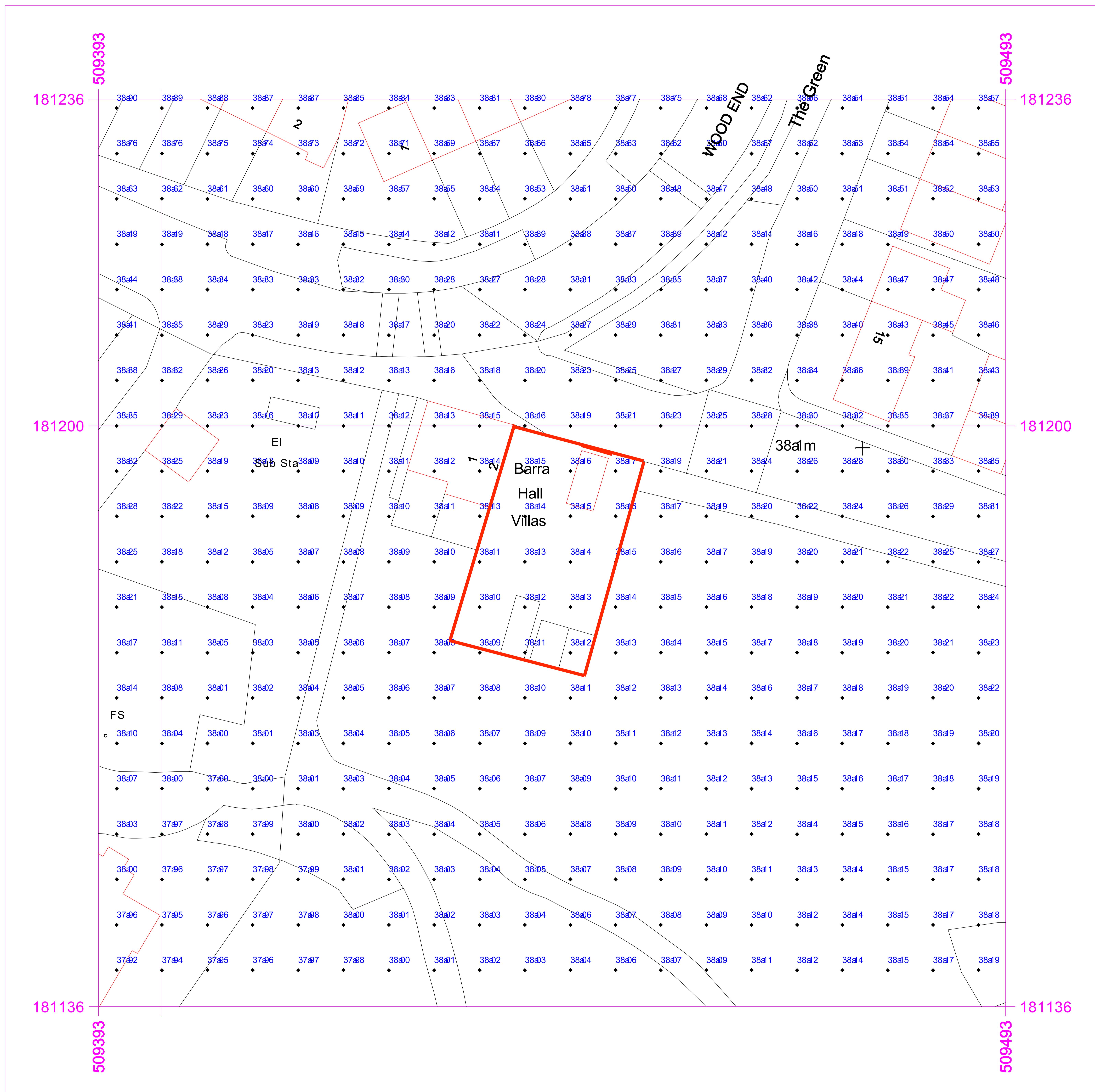
Proposed Section

Scale: 1: 50 Paper Size: A3

REVISION/ COMMENTS :

| No: | Comments: | Date: |
|-----|-----------|-------|
|     |           |       |
|     |           |       |
|     |           |       |
|     |           |       |
|     |           |       |

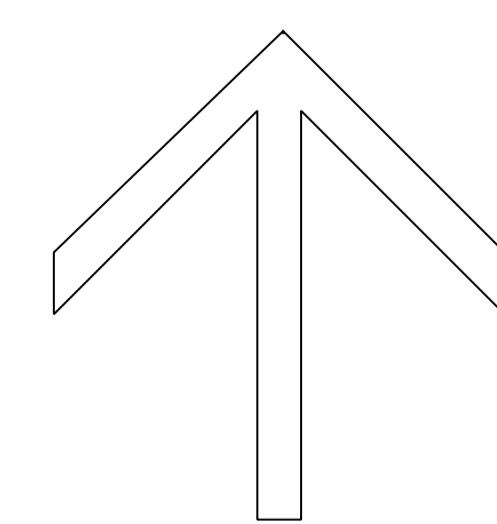
Drawn By: JM


Job Ref: 24035

Date: Dec 2024

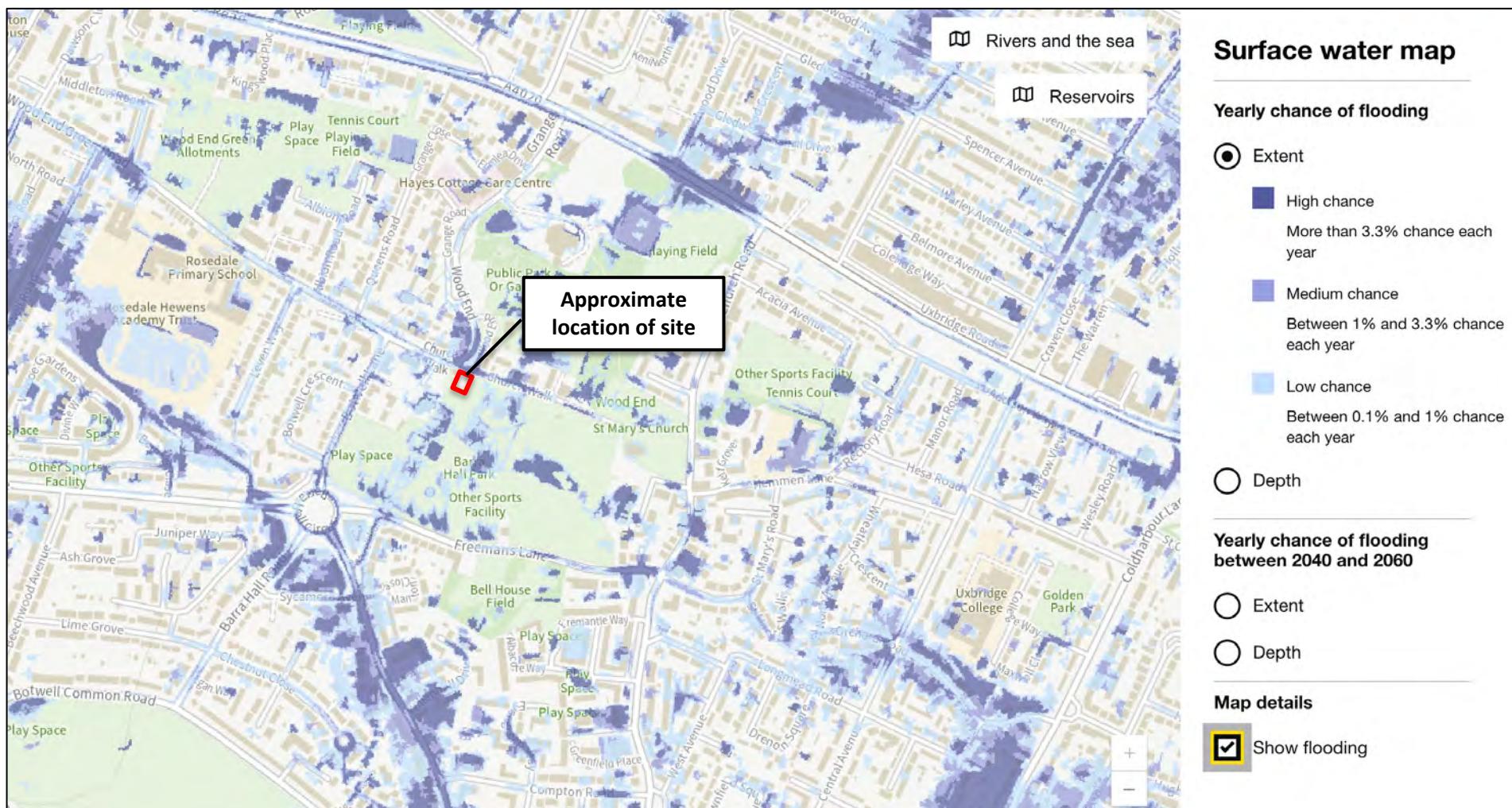
Drawing No. PL - 08.1




## **Appendix D Topographic Map of the Site**



Serial number: 303763


© Crown copyright and database right 2025  
Ordnance Survey licence AC0000848283  
Reproduction in whole or in part is prohibited  
without the prior permission of Ordnance Survey

0 5 10 15 20 25  
metres  
NORTH



## **Appendix E Surface Water Flood Maps**

**Figure 1 Environment Agency's Surface Water Flood Risk Map**



**Figure 2 Environment Agency's Surface Water Flood Depth Map**





# Greenfield runoff rate estimation for sites

[www.eksuds.com](http://www.eksuds.com) | Greenfield runoff tool

|                |                            |
|----------------|----------------------------|
| Calculated by: | Sohan Ghimire              |
| Site name:     | Black Horse Yard           |
| Site location: | Church Walk, Hayes UB3 2RN |

## Site Details

|            |             |
|------------|-------------|
| Latitude:  | 51.51904° N |
| Longitude: | 0.42414° W  |

This is an estimation of the greenfield runoff rates that are used to meet normal best practice criteria in line with Environment Agency guidance “Rainfall runoff management for developments”, SC030219 (2013) , the SuDS Manual C753 (Ciria, 2015) and the non-statutory standards for SuDS (Defra, 2015). This information on greenfield runoff rates may be the basis for setting consents for the drainage of surface water runoff from sites.

|            |                   |
|------------|-------------------|
| Reference: | 951986971         |
| Date:      | Feb 14 2025 11:23 |

## Runoff estimation approach

IH124

## Site characteristics

|                       |      |
|-----------------------|------|
| Total site area (ha): | 0.10 |
|-----------------------|------|

## Methodology

|                                     |                             |
|-------------------------------------|-----------------------------|
| Q <sub>BAR</sub> estimation method: | Calculate from SPR and SAAR |
| SPR estimation method:              | Calculate from SOIL type    |

## Notes

(1) Is Q<sub>BAR</sub> < 2.0 l/s/ha?

When Q<sub>BAR</sub> is < 2.0 l/s/ha then limiting discharge rates are set at 2.0 l/s/ha.

## Soil characteristics

|              | Default | Edited |
|--------------|---------|--------|
| SOIL type:   | 4       | 4      |
| HOST class:  | N/A     | N/A    |
| SPR/SPRHOST: | 0.47    | 0.47   |

(2) Are flow rates < 5.0 l/s?

Where flow rates are less than 5.0 l/s consent for discharge is usually set at 5.0 l/s if blockage from vegetation and other materials is possible. Lower consent flow rates may be set where the blockage risk is addressed by using appropriate drainage elements.

## Hydrological characteristics

|                               | Default | Edited |
|-------------------------------|---------|--------|
| SAAR (mm):                    | 620     | 620    |
| Hydrological region:          | 6       | 6      |
| Growth curve factor 1 year:   | 0.85    | 0.85   |
| Growth curve factor 30 years: | 2.3     | 2.3    |

(3) Is SPR/SPRHOST ≤ 0.3?

**Growth curve factor 100 years:**

|      |      |
|------|------|
| 3.19 | 3.19 |
|------|------|

**Growth curve factor 200 years:**

|      |      |
|------|------|
| 3.74 | 3.74 |
|------|------|

Where groundwater levels are low enough the use of soakaways to avoid discharge offsite would normally be preferred for disposal of surface water runoff.

## Greenfield runoff rates

|                       | Default | Edited |
|-----------------------|---------|--------|
| $Q_{BAR}$ (l/s):      | 0.42    | 0.42   |
| 1 in 1 year (l/s):    | 0.36    | 0.36   |
| 1 in 30 years (l/s):  | 0.96    | 0.96   |
| 1 in 100 year (l/s):  | 1.34    | 1.34   |
| 1 in 200 years (l/s): | 1.57    | 1.57   |

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at [www.eksuds.com](http://www.eksuds.com). The use of this tool is subject to the UK SuDS terms and conditions and licence agreement , which can both be found at [www.eksuds.com/terms-and-conditions.htm](http://www.eksuds.com/terms-and-conditions.htm). The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

## **Appendix G Sewer Asset Map Data**

# Asset Location Search



Property Searches

UK Flood Risk  
41 STANHAM ROAD,  
DARTFORD  
DA1 3AN

**Search address supplied** 1 Barra Hall Villas  
Wood End  
Hayes  
UB3 2RN

**Your reference** Black Hose Yard

**Our reference** ALS/ALS Standard/2025\_5119446

**Search date** 12 February 2025

## Keeping you up-to-date

### We have a new website and email address

Website URL: [thameswater.co.uk/propertysearches](http://thameswater.co.uk/propertysearches)

Email address: [property.searches@thameswater.co.uk](mailto:property.searches@thameswater.co.uk)

Please do get in contact with us if you have any questions.



Thames Water Utilities Ltd  
Property Searches,  
Clearwater Court, Vastern Road, Reading RG1 8DB



[property.searches@thameswater.co.uk](mailto:property.searches@thameswater.co.uk)  
[thameswater.co.uk/propertysearches](http://thameswater.co.uk/propertysearches)



0800 009 4540

# Asset Location Search



Property Searches

**Search address supplied:** 1 Barra Hall Villas, Wood End, Hayes, UB3 2RN

Dear Sir / Madam

**An Asset Location Search is recommended when undertaking a site development.** It is essential to obtain information on the size and location of clean water and sewerage assets to safeguard against expensive damage and allow cost-effective service design.

The following records were searched in compiling this report: - the map of public sewers & the map of waterworks. Thames Water Utilities Ltd (TWUL) holds all of these.

This search provides maps showing the position and size of Thames Water assets close to the proposed development and also manhole cover and invert levels, where available.

Please note that none of the charges made for this report relate to the provision of Ordnance Survey mapping information. The replies contained in this letter are given following inspection of the public service records available to this company. No responsibility can be accepted for any error or omission in the replies.

You should be aware that the information contained on these plans is current only on the day that the plans are issued. The plans should only be used for the duration of the work that is being carried out at the present time. Under no circumstances should this data be copied or transmitted to parties other than those for whom the current work is being carried out.

Thames Water do update these service plans on a regular basis and failure to observe the above conditions could lead to damage arising to new or diverted services at a later date.

## Contact Us

If you have any further queries regarding this enquiry please feel free to contact a member of the team on 0800 009 4540, or use the contact details below:

Thames Water Utilities Ltd  
Property Searches  
Clearwater Court  
Vastern Road  
Reading  
RG1 8DB

Email: [property.searches@thameswater.co.uk](mailto:property.searches@thameswater.co.uk)  
Web: [thameswater.co.uk/propertysearches](http://thameswater.co.uk/propertysearches)

# Asset Location Search



Property Searches

## Waste Water Services

**Please provide a copy extract from the public sewer map.**

Enclosed is a map showing the approximate lines of our sewers. Our plans do not show sewer connections from individual properties or any sewers not owned by Thames Water unless specifically annotated otherwise. Records such as "private" pipework are in some cases available from the Building Control Department of the relevant Local Authority. Where the Local Authority does not hold such plans it might be advisable to consult the property deeds for the site or contact neighbouring landowners. The public sewer map relates only to sewerage apparatus of Thames Water Utilities Ltd, it does not disclose details of cables and or communications equipment that may be running through or around such apparatus. The sewer level information contained in this response represents all of the level data available in our existing records. Should you require any further Information, please refer to the relevant section within the 'Further Contacts' page found later in this document.

### For your guidance:

- The Company is not generally responsible for rivers, watercourses, ponds, culverts or highway drains. If any of these are shown on the copy extract they are shown for information only.
- Any private sewers or lateral drains which are indicated on the extract of the public sewer map as being subject to an agreement under Section 104 of the Water Industry Act 1991 are not an 'as constructed' record. It is recommended these details be checked with the developer.

## Clean Water Services

**Please provide a copy extract from the public water main map.**

With regard to the fresh water supply, this site falls within the boundary of another water company. For more information, please redirect your enquiry to the following address:

Affinity Water Ltd  
Tamblin Way

# Asset Location Search



Property  
Searches

Hatfield  
AL10 9EZ  
Tel: 0345 3572401

For your guidance:

- Assets other than vested water mains may be shown on the plan, for information only.
- If an extract of the public water main record is enclosed, this will show known public water mains in the vicinity of the property. It should be possible to estimate the likely length and route of any private water supply pipe connecting the property to the public water network.

# Asset Location Search



Property Searches

## Further contacts:

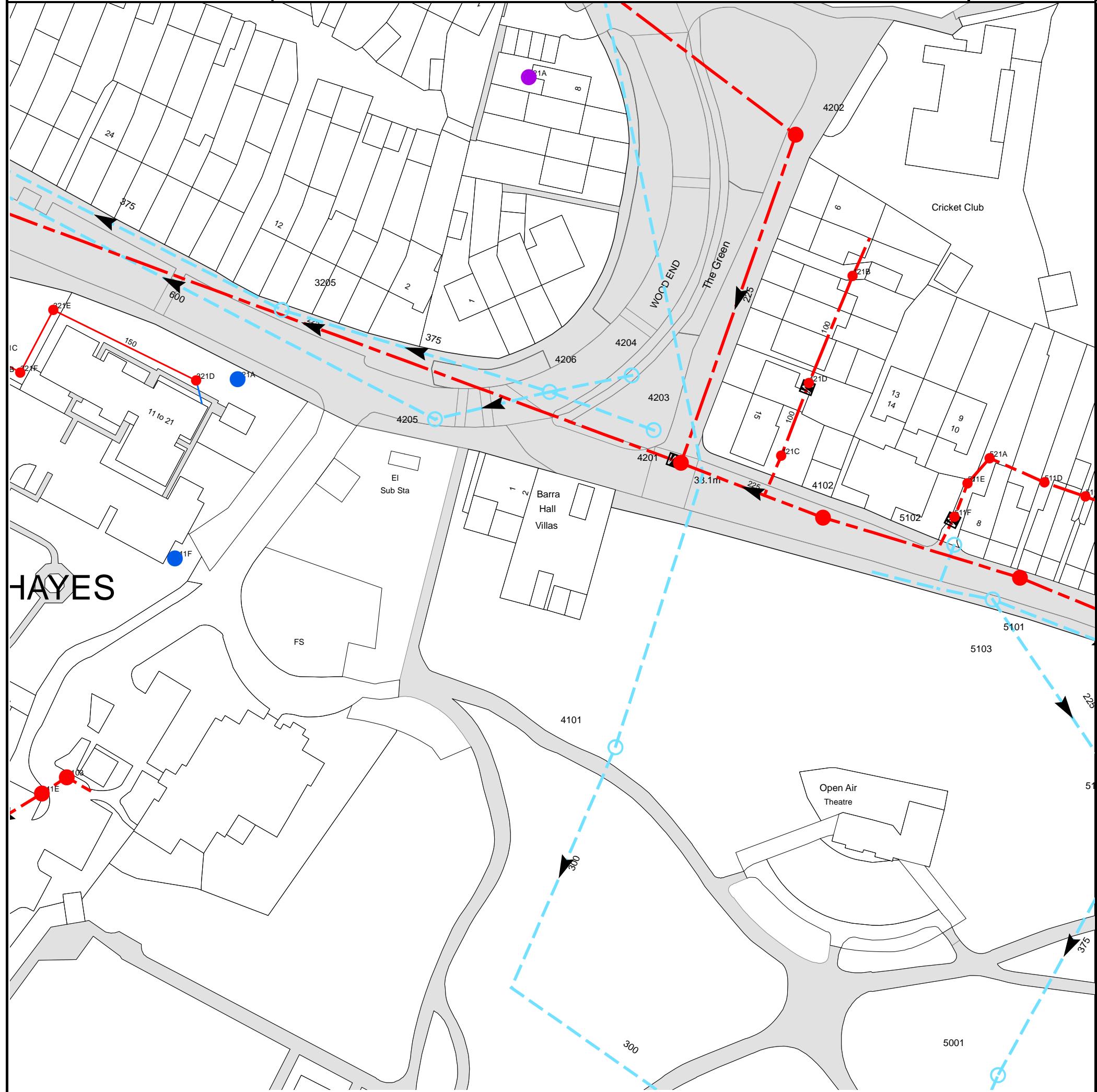
### Waste Water queries

Should you require verification of the invert levels of public sewers, by site measurement, you will need to approach the relevant Thames Water Area Network Office for permission to lift the appropriate covers. This permission will usually involve you completing a TWOSA form. You can do this by emailing [customer.feedback@thameswater.co.uk](mailto:customer.feedback@thameswater.co.uk) with the email subject header 'Enquiry – TWOSA', along with details of the request.

If you have any questions regarding sewer connections, budget estimates, diversions or building over issues please direct them to our service desk which can be contacted by writing to:

Developer Services (Waste Water)  
Thames Water  
Clearwater Court  
Vastern Road  
Reading  
RG1 8DB

Tel: 0800 009 3921  
Email: [developer.services@thameswater.co.uk](mailto:developer.services@thameswater.co.uk)


### Clean Water queries

Should you require any advice concerning clean water connections, please contact:

Developer Services (Clean Water)  
Thames Water  
Clearwater Court  
Vastern Road  
Reading  
RG1 8DB

Tel: 0800 009 3921  
Email: [developer.services@thameswater.co.uk](mailto:developer.services@thameswater.co.uk)

Asset Location Search Sewer Map - ALS/ALS Standard/2025\_5119446



NB. Levels quoted in metres Ordnance Newlyn Datum. The value -9999.00 indicates that no survey information is available

| Manhole Reference | Manhole Cover Level | Manhole Invert Level |
|-------------------|---------------------|----------------------|
| 421C              | n/a                 | n/a                  |
| 321E              | n/a                 | 37.44                |
| 3205              | 38.52               | 36.87                |
| 421A              | n/a                 | n/a                  |
| 311E              | n/a                 | n/a                  |
| 3103              | n/a                 | n/a                  |
| 4101              | n/a                 | n/a                  |
| 311F              | n/a                 | n/a                  |
| 4203              | n/a                 | n/a                  |
| 4205              | 38.35               | 36.7                 |
| 4206              | 38.12               | 36.8                 |
| 321D              | n/a                 | n/a                  |
| 321A              | n/a                 | n/a                  |
| 4204              | n/a                 | n/a                  |
| 321F              | n/a                 | 37.27                |
| 4201              | 38.17               | 36.02                |
| 4202              | 38.47               | 36.47                |
| 421D              | n/a                 | n/a                  |
| 4102              | n/a                 | n/a                  |
| 421B              | n/a                 | n/a                  |
| 5102              | n/a                 | n/a                  |
| 511F              | n/a                 | n/a                  |
| 511E              | n/a                 | n/a                  |
| 521A              | n/a                 | n/a                  |
| 5103              | n/a                 | n/a                  |
| 5001              | n/a                 | n/a                  |
| 5101              | n/a                 | n/a                  |
| 511D              | n/a                 | n/a                  |
| 511G              | n/a                 | n/a                  |
| 511C              | n/a                 | n/a                  |

The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified and established on site before any works are undertaken.



# Asset Location Search - Sewer Key

## Public Sewer Types (Operated and maintained by Thames Water)

|  |                                                                                                                                                   |
|--|---------------------------------------------------------------------------------------------------------------------------------------------------|
|  | <b>Foul Sewer:</b> A sewer designed to convey waste water from domestic and industrial sources to a treatment works.                              |
|  | <b>Surface Water Sewer:</b> A sewer designed to convey surface water (e.g. rain water from roofs, yards and car parks) to rivers or watercourses. |
|  | <b>Combined Sewer:</b> A sewer designed to convey both waste water and surface water from domestic and industrial sources to a treatment works.   |
|  | <b>Storm Sewer</b>                                                                                                                                |
|  | <b>Sludge Sewer</b>                                                                                                                               |
|  | <b>Foul Trunk Sewer</b>                                                                                                                           |
|  | <b>Surface Trunk Sewer</b>                                                                                                                        |
|  | <b>Combined Trunk Sewer</b>                                                                                                                       |
|  | <b>Foul Rising Main</b>                                                                                                                           |
|  | <b>Surface Water Rising Main</b>                                                                                                                  |
|  | <b>Combined Rising Main</b>                                                                                                                       |
|  | <b>Vacuum</b>                                                                                                                                     |
|  | <b>Thames Water Proposed</b>                                                                                                                      |
|  | <b>Vent Pipe</b>                                                                                                                                  |
|  | <b>Gallery</b>                                                                                                                                    |

## Other Sewer Types (Not operated and maintained by Thames Water)

|  |                              |
|--|------------------------------|
|  | <b>Sewer</b>                 |
|  | <b>Culverted Watercourse</b> |
|  | <b>Proposed</b>              |
|  | <b>Decommissioned Sewer</b>  |

### Notes:

- 1) All levels associated with the plans are to Ordnance Datum Newlyn.
- 2) All measurements on the plan are metric.
- 3) Arrows (on gravity fed sewers) or flecks (on rising mains) indicate the direction of flow.
- 4) Most private pipes are not shown on our plans, as in the past, this information has not been recorded.

## Sewer Fittings

|  |                  |
|--|------------------|
|  | <b>Air Valve</b> |
|  | <b>Meter</b>     |
|  | <b>Dam Chase</b> |
|  | <b>Vent</b>      |
|  | <b>Fitting</b>   |

## Operational Controls

A feature in a sewer that changes or diverts the flow in the sewer. Example: A hydrobrake limits the flow passing downstream.

|  |                      |
|--|----------------------|
|  | <b>Ancillary</b>     |
|  | <b>Drop Pipe</b>     |
|  | <b>Control Valve</b> |
|  | <b>Well</b>          |

## End Items

End symbols appear at the start or end of a sewer pipe. Examples: an Undefined End at the start of a sewer indicates that Thames Water has no knowledge of the position of the sewer upstream of that symbol. Outfall on a surface water sewer indicates that the pipe discharges into a stream or river.

|  |                      |
|--|----------------------|
|  | <b>Inlet</b>         |
|  | <b>Outfall</b>       |
|  | <b>Undefined End</b> |

## Other Symbols

Symbols used on maps which do not fall under other general categories.

|  |                                           |
|--|-------------------------------------------|
|  | <b>Change of Characteristic Indicator</b> |
|  | <b>Public / Private Pumping Station</b>   |
|  | <b>Summit</b>                             |

## Areas

Lines denoting areas of underground surveys, etc.

|  |                         |
|--|-------------------------|
|  | <b>Agreement</b>        |
|  | <b>Chamber</b>          |
|  | <b>Operational Site</b> |

## Ducts or Crossings

|  |                       |
|--|-----------------------|
|  | <b>Casement</b>       |
|  | <b>Conduit Bridge</b> |
|  | <b>Subway</b>         |
|  | <b>Tunnel</b>         |

Ducts may contain high voltage cables. Please check with Thames Water.

- 5) 'na' or '0' on a manhole indicates that data is unavailable.
- 6) The text appearing alongside a sewer line indicates the internal diameter of the pipe in millimetres. Text next to a manhole indicates the manhole reference number and should not be taken as a measurement. If you are unsure about any text or symbology, please contact Property Searches on 0800 009 4540.

## **Appendix H Geo Infiltration Data Assessment**



**Sohan Ghimire**  
**41**  
**41 Stanham Road**  
**Dartford**  
**DA1 3AN**

## **Infiltration SuDS GeoReport:**

This report provides information on the suitability of the subsurface for the installation of infiltration sustainable drainage systems (SuDS). It provides information on the properties of the subsurface with respect to significant constraints, drainage, ground stability and groundwater quality protection.

**Report Id: BGS\_341791/59047**

**Client reference:**

## Search location



Contains OS data © Crown Copyright and database right 2025. OS OpenMap Local: Scale: 1:5 000 (1cm = 50 m)

Search location indicated in red

Point centred at: 509446, 181189

## Assessment for an infiltration sustainable drainage system

### Introduction

Sustainable drainage systems (SuDS) are drainage solutions that manage the volume and quality of surface water close to where it falls as rain. They aim to reduce flow rates to rivers, increase local water storage capacity and reduce the transport of pollutants to the water environment. There are four main types of SuDS, which are often designed to be used in sequence. They comprise:

- **source control:** systems that control the rate of runoff
- **pre-treatment:** systems that remove sediments and pollutants
- **retention:** systems that delay the discharge of water by providing surface storage
- **infiltration:** systems that mimic natural recharge to the ground.

This report focuses on infiltration SuDS. It provides subsurface information on the properties of the ground with respect to drainage, ground stability and groundwater quality protection. It is intended principally for those involved in the preliminary assessment of the suitability of the ground for infiltration SuDS, and those involved in assessing proposals from others for sustainable drainage, but it may also be useful to help house-holders judge whether or not further professional advice should be sought. If in doubt, users should consult a suitably-qualified professional about the results in this report before making any decisions based upon it.

This GeoReport is structured in two parts:

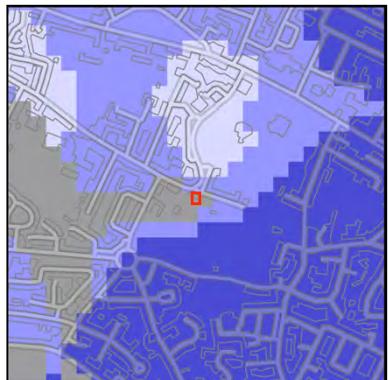
- **Part 1. Summary data.**

Comprises three maps that summarise the data contained within Part 2.

- **Part 2. Detailed data.**

Comprises a further 24 maps in four thematic sections:

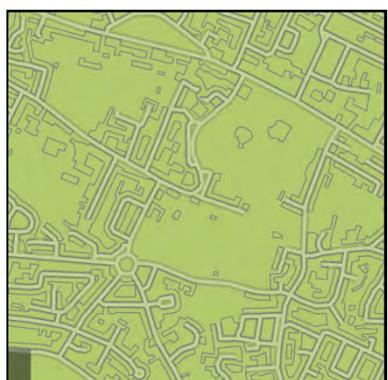
- **Very significant constraints.** Maps highlight areas where infiltration may result in adverse impacts due to factors including: ground instability (soluble rocks, non-coal shallow mining and landslide hazards); persistent shallow groundwater, or the presence of made ground, which may represent a ground stability or contamination hazard.
- **Drainage potential.** Maps indicate the drainage potential of the ground, by considering subsurface permeability, depth to groundwater and the presence of floodplain deposits.
- **Ground stability.** Maps indicate the presence of hazards that have the potential to cause ground instability resulting in damage to some buildings and structures, if water is infiltrated to the ground.
- **Groundwater protection.** Maps provide key indicators to help determine whether the groundwater may be susceptible to deterioration in quality as a result of infiltration.


This report considers the suitability of the subsurface for the installation of infiltration SuDS, such as soakaways, infiltration basins or permeable pavements. It provides subsurface data to indicate whether, and which type of infiltration system may be appropriate. It does not state that infiltration SuDS are, or are not, appropriate as this is highly dependent on the design of the individual system. This report therefore describes the subsurface conditions at the site, allowing the reader to determine the suitability of the site for infiltration SuDS.

The map and text data in this report is similar to that provided in the '*Infiltration SuDS Map: Detailed*' national map product. For further information about the data, consult the '*User Guide for the Infiltration SuDS Map: Detailed*', available from <http://nora.nerc.ac.uk/16618/>.

## PART 1: SUMMARY DATA

This section provides a summary of the data.


### In terms of the drainage potential, is the ground suitable for infiltration SuDS?



Contains OS data © Crown Copyright and database right 2025

- Highly compatible for infiltration SuDS. The subsurface is likely to be suitable for free-draining infiltration SuDS.
- Probably compatible for infiltration SuDS. The subsurface is probably suitable although the design may be influenced by the ground conditions.
- Opportunities for bespoke infiltration SuDS. The subsurface is potentially suitable although the design will be influenced by the ground conditions.
- Very significant constraints are indicated. There is a very significant potential for one or more hazards associated with infiltration.

### Is ground instability likely to be a problem?



Contains OS data © Crown Copyright and database right 2025

- Increased infiltration is very unlikely to result in ground instability.
- Ground instability problems may be present or anticipated, but increased infiltration is unlikely to result in ground instability.
- Ground instability problems are probably present. Increased infiltration may result in ground instability.
- There is a very significant potential for one or more geohazards associated with infiltration.

### Is the groundwater susceptible to deterioration in quality?



Contains OS data © Crown Copyright and database right 2025

- The groundwater is not expected to be especially vulnerable to contamination.
- The groundwater may be vulnerable to contamination.
- The groundwater is likely to be vulnerable to contaminants.
- Made ground is present at the surface. Infiltration may increase the possibility of remobilising pollutants.

## PART 2: DETAILED DATA

This section provides further information about the properties of the ground and will help assess the suitability of the ground for infiltration SuDS.

### Section 1. Very significant constraints

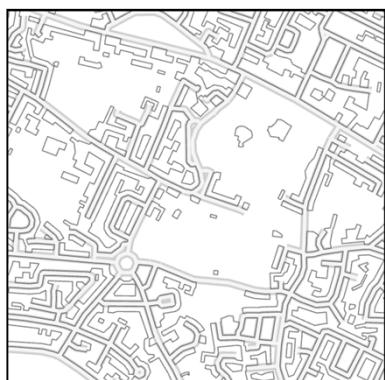
Where maps are overlaid by grey polygons, geological or hydrogeological hazards may exist that could be made worse by infiltration. The following hazards are considered:

- soluble rocks
- landslides
- shallow mining (not including coal)
- shallow groundwater
- made ground

For more information read 'Explanation of terms' at the end of this report.

#### Soluble rock hazard




Contains OS data © Crown Copyright and database right 2025

Very significant soluble rock hazard.

Soluble rocks are present with a very significant possibility of localised subsidence that could be initiated or made worse by infiltration. The site investigation should consider whether the potential for or the consequences of subsidence as a result of infiltration are significant.

Very significant soluble rock hazards are not present; however this hazard may still need to be considered. See Part 3.

#### Landslide hazard



Contains OS data © Crown Copyright and database right 2025

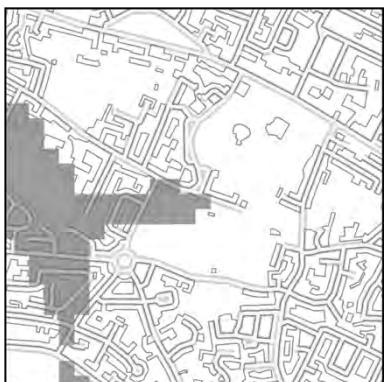
Very significant landslide hazard.

Slope instability problems are almost certainly present and may be active. An increase in moisture content as a result of infiltration may cause the slope to fail. The site investigation should consider whether the potential for or the consequences of landslide as a result of infiltration are significant.

Very significant landslide hazards are not present; however this hazard may still need to be considered. See Part 3.

## Shallow mining hazard (not including coal)




Contains OS data © Crown Copyright and database right 2025

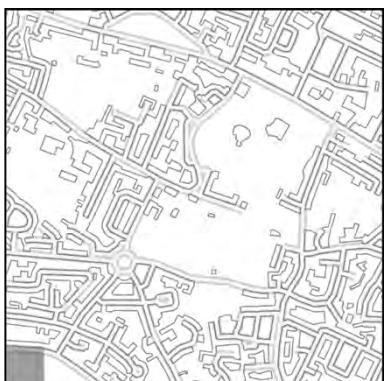
Very significant mining hazard.

Shallow mining is likely to be present with a very significant possibility of localised subsidence that could be initiated or made worse by increased infiltration. Also, infiltration may increase the possibility of remobilising pollutants. The site investigation should consider whether the potential for or consequences of subsidence and/or remobilisation of pollutants as a result of infiltration are significant.

Very significant mining hazards are not present; however this hazard may still need to be considered. See Part 3.

## Persistent shallow groundwater




Contains OS data © Crown Copyright and database right 2025

Very high likelihood of persistent or seasonally shallow groundwater.

Persistent or seasonally shallow groundwater is likely to be present. Infiltration may increase the likelihood of soakaway inundation, or groundwater emergence at the surface. The site investigation should consider whether the potential for or the consequences of groundwater level rise as a result of infiltration are significant.

See Part 2 for the likely depth to water table.

## Made ground

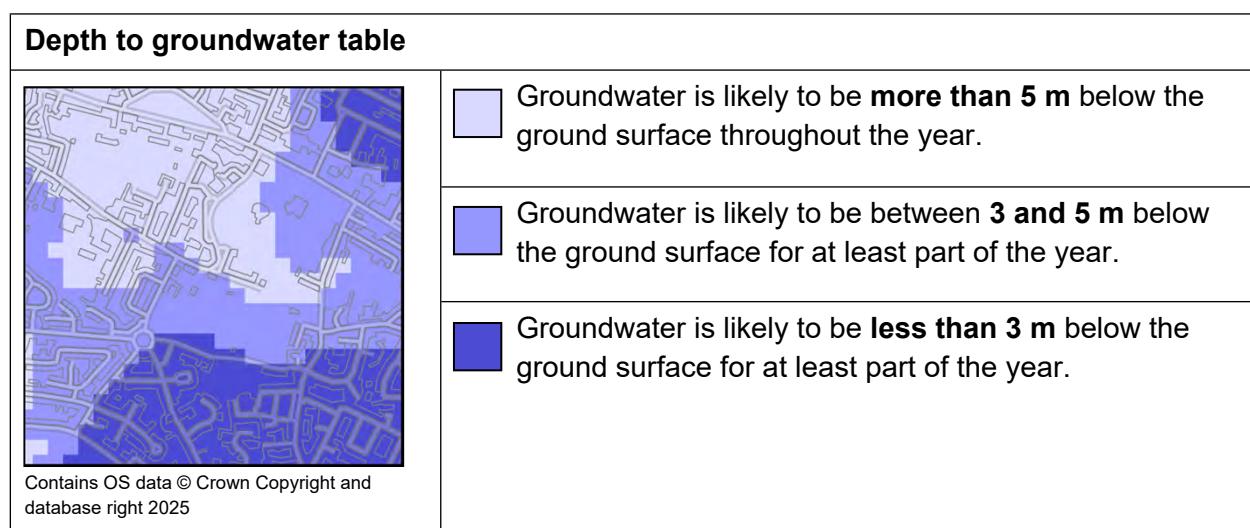


Contains OS data © Crown Copyright and database right 2025

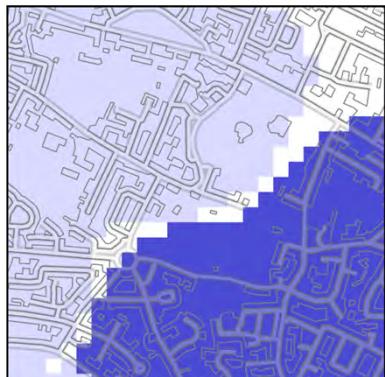
Made ground present.

Made ground is present at the surface. Infiltration may affect ground stability or increase the possibility of remobilising pollutants. The site investigation should consider whether the potential for or consequences of ground instability and/or pollutant leaching as a result of infiltration are significant.

None recorded


## Section 2. Drainage potential

The following pages contain maps that will help you assess the drainage potential of the ground by considering the:


- depth to water table
- permeability of the superficial deposits
- thickness of the superficial deposits
- permeability of the bedrock
- presence of floodplains

Superficial deposits are not present everywhere and therefore some areas of the *superficial deposit permeability* map may not be coloured. Where this is the case, the *bedrock permeability* map shows the likely permeability of the ground. Superficial deposits in some places are very thin and hence in these places you may wish to consider both the permeability of the superficial deposits and the permeability of the bedrock. The *superficial thickness* map will tell you whether the superficial deposits are thin (< 3 m thick) or thick (>3 m). Where they are over 3 m thick, the permeability of the bedrock may not be relevant.

For more information read 'Explanation of terms' at the end of this report.



## Superficial deposit permeability



Contains OS data © Crown Copyright and database right 2025

- █ Superficial deposits are likely to be **free-draining**.
- █ The superficial deposit permeability is **spatially variable**, but likely to permit moderate infiltration.
- █ Superficial deposits are likely to be **poorly draining**.

These maps show the permeability range that is summarised above.

- █ Very Low
- █ Low
- █ Moderate
- █ High
- █ Very High

### Minimum



Contains OS data © Crown Copyright and database right 2025

### Maximum



Contains OS data © Crown Copyright and database right 2025

## Superficial deposit thickness



Contains OS data © Crown Copyright and database right 2025

- █ The thickness of superficial deposits is **< 3 m** and hence the permeability of the ground may be dependent on both the superficial deposits (where present) and underlying bedrock (see below).
- █ The thickness of superficial deposits is **> 3 m** and hence the permeability of the superficial deposits is likely to determine the permeability of the ground.

## Bedrock permeability



Contains OS data © Crown Copyright and database right 2025

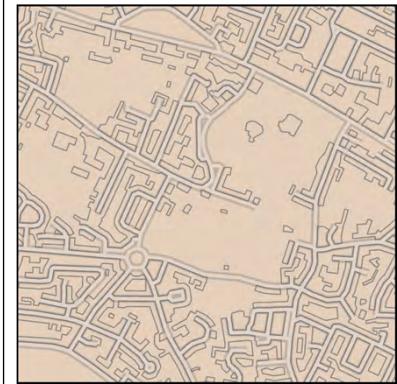
 Bedrock deposits are likely to be **free-draining**.

 The bedrock permeability is **spatially variable**, but likely to permit moderate infiltration.

 Bedrock deposits are likely to be **poorly draining**.

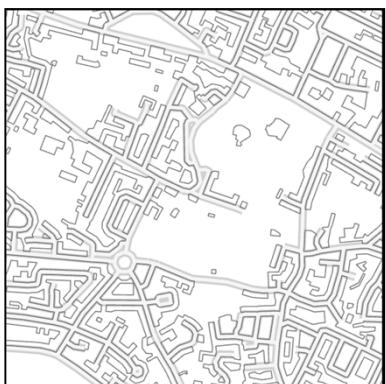
These maps show the permeability range that is summarised above.

### Key


-  Very Low
-  Low
-  Moderate
-  High
-  Very High

### Minimum




Contains OS data © Crown Copyright and database right 2025

### Maximum

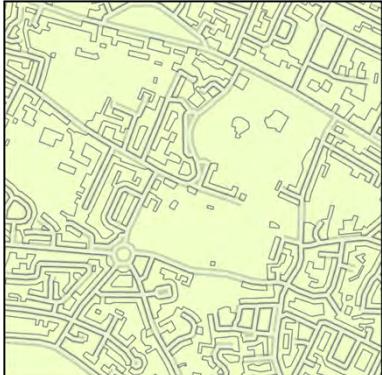


Contains OS data © Crown Copyright and database right 2025

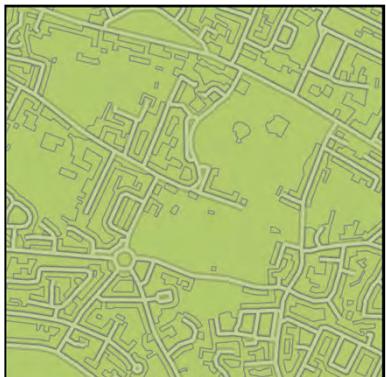
## Geological indicators of flooding



Contains OS data © Crown Copyright and database right 2025


 Superficial floodplain deposits or low-lying coastal areas have been identified. Groundwater levels may rise in response to high river or tide levels, potentially causing inundation of subsurface infiltration SuDS.

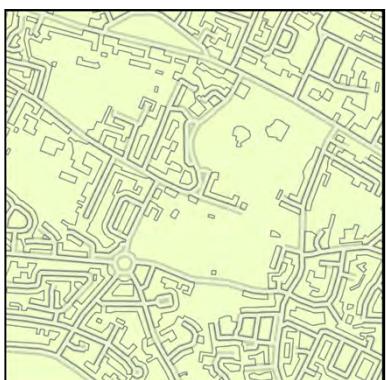
## Section 3. Ground stability


The following pages contain maps that will help you assess whether infiltration may impact the stability of the ground. They consider hazards associated with:

- soluble rocks
- landslides
- shallow mining
- running sands
- swelling clays
- compressible ground, and
- collapsible ground

In the following maps, geohazards that are identified in green are unlikely to prevent infiltration SuDS from being installed, but they should be considered during design. For more information read 'Explanation of terms' at the end of this report.

| <b>Soluble rocks</b>                                                                |                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  | <span data-bbox="695 1035 743 1080"></span> Increased infiltration is unlikely to result in subsidence.                                                                                                        |
|                                                                                     | <span data-bbox="695 1114 743 1158"></span> Increased infiltration is unlikely to cause localised subsidence, but potential impacts should be considered.                                                      |
|                                                                                     | <span data-bbox="695 1237 743 1282"></span> Increased infiltration may result in localised subsidence. The potential for or the consequences of subsidence associated with soluble rocks should be considered. |
| Contains OS data © Crown Copyright and database right 2025                          | <span data-bbox="695 1417 743 1462"></span> Very significant possibility of localised subsidence that could be initiated or made worse by infiltration.                                                        |


## Landslides



Contains OS data © Crown Copyright and database right 2025

- Increased infiltration is unlikely to lead to slope instability.
- Slope instability problems may be present or anticipated, but increased infiltration is unlikely to cause instability
- Slope instability problems are probably present or have occurred in the past, and increased infiltration may result in slope instability.
- Slope instability problems are almost certainly present and may be active. An increase in moisture content as a result of infiltration may cause the slope to fail.


## Shallow mining



Contains OS data © Crown Copyright and database right 2025

- Increased infiltration is unlikely to lead to subsidence.
- Shallow mining is possibly present. Increased infiltration is unlikely to cause a geohazard, but potential impacts should be considered.
- Shallow mining could be present with a significant possibility that localised subsidence could be initiated or made worse by increased infiltration.
- Shallow mining is likely to be present, with a very significant possibility that localised subsidence may be initiated or made worse by increased infiltration.

## Running sand



Contains OS data © Crown Copyright and database right 2025

- Increased infiltration is unlikely to cause ground collapse associated with running sands.
- Running sand is possibly present. Increased infiltration is unlikely to cause a geohazard, but potential impacts should be considered.
- Significant possibility for running sand problems. Increased infiltration may result in a geohazard.

## Swelling clays



Contains OS data © Crown Copyright and database right 2025

 Increased infiltration is unlikely to cause shrink-swell ground movement.

 Ground is susceptible to shrink-swell ground movement. Increased infiltration is unlikely to cause a geohazard, but potential impacts should be considered.

 Ground is susceptible to shrink-swell ground movement. Increased infiltration may result in a geohazard.

## Compressible ground




Contains OS data © Crown Copyright and database right 2025

 Increased infiltration is unlikely to lead to ground compression.

 Compressibility and uneven settlement hazards are probably present. Increased infiltration may result in a geohazard.

## Collapsible ground

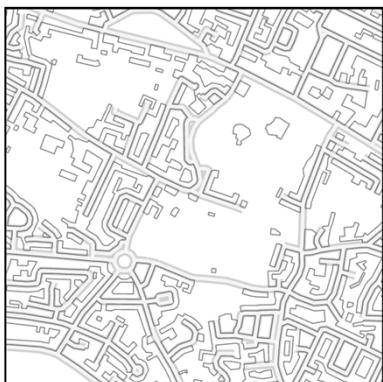


Contains OS data © Crown Copyright and database right 2025

 Increased infiltration is unlikely to result in subsidence.

 Deposits with potential to collapse when loaded and saturated are possibly present in places. Increased infiltration is unlikely to cause a geohazard, but potential impacts should be considered.

 Deposits with potential to collapse when loaded and saturated are probably present in places. Increased infiltration may result in a geohazard.


## Section 4. Groundwater quality protection

The following pages contain maps showing some of the information required to ensure the protection of groundwater quality. Data presented includes:

- groundwater source protection zones (Environment Agency data)
- predominant flow mechanism
- made ground

For more information read 'Explanation of terms' at the end of this report.

### Groundwater source protection zones



Contains OS data © Crown Copyright and database right 2025

Derived in part from Source Protection Zone data provided under licence from the Environment Agency © Environment Agency 2025.

|                          |                                                     |
|--------------------------|-----------------------------------------------------|
| <input type="checkbox"/> | Groundwater is not within a source protection zone. |
| <input type="checkbox"/> | Source protection zone IV                           |
| <input type="checkbox"/> | Source protection zone III                          |
| <input type="checkbox"/> | Source protection zone II                           |
| <input type="checkbox"/> | Source protection zone I                            |

### Predominant flow mechanism



Contains OS data © Crown Copyright and database right 2025

|                          |                                                                                                                                                                                                                                             |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <input type="checkbox"/> | Water is likely to percolate through the unsaturated zone to the groundwater through either the pore space in granular media or through porespace and fractures; these processes have some potential for contaminant removal and breakdown. |
| <input type="checkbox"/> | Water is likely to percolate through the unsaturated zone to the groundwater through fractures, a process which has little potential for contaminant removal and breakdown.                                                                 |

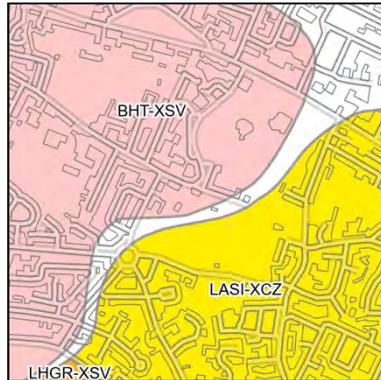
## Made ground




Contains OS data © Crown Copyright and  
database right 2025

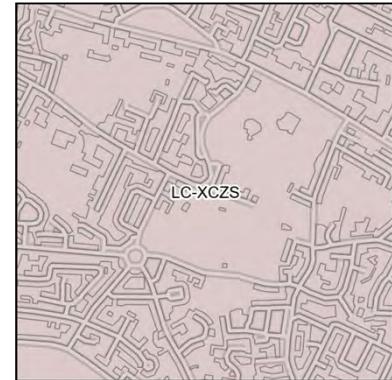
 Made ground is present at the surface. Infiltration may increase the possibility of remobilising pollutants.

## Section 5. Geological Maps


The following maps show the artificial, superficial and bedrock geology within the area of interest.

### Artificial deposits




Contains OS data © Crown Copyright and database right 2025

### Superficial deposits



Contains OS data © Crown Copyright and database right 2025

### Bedrock



Contains OS data © Crown Copyright and database right 2025



Fault

Coal, ironstone or mineral vein

Note: Faults and Coals, ironstone & mineral veins are shown for illustration and to aid interpretation of the map. Not all such features are shown and their absence on the map face does not necessarily mean that none are present

#### Key to Artificial deposits:

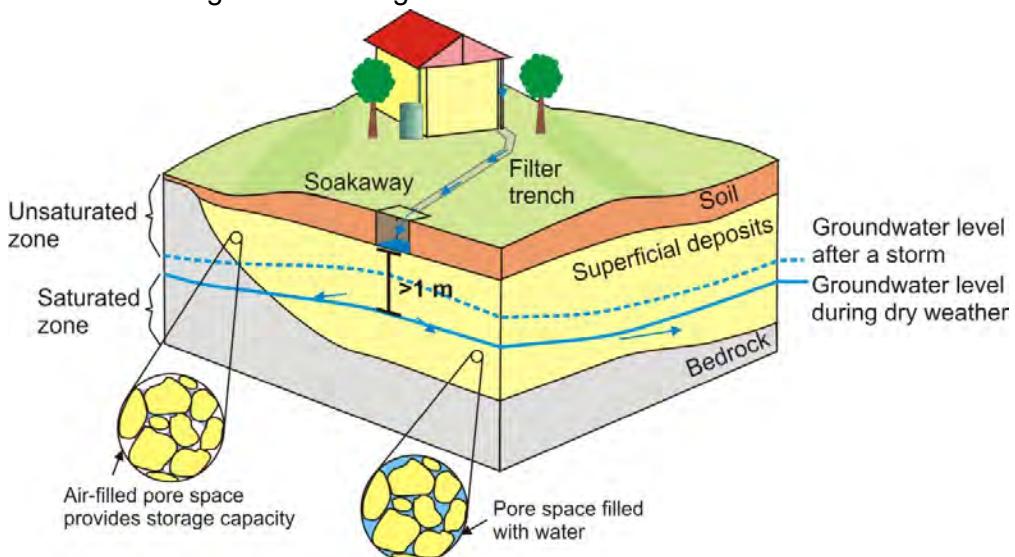
| Map colour                                                                          | Computer Code | Rock name                 | Rock type          |
|-------------------------------------------------------------------------------------|---------------|---------------------------|--------------------|
|  | WMGR-ARTDP    | INFILLED GROUND           | ARTIFICIAL DEPOSIT |
|  | WGR-VOID      | WORKED GROUND (UNDIVIDED) | VOID               |

#### Key to Superficial deposits:

| Map colour                                                                          | Computer Code | Rock name                | Rock type       |
|-------------------------------------------------------------------------------------|---------------|--------------------------|-----------------|
|  | LASI-XCZ      | LANGLEY SILT MEMBER      | CLAY AND SILT   |
|  | LHGR-XSV      | LYNCH HILL GRAVEL MEMBER | SAND AND GRAVEL |
|  | BHT-XSV       | BOYN HILL GRAVEL MEMBER  | SAND AND GRAVEL |

Key to Bedrock geology:

| Map colour                                                                        | Computer Code | Rock name             | Rock type           |
|-----------------------------------------------------------------------------------|---------------|-----------------------|---------------------|
|  | LC-XCZS       | LONDON CLAY FORMATION | CLAY, SILT AND SAND |


## Limitations of this report:

- This report is concerned with the potential for infiltration-to-the-ground to be used as a SuDS technique at the site described. It only considers the subsurface beneath the search area and does NOT consider potential surface or subsurface impacts outside of that area.
- This report is NOT an alternative for an on-site investigation or soakaway test, which might reach a different conclusion.
- This report must NOT be used to justify disposal of foul waste or grey water.
- This report is based on and limited to an interpretation of the records held by the British Geological Survey (BGS) at the time the search is performed. The datasets used (with the exception of that showing depth to water table) are based on 1:50 000 digital geological maps and not site-specific data.
- Other more specific and detailed ground instability information for the site may be held by BGS, and an assessment of this could result in a modified assessment.
- To interpret the maps correctly, the report must be viewed and printed in colour.
- The search does NOT consider the suitability of sites with regard to:
  - previous land use,
  - potential for, or presence of contaminated land
  - presence of perched water tables
  - shallow mining hazards relating to coal mining. Searches of coal mining should be carried out via The Coal Authority Mine Reports Service: [www.coalminingreports.co.uk](http://www.coalminingreports.co.uk).
  - made ground, where not recorded
  - proximity to landfill sites (searches for landfill sites or contaminated land should be carried out through consultation with local authorities/Environment Agency)
  - zones around private water supply boreholes that are susceptible to groundwater contamination.
- This report is supplied in accordance with the GeoReports Terms & Conditions available separately, and the copyright restrictions described at the end of this report

## Explanation of terms

### Depth to groundwater

In the shallow subsurface, the ground is commonly unsaturated with respect to water. Air fills the spaces within the soil and the underlying superficial deposits and bedrock. At some depth below the ground surface, there is a level below which these spaces are full of water. This level is known as the groundwater level, and the water below it is termed the groundwater. When water is infiltrated, the groundwater level may rise temporarily. To ensure that there is space in the unsaturated zone to accommodate this, there should be a minimum thickness of 1 m between the base of the infiltration system and the water table. An estimate of the *depth to groundwater* is therefore useful in determining whether the ground is suitable for infiltration.



### Groundwater flooding

Groundwater flooding occurs when a rise in groundwater level results in very shallow groundwater or the emergence of groundwater at the surface. If infiltration systems are installed in areas that are susceptible to groundwater flooding, it is possible that the system could become inundated. The susceptibility map seeks to identify areas where the geological conditions and water tables indicate that groundwater level rise could occur under certain circumstances. A high susceptibility to groundwater flooding classification does not mean that groundwater flooding has ever occurred in the past, or will do so in the future as the susceptibility maps do not contain information on how often flooding may occur. The susceptibility maps are designed for planning; identifying areas where groundwater flooding might be an issue that needs to be taken into account.

## Geological indicators of flooding

In floodplain deposits, groundwater level can be influenced by the water level in the adjacent river. Groundwater level may increase during periods of fluvial flood and therefore this should be taken into account when designing infiltration systems on such deposits. The *geological indicators of flooding* dataset shows where there is geological evidence (floodplain deposits) that flooding has occurred in the past.

For further information on flood-risk, the likely frequency of its recurrence in relation to any proposed development of the site, and the status of any flood prevention measures in place, you are advised to contact the local office of the Environment Agency (England and Wales) at [www.environment-agency.gov.uk/](http://www.environment-agency.gov.uk/) or the Scottish Environment Protection Agency (Scotland) at [www.sepa.org.uk.](http://www.sepa.org.uk/)

## Artificial ground

Artificial ground comprises deposits and excavations that have been created or modified by human activity. It includes ground that is worked (quarries and road cuttings), infilled (back-filled quarries), landscaped (surface re-shaping), disturbed (near surface mineral workings) or classified as made ground (embankments and spoil heaps). The composition and properties of artificial ground are often unknown. In particular, the permeability and chemical composition of the artificial ground should be determined to ensure that the ground will drain and that any contaminants present will not be remobilised.

## Superficial permeability

Superficial deposits are those geological deposits that were formed during the most recent period of geological time (as old as 2.6 million years before present). They generally comprise relatively thin deposits of gravel, sand, silt and clay and are present beneath the pedological soil in patches or larger spreads over much of Britain. The ease with which water can percolate through these deposits is controlled by their permeability and varies widely depending on their composition. Those deposits comprising clays and silts are less permeable and thus infiltration is likely to be slow, such that water may pool on the surface. In comparison, deposits comprising sands and gravels are more permeable allowing water to percolate freely.

## Bedrock permeability

Bedrock forms the main mass of rock forming the Earth. It is present everywhere, commonly beneath superficial deposits. Where the superficial deposits are thin or absent, the ease with which water will percolate into the ground depends on the permeability of the bedrock.

## Natural ground instability

Natural ground instability refers to the propensity for upward, lateral or downward movement of the ground that can be caused by a number of natural geological hazards (e.g. ground dissolution/compressible ground). Some movements associated with particular hazards may be gradual and of millimetre or centimetre scale, whilst others may be sudden and of metre or tens of metres scale. Significant natural ground instability has the potential to cause damage to buildings and structures, especially when the drainage characteristics of a site are altered. It should be noted, however, that many buildings, particularly more modern ones, are built to such a standard that they can remain unaffected in areas of significant ground movement.

## Shrink-swell

A shrinking and swelling clay changes volume significantly according to how much water it contains. All clay deposits change volume as their water content varies, typically swelling in winter and shrinking in summer, but some do so to a greater extent than others. Contributory circumstances could include drought, leaking service pipes, tree roots drying-out the ground or changes to local drainage patterns, such as the creation of soakaways. Shrinkage may remove support from the foundations of buildings and structures, whereas clay expansion may lead to uplift (heave) or lateral stress on part or all of a structure; any such movements may cause cracking and distortion.

## Landslides (slope stability)

A landslide is a relatively rapid outward and downward movement of a mass of ground on a slope, due to the force of gravity. A slope is under stress from gravity but will not move if its strength is greater than this stress. If the balance is altered so that the stress exceeds the strength, then movement will occur. The stability of a slope can be reduced by removing ground at the base of the slope, by placing material on the slope, especially at the top, or by increasing the water content of the materials forming the slope. Increase in subsurface water content beneath a soakaway could increase susceptibility to landslide hazards. The assessment of landslide hazard refers to the stability of the present land surface. It does not encompass a consideration of the stability of excavations.

## Soluble rocks (dissolution)

Some rocks are soluble in water and can be progressively removed by the flow of water through the ground. This process tends to create cavities, potentially leading to the collapse of overlying materials and possibly subsidence at the surface. The release of water into the subsurface from infiltration systems may increase the dissolution of rock or destabilise material above or within a cavity. Dissolution cavities may create a pathway for rapid transport of contaminated water to an aquifer or water course.

## Compressible ground

Many ground materials contain water-filled pores (the spaces between solid particles). Ground is compressible if a building (or other load) can cause the water in the pore space to be squeezed out, causing the ground to decrease in thickness. If ground is extremely compressible the building may sink. If the ground is not uniformly compressible, different parts of the building may sink by different amounts, possibly causing tilting, cracking or distortion. The compressibility of the ground may alter as a result of changes in subsurface water content caused by the release of water from soakaways.

## Collapsible deposits

Collapsible ground comprises certain fine-grained materials with large pore spaces (the spaces between solid particles). It can collapse when it becomes saturated by water and/or a building (or other structure) places too great a load on it. If the material below a building collapses it may cause the building to sink. If the collapsible ground is variable in thickness or distribution, different parts of the building may sink by different amounts, possibly causing tilting, cracking or distortion. The subsurface underlying a soakaway will experience an increase in water content that may affect the stability of the ground. This hazard is most likely to be encountered only in parts of southern England.

## Running sand

Running sand conditions occur when loosely-packed sand, saturated with water, flows into an excavation, borehole or other type of void. The pressure of the water filling the spaces between the sand grains reduces the contact between the grains and they are carried along by the flow. This can lead to subsidence of the surrounding ground. Running sand is potentially hazardous during the drainage system installation. During installation, excavation of the ground may create a space into which sand can flow, potentially causing subsidence of surrounding ground.

## Shallow mining hazards (non coal)

Current or past underground mining for coal or for other commodities can give rise to cavities at shallow or intermediate depths, which may cause fracturing, general settlement, or the formation of crown-holes in the ground above. Spoil from mineral workings may also present a pollution hazard. The release of water into the subsurface from soakaways may destabilise material above or within a cavity. Cavities arising as a consequence of mining may also create a pathway for rapid transport of contaminated water to an aquifer or watercourse. The mining hazards map is derived from the geological map and considers the potential for subsidence associated with mining on the basis of geology type. Therefore if mining is known to occur within a certain rock, the map will highlight the potential for a hazard within the area covered by that geology.

For more information regarding underground and opencast **coal mining**, the location of mine entries (shafts and adits) and matters relating to subsidence or other ground movement induced by **coal mining** please contact the Coal Authority, Mining Reports, 200 Lichfield Lane, Mansfield, Nottinghamshire, NG18 4RG; telephone 0845 762 6848 or at [www.coal.gov.uk](http://www.coal.gov.uk). For more information regarding other types of mining (i.e. non-coal), please contact the British Geological Survey.

### **Groundwater source protection zones**

In England and Wales, the Environment Agency has defined areas around wells, boreholes and springs that are used for the abstraction of public drinking water as source protection zones. In conjunction with Groundwater Protection Policy the zones are used to restrict activities that may impact groundwater quality, thereby preventing pollution of underlying aquifers, such that drinking water quality is upheld. The Environment Agency can provide advice on the location and implications of source protection zones in your area ([www.environment-agency.gov.uk/](http://www.environment-agency.gov.uk/))

## Contact Details

### ***Keyworth Office***

British Geological Survey  
Environmental Science Centre  
Nicker Hill  
Keyworth  
Nottingham  
NG12 5GG  
Tel: 0115 9363100  
Email: [enquiries@bgs.ac.uk](mailto:enquiries@bgs.ac.uk)

### ***Wallingford Office***

British Geological Survey  
Maclean Building  
Wallingford  
Oxford  
OX10 8BB  
Email: [enquiries@bgs.ac.uk](mailto:enquiries@bgs.ac.uk)

### ***Edinburgh Office***

British Geological Survey  
Lyell Centre  
Research Avenue South  
Edinburgh  
EH14 4AP  
Tel: 0131 6671000  
Email: [enquiry@bgs.ac.uk](mailto:enquiry@bgs.ac.uk)

## Terms and Conditions

### **General Terms & Conditions**

This Report is supplied in accordance with the GeoReports Terms & Conditions available on the BGS website at <https://shop.bgs.ac.uk/georeports> and also available from the BGS Enquiry Service at the above address.

### **Important notes about this Report**

- The data, information and related records supplied in this Report by BGS can only be indicative and should not be taken as a substitute for specialist interpretations, professional advice and/or detailed site investigations. You must seek professional advice before making technical interpretations on the basis of the materials provided.
- Geological observations and interpretations are made according to the prevailing understanding of the subject at the time. The quality of such observations and interpretations may be affected by the availability of new data, by subsequent advances in knowledge, improved methods of interpretation, and better access to sampling locations.
- Raw data may have been transcribed from analogue to digital format, or may have been acquired by means of automated measuring techniques. Although such processes are subjected to quality control to ensure reliability where possible, some raw data may have been processed without human intervention and may in consequence contain undetected errors.
- Detail, which is clearly defined and accurately depicted on large-scale maps, may be lost when small-scale maps are derived from them.
- Although samples and records are maintained with all reasonable care, there may be some deterioration in the long term.
- The most appropriate techniques for copying original records are used, but there may be some loss of detail and dimensional distortion when such records are copied.
- Data may be compiled from the disparate sources of information at BGS's disposal, including material donated to BGS by third parties, and may not originally have been subject to any verification or other quality control process.
- Data, information and related records, which have been donated to BGS, have been produced for a specific purpose, and that may affect the type and completeness of the data recorded and any interpretation. The nature and purpose of data collection, and the age of the resultant material may render it unsuitable for certain applications/uses. You must verify the suitability of the material for your intended usage.
- If a report or other output is produced for you on the basis of data you have provided to BGS, or your own data input into a BGS system, please do not rely on it as a source of information about other areas or geological features, as the report may omit important details.
- The topography shown on any map extracts is based on the latest OS mapping and is not necessarily the same as that used in the original compilation of the BGS geological map, and to which the geological linework available at that time was fitted.
- Note that for some sites, the latest available records may be historical in nature, and while every effort is made to place the analysis in a modern geological context, it is possible in some cases that the detailed geology at a site may differ from that described.

### **Copyright:**

Copyright in materials derived from the British Geological Survey's work, is owned by UK Research and Innovation (UKRI) and/ or the authority that commissioned the work. You may not copy or adapt this publication, or provide it to a third party, without first obtaining UKRI's permission, but if you are a consultant purchasing this report solely for the purpose of providing advice to your own individual client you may incorporate it unaltered into your report to that client without further permission, provided you give a full acknowledgement of the source. Please contact the BGS Copyright Manager, British Geological Survey, Environmental Science Centre, Nicker Hill, Keyworth, Nottingham NG12 5GG. Telephone: 0115 936 3100.

© UKRI 2025 All rights reserved.

**This product includes mapping data licensed from the Ordnance Survey® with the permission of the Controller of Her Majesty's Stationery Office. © Crown Copyright 2025. All rights reserved. Licence number AC0000824781 EUL**



**Report issued by  
BGS Enquiry Service**

# **Appendix I Rainfall Runoff Summary**

|                          |                       |
|--------------------------|-----------------------|
| Easy Flood Risk          | Page 1                |
| 55 Shepherds Lane        |                       |
| Dartford                 |                       |
| DA1 2NL                  |                       |
| Date 14/02/2025 08:28    | Designed by sheph     |
| File Blackhorseyard.SRCX | Checked by            |
| Innovyze                 | Source Control 2020.1 |



Summary of Results for 1 year Return Period

| Storm Event      | Max Level | Max Depth | Max Control | Max Overflow | Max Σ | Max Outflow | Max Volume | Status |
|------------------|-----------|-----------|-------------|--------------|-------|-------------|------------|--------|
|                  | (m)       | (m)       | (1/s)       | (1/s)        | (1/s) | (1/s)       | (m³)       |        |
| 15 min Summer    | 37.445    | 0.045     | 0.3         | 0.0          | 0.3   | 1.1         | 0          | K      |
| 30 min Summer    | 37.453    | 0.053     | 0.3         | 0.0          | 0.3   | 1.3         | 0          | K      |
| 60 min Summer    | 37.458    | 0.058     | 0.4         | 0.0          | 0.4   | 1.4         | 0          | K      |
| 120 min Summer   | 37.460    | 0.060     | 0.4         | 0.0          | 0.4   | 1.4         | 0          | K      |
| 180 min Summer   | 37.458    | 0.058     | 0.4         | 0.0          | 0.4   | 1.4         | 0          | K      |
| 240 min Summer   | 37.455    | 0.055     | 0.3         | 0.0          | 0.3   | 1.3         | 0          | K      |
| 360 min Summer   | 37.450    | 0.050     | 0.3         | 0.0          | 0.3   | 1.2         | 0          | K      |
| 480 min Summer   | 37.445    | 0.045     | 0.3         | 0.0          | 0.3   | 1.1         | 0          | K      |
| 600 min Summer   | 37.441    | 0.041     | 0.3         | 0.0          | 0.3   | 1.0         | 0          | K      |
| 720 min Summer   | 37.438    | 0.038     | 0.3         | 0.0          | 0.3   | 0.9         | 0          | K      |
| 960 min Summer   | 37.433    | 0.033     | 0.2         | 0.0          | 0.2   | 0.8         | 0          | K      |
| 1440 min Summer  | 37.428    | 0.028     | 0.2         | 0.0          | 0.2   | 0.7         | 0          | K      |
| 2160 min Summer  | 37.423    | 0.023     | 0.1         | 0.0          | 0.1   | 0.6         | 0          | K      |
| 2880 min Summer  | 37.421    | 0.021     | 0.1         | 0.0          | 0.1   | 0.5         | 0          | K      |
| 4320 min Summer  | 37.417    | 0.017     | 0.1         | 0.0          | 0.1   | 0.4         | 0          | K      |
| 5760 min Summer  | 37.415    | 0.015     | 0.1         | 0.0          | 0.1   | 0.4         | 0          | K      |
| 7200 min Summer  | 37.414    | 0.014     | 0.1         | 0.0          | 0.1   | 0.3         | 0          | K      |
| 8640 min Summer  | 37.413    | 0.013     | 0.1         | 0.0          | 0.1   | 0.3         | 0          | K      |
| 10080 min Summer | 37.412    | 0.012     | 0.0         | 0.0          | 0.0   | 0.3         | 0          | K      |

| Storm Event      | Rain (mm/hr) | Flooded Volume (m³) | Discharge Volume (m³) | Overflow Volume (m³) | Time-Peak (mins) |
|------------------|--------------|---------------------|-----------------------|----------------------|------------------|
|                  |              | (m³)                | (m³)                  | (m³)                 |                  |
| 15 min Summer    | 32.979       | 0.0                 | 1.2                   | 0.0                  | 17               |
| 30 min Summer    | 21.307       | 0.0                 | 1.6                   | 0.0                  | 29               |
| 60 min Summer    | 13.306       | 0.0                 | 2.0                   | 0.0                  | 44               |
| 120 min Summer   | 8.133        | 0.0                 | 2.4                   | 0.0                  | 78               |
| 180 min Summer   | 6.066        | 0.0                 | 2.7                   | 0.0                  | 112              |
| 240 min Summer   | 4.920        | 0.0                 | 2.9                   | 0.0                  | 144              |
| 360 min Summer   | 3.639        | 0.0                 | 3.3                   | 0.0                  | 208              |
| 480 min Summer   | 2.931        | 0.0                 | 3.5                   | 0.0                  | 270              |
| 600 min Summer   | 2.478        | 0.0                 | 3.7                   | 0.0                  | 332              |
| 720 min Summer   | 2.160        | 0.0                 | 3.9                   | 0.0                  | 390              |
| 960 min Summer   | 1.739        | 0.0                 | 4.2                   | 0.0                  | 510              |
| 1440 min Summer  | 1.282        | 0.0                 | 4.6                   | 0.0                  | 750              |
| 2160 min Summer  | 0.945        | 0.0                 | 5.1                   | 0.0                  | 1104             |
| 2880 min Summer  | 0.761        | 0.0                 | 5.5                   | 0.0                  | 1468             |
| 4320 min Summer  | 0.561        | 0.0                 | 6.0                   | 0.0                  | 2204             |
| 5760 min Summer  | 0.451        | 0.0                 | 6.5                   | 0.0                  | 2944             |
| 7200 min Summer  | 0.382        | 0.0                 | 6.9                   | 0.0                  | 3616             |
| 8640 min Summer  | 0.333        | 0.0                 | 7.2                   | 0.0                  | 4368             |
| 10080 min Summer | 0.296        | 0.0                 | 7.5                   | 0.0                  | 5136             |

|                          |                       |
|--------------------------|-----------------------|
| Easy Flood Risk          | Page 2                |
| 55 Shepherds Lane        |                       |
| Dartford                 |                       |
| DA1 2NL                  |                       |
| Date 14/02/2025 08:28    | Designed by sheph     |
| File Blackhorseyard.SRCX | Checked by            |
| Innovyze                 | Source Control 2020.1 |



Summary of Results for 1 year Return Period

| Storm Event          | Max Level     | Max Depth    | Max Control | Max Overflow | Max Σ      | Max Outflow | Max Volume | Status   |
|----------------------|---------------|--------------|-------------|--------------|------------|-------------|------------|----------|
|                      | (m)           | (m)          | (1/s)       | (1/s)        | (1/s)      | (1/s)       | (m³)       |          |
| 15 min Winter        | 37.451        | 0.051        | 0.3         | 0.0          | 0.3        | 1.2         | 0          | K        |
| 30 min Winter        | 37.460        | 0.060        | 0.4         | 0.0          | 0.4        | 1.4         | 0          | K        |
| <b>60 min Winter</b> | <b>37.465</b> | <b>0.065</b> | <b>0.4</b>  | <b>0.0</b>   | <b>0.4</b> | <b>1.6</b>  | <b>0</b>   | <b>K</b> |
| 120 min Winter       | 37.464        | 0.064        | 0.4         | 0.0          | 0.4        | 1.5         | 0          | K        |
| 180 min Winter       | 37.460        | 0.060        | 0.4         | 0.0          | 0.4        | 1.4         | 0          | K        |
| 240 min Winter       | 37.456        | 0.056        | 0.4         | 0.0          | 0.4        | 1.3         | 0          | K        |
| 360 min Winter       | 37.448        | 0.048        | 0.3         | 0.0          | 0.3        | 1.1         | 0          | K        |
| 480 min Winter       | 37.441        | 0.041        | 0.3         | 0.0          | 0.3        | 1.0         | 0          | K        |
| 600 min Winter       | 37.437        | 0.037        | 0.3         | 0.0          | 0.3        | 0.9         | 0          | K        |
| 720 min Winter       | 37.433        | 0.033        | 0.2         | 0.0          | 0.2        | 0.8         | 0          | K        |
| 960 min Winter       | 37.429        | 0.029        | 0.2         | 0.0          | 0.2        | 0.7         | 0          | K        |
| 1440 min Winter      | 37.424        | 0.024        | 0.1         | 0.0          | 0.1        | 0.6         | 0          | K        |
| 2160 min Winter      | 37.420        | 0.020        | 0.1         | 0.0          | 0.1        | 0.5         | 0          | K        |
| 2880 min Winter      | 37.417        | 0.017        | 0.1         | 0.0          | 0.1        | 0.4         | 0          | K        |
| 4320 min Winter      | 37.415        | 0.015        | 0.1         | 0.0          | 0.1        | 0.3         | 0          | K        |
| 5760 min Winter      | 37.413        | 0.013        | 0.1         | 0.0          | 0.1        | 0.3         | 0          | K        |
| 7200 min Winter      | 37.412        | 0.012        | 0.0         | 0.0          | 0.0        | 0.3         | 0          | K        |
| 8640 min Winter      | 37.411        | 0.011        | 0.0         | 0.0          | 0.0        | 0.3         | 0          | K        |
| 10080 min Winter     | 37.410        | 0.010        | 0.0         | 0.0          | 0.0        | 0.3         | 0          | K        |

| Storm Event          | Rain (mm/hr)  | Flooded Volume (m³) | Discharge Volume (m³) | Overflow Volume (m³) | Time-Peak (mins) |
|----------------------|---------------|---------------------|-----------------------|----------------------|------------------|
|                      |               | (m³)                | (m³)                  | (m³)                 |                  |
| 15 min Winter        | 32.979        | 0.0                 | 1.4                   | 0.0                  | 17               |
| 30 min Winter        | 21.307        | 0.0                 | 1.8                   | 0.0                  | 30               |
| <b>60 min Winter</b> | <b>13.306</b> | <b>0.0</b>          | <b>2.2</b>            | <b>0.0</b>           | <b>48</b>        |
| 120 min Winter       | 8.133         | 0.0                 | 2.7                   | 0.0                  | 84               |
| 180 min Winter       | 6.066         | 0.0                 | 3.0                   | 0.0                  | 120              |
| 240 min Winter       | 4.920         | 0.0                 | 3.3                   | 0.0                  | 154              |
| 360 min Winter       | 3.639         | 0.0                 | 3.7                   | 0.0                  | 218              |
| 480 min Winter       | 2.931         | 0.0                 | 3.9                   | 0.0                  | 280              |
| 600 min Winter       | 2.478         | 0.0                 | 4.2                   | 0.0                  | 340              |
| 720 min Winter       | 2.160         | 0.0                 | 4.3                   | 0.0                  | 400              |
| 960 min Winter       | 1.739         | 0.0                 | 4.7                   | 0.0                  | 514              |
| 1440 min Winter      | 1.282         | 0.0                 | 5.2                   | 0.0                  | 764              |
| 2160 min Winter      | 0.945         | 0.0                 | 5.7                   | 0.0                  | 1100             |
| 2880 min Winter      | 0.761         | 0.0                 | 6.1                   | 0.0                  | 1496             |
| 4320 min Winter      | 0.561         | 0.0                 | 6.8                   | 0.0                  | 2140             |
| 5760 min Winter      | 0.451         | 0.0                 | 7.3                   | 0.0                  | 2920             |
| 7200 min Winter      | 0.382         | 0.0                 | 7.7                   | 0.0                  | 3744             |
| 8640 min Winter      | 0.333         | 0.0                 | 8.0                   | 0.0                  | 4424             |
| 10080 min Winter     | 0.296         | 0.0                 | 8.4                   | 0.0                  | 5240             |

|                          |                       |
|--------------------------|-----------------------|
| Easy Flood Risk          | Page 1                |
| 55 Shepherds Lane        |                       |
| Dartford                 |                       |
| DA1 2NL                  |                       |
| Date 14/02/2025 08:28    | Designed by sheph     |
| File Blackhorseyard.SRCX | Checked by            |
| Innovyze                 | Source Control 2020.1 |



Summary of Results for 2 year Return Period

| Storm Event      | Max Level | Max Depth | Max Control | Max Overflow | Max Σ | Max Outflow | Max Volume | Status |
|------------------|-----------|-----------|-------------|--------------|-------|-------------|------------|--------|
|                  | (m)       | (m)       | (1/s)       | (1/s)        | (1/s) | (1/s)       | (m³)       |        |
| 15 min Summer    | 37.459    | 0.059     | 0.4         | 0.0          | 0.4   | 1.4         | 0.4        | O K    |
| 30 min Summer    | 37.469    | 0.069     | 0.4         | 0.0          | 0.4   | 1.7         | 0.4        | O K    |
| 60 min Summer    | 37.475    | 0.075     | 0.4         | 0.0          | 0.4   | 1.8         | 0.4        | O K    |
| 120 min Summer   | 37.476    | 0.076     | 0.4         | 0.0          | 0.4   | 1.8         | 0.4        | O K    |
| 180 min Summer   | 37.473    | 0.073     | 0.4         | 0.0          | 0.4   | 1.8         | 0.4        | O K    |
| 240 min Summer   | 37.469    | 0.069     | 0.4         | 0.0          | 0.4   | 1.7         | 0.4        | O K    |
| 360 min Summer   | 37.461    | 0.061     | 0.4         | 0.0          | 0.4   | 1.5         | 0.4        | O K    |
| 480 min Summer   | 37.454    | 0.054     | 0.3         | 0.0          | 0.3   | 1.3         | 0.3        | O K    |
| 600 min Summer   | 37.449    | 0.049     | 0.3         | 0.0          | 0.3   | 1.2         | 0.3        | O K    |
| 720 min Summer   | 37.445    | 0.045     | 0.3         | 0.0          | 0.3   | 1.1         | 0.3        | O K    |
| 960 min Summer   | 37.439    | 0.039     | 0.3         | 0.0          | 0.3   | 0.9         | 0.3        | O K    |
| 1440 min Summer  | 37.432    | 0.032     | 0.2         | 0.0          | 0.2   | 0.8         | 0.2        | O K    |
| 2160 min Summer  | 37.426    | 0.026     | 0.2         | 0.0          | 0.2   | 0.6         | 0.2        | O K    |
| 2880 min Summer  | 37.423    | 0.023     | 0.1         | 0.0          | 0.1   | 0.5         | 0.1        | O K    |
| 4320 min Summer  | 37.419    | 0.019     | 0.1         | 0.0          | 0.1   | 0.5         | 0.1        | O K    |
| 5760 min Summer  | 37.417    | 0.017     | 0.1         | 0.0          | 0.1   | 0.4         | 0.1        | O K    |
| 7200 min Summer  | 37.415    | 0.015     | 0.1         | 0.0          | 0.1   | 0.4         | 0.1        | O K    |
| 8640 min Summer  | 37.414    | 0.014     | 0.1         | 0.0          | 0.1   | 0.3         | 0.1        | O K    |
| 10080 min Summer | 37.413    | 0.013     | 0.1         | 0.0          | 0.1   | 0.3         | 0.1        | O K    |

| Storm Event      | Rain (mm/hr) | Flooded Volume (m³) | Discharge Volume (m³) | Overflow Volume (m³) | Time-Peak (mins) |
|------------------|--------------|---------------------|-----------------------|----------------------|------------------|
|                  |              | (m³)                | (m³)                  | (m³)                 |                  |
| 15 min Summer    | 42.605       | 0.0                 | 1.6                   | 0.0                  | 17               |
| 30 min Summer    | 27.281       | 0.0                 | 2.0                   | 0.0                  | 30               |
| 60 min Summer    | 16.796       | 0.0                 | 2.5                   | 0.0                  | 46               |
| 120 min Summer   | 10.115       | 0.0                 | 3.0                   | 0.0                  | 80               |
| 180 min Summer   | 7.477        | 0.0                 | 3.4                   | 0.0                  | 114              |
| 240 min Summer   | 6.024        | 0.0                 | 3.6                   | 0.0                  | 148              |
| 360 min Summer   | 4.427        | 0.0                 | 4.0                   | 0.0                  | 210              |
| 480 min Summer   | 3.552        | 0.0                 | 4.3                   | 0.0                  | 272              |
| 600 min Summer   | 2.994        | 0.0                 | 4.5                   | 0.0                  | 332              |
| 720 min Summer   | 2.603        | 0.0                 | 4.7                   | 0.0                  | 392              |
| 960 min Summer   | 2.088        | 0.0                 | 5.0                   | 0.0                  | 512              |
| 1440 min Summer  | 1.529        | 0.0                 | 5.5                   | 0.0                  | 752              |
| 2160 min Summer  | 1.120        | 0.0                 | 6.0                   | 0.0                  | 1108             |
| 2880 min Summer  | 0.898        | 0.0                 | 6.5                   | 0.0                  | 1472             |
| 4320 min Summer  | 0.657        | 0.0                 | 7.1                   | 0.0                  | 2200             |
| 5760 min Summer  | 0.527        | 0.0                 | 7.6                   | 0.0                  | 2936             |
| 7200 min Summer  | 0.444        | 0.0                 | 8.0                   | 0.0                  | 3672             |
| 8640 min Summer  | 0.386        | 0.0                 | 8.3                   | 0.0                  | 4304             |
| 10080 min Summer | 0.343        | 0.0                 | 8.6                   | 0.0                  | 5136             |

|                          |                       |
|--------------------------|-----------------------|
| Easy Flood Risk          | Page 2                |
| 55 Shepherds Lane        |                       |
| Dartford                 |                       |
| DA1 2NL                  |                       |
| Date 14/02/2025 08:28    | Designed by sheph     |
| File Blackhorseyard.SRCX | Checked by            |
| Innovyze                 | Source Control 2020.1 |



Summary of Results for 2 year Return Period

| Storm Event          | Max Level     | Max Depth    | Max Control | Max Overflow | Max Σ      | Max Outflow | Max Volume | Status   |
|----------------------|---------------|--------------|-------------|--------------|------------|-------------|------------|----------|
|                      | (m)           | (m)          | (1/s)       | (1/s)        | (1/s)      | (1/s)       | (m³)       |          |
| 15 min Winter        | 37.466        | 0.066        | 0.4         | 0.0          | 0.4        | 1.6         | 0          | K        |
| 30 min Winter        | 37.479        | 0.079        | 0.4         | 0.0          | 0.4        | 1.9         | 0          | K        |
| <b>60 min Winter</b> | <b>37.484</b> | <b>0.084</b> | <b>0.4</b>  | <b>0.0</b>   | <b>0.4</b> | <b>2.0</b>  | <b>0</b>   | <b>K</b> |
| 120 min Winter       | 37.483        | 0.083        | 0.4         | 0.0          | 0.4        | 2.0         | 0          | K        |
| 180 min Winter       | 37.477        | 0.077        | 0.4         | 0.0          | 0.4        | 1.9         | 0          | K        |
| 240 min Winter       | 37.470        | 0.070        | 0.4         | 0.0          | 0.4        | 1.7         | 0          | K        |
| 360 min Winter       | 37.459        | 0.059        | 0.4         | 0.0          | 0.4        | 1.4         | 0          | K        |
| 480 min Winter       | 37.451        | 0.051        | 0.3         | 0.0          | 0.3        | 1.2         | 0          | K        |
| 600 min Winter       | 37.444        | 0.044        | 0.3         | 0.0          | 0.3        | 1.1         | 0          | K        |
| 720 min Winter       | 37.440        | 0.040        | 0.3         | 0.0          | 0.3        | 1.0         | 0          | K        |
| 960 min Winter       | 37.433        | 0.033        | 0.2         | 0.0          | 0.2        | 0.8         | 0          | K        |
| 1440 min Winter      | 37.427        | 0.027        | 0.2         | 0.0          | 0.2        | 0.6         | 0          | K        |
| 2160 min Winter      | 37.422        | 0.022        | 0.1         | 0.0          | 0.1        | 0.5         | 0          | K        |
| 2880 min Winter      | 37.419        | 0.019        | 0.1         | 0.0          | 0.1        | 0.5         | 0          | K        |
| 4320 min Winter      | 37.416        | 0.016        | 0.1         | 0.0          | 0.1        | 0.4         | 0          | K        |
| 5760 min Winter      | 37.414        | 0.014        | 0.1         | 0.0          | 0.1        | 0.3         | 0          | K        |
| 7200 min Winter      | 37.413        | 0.013        | 0.1         | 0.0          | 0.1        | 0.3         | 0          | K        |
| 8640 min Winter      | 37.412        | 0.012        | 0.0         | 0.0          | 0.0        | 0.3         | 0          | K        |
| 10080 min Winter     | 37.411        | 0.011        | 0.0         | 0.0          | 0.0        | 0.3         | 0          | K        |

| Storm Event          | Rain (mm/hr)  | Flooded Volume (m³) | Discharge Volume (m³) | Overflow Volume (m³) | Time-Peak (mins) |
|----------------------|---------------|---------------------|-----------------------|----------------------|------------------|
|                      |               | (m³)                | (m³)                  | (m³)                 |                  |
| 15 min Winter        | 42.605        | 0.0                 | 1.8                   | 0.0                  | 17               |
| 30 min Winter        | 27.281        | 0.0                 | 2.3                   | 0.0                  | 30               |
| <b>60 min Winter</b> | <b>16.796</b> | <b>0.0</b>          | <b>2.8</b>            | <b>0.0</b>           | <b>50</b>        |
| 120 min Winter       | 10.115        | 0.0                 | 3.4                   | 0.0                  | 88               |
| 180 min Winter       | 7.477         | 0.0                 | 3.8                   | 0.0                  | 124              |
| 240 min Winter       | 6.024         | 0.0                 | 4.0                   | 0.0                  | 158              |
| 360 min Winter       | 4.427         | 0.0                 | 4.5                   | 0.0                  | 220              |
| 480 min Winter       | 3.552         | 0.0                 | 4.8                   | 0.0                  | 282              |
| 600 min Winter       | 2.994         | 0.0                 | 5.0                   | 0.0                  | 344              |
| 720 min Winter       | 2.603         | 0.0                 | 5.2                   | 0.0                  | 404              |
| 960 min Winter       | 2.088         | 0.0                 | 5.6                   | 0.0                  | 522              |
| 1440 min Winter      | 1.529         | 0.0                 | 6.1                   | 0.0                  | 762              |
| 2160 min Winter      | 1.120         | 0.0                 | 6.8                   | 0.0                  | 1124             |
| 2880 min Winter      | 0.898         | 0.0                 | 7.2                   | 0.0                  | 1464             |
| 4320 min Winter      | 0.657         | 0.0                 | 7.9                   | 0.0                  | 2228             |
| 5760 min Winter      | 0.527         | 0.0                 | 8.5                   | 0.0                  | 2848             |
| 7200 min Winter      | 0.444         | 0.0                 | 8.9                   | 0.0                  | 3744             |
| 8640 min Winter      | 0.386         | 0.0                 | 9.3                   | 0.0                  | 4384             |
| 10080 min Winter     | 0.343         | 0.0                 | 9.7                   | 0.0                  | 5096             |

|                          |                       |
|--------------------------|-----------------------|
| Easy Flood Risk          | Page 1                |
| 55 Shepherds Lane        |                       |
| Dartford                 |                       |
| DA1 2NL                  |                       |
| Date 14/02/2025 08:27    | Designed by sheph     |
| File Blackhorseyard.SRCX | Checked by            |
| Innovyze                 | Source Control 2020.1 |



Summary of Results for 5 year Return Period

| Storm Event      | Max Level | Max Depth | Max Control | Max Overflow | Max Σ | Max Outflow | Max Volume | Status |
|------------------|-----------|-----------|-------------|--------------|-------|-------------|------------|--------|
|                  | (m)       | (m)       | (1/s)       | (1/s)        | (1/s) | (1/s)       | (m³)       |        |
| 15 min Summer    | 37.476    | 0.076     | 0.4         | 0.0          | 0.4   | 1.8         | 0          | K      |
| 30 min Summer    | 37.491    | 0.091     | 0.4         | 0.0          | 0.4   | 2.2         | 0          | K      |
| 60 min Summer    | 37.498    | 0.098     | 0.4         | 0.0          | 0.4   | 2.3         | 0          | K      |
| 120 min Summer   | 37.499    | 0.099     | 0.4         | 0.0          | 0.4   | 2.4         | 0          | K      |
| 180 min Summer   | 37.495    | 0.095     | 0.4         | 0.0          | 0.4   | 2.3         | 0          | K      |
| 240 min Summer   | 37.489    | 0.089     | 0.4         | 0.0          | 0.4   | 2.1         | 0          | K      |
| 360 min Summer   | 37.479    | 0.079     | 0.4         | 0.0          | 0.4   | 1.9         | 0          | K      |
| 480 min Summer   | 37.469    | 0.069     | 0.4         | 0.0          | 0.4   | 1.7         | 0          | K      |
| 600 min Summer   | 37.461    | 0.061     | 0.4         | 0.0          | 0.4   | 1.5         | 0          | K      |
| 720 min Summer   | 37.456    | 0.056     | 0.4         | 0.0          | 0.4   | 1.3         | 0          | K      |
| 960 min Summer   | 37.448    | 0.048     | 0.3         | 0.0          | 0.3   | 1.1         | 0          | K      |
| 1440 min Summer  | 37.438    | 0.038     | 0.3         | 0.0          | 0.3   | 0.9         | 0          | K      |
| 2160 min Summer  | 37.430    | 0.030     | 0.2         | 0.0          | 0.2   | 0.7         | 0          | K      |
| 2880 min Summer  | 37.426    | 0.026     | 0.2         | 0.0          | 0.2   | 0.6         | 0          | K      |
| 4320 min Summer  | 37.421    | 0.021     | 0.1         | 0.0          | 0.1   | 0.5         | 0          | K      |
| 5760 min Summer  | 37.419    | 0.019     | 0.1         | 0.0          | 0.1   | 0.4         | 0          | K      |
| 7200 min Summer  | 37.417    | 0.017     | 0.1         | 0.0          | 0.1   | 0.4         | 0          | K      |
| 8640 min Summer  | 37.416    | 0.016     | 0.1         | 0.0          | 0.1   | 0.4         | 0          | K      |
| 10080 min Summer | 37.415    | 0.015     | 0.1         | 0.0          | 0.1   | 0.3         | 0          | K      |

| Storm Event      | Rain (mm/hr) | Flooded Volume (m³) | Discharge Volume (m³) | Overflow Volume (m³) | Time-Peak (mins) |
|------------------|--------------|---------------------|-----------------------|----------------------|------------------|
|                  |              | (m³)                | (m³)                  | (m³)                 |                  |
| 15 min Summer    | 54.767       | 0.0                 | 2.0                   | 0.0                  | 17               |
| 30 min Summer    | 34.779       | 0.0                 | 2.6                   | 0.0                  | 31               |
| 60 min Summer    | 21.222       | 0.0                 | 3.2                   | 0.0                  | 50               |
| 120 min Summer   | 12.655       | 0.0                 | 3.8                   | 0.0                  | 84               |
| 180 min Summer   | 9.294        | 0.0                 | 4.2                   | 0.0                  | 118              |
| 240 min Summer   | 7.451        | 0.0                 | 4.5                   | 0.0                  | 152              |
| 360 min Summer   | 5.448        | 0.0                 | 4.9                   | 0.0                  | 216              |
| 480 min Summer   | 4.359        | 0.0                 | 5.2                   | 0.0                  | 278              |
| 600 min Summer   | 3.666        | 0.0                 | 5.5                   | 0.0                  | 336              |
| 720 min Summer   | 3.181        | 0.0                 | 5.7                   | 0.0                  | 398              |
| 960 min Summer   | 2.542        | 0.0                 | 6.1                   | 0.0                  | 518              |
| 1440 min Summer  | 1.853        | 0.0                 | 6.7                   | 0.0                  | 752              |
| 2160 min Summer  | 1.350        | 0.0                 | 7.3                   | 0.0                  | 1108             |
| 2880 min Summer  | 1.078        | 0.0                 | 7.7                   | 0.0                  | 1472             |
| 4320 min Summer  | 0.785        | 0.0                 | 8.5                   | 0.0                  | 2204             |
| 5760 min Summer  | 0.627        | 0.0                 | 9.0                   | 0.0                  | 2936             |
| 7200 min Summer  | 0.526        | 0.0                 | 9.5                   | 0.0                  | 3656             |
| 8640 min Summer  | 0.456        | 0.0                 | 9.8                   | 0.0                  | 4376             |
| 10080 min Summer | 0.404        | 0.0                 | 10.2                  | 0.0                  | 5128             |

|                          |                       |
|--------------------------|-----------------------|
| Easy Flood Risk          | Page 2                |
| 55 Shepherds Lane        |                       |
| Dartford                 |                       |
| DA1 2NL                  |                       |
| Date 14/02/2025 08:27    | Designed by sheph     |
| File Blackhorseyard.SRCX | Checked by            |
| Innovyze                 | Source Control 2020.1 |



Summary of Results for 5 year Return Period

| Storm Event          | Max Level     | Max Depth    | Max Control | Max Overflow | Max Σ      | Max Outflow | Max Volume | Status   |
|----------------------|---------------|--------------|-------------|--------------|------------|-------------|------------|----------|
|                      | (m)           | (m)          | (1/s)       | (1/s)        | (1/s)      | (1/s)       | (m³)       |          |
| 15 min Winter        | 37.486        | 0.086        | 0.4         | 0.0          | 0.4        | 2.1         | 0          | K        |
| 30 min Winter        | 37.503        | 0.103        | 0.4         | 0.0          | 0.4        | 2.5         | 0          | K        |
| <b>60 min Winter</b> | <b>37.511</b> | <b>0.111</b> | <b>0.4</b>  | <b>0.0</b>   | <b>0.4</b> | <b>2.7</b>  | <b>0</b>   | <b>K</b> |
| 120 min Winter       | 37.510        | 0.110        | 0.4         | 0.0          | 0.4        | 2.6         | 0          | K        |
| 180 min Winter       | 37.503        | 0.103        | 0.4         | 0.0          | 0.4        | 2.5         | 0          | K        |
| 240 min Winter       | 37.494        | 0.094        | 0.4         | 0.0          | 0.4        | 2.3         | 0          | K        |
| 360 min Winter       | 37.477        | 0.077        | 0.4         | 0.0          | 0.4        | 1.9         | 0          | K        |
| 480 min Winter       | 37.464        | 0.064        | 0.4         | 0.0          | 0.4        | 1.5         | 0          | K        |
| 600 min Winter       | 37.456        | 0.056        | 0.4         | 0.0          | 0.4        | 1.3         | 0          | K        |
| 720 min Winter       | 37.449        | 0.049        | 0.3         | 0.0          | 0.3        | 1.2         | 0          | K        |
| 960 min Winter       | 37.440        | 0.040        | 0.3         | 0.0          | 0.3        | 1.0         | 0          | K        |
| 1440 min Winter      | 37.431        | 0.031        | 0.2         | 0.0          | 0.2        | 0.7         | 0          | K        |
| 2160 min Winter      | 37.425        | 0.025        | 0.2         | 0.0          | 0.2        | 0.6         | 0          | K        |
| 2880 min Winter      | 37.421        | 0.021        | 0.1         | 0.0          | 0.1        | 0.5         | 0          | K        |
| 4320 min Winter      | 37.418        | 0.018        | 0.1         | 0.0          | 0.1        | 0.4         | 0          | K        |
| 5760 min Winter      | 37.416        | 0.016        | 0.1         | 0.0          | 0.1        | 0.4         | 0          | K        |
| 7200 min Winter      | 37.414        | 0.014        | 0.1         | 0.0          | 0.1        | 0.3         | 0          | K        |
| 8640 min Winter      | 37.413        | 0.013        | 0.1         | 0.0          | 0.1        | 0.3         | 0          | K        |
| 10080 min Winter     | 37.412        | 0.012        | 0.0         | 0.0          | 0.0        | 0.3         | 0          | K        |

| Storm Event          | Rain (mm/hr)  | Flooded Volume (m³) | Discharge Volume (m³) | Overflow Volume (m³) | Time-Peak (mins) |
|----------------------|---------------|---------------------|-----------------------|----------------------|------------------|
|                      |               | (m³)                | (m³)                  | (m³)                 |                  |
| 15 min Winter        | 54.767        | 0.0                 | 2.3                   | 0.0                  | 17               |
| 30 min Winter        | 34.779        | 0.0                 | 2.9                   | 0.0                  | 31               |
| <b>60 min Winter</b> | <b>21.222</b> | <b>0.0</b>          | <b>3.6</b>            | <b>0.0</b>           | <b>58</b>        |
| 120 min Winter       | 12.655        | 0.0                 | 4.2                   | 0.0                  | 90               |
| 180 min Winter       | 9.294         | 0.0                 | 4.7                   | 0.0                  | 128              |
| 240 min Winter       | 7.451         | 0.0                 | 5.0                   | 0.0                  | 164              |
| 360 min Winter       | 5.448         | 0.0                 | 5.5                   | 0.0                  | 228              |
| 480 min Winter       | 4.359         | 0.0                 | 5.8                   | 0.0                  | 288              |
| 600 min Winter       | 3.666         | 0.0                 | 6.1                   | 0.0                  | 348              |
| 720 min Winter       | 3.181         | 0.0                 | 6.4                   | 0.0                  | 408              |
| 960 min Winter       | 2.542         | 0.0                 | 6.8                   | 0.0                  | 530              |
| 1440 min Winter      | 1.853         | 0.0                 | 7.5                   | 0.0                  | 764              |
| 2160 min Winter      | 1.350         | 0.0                 | 8.2                   | 0.0                  | 1104             |
| 2880 min Winter      | 1.078         | 0.0                 | 8.7                   | 0.0                  | 1496             |
| 4320 min Winter      | 0.785         | 0.0                 | 9.5                   | 0.0                  | 2132             |
| 5760 min Winter      | 0.627         | 0.0                 | 10.1                  | 0.0                  | 2936             |
| 7200 min Winter      | 0.526         | 0.0                 | 10.6                  | 0.0                  | 3592             |
| 8640 min Winter      | 0.456         | 0.0                 | 11.0                  | 0.0                  | 4280             |
| 10080 min Winter     | 0.404         | 0.0                 | 11.4                  | 0.0                  | 5000             |

|                          |                       |
|--------------------------|-----------------------|
| Easy Flood Risk          | Page 1                |
| 55 Shepherds Lane        |                       |
| Dartford                 |                       |
| DA1 2NL                  |                       |
| Date 14/02/2025 08:26    | Designed by sheph     |
| File Blackhorseyard.SRCX | Checked by            |
| Innovyze                 | Source Control 2020.1 |



Summary of Results for 10 year Return Period

| Storm Event      | Max Level | Max Depth | Max Control | Max Overflow | Max Σ | Max Outflow | Max Volume | Status |
|------------------|-----------|-----------|-------------|--------------|-------|-------------|------------|--------|
|                  | (m)       | (m)       | (1/s)       | (1/s)        | (1/s) | (1/s)       | (m³)       |        |
| 15 min Summer    | 37.490    | 0.090     | 0.4         | 0.0          | 0.4   | 2.2         | 0          | K      |
| 30 min Summer    | 37.508    | 0.108     | 0.4         | 0.0          | 0.4   | 2.6         | 0          | K      |
| 60 min Summer    | 37.518    | 0.118     | 0.4         | 0.0          | 0.4   | 2.8         | 0          | K      |
| 120 min Summer   | 37.519    | 0.119     | 0.4         | 0.0          | 0.4   | 2.9         | 0          | K      |
| 180 min Summer   | 37.515    | 0.115     | 0.4         | 0.0          | 0.4   | 2.8         | 0          | K      |
| 240 min Summer   | 37.509    | 0.109     | 0.4         | 0.0          | 0.4   | 2.6         | 0          | K      |
| 360 min Summer   | 37.496    | 0.096     | 0.4         | 0.0          | 0.4   | 2.3         | 0          | K      |
| 480 min Summer   | 37.484    | 0.084     | 0.4         | 0.0          | 0.4   | 2.0         | 0          | K      |
| 600 min Summer   | 37.475    | 0.075     | 0.4         | 0.0          | 0.4   | 1.8         | 0          | K      |
| 720 min Summer   | 37.467    | 0.067     | 0.4         | 0.0          | 0.4   | 1.6         | 0          | K      |
| 960 min Summer   | 37.456    | 0.056     | 0.4         | 0.0          | 0.4   | 1.3         | 0          | K      |
| 1440 min Summer  | 37.443    | 0.043     | 0.3         | 0.0          | 0.3   | 1.0         | 0          | K      |
| 2160 min Summer  | 37.434    | 0.034     | 0.2         | 0.0          | 0.2   | 0.8         | 0          | K      |
| 2880 min Summer  | 37.428    | 0.028     | 0.2         | 0.0          | 0.2   | 0.7         | 0          | K      |
| 4320 min Summer  | 37.423    | 0.023     | 0.1         | 0.0          | 0.1   | 0.6         | 0          | K      |
| 5760 min Summer  | 37.420    | 0.020     | 0.1         | 0.0          | 0.1   | 0.5         | 0          | K      |
| 7200 min Summer  | 37.418    | 0.018     | 0.1         | 0.0          | 0.1   | 0.4         | 0          | K      |
| 8640 min Summer  | 37.417    | 0.017     | 0.1         | 0.0          | 0.1   | 0.4         | 0          | K      |
| 10080 min Summer | 37.416    | 0.016     | 0.1         | 0.0          | 0.1   | 0.4         | 0          | K      |

| Storm Event | Rain (mm/hr) | Flooded Volume (m³) | Discharge Volume (m³) | Overflow Volume (m³) | Time-Peak (mins) |
|-------------|--------------|---------------------|-----------------------|----------------------|------------------|
|             |              |                     |                       |                      |                  |

|                  |        |     |      |     |      |
|------------------|--------|-----|------|-----|------|
| 15 min Summer    | 63.716 | 0.0 | 2.4  | 0.0 | 17   |
| 30 min Summer    | 40.640 | 0.0 | 3.0  | 0.0 | 31   |
| 60 min Summer    | 24.848 | 0.0 | 3.7  | 0.0 | 54   |
| 120 min Summer   | 14.806 | 0.0 | 4.4  | 0.0 | 86   |
| 180 min Summer   | 10.852 | 0.0 | 4.9  | 0.0 | 120  |
| 240 min Summer   | 8.681  | 0.0 | 5.2  | 0.0 | 154  |
| 360 min Summer   | 6.328  | 0.0 | 5.7  | 0.0 | 220  |
| 480 min Summer   | 5.052  | 0.0 | 6.1  | 0.0 | 284  |
| 600 min Summer   | 4.241  | 0.0 | 6.3  | 0.0 | 344  |
| 720 min Summer   | 3.675  | 0.0 | 6.6  | 0.0 | 402  |
| 960 min Summer   | 2.930  | 0.0 | 7.0  | 0.0 | 520  |
| 1440 min Summer  | 2.128  | 0.0 | 7.6  | 0.0 | 762  |
| 2160 min Summer  | 1.545  | 0.0 | 8.3  | 0.0 | 1120 |
| 2880 min Summer  | 1.230  | 0.0 | 8.8  | 0.0 | 1472 |
| 4320 min Summer  | 0.892  | 0.0 | 9.6  | 0.0 | 2204 |
| 5760 min Summer  | 0.710  | 0.0 | 10.2 | 0.0 | 2936 |
| 7200 min Summer  | 0.595  | 0.0 | 10.7 | 0.0 | 3648 |
| 8640 min Summer  | 0.514  | 0.0 | 11.1 | 0.0 | 4400 |
| 10080 min Summer | 0.455  | 0.0 | 11.5 | 0.0 | 5136 |

|                          |                       |
|--------------------------|-----------------------|
| Easy Flood Risk          | Page 2                |
| 55 Shepherds Lane        |                       |
| Dartford                 |                       |
| DA1 2NL                  |                       |
| Date 14/02/2025 08:26    | Designed by sheph     |
| File Blackhorseyard.SRCX | Checked by            |
| Innovyze                 | Source Control 2020.1 |



Summary of Results for 10 year Return Period

| Storm Event          | Max Level     | Max Depth    | Max Control | Max Overflow | Max Σ      | Max Outflow | Max Volume | Status   |
|----------------------|---------------|--------------|-------------|--------------|------------|-------------|------------|----------|
|                      | (m)           | (m)          | (1/s)       | (1/s)        | (1/s)      | (1/s)       | (m³)       |          |
| 15 min Winter        | 37.501        | 0.101        | 0.4         | 0.0          | 0.4        | 2.4         | 0          | K        |
| 30 min Winter        | 37.523        | 0.123        | 0.4         | 0.0          | 0.4        | 2.9         | 0          | K        |
| <b>60 min Winter</b> | <b>37.535</b> | <b>0.135</b> | <b>0.4</b>  | <b>0.0</b>   | <b>0.4</b> | <b>3.2</b>  | <b>0</b>   | <b>K</b> |
| 120 min Winter       | 37.534        | 0.134        | 0.4         | 0.0          | 0.4        | 3.2         | 0          | K        |
| 180 min Winter       | 37.527        | 0.127        | 0.4         | 0.0          | 0.4        | 3.0         | 0          | K        |
| 240 min Winter       | 37.517        | 0.117        | 0.4         | 0.0          | 0.4        | 2.8         | 0          | K        |
| 360 min Winter       | 37.497        | 0.097        | 0.4         | 0.0          | 0.4        | 2.3         | 0          | K        |
| 480 min Winter       | 37.480        | 0.080        | 0.4         | 0.0          | 0.4        | 1.9         | 0          | K        |
| 600 min Winter       | 37.467        | 0.067        | 0.4         | 0.0          | 0.4        | 1.6         | 0          | K        |
| 720 min Winter       | 37.458        | 0.058        | 0.4         | 0.0          | 0.4        | 1.4         | 0          | K        |
| 960 min Winter       | 37.447        | 0.047        | 0.3         | 0.0          | 0.3        | 1.1         | 0          | K        |
| 1440 min Winter      | 37.435        | 0.035        | 0.2         | 0.0          | 0.2        | 0.8         | 0          | K        |
| 2160 min Winter      | 37.427        | 0.027        | 0.2         | 0.0          | 0.2        | 0.6         | 0          | K        |
| 2880 min Winter      | 37.423        | 0.023        | 0.1         | 0.0          | 0.1        | 0.6         | 0          | K        |
| 4320 min Winter      | 37.419        | 0.019        | 0.1         | 0.0          | 0.1        | 0.5         | 0          | K        |
| 5760 min Winter      | 37.417        | 0.017        | 0.1         | 0.0          | 0.1        | 0.4         | 0          | K        |
| 7200 min Winter      | 37.415        | 0.015        | 0.1         | 0.0          | 0.1        | 0.4         | 0          | K        |
| 8640 min Winter      | 37.414        | 0.014        | 0.1         | 0.0          | 0.1        | 0.3         | 0          | K        |
| 10080 min Winter     | 37.413        | 0.013        | 0.1         | 0.0          | 0.1        | 0.3         | 0          | K        |

| Storm Event          | Rain (mm/hr)  | Flooded Volume (m³) | Discharge Volume (m³) | Overflow Volume (m³) | Time-Peak (mins) |
|----------------------|---------------|---------------------|-----------------------|----------------------|------------------|
|                      |               | (m³)                | (m³)                  | (m³)                 |                  |
| 15 min Winter        | 63.716        | 0.0                 | 2.7                   | 0.0                  | 17               |
| 30 min Winter        | 40.640        | 0.0                 | 3.4                   | 0.0                  | 31               |
| <b>60 min Winter</b> | <b>24.848</b> | <b>0.0</b>          | <b>4.2</b>            | <b>0.0</b>           | <b>58</b>        |
| 120 min Winter       | 14.806        | 0.0                 | 5.0                   | 0.0                  | 94               |
| 180 min Winter       | 10.852        | 0.0                 | 5.5                   | 0.0                  | 132              |
| 240 min Winter       | 8.681         | 0.0                 | 5.8                   | 0.0                  | 168              |
| 360 min Winter       | 6.328         | 0.0                 | 6.4                   | 0.0                  | 236              |
| 480 min Winter       | 5.052         | 0.0                 | 6.8                   | 0.0                  | 298              |
| 600 min Winter       | 4.241         | 0.0                 | 7.1                   | 0.0                  | 356              |
| 720 min Winter       | 3.675         | 0.0                 | 7.4                   | 0.0                  | 412              |
| 960 min Winter       | 2.930         | 0.0                 | 7.9                   | 0.0                  | 530              |
| 1440 min Winter      | 2.128         | 0.0                 | 8.6                   | 0.0                  | 764              |
| 2160 min Winter      | 1.545         | 0.0                 | 9.3                   | 0.0                  | 1120             |
| 2880 min Winter      | 1.230         | 0.0                 | 9.9                   | 0.0                  | 1472             |
| 4320 min Winter      | 0.892         | 0.0                 | 10.8                  | 0.0                  | 2156             |
| 5760 min Winter      | 0.710         | 0.0                 | 11.4                  | 0.0                  | 2832             |
| 7200 min Winter      | 0.595         | 0.0                 | 12.0                  | 0.0                  | 3640             |
| 8640 min Winter      | 0.514         | 0.0                 | 12.4                  | 0.0                  | 4312             |
| 10080 min Winter     | 0.455         | 0.0                 | 12.8                  | 0.0                  | 4952             |

|                          |                       |
|--------------------------|-----------------------|
| Easy Flood Risk          | Page 1                |
| 55 Shepherds Lane        |                       |
| Dartford                 |                       |
| DA1 2NL                  |                       |
| Date 14/02/2025 08:25    | Designed by sheph     |
| File Blackhorseyard.SRCX | Checked by            |
| Innovyze                 | Source Control 2020.1 |



Summary of Results for 30 year Return Period

| Storm Event      | Max Level | Max Depth | Max Control | Max Overflow | Max Σ | Max Outflow | Max Volume | Status |
|------------------|-----------|-----------|-------------|--------------|-------|-------------|------------|--------|
|                  | (m)       | (m)       | (1/s)       | (1/s)        | (1/s) | (1/s)       | (m³)       |        |
| 15 min Summer    | 37.516    | 0.116     | 0.4         | 0.0          | 0.4   | 2.8         | 0          | K      |
| 30 min Summer    | 37.542    | 0.142     | 0.4         | 0.0          | 0.4   | 3.4         | 0          | K      |
| 60 min Summer    | 37.559    | 0.159     | 0.4         | 0.0          | 0.4   | 3.8         | 0          | K      |
| 120 min Summer   | 37.561    | 0.161     | 0.4         | 0.0          | 0.4   | 3.9         | 0          | K      |
| 180 min Summer   | 37.557    | 0.157     | 0.4         | 0.0          | 0.4   | 3.8         | 0          | K      |
| 240 min Summer   | 37.549    | 0.149     | 0.4         | 0.0          | 0.4   | 3.6         | 0          | K      |
| 360 min Summer   | 37.534    | 0.134     | 0.4         | 0.0          | 0.4   | 3.2         | 0          | K      |
| 480 min Summer   | 37.519    | 0.119     | 0.4         | 0.0          | 0.4   | 2.9         | 0          | K      |
| 600 min Summer   | 37.506    | 0.106     | 0.4         | 0.0          | 0.4   | 2.5         | 0          | K      |
| 720 min Summer   | 37.494    | 0.094     | 0.4         | 0.0          | 0.4   | 2.3         | 0          | K      |
| 960 min Summer   | 37.476    | 0.076     | 0.4         | 0.0          | 0.4   | 1.8         | 0          | K      |
| 1440 min Summer  | 37.455    | 0.055     | 0.3         | 0.0          | 0.3   | 1.3         | 0          | K      |
| 2160 min Summer  | 37.441    | 0.041     | 0.3         | 0.0          | 0.3   | 1.0         | 0          | K      |
| 2880 min Summer  | 37.434    | 0.034     | 0.2         | 0.0          | 0.2   | 0.8         | 0          | K      |
| 4320 min Summer  | 37.427    | 0.027     | 0.2         | 0.0          | 0.2   | 0.6         | 0          | K      |
| 5760 min Summer  | 37.423    | 0.023     | 0.1         | 0.0          | 0.1   | 0.5         | 0          | K      |
| 7200 min Summer  | 37.421    | 0.021     | 0.1         | 0.0          | 0.1   | 0.5         | 0          | K      |
| 8640 min Summer  | 37.419    | 0.019     | 0.1         | 0.0          | 0.1   | 0.4         | 0          | K      |
| 10080 min Summer | 37.417    | 0.017     | 0.1         | 0.0          | 0.1   | 0.4         | 0          | K      |

| Storm Event | Rain (mm/hr) | Flooded Volume (m³) | Discharge Volume (m³) | Overflow Volume (m³) | Time-Peak (mins) |
|-------------|--------------|---------------------|-----------------------|----------------------|------------------|
|             |              |                     |                       |                      |                  |

|                  |        |     |      |     |      |
|------------------|--------|-----|------|-----|------|
| 15 min Summer    | 80.990 | 0.0 | 3.0  | 0.0 | 18   |
| 30 min Summer    | 52.018 | 0.0 | 3.9  | 0.0 | 32   |
| 60 min Summer    | 31.905 | 0.0 | 4.8  | 0.0 | 60   |
| 120 min Summer   | 18.989 | 0.0 | 5.7  | 0.0 | 94   |
| 180 min Summer   | 13.874 | 0.0 | 6.2  | 0.0 | 128  |
| 240 min Summer   | 11.059 | 0.0 | 6.6  | 0.0 | 160  |
| 360 min Summer   | 8.021  | 0.0 | 7.2  | 0.0 | 228  |
| 480 min Summer   | 6.383  | 0.0 | 7.6  | 0.0 | 292  |
| 600 min Summer   | 5.344  | 0.0 | 8.0  | 0.0 | 356  |
| 720 min Summer   | 4.620  | 0.0 | 8.3  | 0.0 | 418  |
| 960 min Summer   | 3.670  | 0.0 | 8.8  | 0.0 | 532  |
| 1440 min Summer  | 2.651  | 0.0 | 9.5  | 0.0 | 764  |
| 2160 min Summer  | 1.912  | 0.0 | 10.3 | 0.0 | 1124 |
| 2880 min Summer  | 1.516  | 0.0 | 10.9 | 0.0 | 1472 |
| 4320 min Summer  | 1.092  | 0.0 | 11.8 | 0.0 | 2200 |
| 5760 min Summer  | 0.865  | 0.0 | 12.4 | 0.0 | 2936 |
| 7200 min Summer  | 0.721  | 0.0 | 13.0 | 0.0 | 3664 |
| 8640 min Summer  | 0.622  | 0.0 | 13.4 | 0.0 | 4344 |
| 10080 min Summer | 0.549  | 0.0 | 13.8 | 0.0 | 5136 |

|                          |                       |
|--------------------------|-----------------------|
| Easy Flood Risk          | Page 2                |
| 55 Shepherds Lane        |                       |
| Dartford                 |                       |
| DA1 2NL                  |                       |
| Date 14/02/2025 08:25    | Designed by sheph     |
| File Blackhorseyard.SRCX | Checked by            |
| Innovyze                 | Source Control 2020.1 |



Summary of Results for 30 year Return Period

| Storm Event           | Max Level     | Max Depth    | Max Control | Max Overflow | Max Σ      | Max Outflow | Max Volume | Status   |
|-----------------------|---------------|--------------|-------------|--------------|------------|-------------|------------|----------|
|                       | (m)           | (m)          | (1/s)       | (1/s)        | (1/s)      | (1/s)       | (m³)       |          |
| 15 min Winter         | 37.530        | 0.130        | 0.4         | 0.0          | 0.4        | 3.1         | 0          | K        |
| 30 min Winter         | 37.561        | 0.161        | 0.4         | 0.0          | 0.4        | 3.9         | 0          | K        |
| 60 min Winter         | 37.582        | 0.182        | 0.4         | 0.0          | 0.4        | 4.4         | 0          | K        |
| <b>120 min Winter</b> | <b>37.584</b> | <b>0.184</b> | <b>0.4</b>  | <b>0.0</b>   | <b>0.4</b> | <b>4.4</b>  | <b>0</b>   | <b>K</b> |
| 180 min Winter        | 37.577        | 0.177        | 0.4         | 0.0          | 0.4        | 4.3         | 0          | K        |
| 240 min Winter        | 37.566        | 0.166        | 0.4         | 0.0          | 0.4        | 4.0         | 0          | K        |
| 360 min Winter        | 37.542        | 0.142        | 0.4         | 0.0          | 0.4        | 3.4         | 0          | K        |
| 480 min Winter        | 37.520        | 0.120        | 0.4         | 0.0          | 0.4        | 2.9         | 0          | K        |
| 600 min Winter        | 37.500        | 0.100        | 0.4         | 0.0          | 0.4        | 2.4         | 0          | K        |
| 720 min Winter        | 37.484        | 0.084        | 0.4         | 0.0          | 0.4        | 2.0         | 0          | K        |
| 960 min Winter        | 37.462        | 0.062        | 0.4         | 0.0          | 0.4        | 1.5         | 0          | K        |
| 1440 min Winter       | 37.444        | 0.044        | 0.3         | 0.0          | 0.3        | 1.1         | 0          | K        |
| 2160 min Winter       | 37.432        | 0.032        | 0.2         | 0.0          | 0.2        | 0.8         | 0          | K        |
| 2880 min Winter       | 37.427        | 0.027        | 0.2         | 0.0          | 0.2        | 0.6         | 0          | K        |
| 4320 min Winter       | 37.422        | 0.022        | 0.1         | 0.0          | 0.1        | 0.5         | 0          | K        |
| 5760 min Winter       | 37.419        | 0.019        | 0.1         | 0.0          | 0.1        | 0.4         | 0          | K        |
| 7200 min Winter       | 37.417        | 0.017        | 0.1         | 0.0          | 0.1        | 0.4         | 0          | K        |
| 8640 min Winter       | 37.416        | 0.016        | 0.1         | 0.0          | 0.1        | 0.4         | 0          | K        |
| 10080 min Winter      | 37.415        | 0.015        | 0.1         | 0.0          | 0.1        | 0.3         | 0          | K        |

| Storm Event           | Rain (mm/hr)  | Flooded Volume (m³) | Discharge Volume (m³) | Overflow Volume (m³) | Time-Peak (mins) |
|-----------------------|---------------|---------------------|-----------------------|----------------------|------------------|
|                       |               | (m³)                | (m³)                  | (m³)                 |                  |
| 15 min Winter         | 80.990        | 0.0                 | 3.4                   | 0.0                  | 18               |
| 30 min Winter         | 52.018        | 0.0                 | 4.3                   | 0.0                  | 32               |
| 60 min Winter         | 31.905        | 0.0                 | 5.3                   | 0.0                  | 60               |
| <b>120 min Winter</b> | <b>18.989</b> | <b>0.0</b>          | <b>6.4</b>            | <b>0.0</b>           | <b>110</b>       |
| 180 min Winter        | 13.874        | 0.0                 | 7.0                   | 0.0                  | 138              |
| 240 min Winter        | 11.059        | 0.0                 | 7.4                   | 0.0                  | 176              |
| 360 min Winter        | 8.021         | 0.0                 | 8.1                   | 0.0                  | 248              |
| 480 min Winter        | 6.383         | 0.0                 | 8.6                   | 0.0                  | 314              |
| 600 min Winter        | 5.344         | 0.0                 | 9.0                   | 0.0                  | 376              |
| 720 min Winter        | 4.620         | 0.0                 | 9.3                   | 0.0                  | 434              |
| 960 min Winter        | 3.670         | 0.0                 | 9.9                   | 0.0                  | 540              |
| 1440 min Winter       | 2.651         | 0.0                 | 10.7                  | 0.0                  | 778              |
| 2160 min Winter       | 1.912         | 0.0                 | 11.6                  | 0.0                  | 1124             |
| 2880 min Winter       | 1.516         | 0.0                 | 12.2                  | 0.0                  | 1472             |
| 4320 min Winter       | 1.092         | 0.0                 | 13.2                  | 0.0                  | 2192             |
| 5760 min Winter       | 0.865         | 0.0                 | 13.9                  | 0.0                  | 2936             |
| 7200 min Winter       | 0.721         | 0.0                 | 14.5                  | 0.0                  | 3744             |
| 8640 min Winter       | 0.622         | 0.0                 | 15.0                  | 0.0                  | 4344             |
| 10080 min Winter      | 0.549         | 0.0                 | 15.5                  | 0.0                  | 5168             |

|                          |                       |
|--------------------------|-----------------------|
| Easy Flood Risk          | Page 1                |
| 55 Shepherds Lane        |                       |
| Dartford                 |                       |
| DA1 2NL                  |                       |
| Date 14/02/2025 08:25    | Designed by sheph     |
| File Blackhorseyard.SRCX | Checked by            |
| Innovyze                 | Source Control 2020.1 |



Summary of Results for 50 year Return Period

| Storm Event      | Max Level | Max Depth | Max Control | Max Overflow | Max Σ | Max Outflow | Max Volume | Status |
|------------------|-----------|-----------|-------------|--------------|-------|-------------|------------|--------|
|                  | (m)       | (m)       | (1/s)       | (1/s)        | (1/s) | (1/s)       | (m³)       |        |
| 15 min Summer    | 37.530    | 0.130     | 0.4         | 0.0          | 0.4   | 3.1         | 0          | K      |
| 30 min Summer    | 37.561    | 0.161     | 0.4         | 0.0          | 0.4   | 3.9         | 0          | K      |
| 60 min Summer    | 37.582    | 0.182     | 0.4         | 0.0          | 0.4   | 4.4         | 0          | K      |
| 120 min Summer   | 37.586    | 0.186     | 0.4         | 0.0          | 0.4   | 4.5         | 0          | K      |
| 180 min Summer   | 37.581    | 0.181     | 0.4         | 0.0          | 0.4   | 4.3         | 0          | K      |
| 240 min Summer   | 37.574    | 0.174     | 0.4         | 0.0          | 0.4   | 4.2         | 0          | K      |
| 360 min Summer   | 37.557    | 0.157     | 0.4         | 0.0          | 0.4   | 3.8         | 0          | K      |
| 480 min Summer   | 37.540    | 0.140     | 0.4         | 0.0          | 0.4   | 3.4         | 0          | K      |
| 600 min Summer   | 37.525    | 0.125     | 0.4         | 0.0          | 0.4   | 3.0         | 0          | K      |
| 720 min Summer   | 37.512    | 0.112     | 0.4         | 0.0          | 0.4   | 2.7         | 0          | K      |
| 960 min Summer   | 37.490    | 0.090     | 0.4         | 0.0          | 0.4   | 2.2         | 0          | K      |
| 1440 min Summer  | 37.463    | 0.063     | 0.4         | 0.0          | 0.4   | 1.5         | 0          | K      |
| 2160 min Summer  | 37.446    | 0.046     | 0.3         | 0.0          | 0.3   | 1.1         | 0          | K      |
| 2880 min Summer  | 37.437    | 0.037     | 0.3         | 0.0          | 0.3   | 0.9         | 0          | K      |
| 4320 min Summer  | 37.429    | 0.029     | 0.2         | 0.0          | 0.2   | 0.7         | 0          | K      |
| 5760 min Summer  | 37.424    | 0.024     | 0.2         | 0.0          | 0.2   | 0.6         | 0          | K      |
| 7200 min Summer  | 37.422    | 0.022     | 0.1         | 0.0          | 0.1   | 0.5         | 0          | K      |
| 8640 min Summer  | 37.420    | 0.020     | 0.1         | 0.0          | 0.1   | 0.5         | 0          | K      |
| 10080 min Summer | 37.418    | 0.018     | 0.1         | 0.0          | 0.1   | 0.4         | 0          | K      |

| Storm Event      | Rain (mm/hr) | Flooded Volume (m³) | Discharge Volume (m³) | Overflow Volume (m³) | Time-Peak (mins) |
|------------------|--------------|---------------------|-----------------------|----------------------|------------------|
|                  |              |                     |                       |                      |                  |
| 15 min Summer    | 90.546       | 0.0                 | 3.4                   | 0.0                  | 18               |
| 30 min Summer    | 58.344       | 0.0                 | 4.4                   | 0.0                  | 32               |
| 60 min Summer    | 35.838       | 0.0                 | 5.4                   | 0.0                  | 60               |
| 120 min Summer   | 21.319       | 0.0                 | 6.4                   | 0.0                  | 100              |
| 180 min Summer   | 15.553       | 0.0                 | 7.0                   | 0.0                  | 132              |
| 240 min Summer   | 12.377       | 0.0                 | 7.4                   | 0.0                  | 164              |
| 360 min Summer   | 8.956        | 0.0                 | 8.0                   | 0.0                  | 232              |
| 480 min Summer   | 7.116        | 0.0                 | 8.5                   | 0.0                  | 298              |
| 600 min Summer   | 5.950        | 0.0                 | 8.9                   | 0.0                  | 362              |
| 720 min Summer   | 5.139        | 0.0                 | 9.2                   | 0.0                  | 424              |
| 960 min Summer   | 4.075        | 0.0                 | 9.8                   | 0.0                  | 540              |
| 1440 min Summer  | 2.935        | 0.0                 | 10.5                  | 0.0                  | 766              |
| 2160 min Summer  | 2.112        | 0.0                 | 11.4                  | 0.0                  | 1124             |
| 2880 min Summer  | 1.671        | 0.0                 | 12.0                  | 0.0                  | 1472             |
| 4320 min Summer  | 1.200        | 0.0                 | 12.9                  | 0.0                  | 2204             |
| 5760 min Summer  | 0.948        | 0.0                 | 13.6                  | 0.0                  | 2936             |
| 7200 min Summer  | 0.789        | 0.0                 | 14.2                  | 0.0                  | 3664             |
| 8640 min Summer  | 0.680        | 0.0                 | 14.7                  | 0.0                  | 4312             |
| 10080 min Summer | 0.599        | 0.0                 | 15.1                  | 0.0                  | 5136             |

|                          |                       |
|--------------------------|-----------------------|
| Easy Flood Risk          | Page 2                |
| 55 Shepherds Lane        |                       |
| Dartford                 |                       |
| DA1 2NL                  |                       |
| Date 14/02/2025 08:25    | Designed by sheph     |
| File Blackhorseyard.SRCX | Checked by            |
| Innovyze                 | Source Control 2020.1 |



Summary of Results for 50 year Return Period

| Storm Event           | Max Level     | Max Depth    | Max Control | Max Overflow | Max Σ      | Max Outflow | Max Volume | Status   |
|-----------------------|---------------|--------------|-------------|--------------|------------|-------------|------------|----------|
|                       | (m)           | (m)          | (1/s)       | (1/s)        | (1/s)      | (1/s)       | (m³)       |          |
| 15 min Winter         | 37.547        | 0.147        | 0.4         | 0.0          | 0.4        | 3.5         | 0          | K        |
| 30 min Winter         | 37.583        | 0.183        | 0.4         | 0.0          | 0.4        | 4.4         | 0          | K        |
| 60 min Winter         | 37.609        | 0.209        | 0.4         | 0.0          | 0.4        | 5.0         | 0          | K        |
| <b>120 min Winter</b> | <b>37.615</b> | <b>0.215</b> | <b>0.4</b>  | <b>0.0</b>   | <b>0.4</b> | <b>5.2</b>  | <b>0</b>   | <b>K</b> |
| 180 min Winter        | 37.607        | 0.207        | 0.4         | 0.0          | 0.4        | 5.0         | 0          | K        |
| 240 min Winter        | 37.596        | 0.196        | 0.4         | 0.0          | 0.4        | 4.7         | 0          | K        |
| 360 min Winter        | 37.570        | 0.170        | 0.4         | 0.0          | 0.4        | 4.1         | 0          | K        |
| 480 min Winter        | 37.545        | 0.145        | 0.4         | 0.0          | 0.4        | 3.5         | 0          | K        |
| 600 min Winter        | 37.523        | 0.123        | 0.4         | 0.0          | 0.4        | 2.9         | 0          | K        |
| 720 min Winter        | 37.503        | 0.103        | 0.4         | 0.0          | 0.4        | 2.5         | 0          | K        |
| 960 min Winter        | 37.474        | 0.074        | 0.4         | 0.0          | 0.4        | 1.8         | 0          | K        |
| 1440 min Winter       | 37.450        | 0.050        | 0.3         | 0.0          | 0.3        | 1.2         | 0          | K        |
| 2160 min Winter       | 37.435        | 0.035        | 0.2         | 0.0          | 0.2        | 0.9         | 0          | K        |
| 2880 min Winter       | 37.429        | 0.029        | 0.2         | 0.0          | 0.2        | 0.7         | 0          | K        |
| 4320 min Winter       | 37.423        | 0.023        | 0.1         | 0.0          | 0.1        | 0.6         | 0          | K        |
| 5760 min Winter       | 37.420        | 0.020        | 0.1         | 0.0          | 0.1        | 0.5         | 0          | K        |
| 7200 min Winter       | 37.418        | 0.018        | 0.1         | 0.0          | 0.1        | 0.4         | 0          | K        |
| 8640 min Winter       | 37.416        | 0.016        | 0.1         | 0.0          | 0.1        | 0.4         | 0          | K        |
| 10080 min Winter      | 37.415        | 0.015        | 0.1         | 0.0          | 0.1        | 0.4         | 0          | K        |

| Storm Event           | Rain (mm/hr)  | Flooded Volume (m³) | Discharge Volume (m³) | Overflow Volume (m³) | Time-Peak (mins) |
|-----------------------|---------------|---------------------|-----------------------|----------------------|------------------|
|                       |               | (m³)                | (m³)                  | (m³)                 |                  |
| 15 min Winter         | 90.546        | 0.0                 | 3.8                   | 0.0                  | 18               |
| 30 min Winter         | 58.344        | 0.0                 | 4.9                   | 0.0                  | 32               |
| 60 min Winter         | 35.838        | 0.0                 | 6.0                   | 0.0                  | 60               |
| <b>120 min Winter</b> | <b>21.319</b> | <b>0.0</b>          | <b>7.2</b>            | <b>0.0</b>           | <b>114</b>       |
| 180 min Winter        | 15.553        | 0.0                 | 7.8                   | 0.0                  | 142              |
| 240 min Winter        | 12.377        | 0.0                 | 8.3                   | 0.0                  | 180              |
| 360 min Winter        | 8.956         | 0.0                 | 9.0                   | 0.0                  | 254              |
| 480 min Winter        | 7.116         | 0.0                 | 9.6                   | 0.0                  | 322              |
| 600 min Winter        | 5.950         | 0.0                 | 10.0                  | 0.0                  | 386              |
| 720 min Winter        | 5.139         | 0.0                 | 10.3                  | 0.0                  | 446              |
| 960 min Winter        | 4.075         | 0.0                 | 10.9                  | 0.0                  | 558              |
| 1440 min Winter       | 2.935         | 0.0                 | 11.8                  | 0.0                  | 780              |
| 2160 min Winter       | 2.112         | 0.0                 | 12.8                  | 0.0                  | 1128             |
| 2880 min Winter       | 1.671         | 0.0                 | 13.5                  | 0.0                  | 1496             |
| 4320 min Winter       | 1.200         | 0.0                 | 14.5                  | 0.0                  | 2244             |
| 5760 min Winter       | 0.948         | 0.0                 | 15.3                  | 0.0                  | 2944             |
| 7200 min Winter       | 0.789         | 0.0                 | 15.9                  | 0.0                  | 3672             |
| 8640 min Winter       | 0.680         | 0.0                 | 16.4                  | 0.0                  | 4408             |
| 10080 min Winter      | 0.599         | 0.0                 | 16.9                  | 0.0                  | 5080             |

|                          |                       |
|--------------------------|-----------------------|
| Easy Flood Risk          | Page 1                |
| 55 Shepherds Lane        |                       |
| Dartford                 |                       |
| DA1 2NL                  |                       |
| Date 14/02/2025 08:24    | Designed by sheph     |
| File Blackhorseyard.SRCX | Checked by            |
| Innovyze                 | Source Control 2020.1 |



Summary of Results for 100 year Return Period

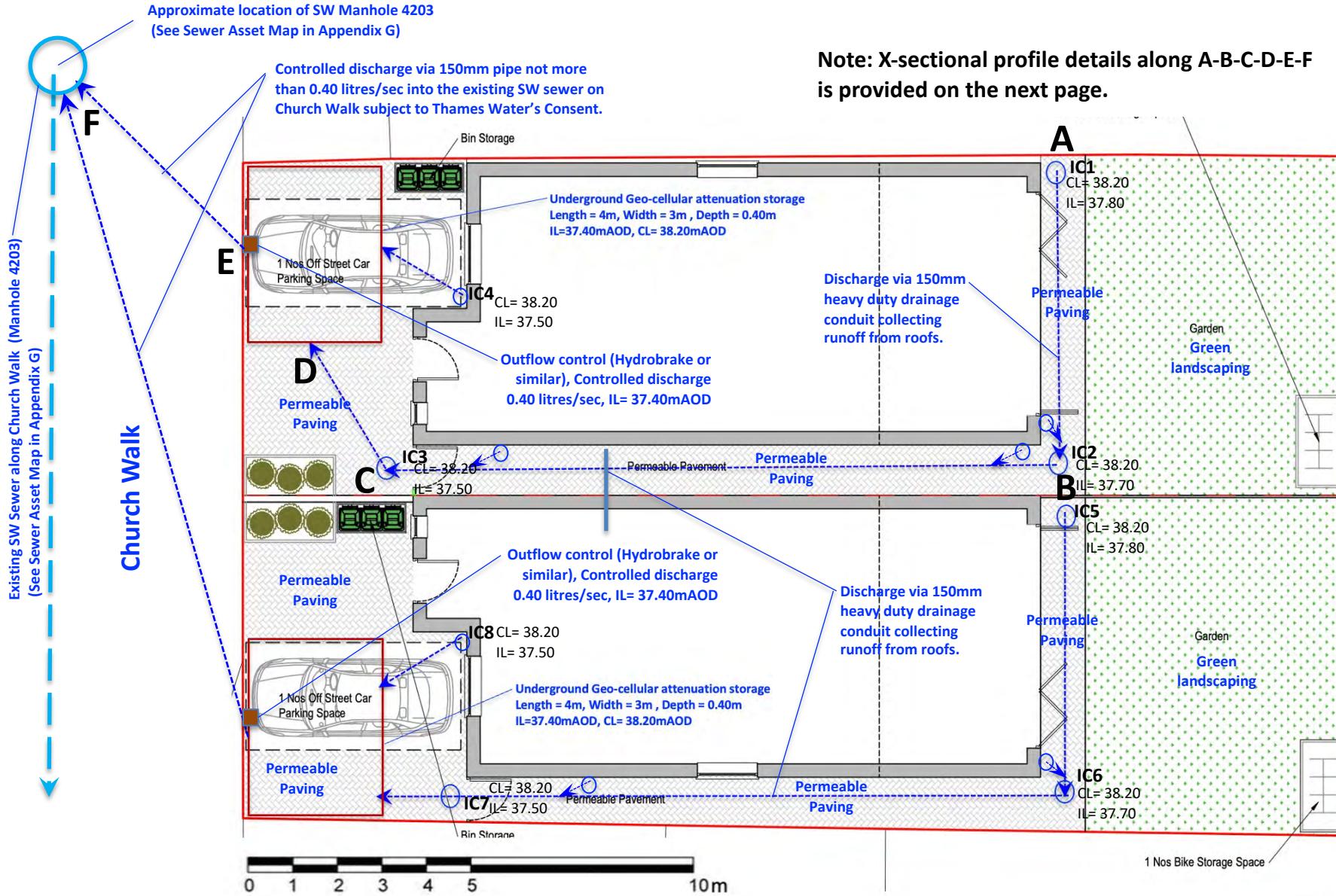
| Storm Event      | Max Level | Max Depth | Max Control | Max Overflow | Max Σ | Max Outflow | Max Volume | Status |
|------------------|-----------|-----------|-------------|--------------|-------|-------------|------------|--------|
|                  | (m)       | (m)       | (1/s)       | (1/s)        | (1/s) | (1/s)       | (m³)       |        |
| 15 min Summer    | 37.553    | 0.153     | 0.4         | 0.0          | 0.4   | 3.7         | 0          | K      |
| 30 min Summer    | 37.591    | 0.191     | 0.4         | 0.0          | 0.4   | 4.6         | 0          | K      |
| 60 min Summer    | 37.620    | 0.220     | 0.4         | 0.0          | 0.4   | 5.3         | 0          | K      |
| 120 min Summer   | 37.628    | 0.228     | 0.4         | 0.0          | 0.4   | 5.5         | 0          | K      |
| 180 min Summer   | 37.622    | 0.222     | 0.4         | 0.0          | 0.4   | 5.3         | 0          | K      |
| 240 min Summer   | 37.613    | 0.213     | 0.4         | 0.0          | 0.4   | 5.1         | 0          | K      |
| 360 min Summer   | 37.594    | 0.194     | 0.4         | 0.0          | 0.4   | 4.7         | 0          | K      |
| 480 min Summer   | 37.576    | 0.176     | 0.4         | 0.0          | 0.4   | 4.2         | 0          | K      |
| 600 min Summer   | 37.559    | 0.159     | 0.4         | 0.0          | 0.4   | 3.8         | 0          | K      |
| 720 min Summer   | 37.543    | 0.143     | 0.4         | 0.0          | 0.4   | 3.4         | 0          | K      |
| 960 min Summer   | 37.515    | 0.115     | 0.4         | 0.0          | 0.4   | 2.8         | 0          | K      |
| 1440 min Summer  | 37.479    | 0.079     | 0.4         | 0.0          | 0.4   | 1.9         | 0          | K      |
| 2160 min Summer  | 37.454    | 0.054     | 0.3         | 0.0          | 0.3   | 1.3         | 0          | K      |
| 2880 min Summer  | 37.443    | 0.043     | 0.3         | 0.0          | 0.3   | 1.0         | 0          | K      |
| 4320 min Summer  | 37.432    | 0.032     | 0.2         | 0.0          | 0.2   | 0.8         | 0          | K      |
| 5760 min Summer  | 37.426    | 0.026     | 0.2         | 0.0          | 0.2   | 0.6         | 0          | K      |
| 7200 min Summer  | 37.423    | 0.023     | 0.1         | 0.0          | 0.1   | 0.6         | 0          | K      |
| 8640 min Summer  | 37.421    | 0.021     | 0.1         | 0.0          | 0.1   | 0.5         | 0          | K      |
| 10080 min Summer | 37.420    | 0.020     | 0.1         | 0.0          | 0.1   | 0.5         | 0          | K      |

| Storm Event | Rain (mm/hr) | Flooded Volume (m³) | Discharge Volume (m³) | Overflow Volume (m³) | Time-Peak (mins) |
|-------------|--------------|---------------------|-----------------------|----------------------|------------------|
|             |              |                     |                       |                      |                  |

|                  |         |     |      |     |      |
|------------------|---------|-----|------|-----|------|
| 15 min Summer    | 105.342 | 0.0 | 3.9  | 0.0 | 18   |
| 30 min Summer    | 68.175  | 0.0 | 5.1  | 0.0 | 32   |
| 60 min Summer    | 41.961  | 0.0 | 6.3  | 0.0 | 62   |
| 120 min Summer   | 24.943  | 0.0 | 7.5  | 0.0 | 114  |
| 180 min Summer   | 18.161  | 0.0 | 8.2  | 0.0 | 142  |
| 240 min Summer   | 14.419  | 0.0 | 8.6  | 0.0 | 172  |
| 360 min Summer   | 10.402  | 0.0 | 9.3  | 0.0 | 238  |
| 480 min Summer   | 8.247   | 0.0 | 9.9  | 0.0 | 306  |
| 600 min Summer   | 6.884   | 0.0 | 10.3 | 0.0 | 370  |
| 720 min Summer   | 5.937   | 0.0 | 10.7 | 0.0 | 434  |
| 960 min Summer   | 4.697   | 0.0 | 11.3 | 0.0 | 558  |
| 1440 min Summer  | 3.371   | 0.0 | 12.1 | 0.0 | 782  |
| 2160 min Summer  | 2.417   | 0.0 | 13.0 | 0.0 | 1124 |
| 2880 min Summer  | 1.907   | 0.0 | 13.7 | 0.0 | 1476 |
| 4320 min Summer  | 1.363   | 0.0 | 14.7 | 0.0 | 2204 |
| 5760 min Summer  | 1.074   | 0.0 | 15.5 | 0.0 | 2936 |
| 7200 min Summer  | 0.892   | 0.0 | 16.0 | 0.0 | 3672 |
| 8640 min Summer  | 0.766   | 0.0 | 16.5 | 0.0 | 4312 |
| 10080 min Summer | 0.674   | 0.0 | 17.0 | 0.0 | 5032 |

|                          |                       |
|--------------------------|-----------------------|
| Easy Flood Risk          | Page 2                |
| 55 Shepherds Lane        |                       |
| Dartford                 |                       |
| DA1 2NL                  |                       |
| Date 14/02/2025 08:24    | Designed by sheph     |
| File Blackhorseyard.SRCX | Checked by            |
| Innovyze                 | Source Control 2020.1 |

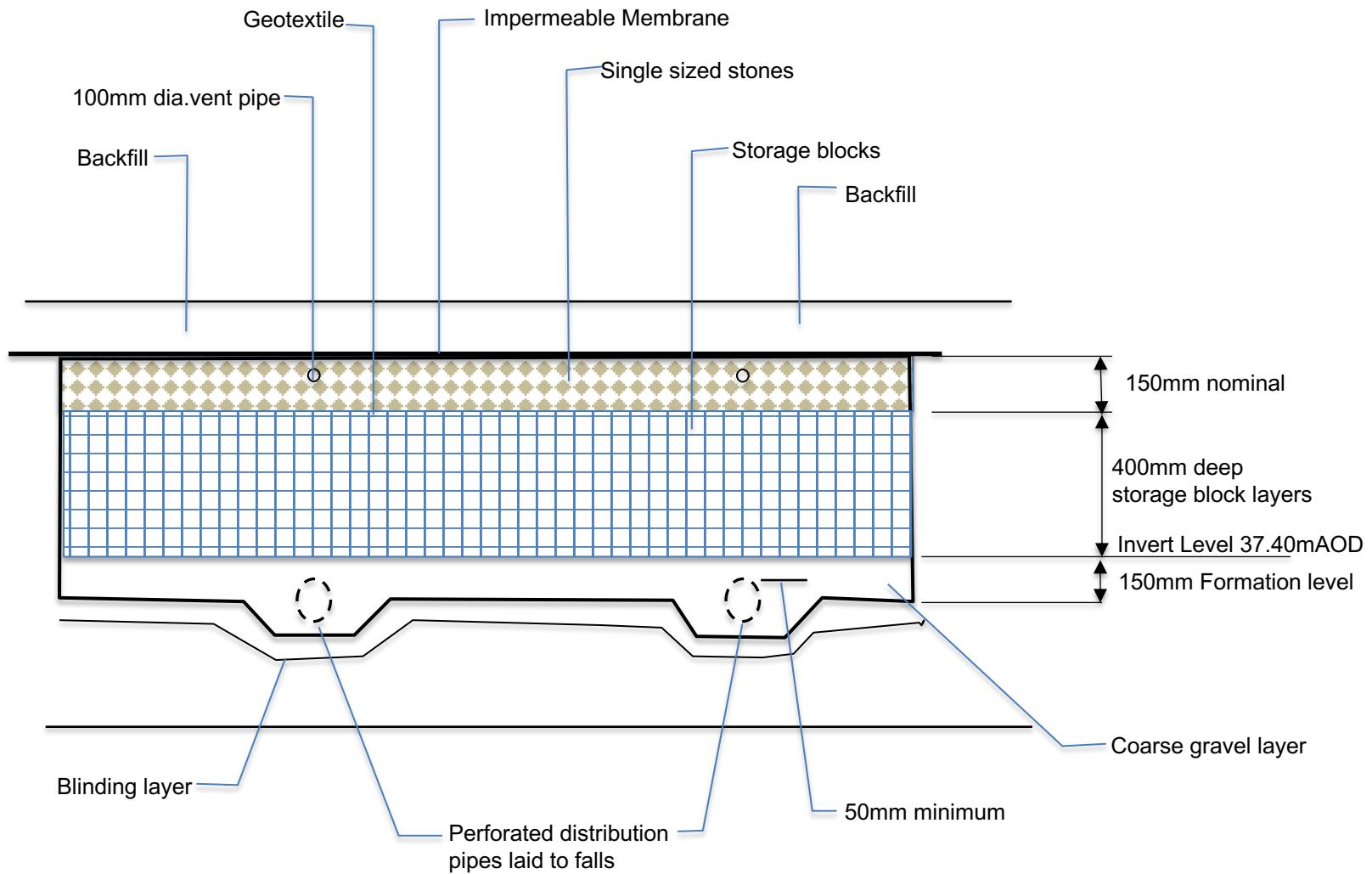



Summary of Results for 100 year Return Period

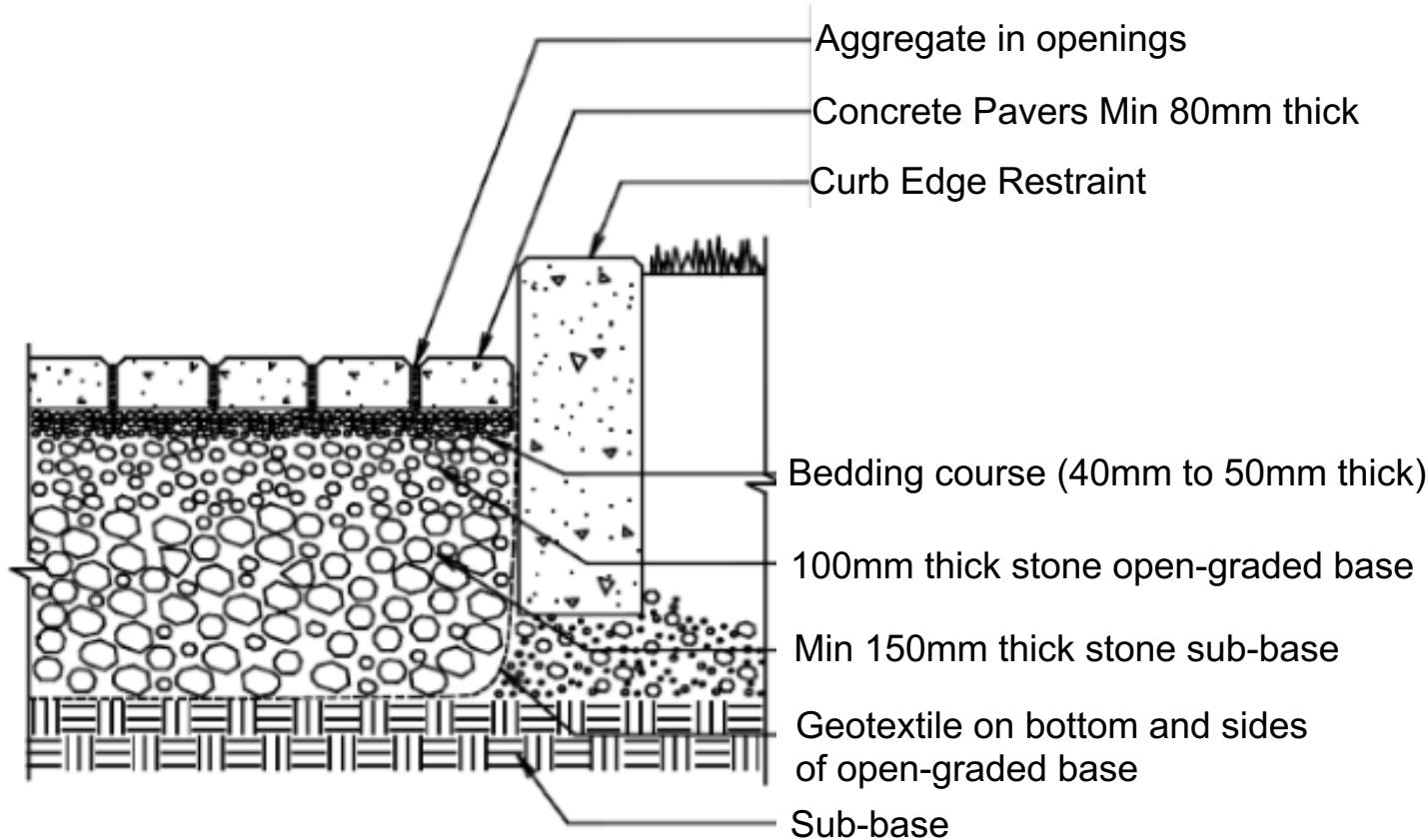
| Storm Event           | Max Level     | Max Depth    | Max Control | Max Overflow | Max Σ      | Max Outflow | Max Volume | Status   |
|-----------------------|---------------|--------------|-------------|--------------|------------|-------------|------------|----------|
|                       | (m)           | (m)          | (1/s)       | (1/s)        | (1/s)      | (1/s)       | (m³)       |          |
| 15 min Winter         | 37.573        | 0.173        | 0.4         | 0.0          | 0.4        | 4.1         | 0          | K        |
| 30 min Winter         | 37.617        | 0.217        | 0.4         | 0.0          | 0.4        | 5.2         | 0          | K        |
| 60 min Winter         | 37.651        | 0.251        | 0.4         | 0.0          | 0.4        | 6.0         | 0          | K        |
| <b>120 min Winter</b> | <b>37.666</b> | <b>0.266</b> | <b>0.4</b>  | <b>0.0</b>   | <b>0.4</b> | <b>6.4</b>  | <b>0</b>   | <b>K</b> |
| 180 min Winter        | 37.658        | 0.258        | 0.4         | 0.0          | 0.4        | 6.2         | 0          | K        |
| 240 min Winter        | 37.644        | 0.244        | 0.4         | 0.0          | 0.4        | 5.9         | 0          | K        |
| 360 min Winter        | 37.617        | 0.217        | 0.4         | 0.0          | 0.4        | 5.2         | 0          | K        |
| 480 min Winter        | 37.589        | 0.189        | 0.4         | 0.0          | 0.4        | 4.5         | 0          | K        |
| 600 min Winter        | 37.562        | 0.162        | 0.4         | 0.0          | 0.4        | 3.9         | 0          | K        |
| 720 min Winter        | 37.539        | 0.139        | 0.4         | 0.0          | 0.4        | 3.3         | 0          | K        |
| 960 min Winter        | 37.500        | 0.100        | 0.4         | 0.0          | 0.4        | 2.4         | 0          | K        |
| 1440 min Winter       | 37.459        | 0.059        | 0.4         | 0.0          | 0.4        | 1.4         | 0          | K        |
| 2160 min Winter       | 37.441        | 0.041        | 0.3         | 0.0          | 0.3        | 1.0         | 0          | K        |
| 2880 min Winter       | 37.432        | 0.032        | 0.2         | 0.0          | 0.2        | 0.8         | 0          | K        |
| 4320 min Winter       | 37.425        | 0.025        | 0.2         | 0.0          | 0.2        | 0.6         | 0          | K        |
| 5760 min Winter       | 37.421        | 0.021        | 0.1         | 0.0          | 0.1        | 0.5         | 0          | K        |
| 7200 min Winter       | 37.419        | 0.019        | 0.1         | 0.0          | 0.1        | 0.5         | 0          | K        |
| 8640 min Winter       | 37.418        | 0.018        | 0.1         | 0.0          | 0.1        | 0.4         | 0          | K        |
| 10080 min Winter      | 37.416        | 0.016        | 0.1         | 0.0          | 0.1        | 0.4         | 0          | K        |


| Storm Event           | Rain (mm/hr)  | Flooded Volume (m³) | Discharge Volume (m³) | Overflow Volume (m³) | Time-Peak (mins) |
|-----------------------|---------------|---------------------|-----------------------|----------------------|------------------|
|                       |               | (m³)                | (m³)                  | (m³)                 |                  |
| 15 min Winter         | 105.342       | 0.0                 | 4.4                   | 0.0                  | 18               |
| 30 min Winter         | 68.175        | 0.0                 | 5.7                   | 0.0                  | 32               |
| 60 min Winter         | 41.961        | 0.0                 | 7.0                   | 0.0                  | 60               |
| <b>120 min Winter</b> | <b>24.943</b> | <b>0.0</b>          | <b>8.4</b>            | <b>0.0</b>           | <b>118</b>       |
| 180 min Winter        | 18.161        | 0.0                 | 9.1                   | 0.0                  | 170              |
| 240 min Winter        | 14.419        | 0.0                 | 9.7                   | 0.0                  | 188              |
| 360 min Winter        | 10.402        | 0.0                 | 10.5                  | 0.0                  | 262              |
| 480 min Winter        | 8.247         | 0.0                 | 11.1                  | 0.0                  | 332              |
| 600 min Winter        | 6.884         | 0.0                 | 11.6                  | 0.0                  | 398              |
| 720 min Winter        | 5.937         | 0.0                 | 12.0                  | 0.0                  | 462              |
| 960 min Winter        | 4.697         | 0.0                 | 12.6                  | 0.0                  | 578              |
| 1440 min Winter       | 3.371         | 0.0                 | 13.6                  | 0.0                  | 780              |
| 2160 min Winter       | 2.417         | 0.0                 | 14.6                  | 0.0                  | 1144             |
| 2880 min Winter       | 1.907         | 0.0                 | 15.4                  | 0.0                  | 1500             |
| 4320 min Winter       | 1.363         | 0.0                 | 16.5                  | 0.0                  | 2208             |
| 5760 min Winter       | 1.074         | 0.0                 | 17.3                  | 0.0                  | 2944             |
| 7200 min Winter       | 0.892         | 0.0                 | 18.0                  | 0.0                  | 3664             |
| 8640 min Winter       | 0.766         | 0.0                 | 18.5                  | 0.0                  | 4488             |
| 10080 min Winter      | 0.674         | 0.0                 | 19.0                  | 0.0                  | 4952             |

# **Appendix J Outline Sustainable Drainage Systems (SuDS) Plan**


## Appendix J Outline Sustainable Drainage Systems (SuDS) Plan




## Cross-sectional details of proposed attenuation storage and outfall



## Cross-section Details of Attenuation Storage



## Appendix J Outline Drainage Plan (Permeable Block Paving Details)



Typical Permeable Block Paving Sectional Details

## Appendix K Attenuation Modelling Output Summary

|                          |                       |  |  |  |  |  |        |
|--------------------------|-----------------------|--|--|--|--|--|--------|
| Easy Flood Risk          |                       |  |  |  |  |  | Page 1 |
| 55 Shepherds Lane        |                       |  |  |  |  |  |        |
| Dartford                 |                       |  |  |  |  |  |        |
| DA1 2NL                  |                       |  |  |  |  |  |        |
| Date 14/02/2025 08:23    | Designed by sheph     |  |  |  |  |  |        |
| File Blackhorseyard.SRCX | Checked by            |  |  |  |  |  |        |
| Innovyze                 | Source Control 2020.1 |  |  |  |  |  |        |



### Summary of Results for 100 year Return Period (+40%)

| Storm Event      | Max Level (m) | Max Depth (m) | Max Control (1/s) | Max Overflow (1/s) | Max Σ (1/s) | Max Outflow (1/s) | Max Volume (m³) | Status |
|------------------|---------------|---------------|-------------------|--------------------|-------------|-------------------|-----------------|--------|
| 15 min Summer    | 37.618        | 0.218         | 0.4               | 0.0                | 0.4         | 5.2               | 0               | K      |
| 30 min Summer    | 37.676        | 0.276         | 0.4               | 0.0                | 0.4         | 6.6               | 0               | K      |
| 60 min Summer    | 37.723        | 0.323         | 0.4               | 0.0                | 0.4         | 7.7               | 0               | K      |
| 120 min Summer   | 37.746        | 0.346         | 0.4               | 0.0                | 0.4         | 8.3               | 0               | K      |
| 180 min Summer   | 37.743        | 0.343         | 0.4               | 0.0                | 0.4         | 8.2               | 0               | K      |
| 240 min Summer   | 37.734        | 0.334         | 0.4               | 0.0                | 0.4         | 8.0               | 0               | K      |
| 360 min Summer   | 37.714        | 0.314         | 0.4               | 0.0                | 0.4         | 7.5               | 0               | K      |
| 480 min Summer   | 37.695        | 0.295         | 0.4               | 0.0                | 0.4         | 7.1               | 0               | K      |
| 600 min Summer   | 37.676        | 0.276         | 0.4               | 0.0                | 0.4         | 6.6               | 0               | K      |
| 720 min Summer   | 37.655        | 0.255         | 0.4               | 0.0                | 0.4         | 6.1               | 0               | K      |
| 960 min Summer   | 37.616        | 0.216         | 0.4               | 0.0                | 0.4         | 5.2               | 0               | K      |
| 1440 min Summer  | 37.554        | 0.154         | 0.4               | 0.0                | 0.4         | 3.7               | 0               | K      |
| 2160 min Summer  | 37.495        | 0.095         | 0.4               | 0.0                | 0.4         | 2.3               | 0               | K      |
| 2880 min Summer  | 37.465        | 0.065         | 0.4               | 0.0                | 0.4         | 1.6               | 0               | K      |
| 4320 min Summer  | 37.445        | 0.045         | 0.3               | 0.0                | 0.3         | 1.1               | 0               | K      |
| 5760 min Summer  | 37.435        | 0.035         | 0.2               | 0.0                | 0.2         | 0.8               | 0               | K      |
| 7200 min Summer  | 37.430        | 0.030         | 0.2               | 0.0                | 0.2         | 0.7               | 0               | K      |
| 8640 min Summer  | 37.427        | 0.027         | 0.2               | 0.0                | 0.2         | 0.6               | 0               | K      |
| 10080 min Summer | 37.424        | 0.024         | 0.2               | 0.0                | 0.2         | 0.6               | 0               | K      |

| Storm Event      | Rain (mm/hr) | Flooded Volume (m³) | Discharge Volume (m³) | Overflow Volume (m³) | Time-Peak (mins) |
|------------------|--------------|---------------------|-----------------------|----------------------|------------------|
|                  |              | (m³)                | (m³)                  | (m³)                 |                  |
| 15 min Summer    | 147.479      | 0.0                 | 5.5                   | 0.0                  | 18               |
| 30 min Summer    | 95.446       | 0.0                 | 7.1                   | 0.0                  | 33               |
| 60 min Summer    | 58.745       | 0.0                 | 8.8                   | 0.0                  | 62               |
| 120 min Summer   | 34.920       | 0.0                 | 10.5                  | 0.0                  | 120              |
| 180 min Summer   | 25.425       | 0.0                 | 11.4                  | 0.0                  | 170              |
| 240 min Summer   | 20.187       | 0.0                 | 12.1                  | 0.0                  | 198              |
| 360 min Summer   | 14.563       | 0.0                 | 13.1                  | 0.0                  | 260              |
| 480 min Summer   | 11.546       | 0.0                 | 13.8                  | 0.0                  | 330              |
| 600 min Summer   | 9.638        | 0.0                 | 14.4                  | 0.0                  | 400              |
| 720 min Summer   | 8.311        | 0.0                 | 14.9                  | 0.0                  | 466              |
| 960 min Summer   | 6.576        | 0.0                 | 15.8                  | 0.0                  | 590              |
| 1440 min Summer  | 4.720        | 0.0                 | 17.0                  | 0.0                  | 836              |
| 2160 min Summer  | 3.383        | 0.0                 | 18.3                  | 0.0                  | 1172             |
| 2880 min Summer  | 2.669        | 0.0                 | 19.2                  | 0.0                  | 1500             |
| 4320 min Summer  | 1.909        | 0.0                 | 20.6                  | 0.0                  | 2204             |
| 5760 min Summer  | 1.503        | 0.0                 | 21.6                  | 0.0                  | 2936             |
| 7200 min Summer  | 1.249        | 0.0                 | 22.5                  | 0.0                  | 3672             |
| 8640 min Summer  | 1.073        | 0.0                 | 23.2                  | 0.0                  | 4360             |
| 10080 min Summer | 0.943        | 0.0                 | 23.7                  | 0.0                  | 5136             |

|                          |                       |
|--------------------------|-----------------------|
| Easy Flood Risk          | Page 2                |
| 55 Shepherds Lane        |                       |
| Dartford                 |                       |
| DA1 2NL                  |                       |
| Date 14/02/2025 08:23    | Designed by sheph     |
| File Blackhorseyard.SRCX | Checked by            |
| Innovyze                 | Source Control 2020.1 |



Summary of Results for 100 year Return Period (+40%)

| Storm Event           | Max Level     | Max Depth    | Max Control | Max Overflow | Max Σ      | Max Outflow | Max Volume | Status |
|-----------------------|---------------|--------------|-------------|--------------|------------|-------------|------------|--------|
|                       | (m)           | (m)          | (1/s)       | (1/s)        | (1/s)      | (1/s)       | (m³)       |        |
| 15 min Winter         | 37.646        | 0.246        | 0.4         | 0.0          | 0.4        | 5.9         | 0 K        |        |
| 30 min Winter         | 37.711        | 0.311        | 0.4         | 0.0          | 0.4        | 7.5         | 0 K        |        |
| 60 min Winter         | 37.765        | 0.365        | 0.4         | 0.0          | 0.4        | 8.8         | 0 K        |        |
| <b>120 min Winter</b> | <b>37.796</b> | <b>0.396</b> | <b>0.4</b>  | <b>0.0</b>   | <b>0.4</b> | <b>9.5</b>  | <b>0 K</b> |        |
| 180 min Winter        | 37.796        | 0.396        | 0.4         | 0.0          | 0.4        | 9.5         | 0 K        |        |
| 240 min Winter        | 37.784        | 0.384        | 0.4         | 0.0          | 0.4        | 9.2         | 0 K        |        |
| 360 min Winter        | 37.759        | 0.359        | 0.4         | 0.0          | 0.4        | 8.6         | 0 K        |        |
| 480 min Winter        | 37.734        | 0.334        | 0.4         | 0.0          | 0.4        | 8.0         | 0 K        |        |
| 600 min Winter        | 37.707        | 0.307        | 0.4         | 0.0          | 0.4        | 7.4         | 0 K        |        |
| 720 min Winter        | 37.679        | 0.279        | 0.4         | 0.0          | 0.4        | 6.7         | 0 K        |        |
| 960 min Winter        | 37.618        | 0.218        | 0.4         | 0.0          | 0.4        | 5.2         | 0 K        |        |
| 1440 min Winter       | 37.527        | 0.127        | 0.4         | 0.0          | 0.4        | 3.1         | 0 K        |        |
| 2160 min Winter       | 37.463        | 0.063        | 0.4         | 0.0          | 0.4        | 1.5         | 0 K        |        |
| 2880 min Winter       | 37.447        | 0.047        | 0.3         | 0.0          | 0.3        | 1.1         | 0 K        |        |
| 4320 min Winter       | 37.433        | 0.033        | 0.2         | 0.0          | 0.2        | 0.8         | 0 K        |        |
| 5760 min Winter       | 37.427        | 0.027        | 0.2         | 0.0          | 0.2        | 0.6         | 0 K        |        |
| 7200 min Winter       | 37.424        | 0.024        | 0.1         | 0.0          | 0.1        | 0.6         | 0 K        |        |
| 8640 min Winter       | 37.422        | 0.022        | 0.1         | 0.0          | 0.1        | 0.5         | 0 K        |        |
| 10080 min Winter      | 37.420        | 0.020        | 0.1         | 0.0          | 0.1        | 0.5         | 0 K        |        |

| Storm Event           | Rain (mm/hr)  | Flooded Volume (m³) | Discharge Volume (m³) | Overflow Volume (m³) | Time-Peak (mins) |
|-----------------------|---------------|---------------------|-----------------------|----------------------|------------------|
|                       |               | (m³)                | (m³)                  | (m³)                 |                  |
| 15 min Winter         | 147.479       | 0.0                 | 6.2                   | 0.0                  | 18               |
| 30 min Winter         | 95.446        | 0.0                 | 8.0                   | 0.0                  | 32               |
| 60 min Winter         | 58.745        | 0.0                 | 9.9                   | 0.0                  | 62               |
| <b>120 min Winter</b> | <b>34.920</b> | <b>0.0</b>          | <b>11.7</b>           | <b>0.0</b>           | <b>118</b>       |
| 180 min Winter        | 25.425        | 0.0                 | 12.8                  | 0.0                  | 174              |
| 240 min Winter        | 20.187        | 0.0                 | 13.6                  | 0.0                  | 224              |
| 360 min Winter        | 14.563        | 0.0                 | 14.7                  | 0.0                  | 278              |
| 480 min Winter        | 11.546        | 0.0                 | 15.5                  | 0.0                  | 356              |
| 600 min Winter        | 9.638         | 0.0                 | 16.2                  | 0.0                  | 434              |
| 720 min Winter        | 8.311         | 0.0                 | 16.7                  | 0.0                  | 508              |
| 960 min Winter        | 6.576         | 0.0                 | 17.7                  | 0.0                  | 636              |
| 1440 min Winter       | 4.720         | 0.0                 | 19.0                  | 0.0                  | 866              |
| 2160 min Winter       | 3.383         | 0.0                 | 20.5                  | 0.0                  | 1164             |
| 2880 min Winter       | 2.669         | 0.0                 | 21.5                  | 0.0                  | 1500             |
| 4320 min Winter       | 1.909         | 0.0                 | 23.1                  | 0.0                  | 2204             |
| 5760 min Winter       | 1.503         | 0.0                 | 24.2                  | 0.0                  | 2936             |
| 7200 min Winter       | 1.249         | 0.0                 | 25.2                  | 0.0                  | 3656             |
| 8640 min Winter       | 1.073         | 0.0                 | 25.9                  | 0.0                  | 4376             |
| 10080 min Winter      | 0.943         | 0.0                 | 26.6                  | 0.0                  | 5136             |

|                                                   |                                 |                                                                                     |
|---------------------------------------------------|---------------------------------|-------------------------------------------------------------------------------------|
| Easy Flood Risk                                   |                                 | Page 3                                                                              |
| 55 Shepherds Lane<br>Dartford<br>DA1 2NL          |                                 |  |
| Date 14/02/2025 08:23<br>File Blackhorseyard.SRCX | Designed by sheph<br>Checked by |                                                                                     |
| Innovyze                                          | Source Control 2020.1           |                                                                                     |

#### Rainfall Details

|                       |                   |                       |       |
|-----------------------|-------------------|-----------------------|-------|
| Rainfall Model        | FSR               | Winter Storms         | Yes   |
| Return Period (years) | 100               | Cv (Summer)           | 0.750 |
| Region                | England and Wales | Cv (Winter)           | 0.840 |
| M5-60 (mm)            | 20.700            | Shortest Storm (mins) | 15    |
| Ratio R               | 0.433             | Longest Storm (mins)  | 10080 |
| Summer Storms         | Yes               | Climate Change %      | +40   |

#### Time Area Diagram

Total Area (ha) 0.020

**Time (mins) Area**  
**From: To: (ha)**

0 4 0.020

|                          |                       |        |
|--------------------------|-----------------------|--------|
| Easy Flood Risk          |                       | Page 4 |
| 55 Shepherds Lane        |                       |        |
| Dartford                 |                       |        |
| DA1 2NL                  |                       |        |
| Date 14/02/2025 08:23    | Designed by sheph     |        |
| File Blackhorseyard.SRCX | Checked by            |        |
| Innovyze                 | Source Control 2020.1 |        |



### Model Details

Storage is Online Cover Level (m) 38.200

### Tank or Pond Structure

Invert Level (m) 37.400

| Depth (m) | Area (m <sup>2</sup> ) | Depth (m) | Area (m <sup>2</sup> ) |
|-----------|------------------------|-----------|------------------------|
| 0.000     | 24.0                   | 0.400     | 24.0                   |

### Hydro-Brake® Optimum Outflow Control

|                                   |                            |
|-----------------------------------|----------------------------|
| Unit Reference                    | MD-SCL-0033-4000-0400-4000 |
| Design Head (m)                   | 0.400                      |
| Design Flow (l/s)                 | 0.4                        |
| Flush-Flo™                        | Calculated                 |
| Objective                         | Minimise blockage risk     |
| Application                       | Surface                    |
| Sump Available                    | Yes                        |
| Diameter (mm)                     | 33                         |
| Invert Level (m)                  | 37.400                     |
| Minimum Outlet Pipe Diameter (mm) | 75                         |
| Suggested Manhole Diameter (mm)   | 1200                       |

| Control Points            | Head (m) | Flow (l/s) | Control Points            | Head (m) | Flow (l/s) |
|---------------------------|----------|------------|---------------------------|----------|------------|
| Design Point (Calculated) | 0.400    | 0.4        | Kick-Flo®                 | 0.260    | 0.3        |
| Flush-Flo™                | 0.117    | 0.4        | Mean Flow over Head Range | -        | 0.4        |

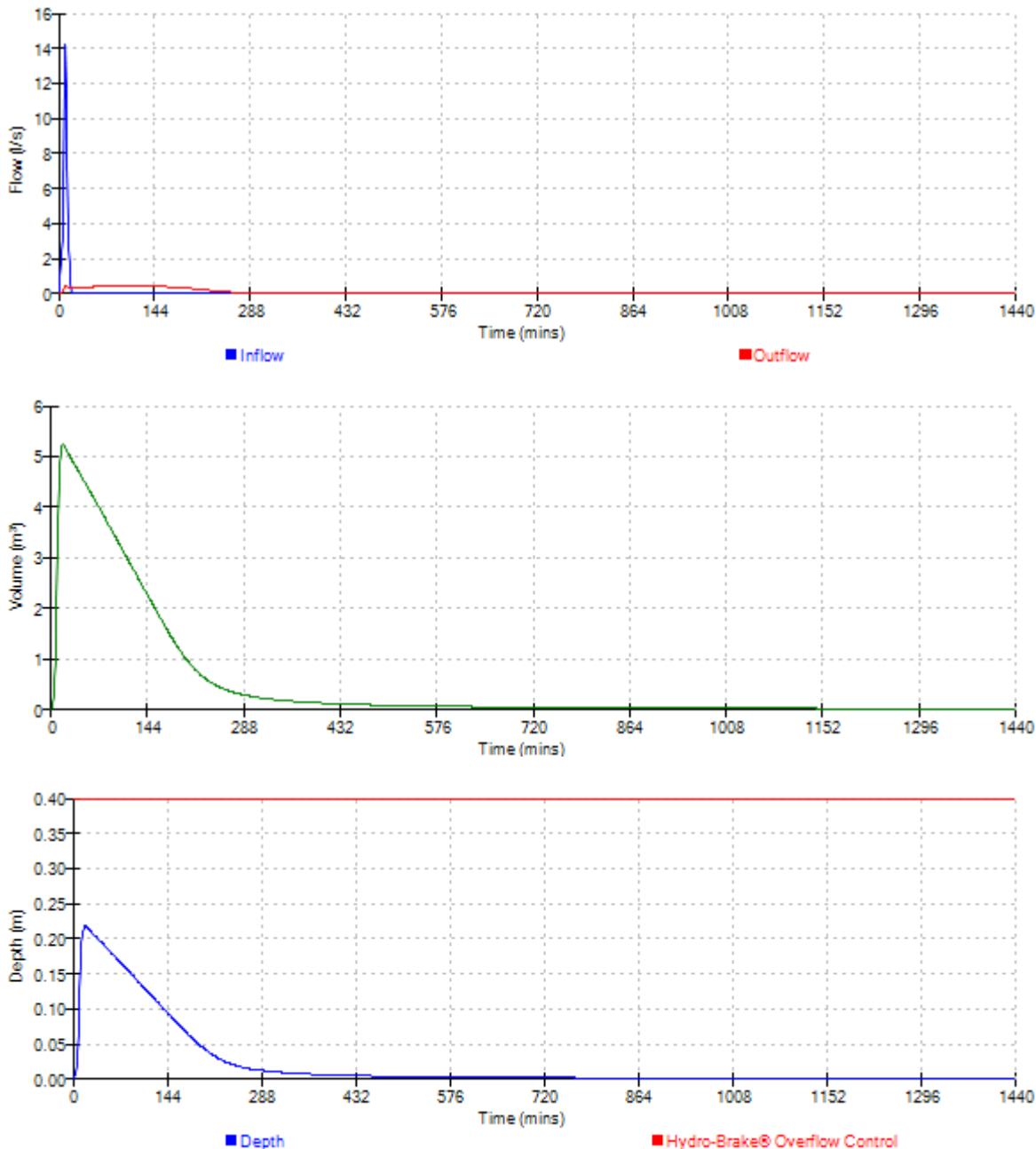
The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

| Depth (m) | Flow (l/s) |
|-----------|------------|-----------|------------|-----------|------------|-----------|------------|
| 0.100     | 0.4        | 1.200     | 0.6        | 3.000     | 1.0        | 7.000     | 1.4        |
| 0.200     | 0.4        | 1.400     | 0.7        | 3.500     | 1.0        | 7.500     | 1.5        |
| 0.300     | 0.4        | 1.600     | 0.7        | 4.000     | 1.1        | 8.000     | 1.5        |
| 0.400     | 0.4        | 1.800     | 0.8        | 4.500     | 1.2        | 8.500     | 1.6        |
| 0.500     | 0.4        | 2.000     | 0.8        | 5.000     | 1.2        | 9.000     | 1.6        |
| 0.600     | 0.5        | 2.200     | 0.8        | 5.500     | 1.3        | 9.500     | 1.7        |
| 0.800     | 0.5        | 2.400     | 0.9        | 6.000     | 1.3        |           |            |
| 1.000     | 0.6        | 2.600     | 0.9        | 6.500     | 1.4        |           |            |

|                          |                       |        |
|--------------------------|-----------------------|--------|
| Easy Flood Risk          |                       | Page 5 |
| 55 Shepherds Lane        |                       |        |
| Dartford                 |                       |        |
| DA1 2NL                  |                       |        |
| Date 14/02/2025 08:23    | Designed by sheph     |        |
| File Blackhorseyard.SRCX | Checked by            |        |
| Innovyze                 | Source Control 2020.1 |        |



### Hydro-Brake® Optimum Overflow Control

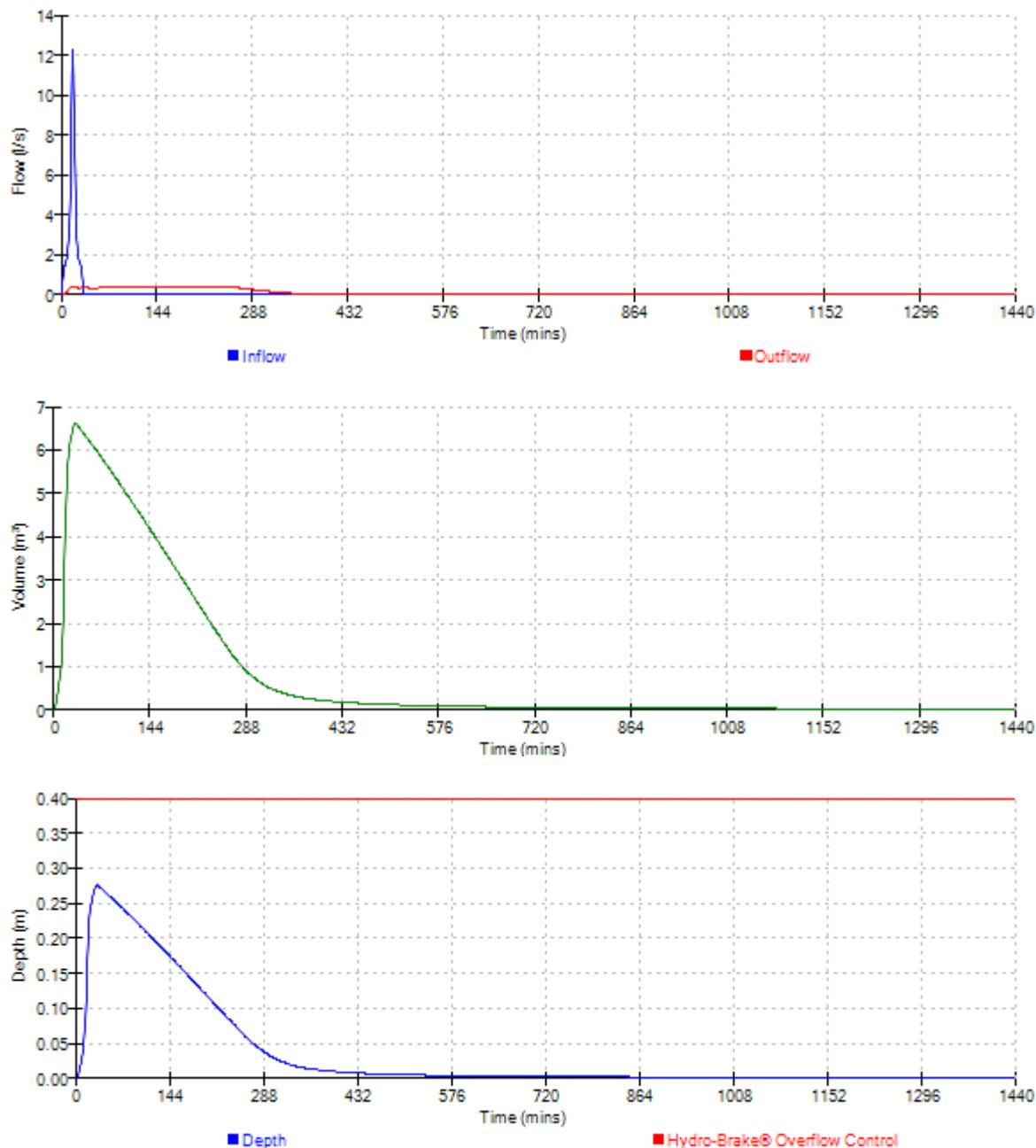

|                                           |                        |  |
|-------------------------------------------|------------------------|--|
| Unit Reference MD-SCL-0033-4000-0400-4000 |                        |  |
| Design Head (m)                           | 0.400                  |  |
| Design Flow (l/s)                         | 0.4                    |  |
| Flush-Flo™                                | Calculated             |  |
| Objective                                 | Minimise blockage risk |  |
| Application                               | Surface                |  |
| Sump Available                            | Yes                    |  |
| Diameter (mm)                             | 33                     |  |
| Invert Level (m)                          | 37.800                 |  |
| Minimum Outlet Pipe Diameter (mm)         | 75                     |  |
| Suggested Manhole Diameter (mm)           | 1200                   |  |

| Control Points            | Head (m) | Flow (l/s) | Control Points            | Head (m) | Flow (l/s) |
|---------------------------|----------|------------|---------------------------|----------|------------|
| Design Point (Calculated) | 0.400    | 0.4        | Kick-Flo®                 | 0.260    | 0.3        |
| Flush-Flo™                | 0.117    | 0.4        | Mean Flow over Head Range | -        | 0.4        |

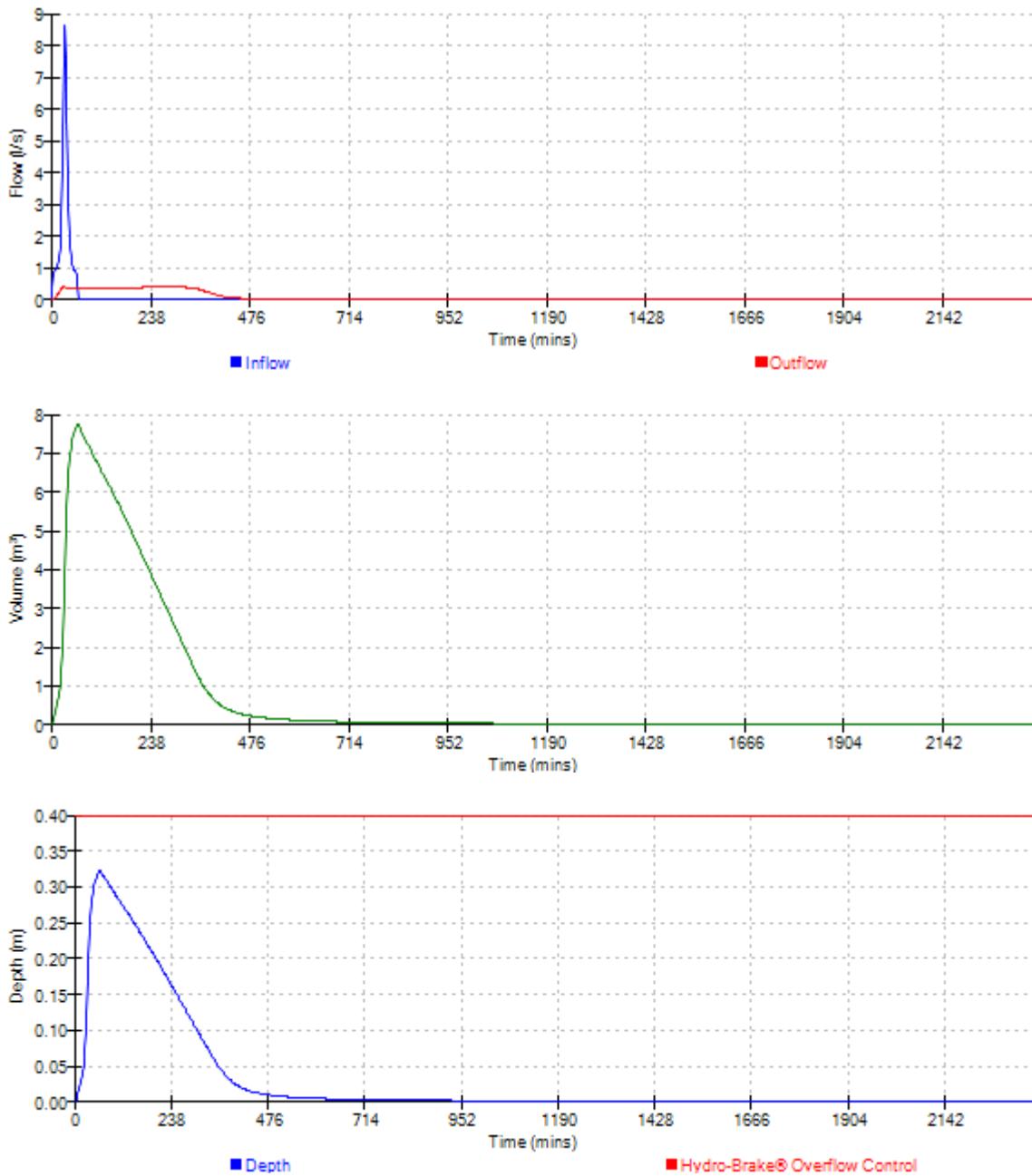
The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

| Depth (m) | Flow (l/s) |
|-----------|------------|-----------|------------|-----------|------------|-----------|------------|
| 0.100     | 0.4        | 1.200     | 0.6        | 3.000     | 1.0        | 7.000     | 1.4        |
| 0.200     | 0.4        | 1.400     | 0.7        | 3.500     | 1.0        | 7.500     | 1.5        |
| 0.300     | 0.4        | 1.600     | 0.7        | 4.000     | 1.1        | 8.000     | 1.5        |
| 0.400     | 0.4        | 1.800     | 0.8        | 4.500     | 1.2        | 8.500     | 1.6        |
| 0.500     | 0.4        | 2.000     | 0.8        | 5.000     | 1.2        | 9.000     | 1.6        |
| 0.600     | 0.5        | 2.200     | 0.8        | 5.500     | 1.3        | 9.500     | 1.7        |
| 0.800     | 0.5        | 2.400     | 0.9        | 6.000     | 1.3        |           |            |
| 1.000     | 0.6        | 2.600     | 0.9        | 6.500     | 1.4        |           |            |

Event: 15 min Summer




Easy Flood Risk  
 55 Shepherds Lane  
 Dartford  
 DA1 2NL  
 Date 14/02/2025 08:23  
 File Blackhorseyard.SRCX  
 Innovyze


Designed by sheph  
 Checked by  
 Source Control 2020.1

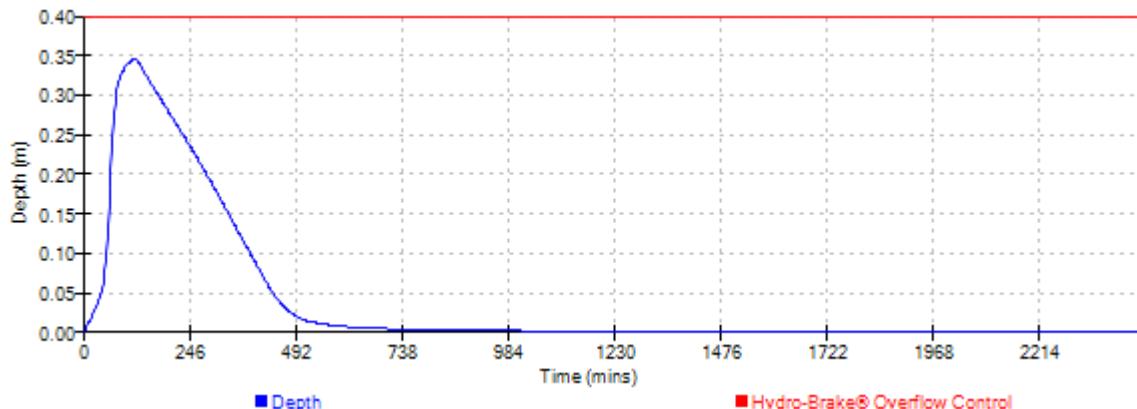
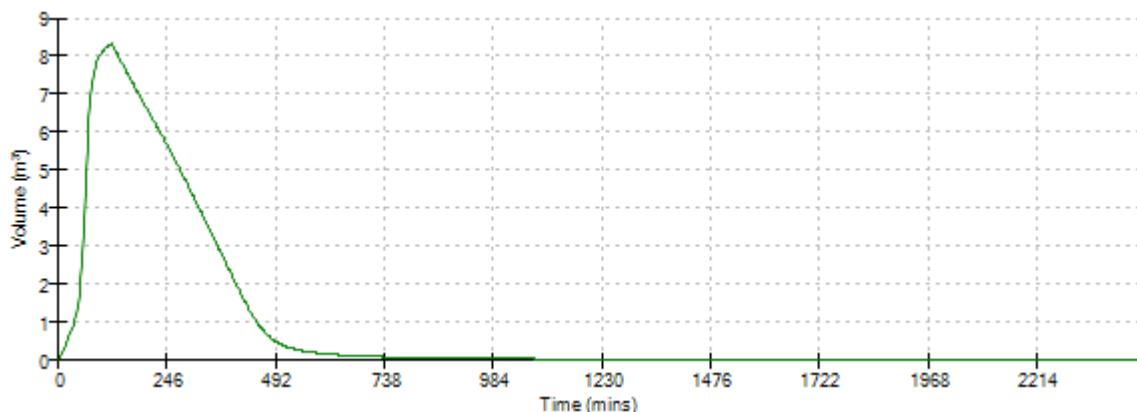
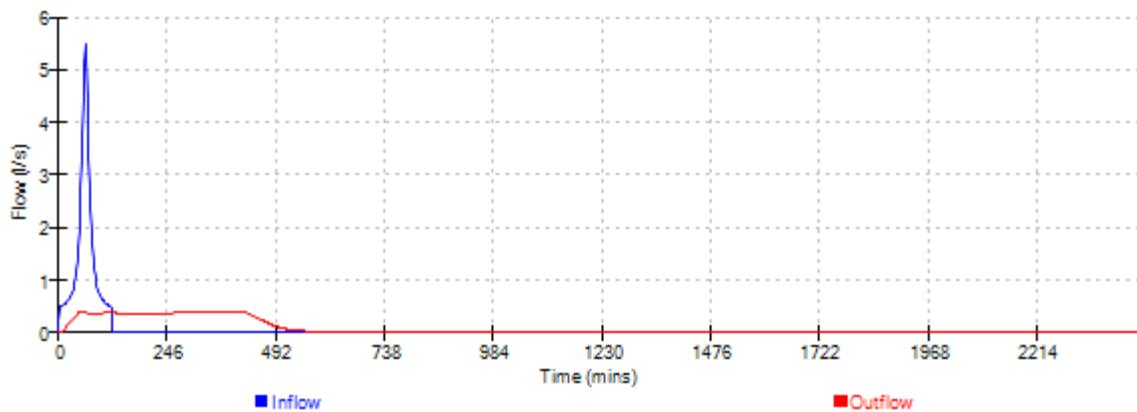


Event: 30 min Summer



Event: 60 min Summer






Easy Flood Risk  
 55 Shepherds Lane  
 Dartford  
 DA1 2NL  
 Date 14/02/2025 08:23  
 File Blackhorseyard.SRCX  
 Innovyze

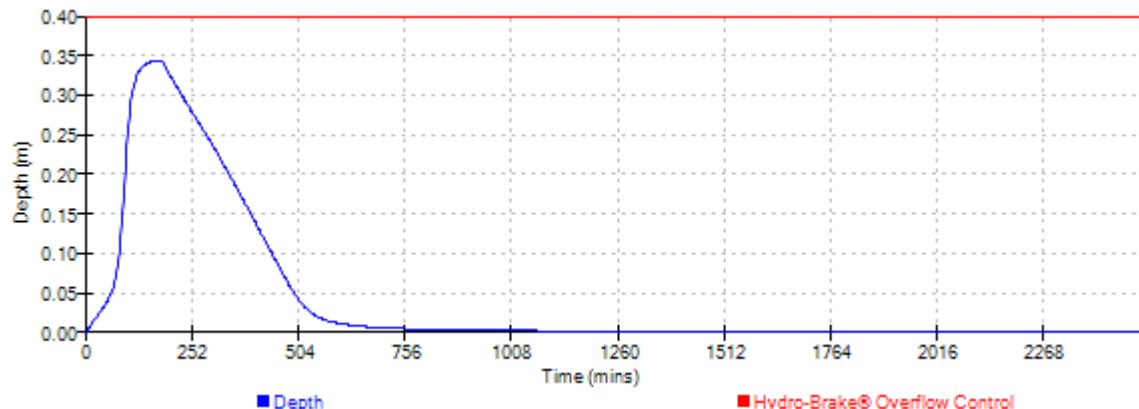
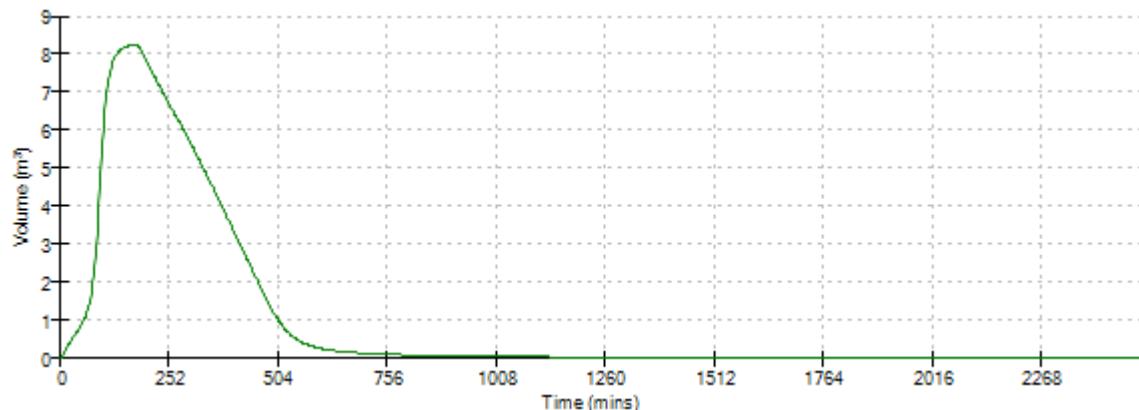
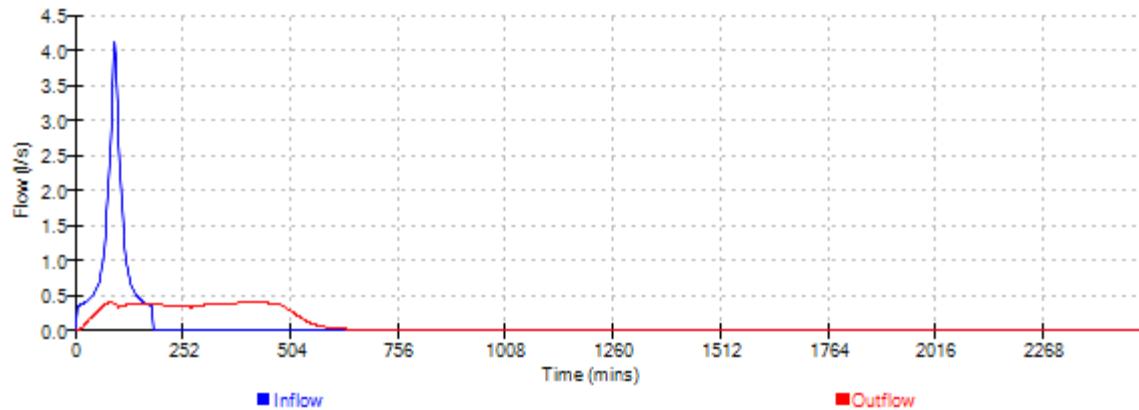
Designed by sheph  
 Checked by  
 Source Control 2020.1

Page 9



Event: 120 min Summer



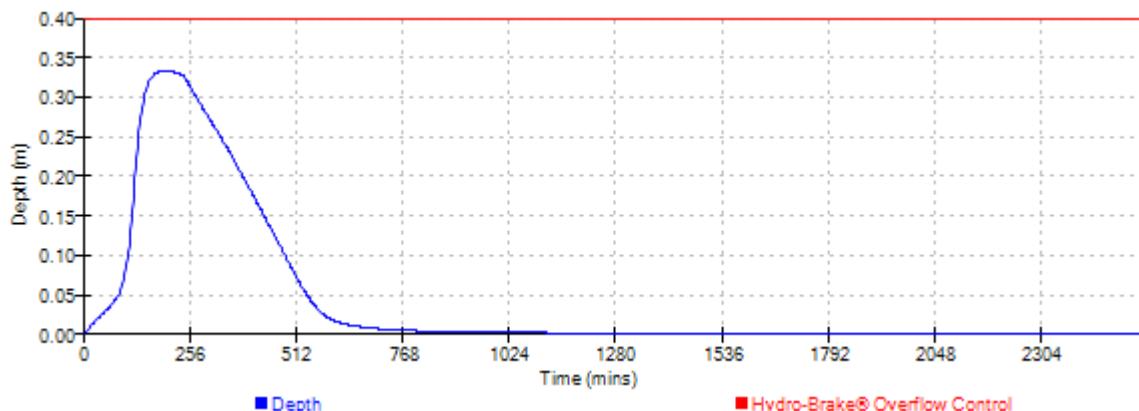
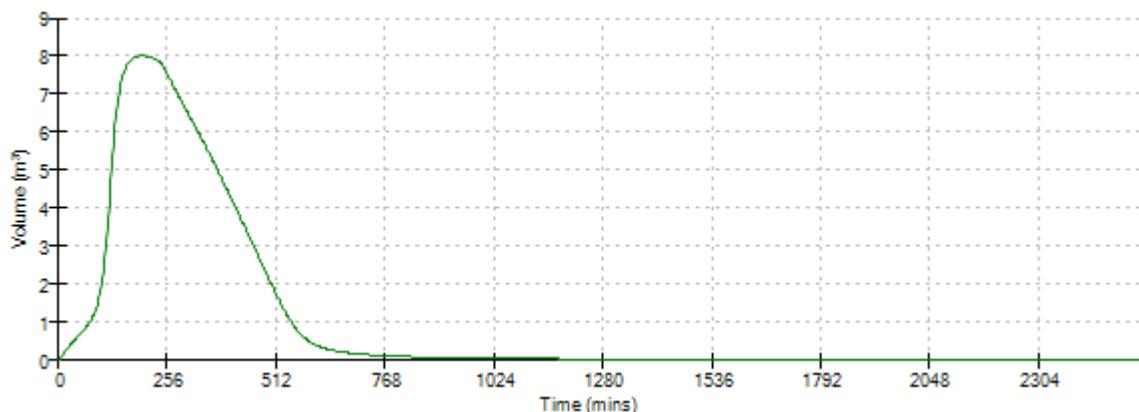
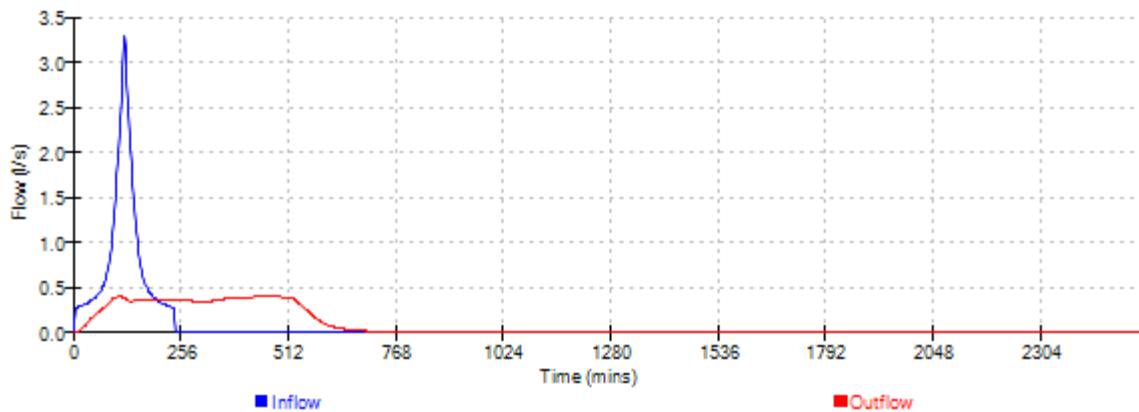



Easy Flood Risk  
 55 Shepherds Lane  
 Dartford  
 DA1 2NL  
 Date 14/02/2025 08:23  
 File Blackhorseyard.SRCX  
 Innovyze

Designed by sheph  
 Checked by  
 Source Control 2020.1

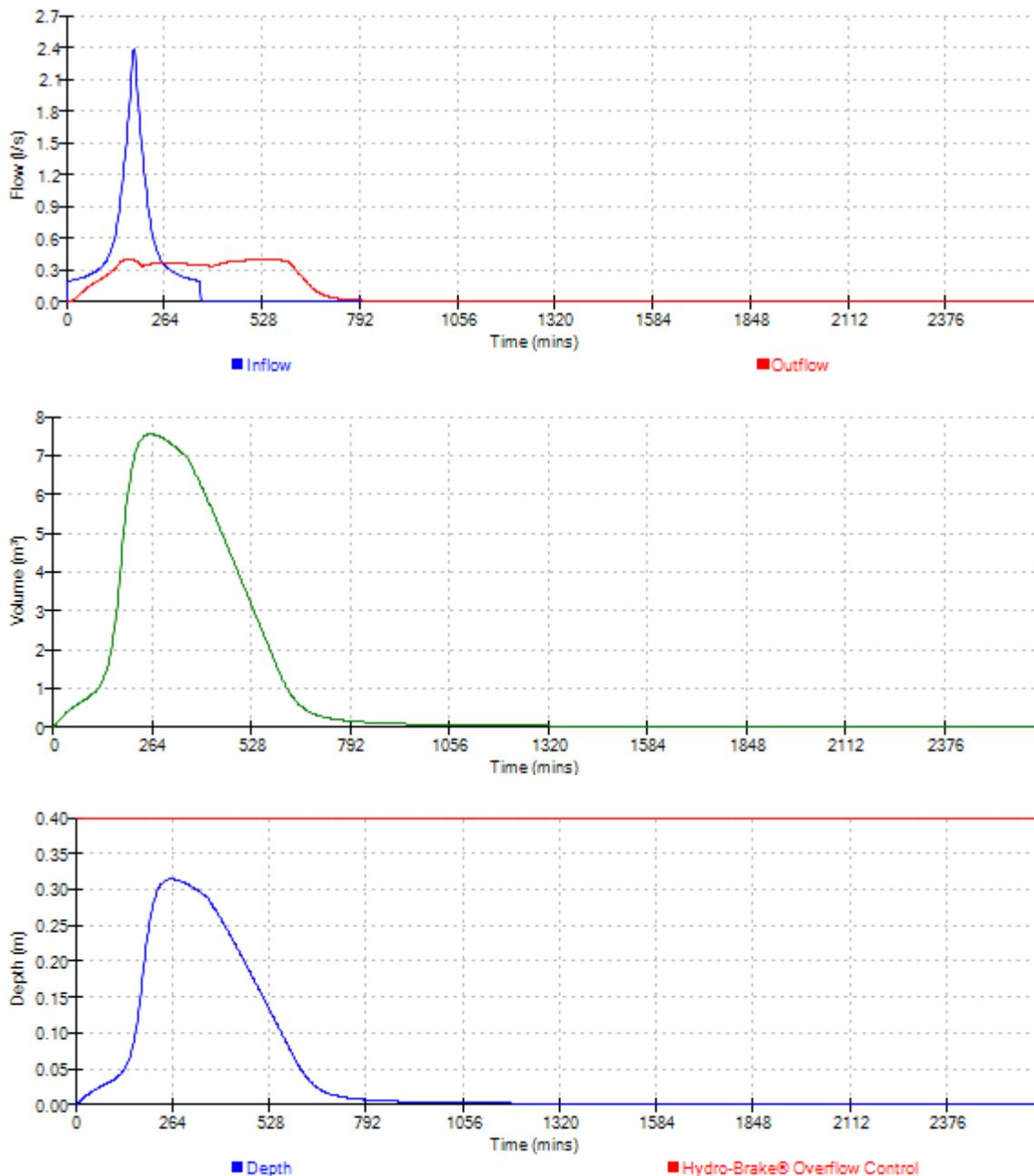
Page 10



Event: 180 min Summer


Easy Flood Risk  
 55 Shepherds Lane  
 Dartford  
 DA1 2NL  
 Date 14/02/2025 08:23  
 File Blackhorseyard.SRCX  
 Innovyze


Designed by sheph  
 Checked by  
 Source Control 2020.1

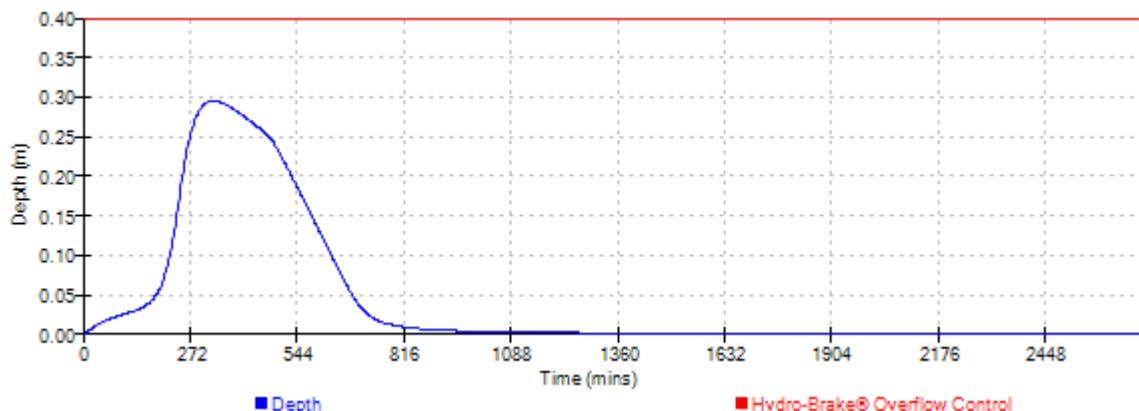
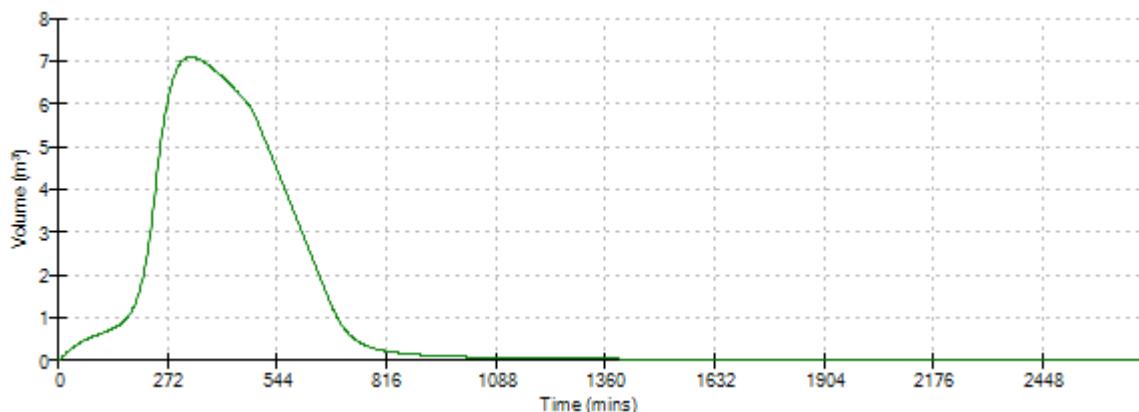
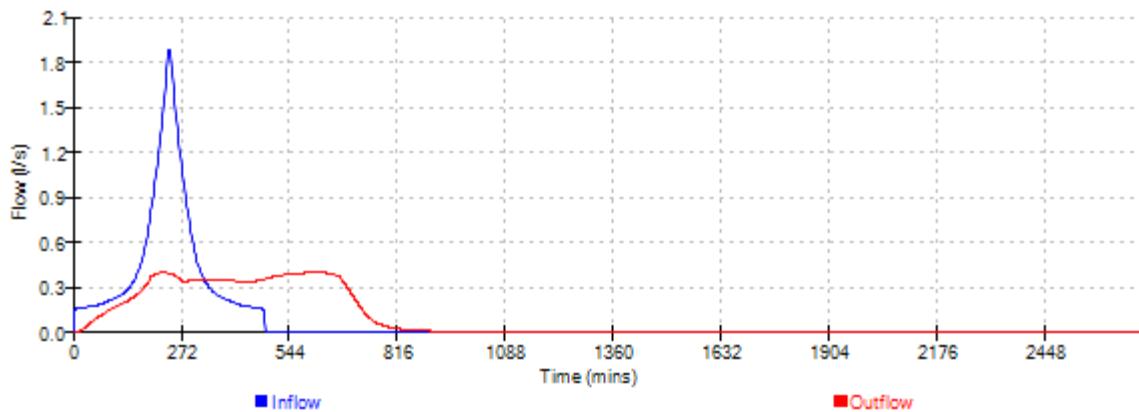


Event: 240 min Summer



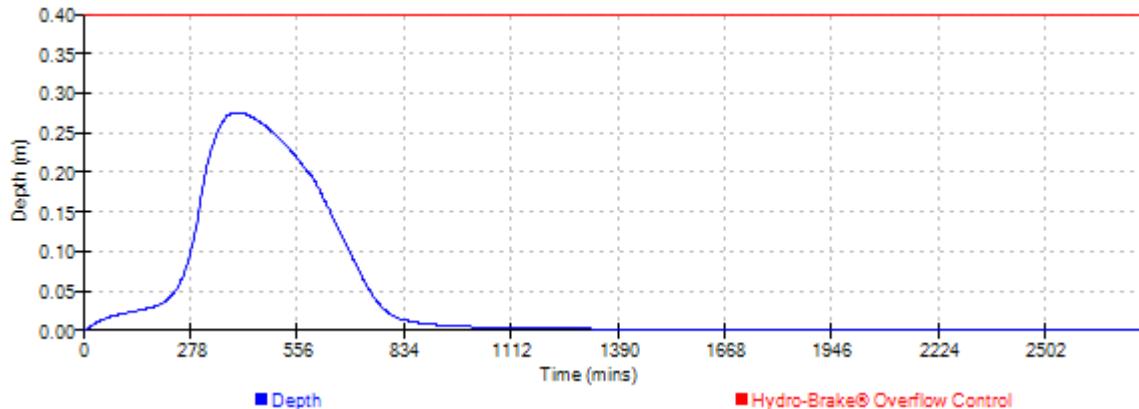
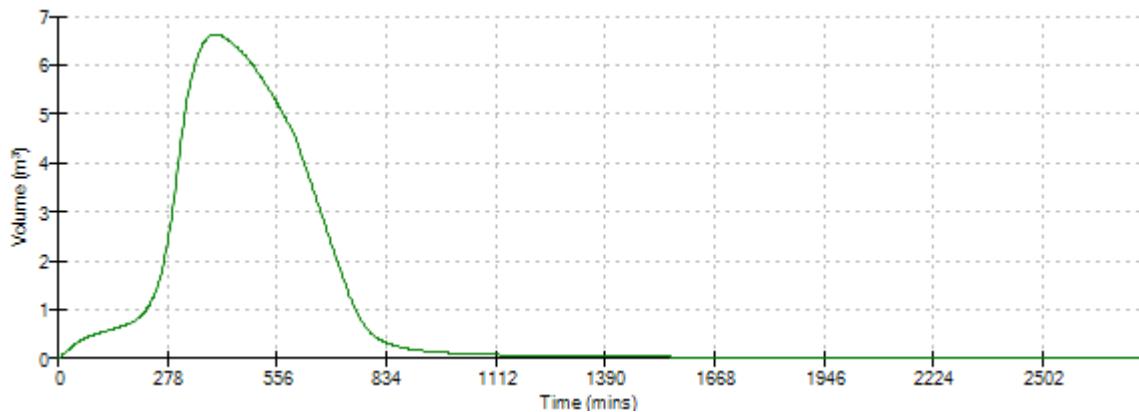
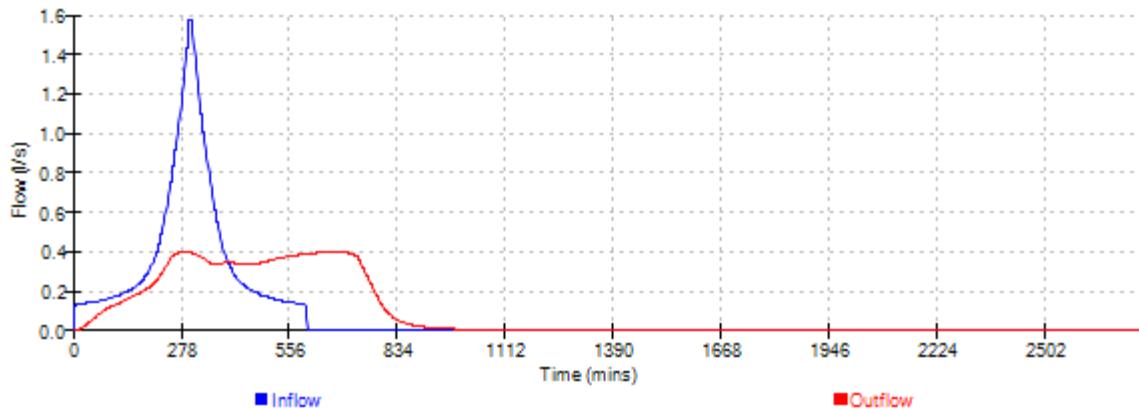
Event: 360 min Summer



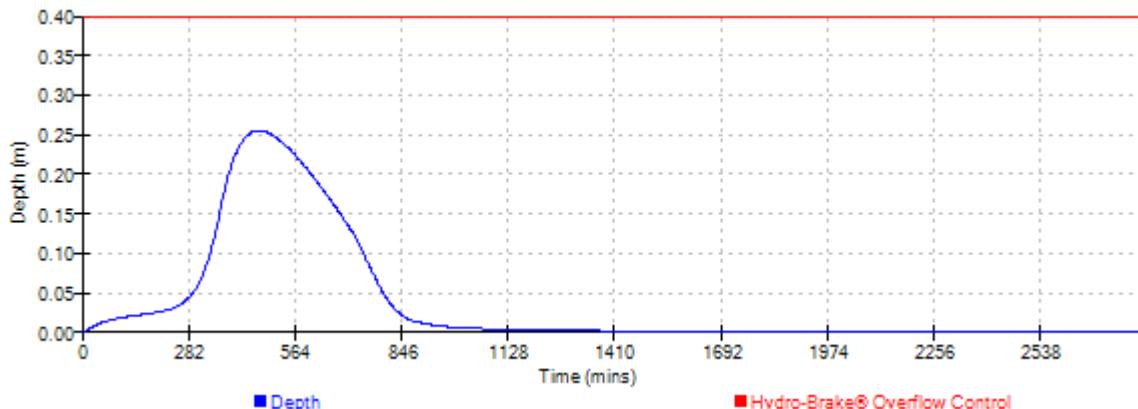
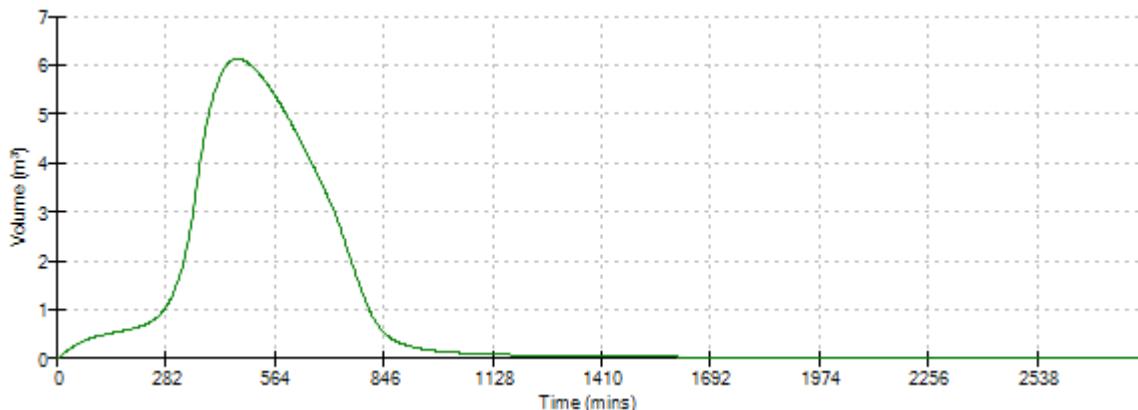
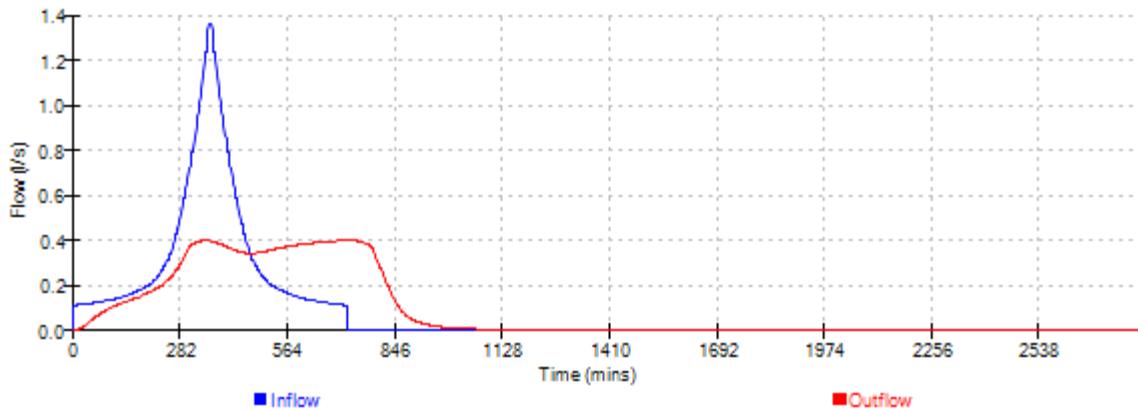



Easy Flood Risk  
 55 Shepherds Lane  
 Dartford  
 DA1 2NL  
 Date 14/02/2025 08:23  
 File Blackhorseyard.SRCX  
 Innovyze

Designed by sheph  
 Checked by  
 Source Control 2020.1

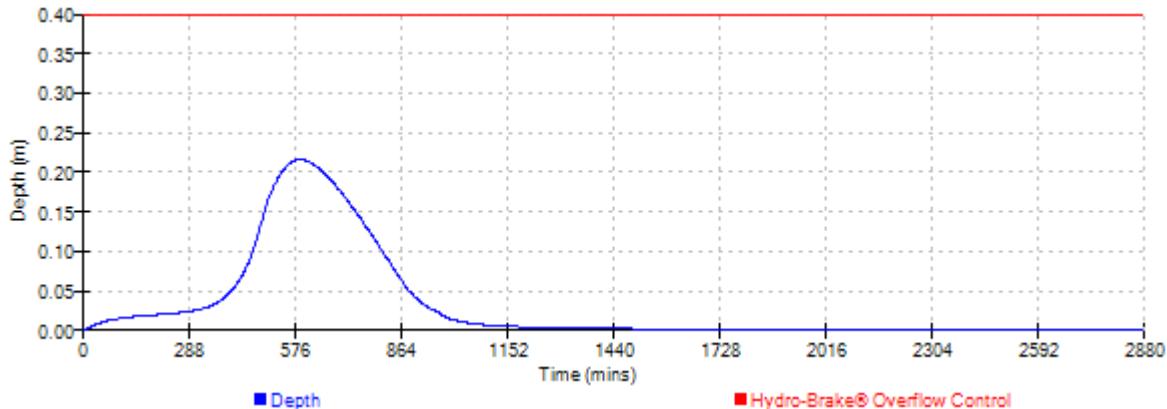
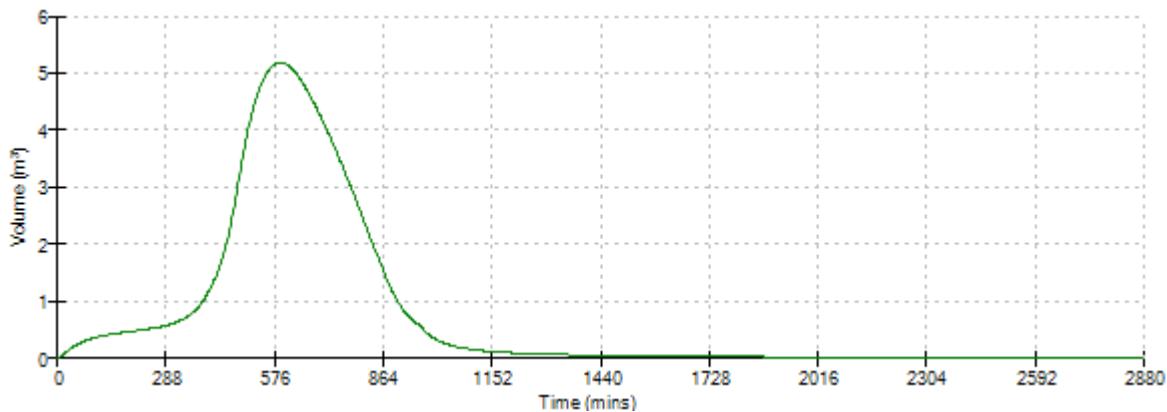
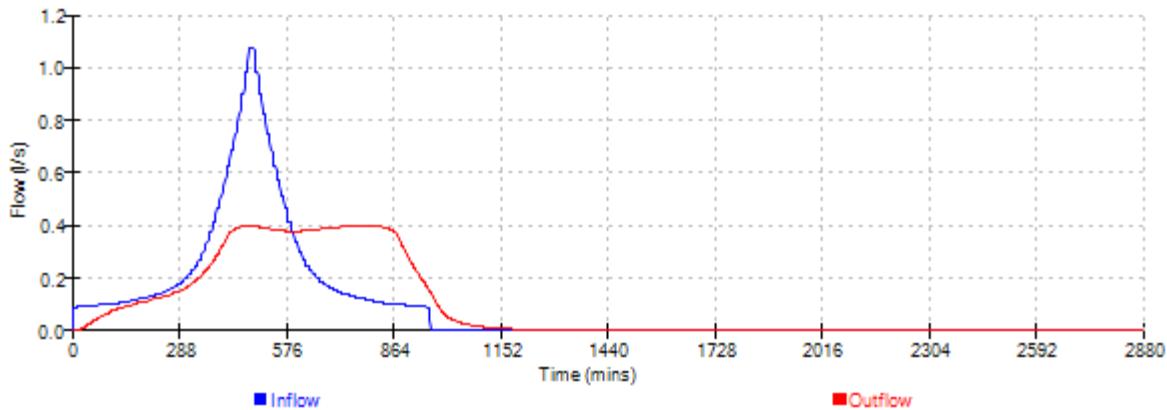
Page 13

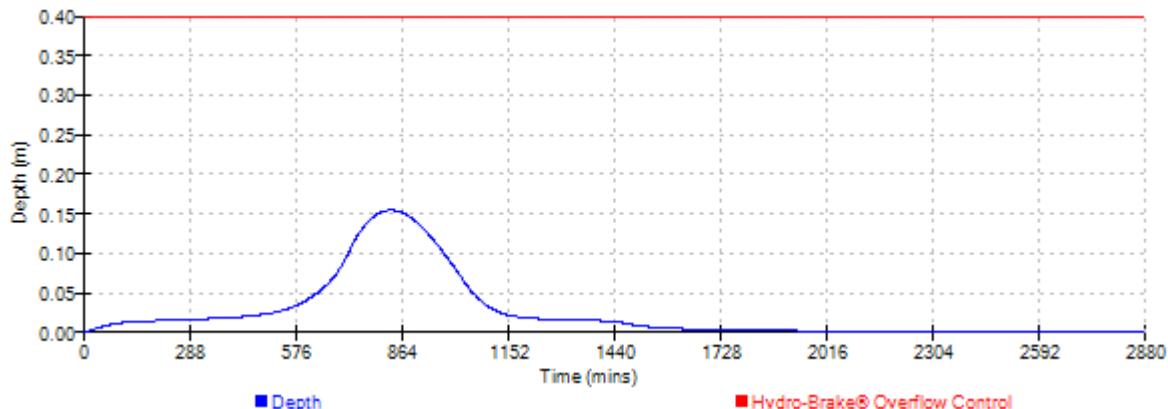
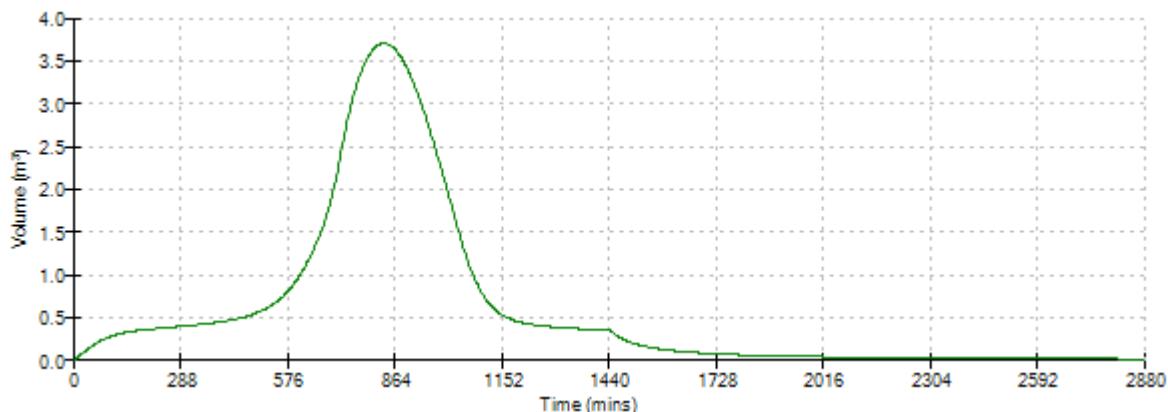
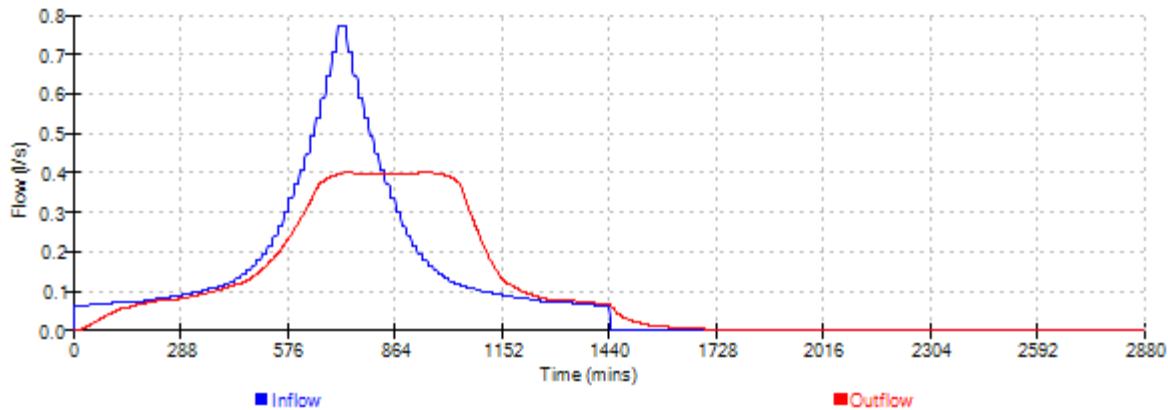

Event: 480 min Summer

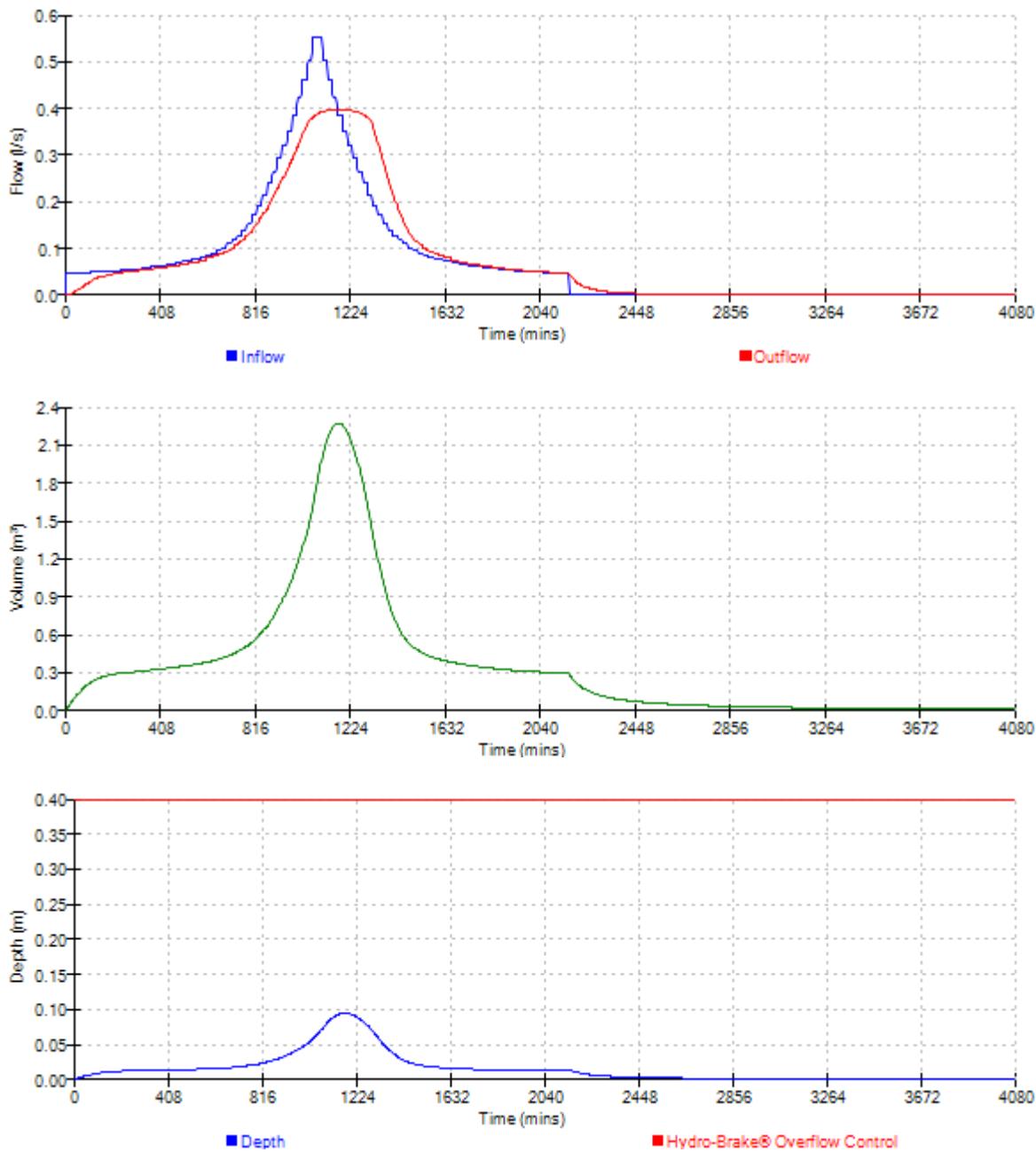






Event: 600 min Summer

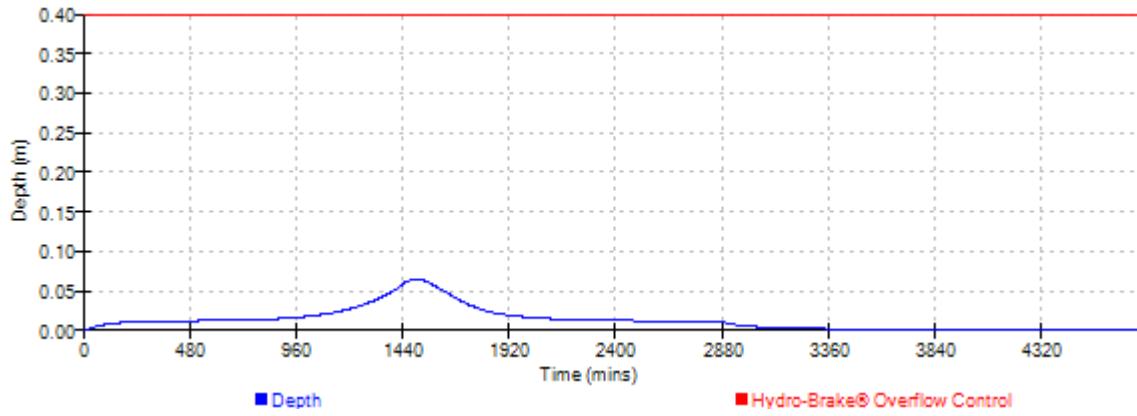
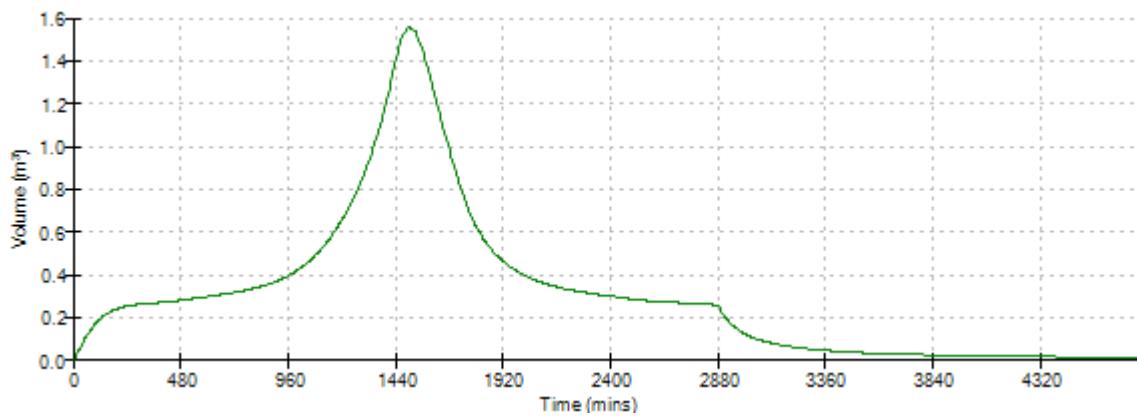
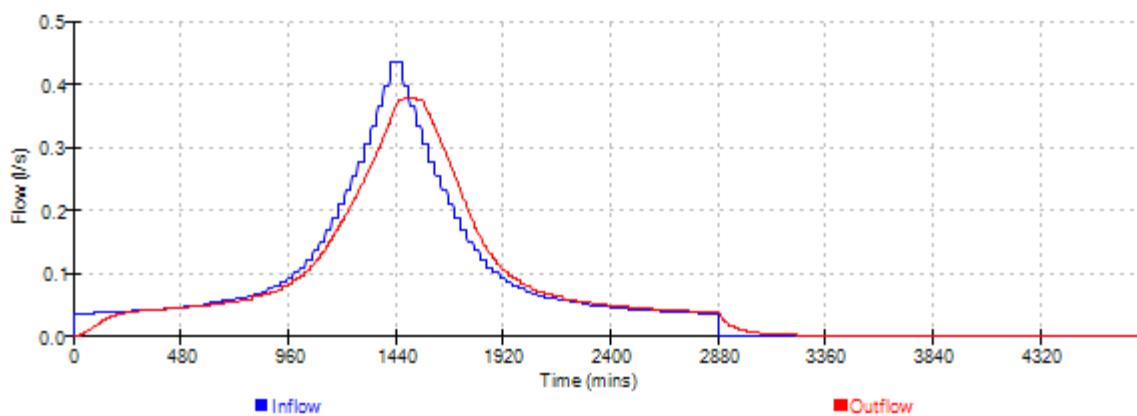





Event: 720 min Summer




Event: 960 min Summer






Event: 1440 min Summer

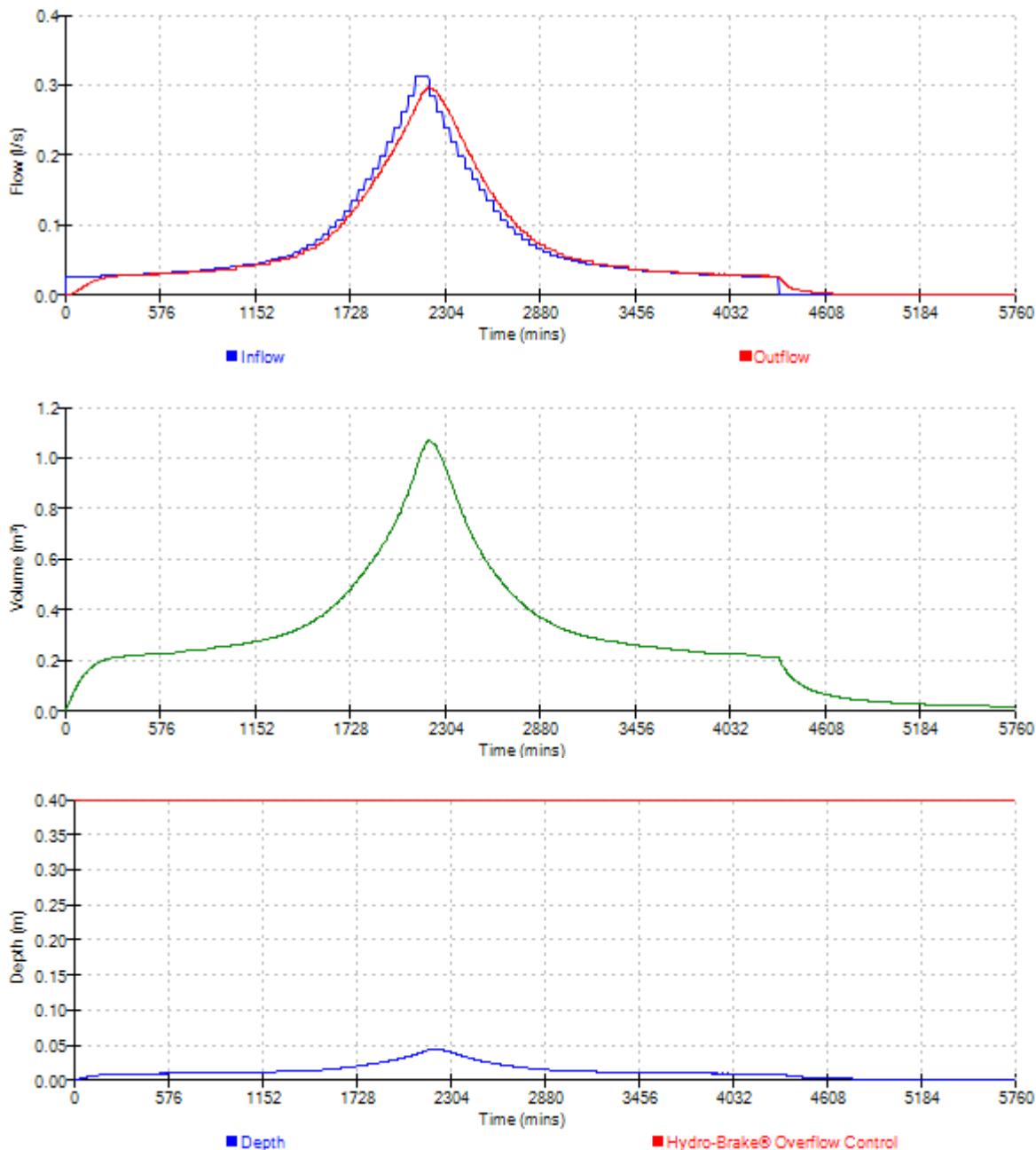


Event: 2160 min Summer

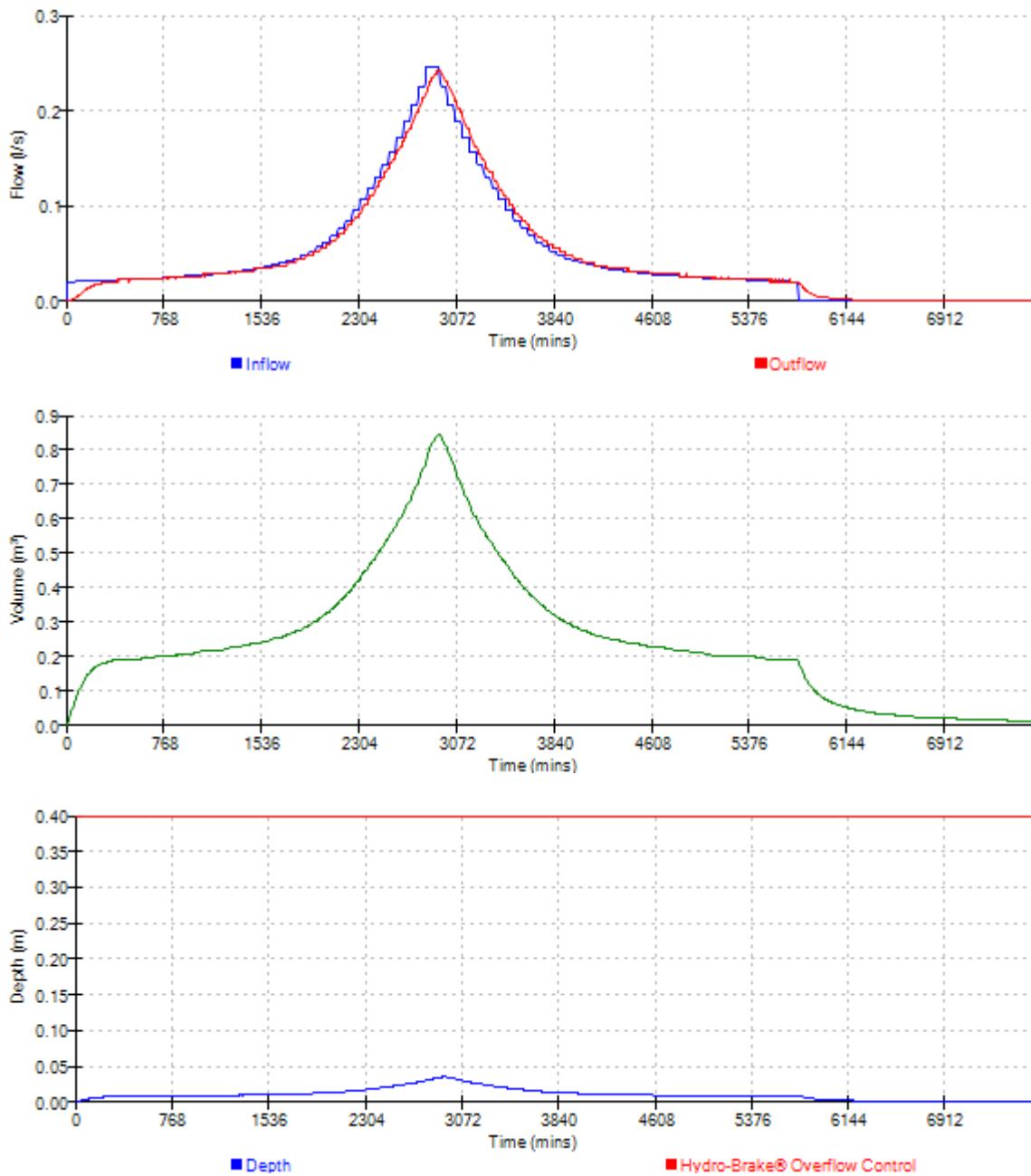


Event: 2880 min Summer

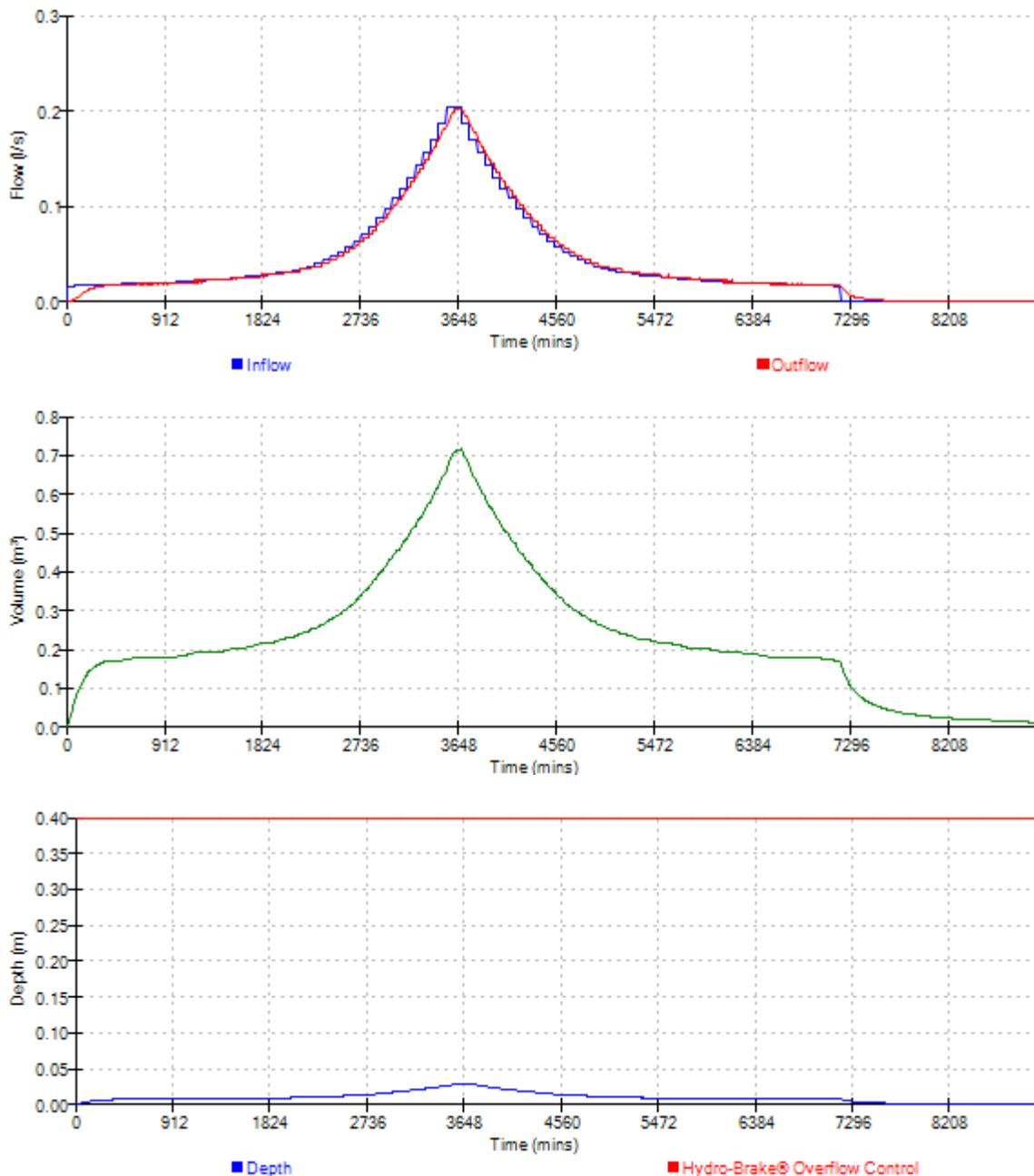



Easy Flood Risk  
 55 Shepherds Lane  
 Dartford  
 DA1 2NL  
 Date 14/02/2025 08:23  
 File Blackhorseyard.SRCX  
 Innovyze

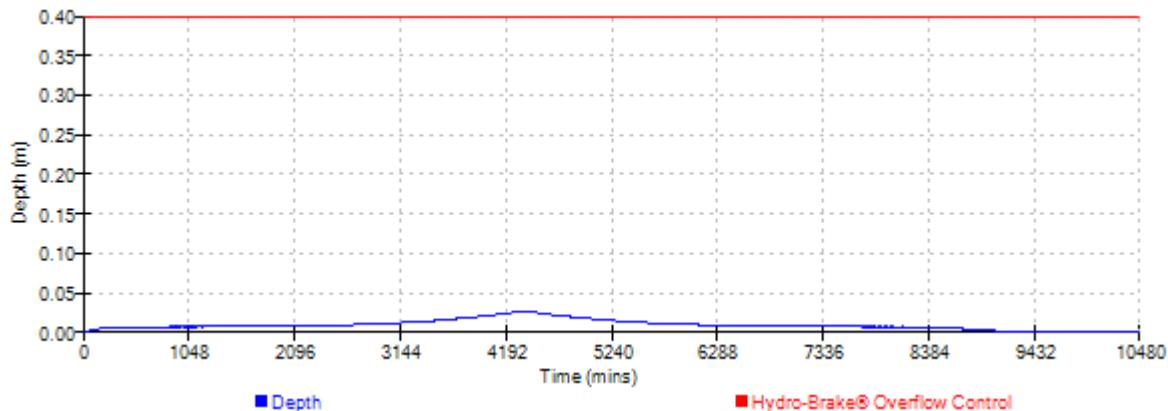
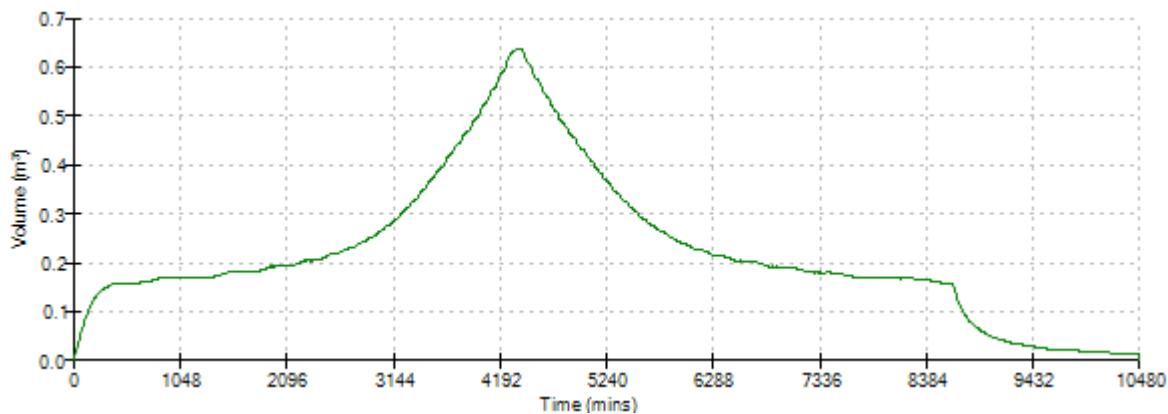
Designed by sheph  
 Checked by  
 Source Control 2020.1


Page 20



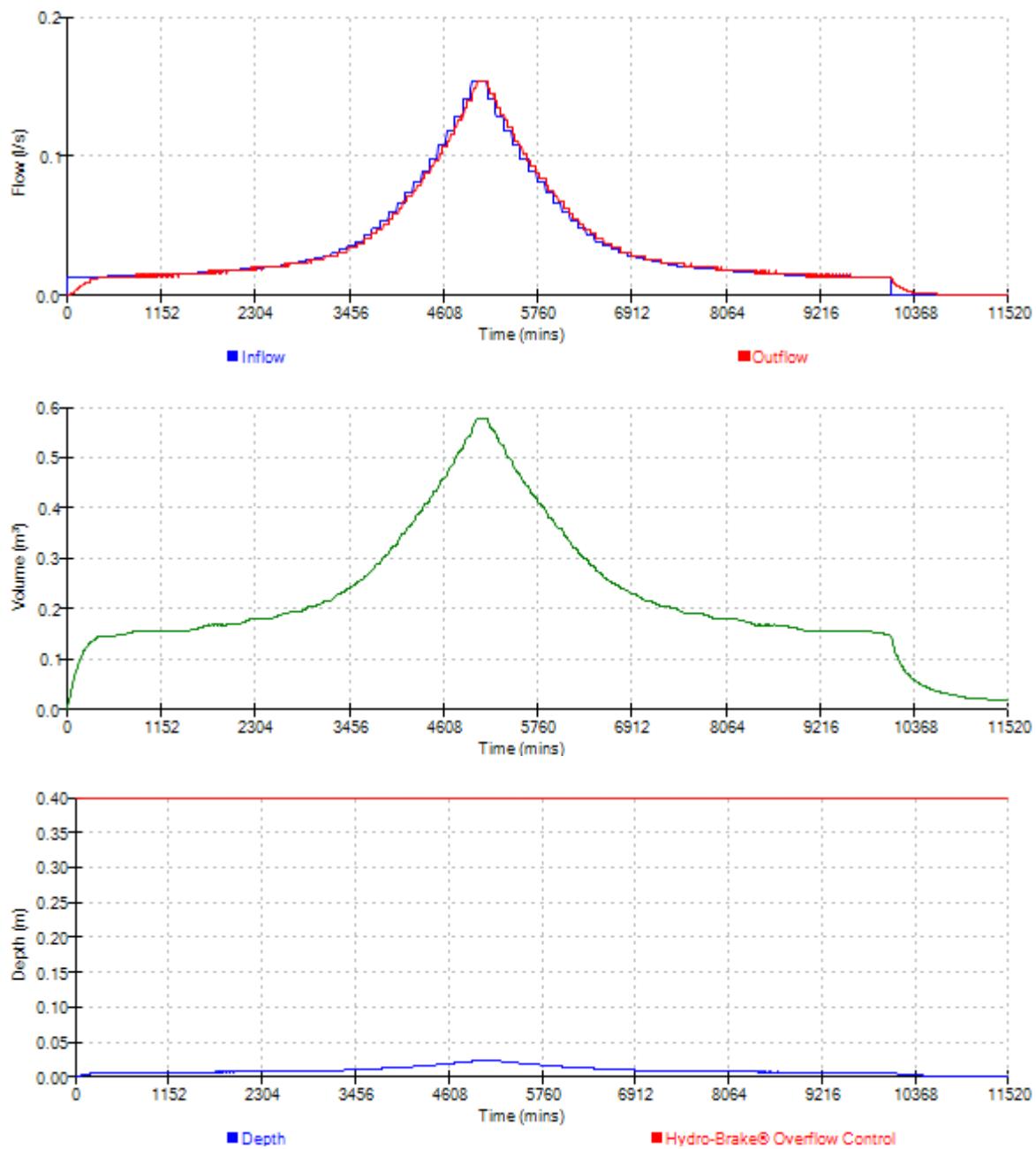

Event: 4320 min Summer



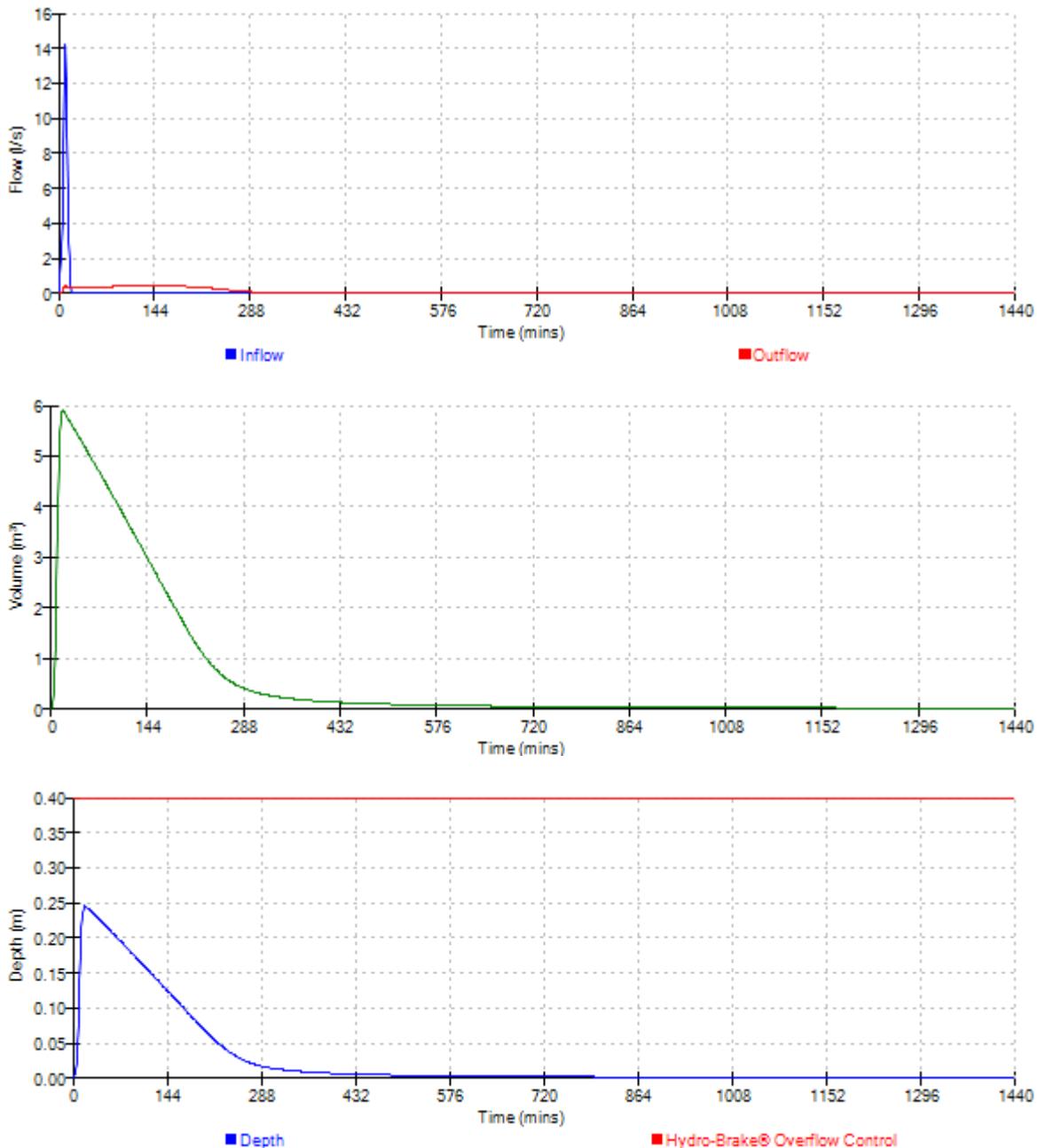



Event: 5760 min Summer

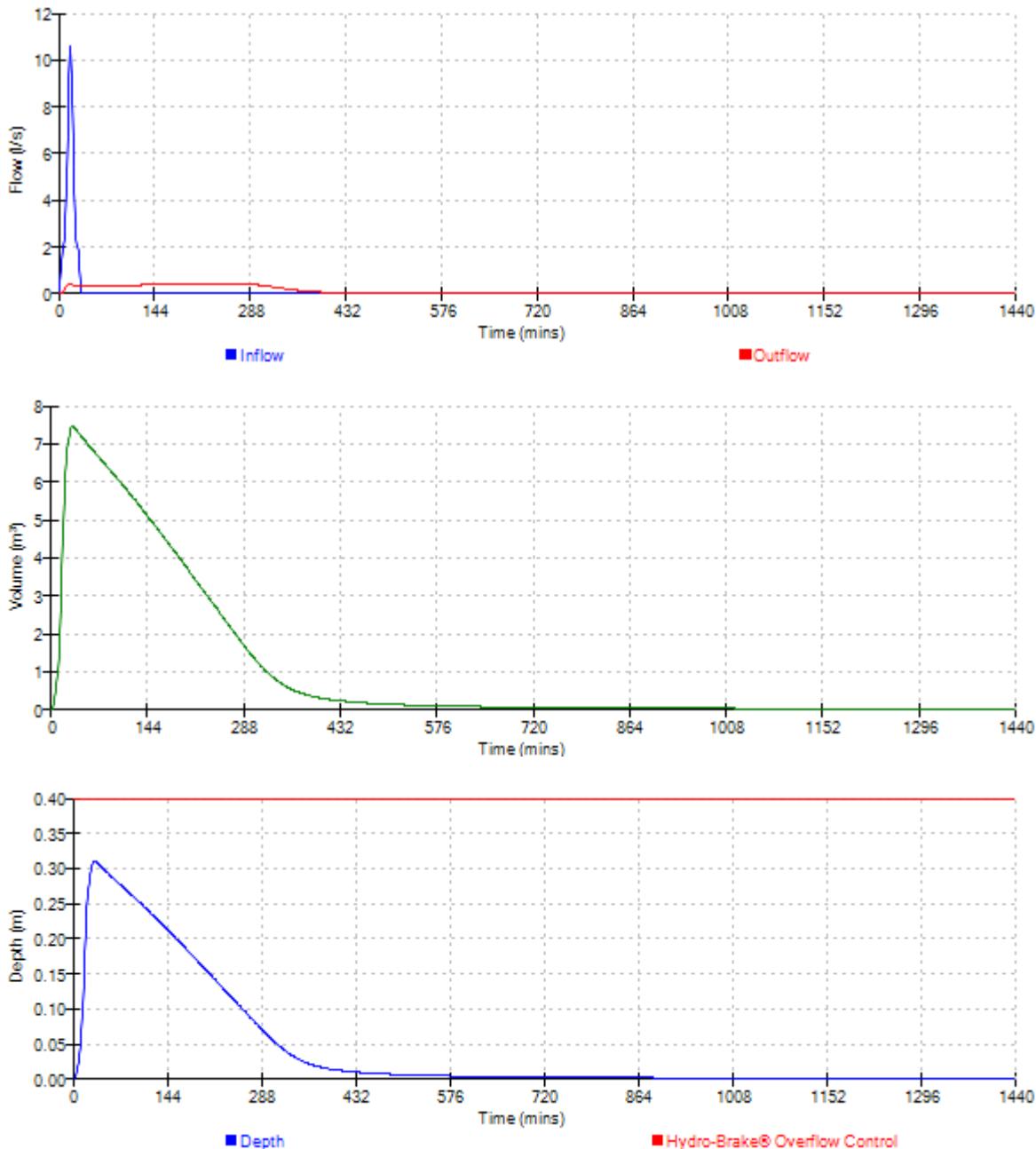



Event: 7200 min Summer




Event: 8640 min Summer




Event: 10080 min Summer

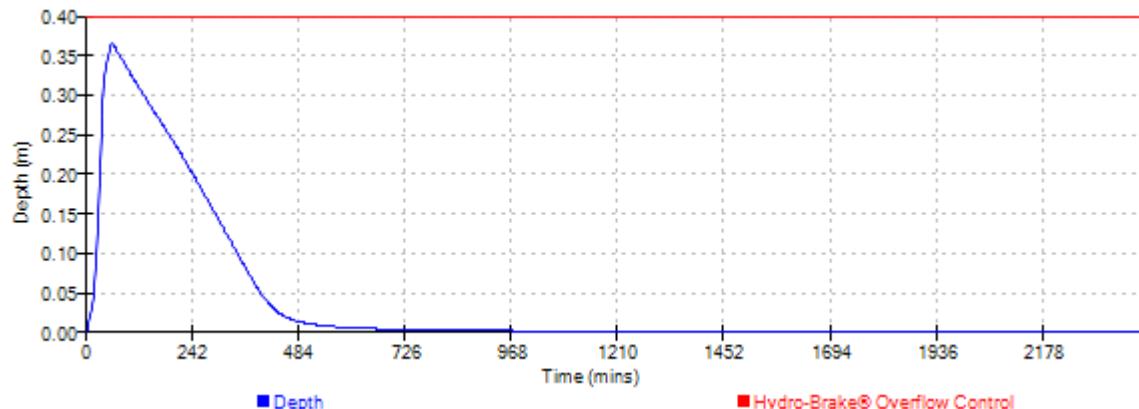
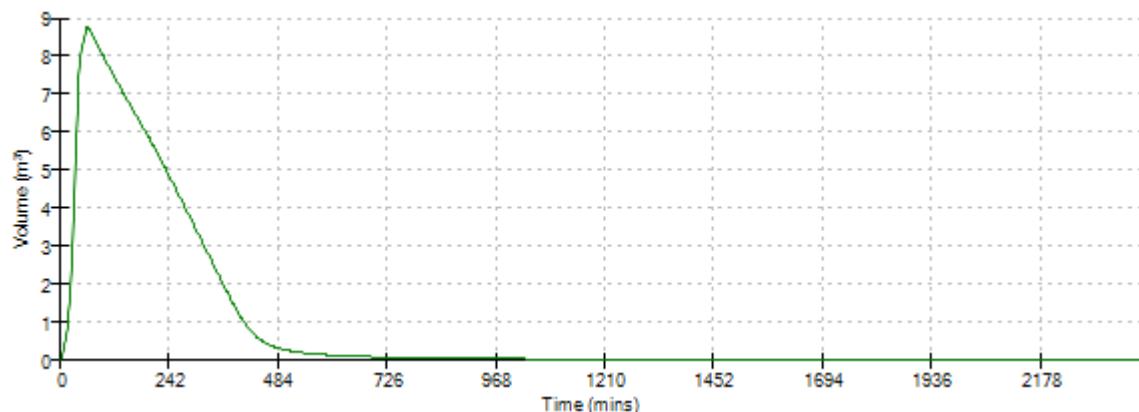
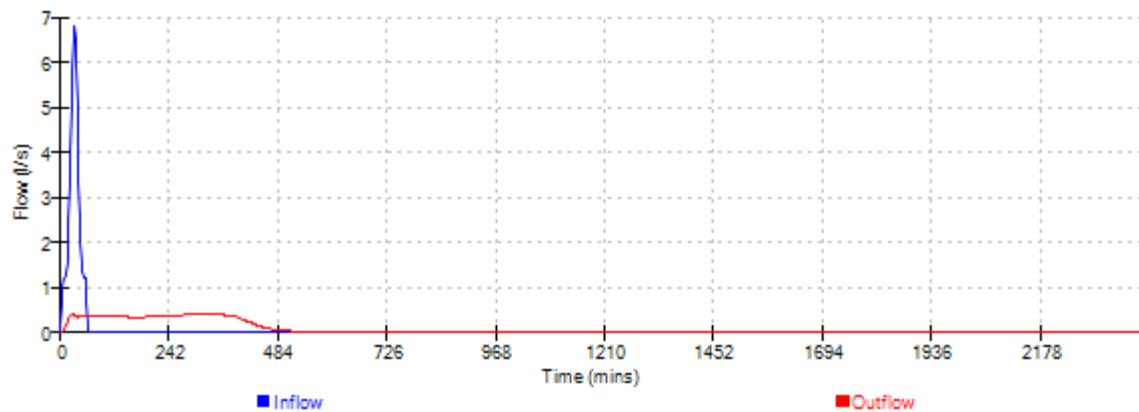


Event: 15 min Winter



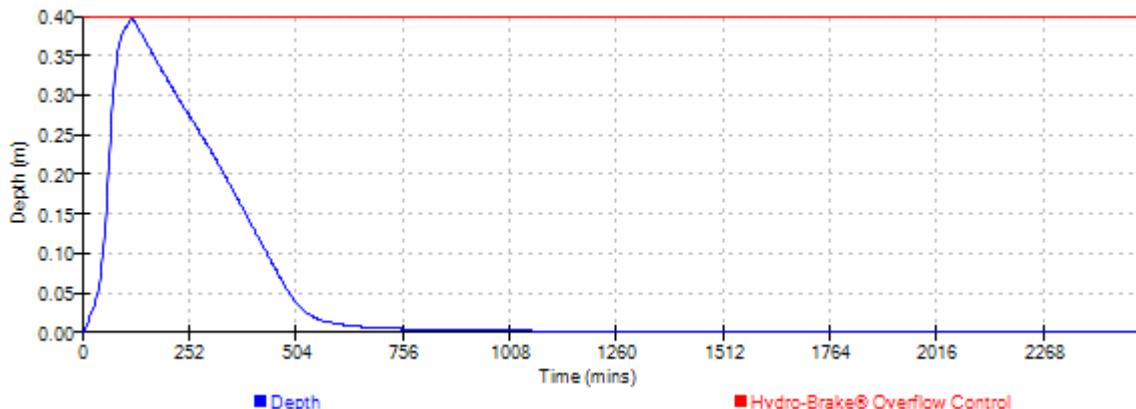
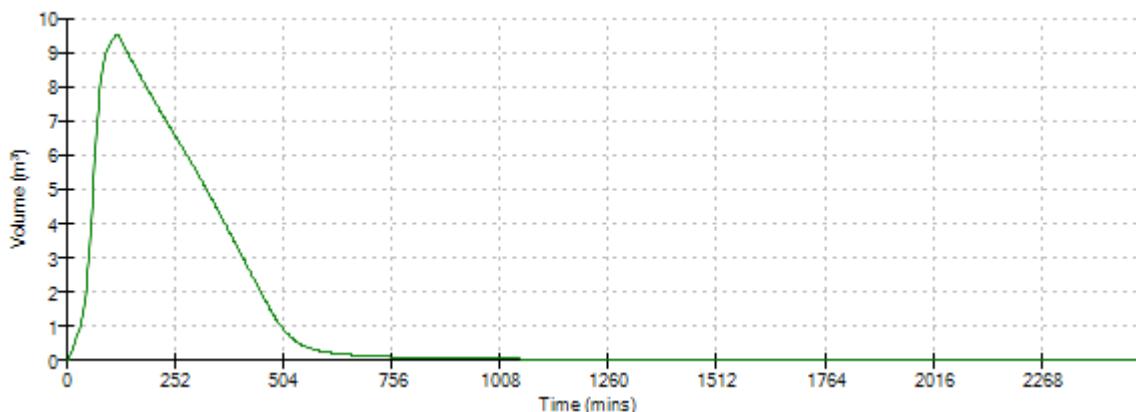
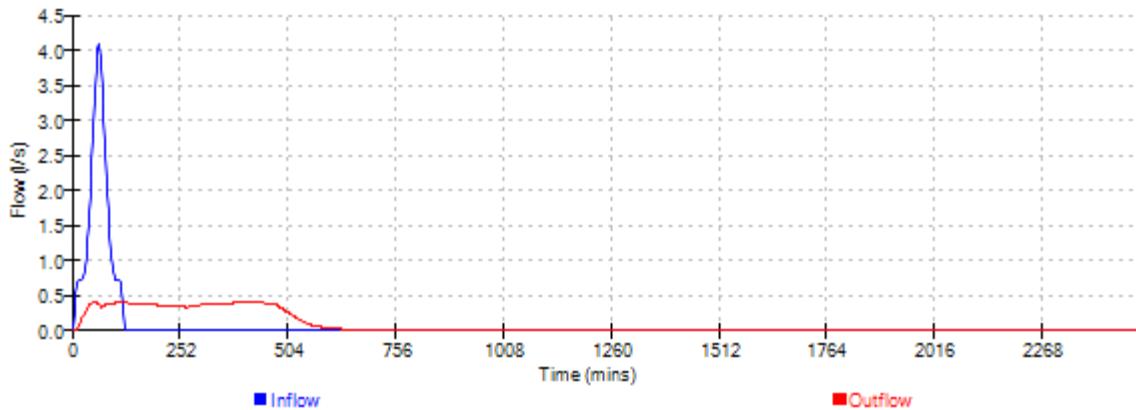
Event: 30 min Winter






Easy Flood Risk  
 55 Shepherds Lane  
 Dartford  
 DA1 2NL  
 Date 14/02/2025 08:23  
 File Blackhorseyard.SRCX  
 Innovyze

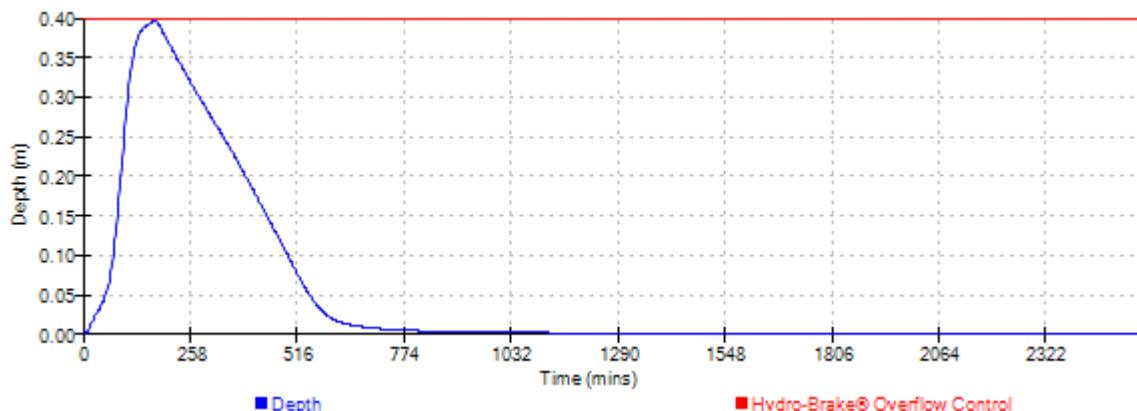
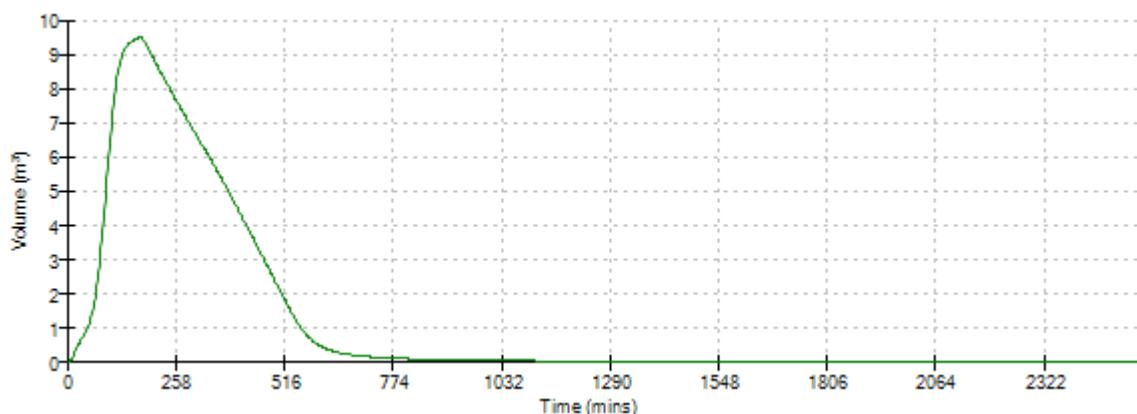
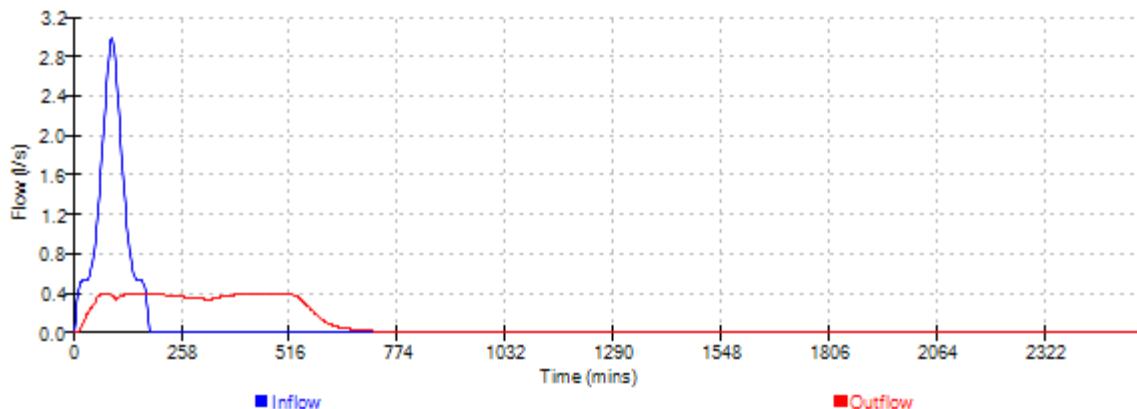
Designed by sheph  
 Checked by  
 Source Control 2020.1

Page 27

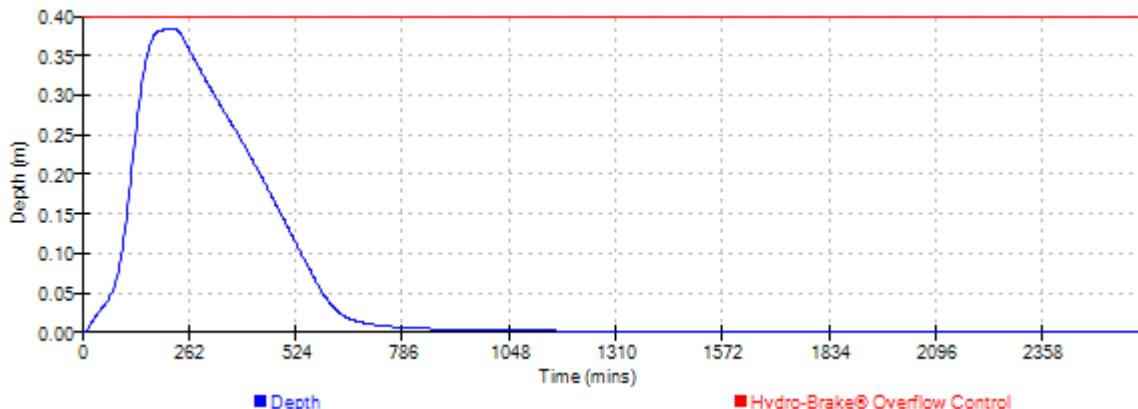
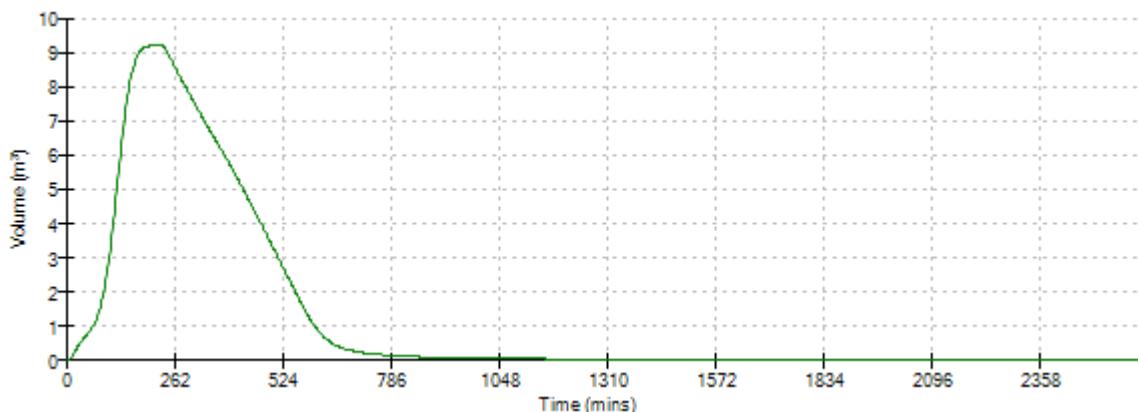
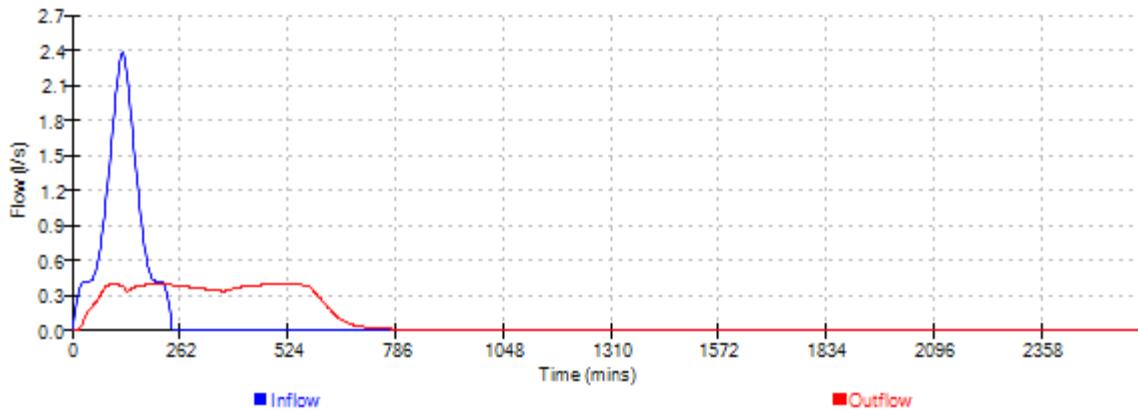





Event: 60 min Winter

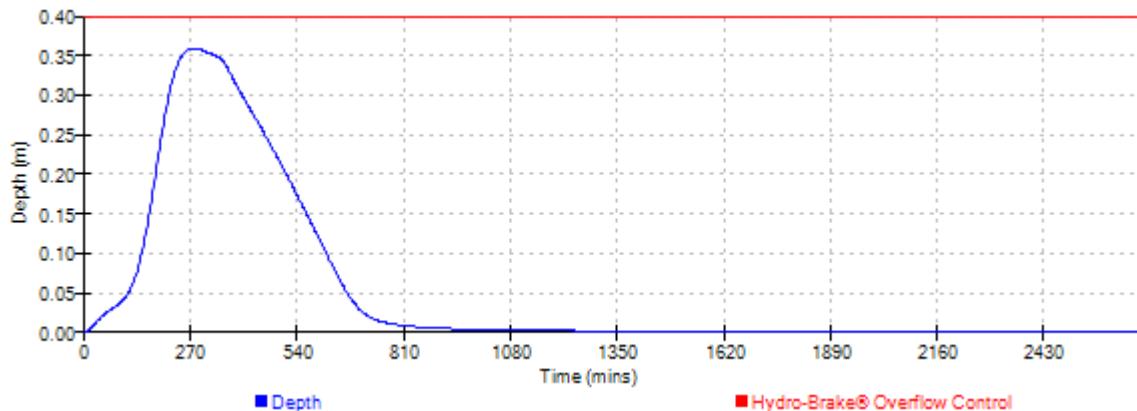
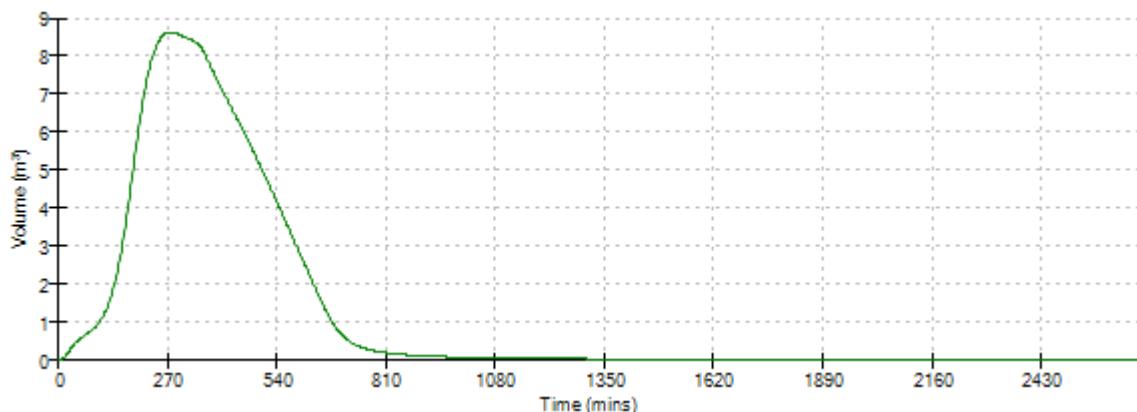
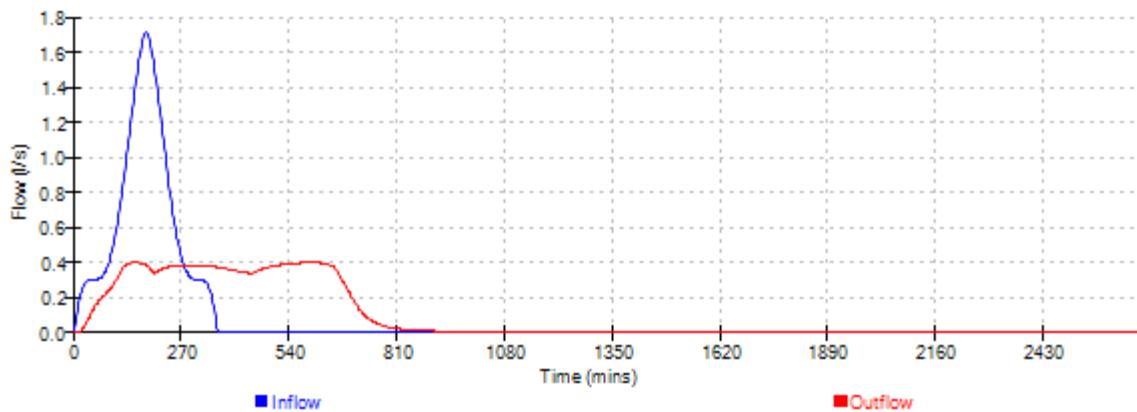


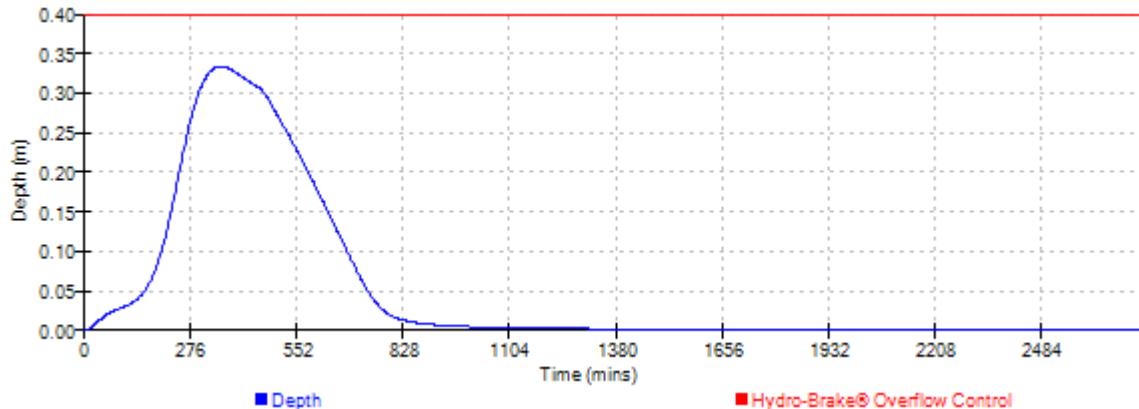
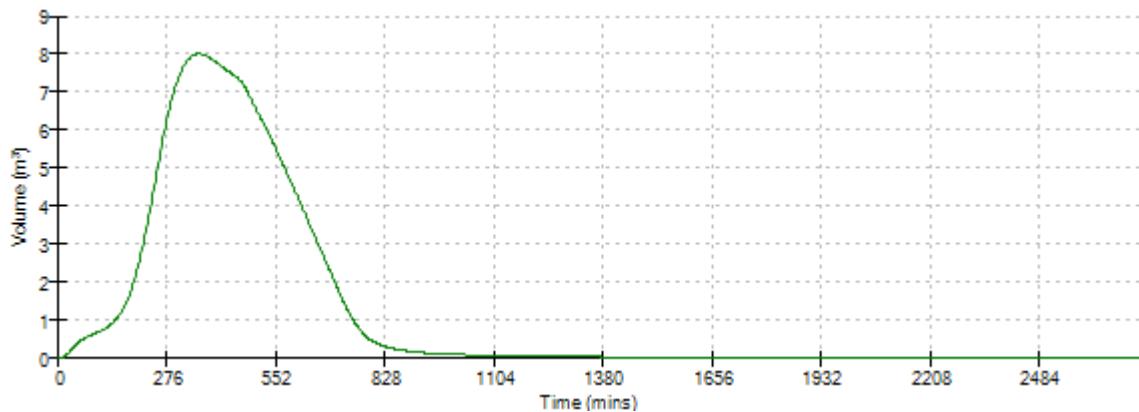
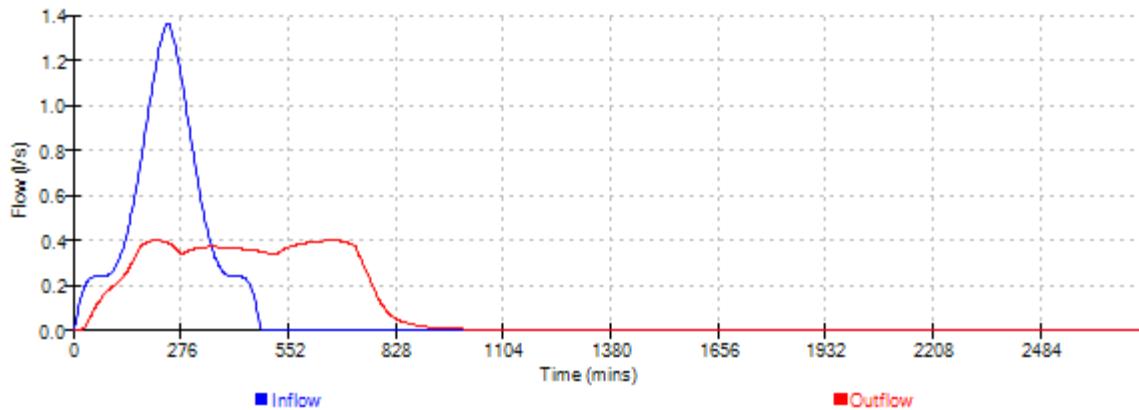

Event: 120 min Winter



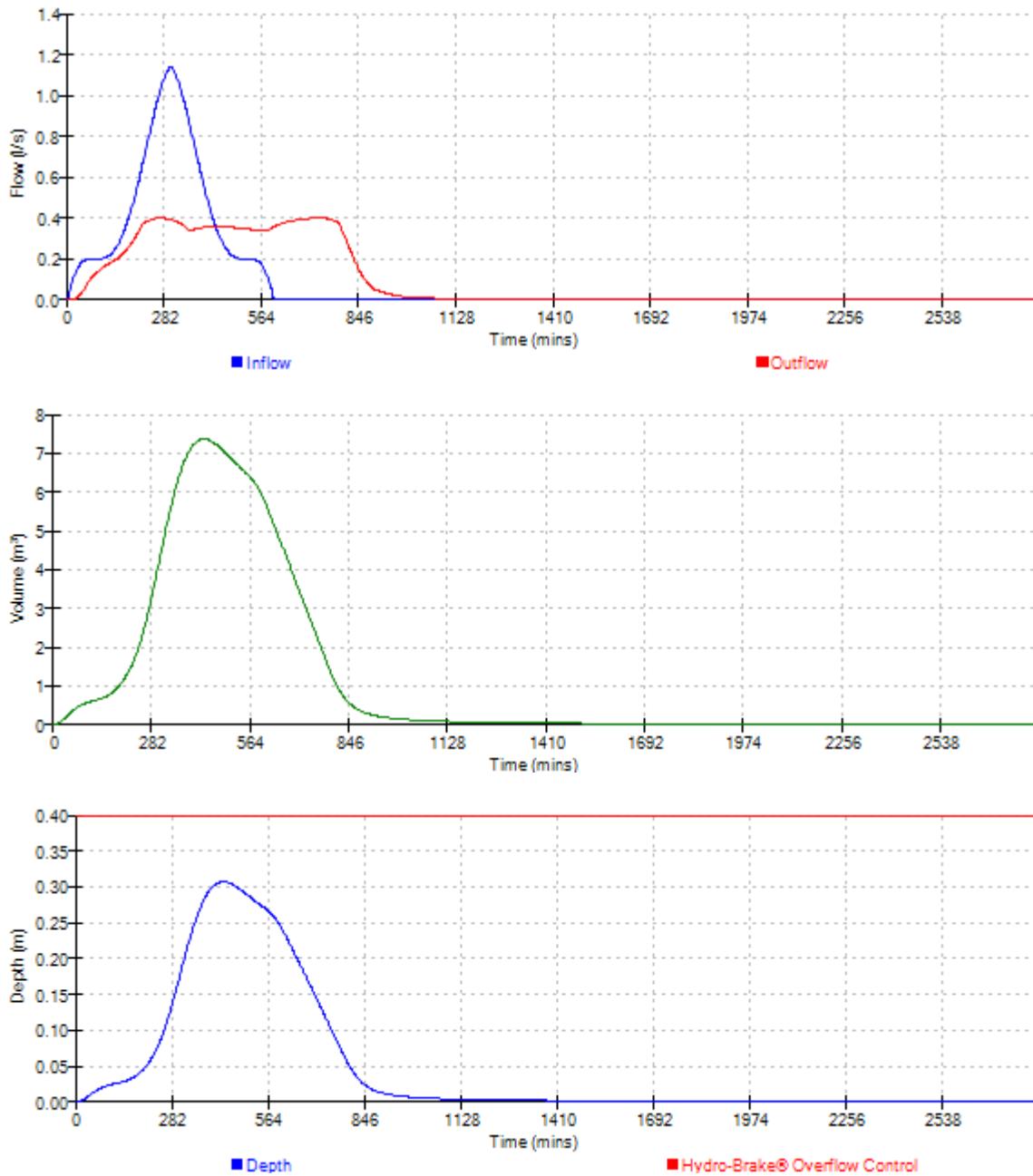




Event: 180 min Winter



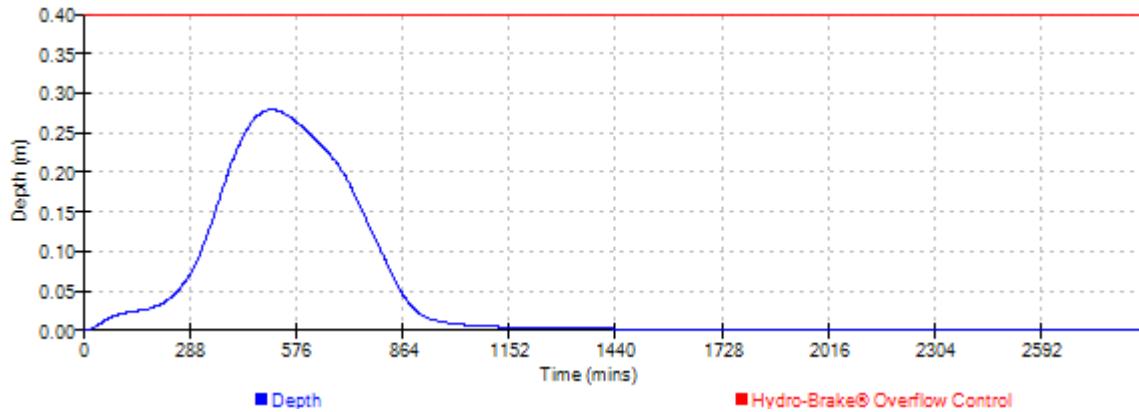
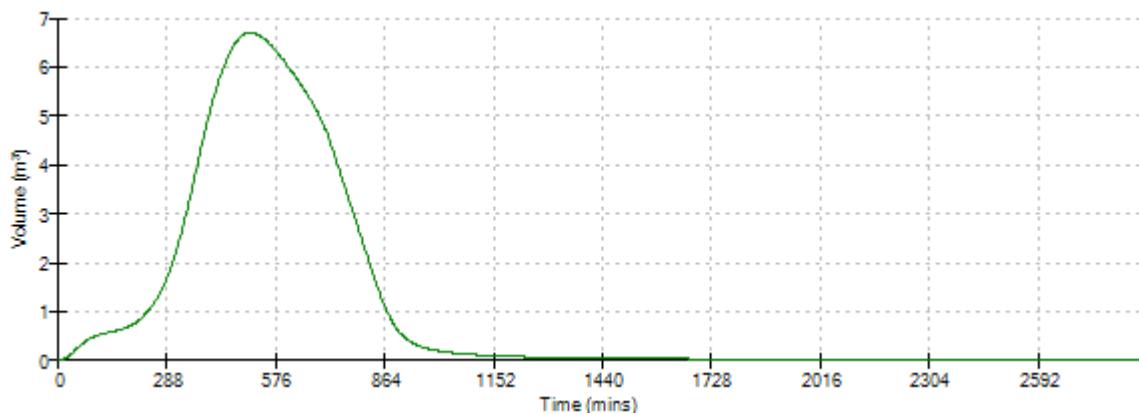



Event: 240 min Winter



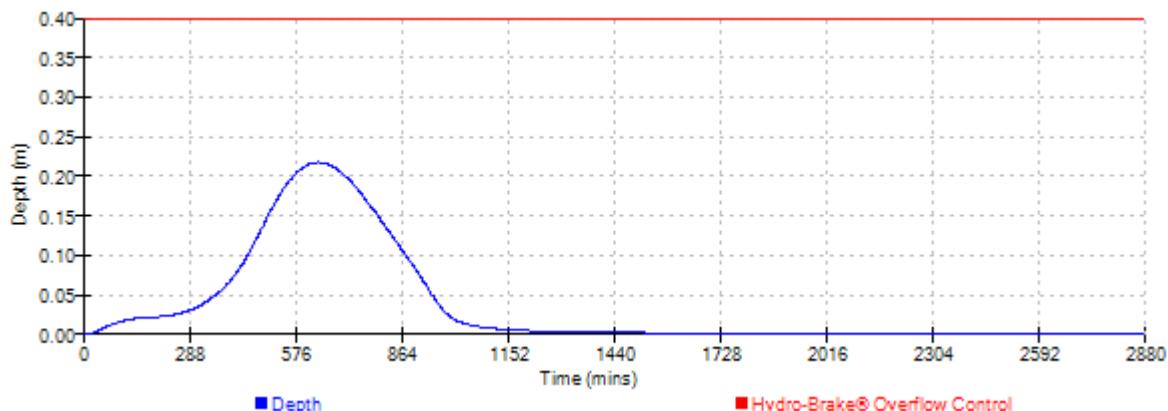
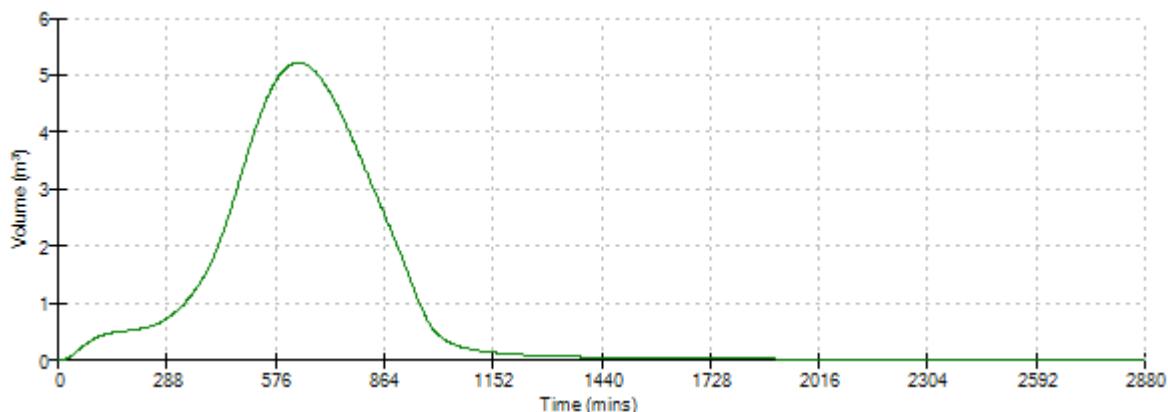
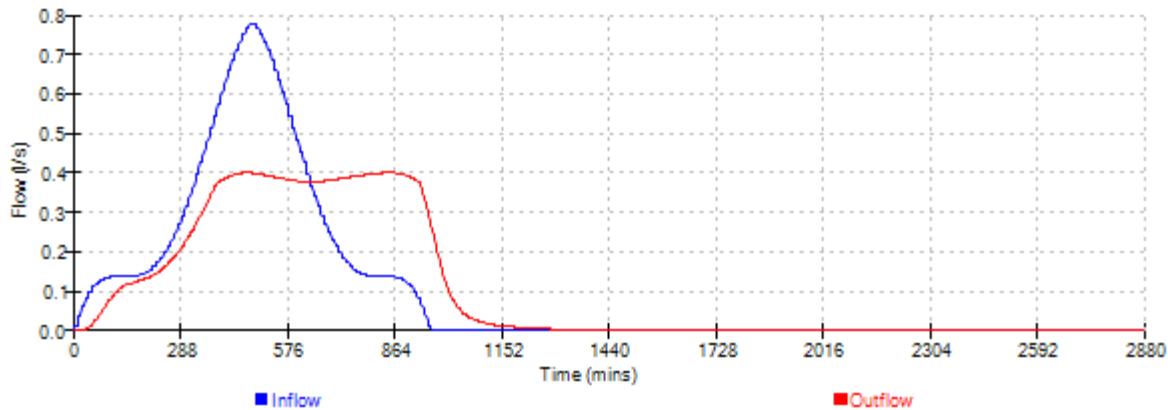
Event: 360 min Winter



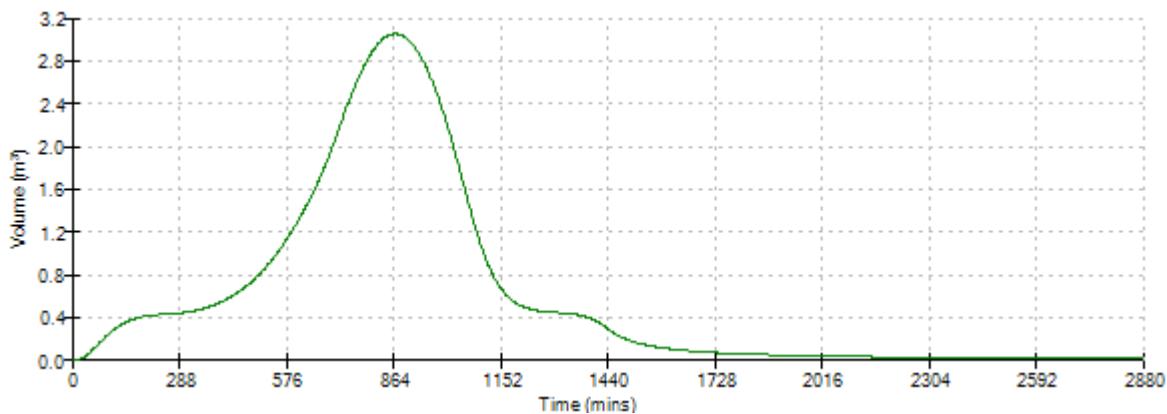
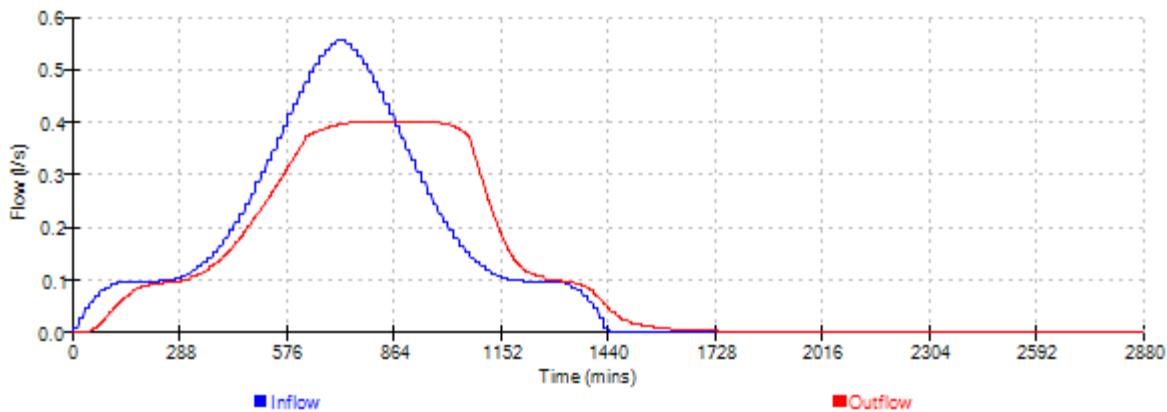

Event: 480 min Winter

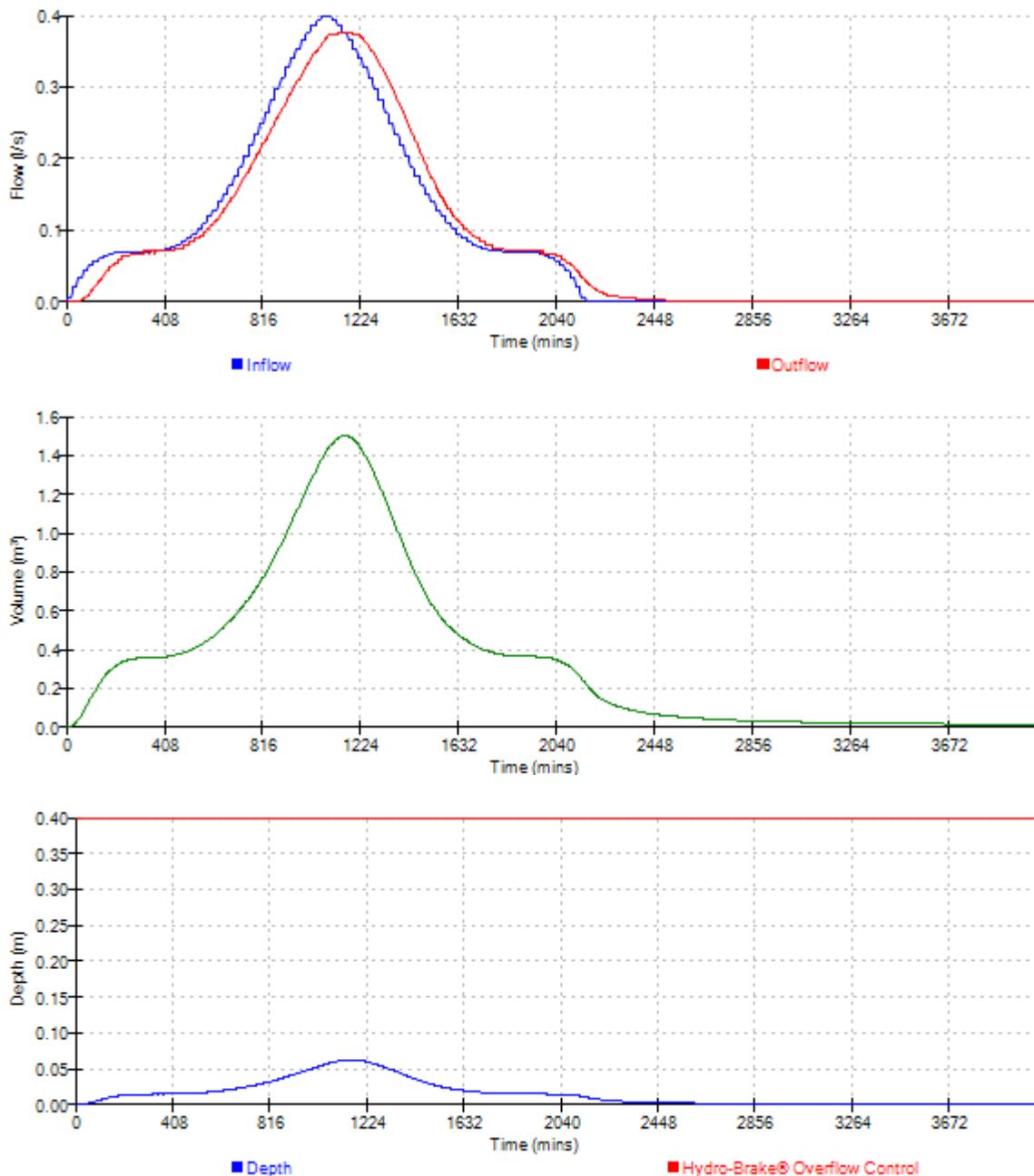






Event: 600 min Winter

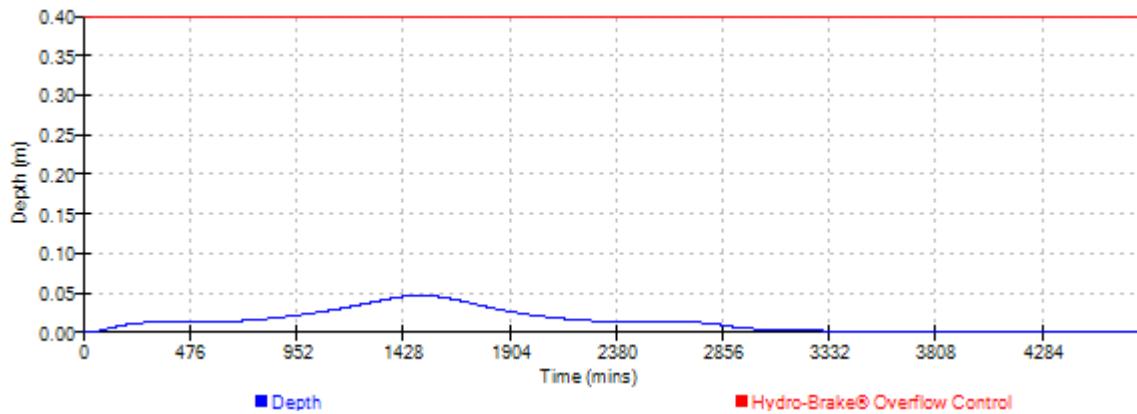
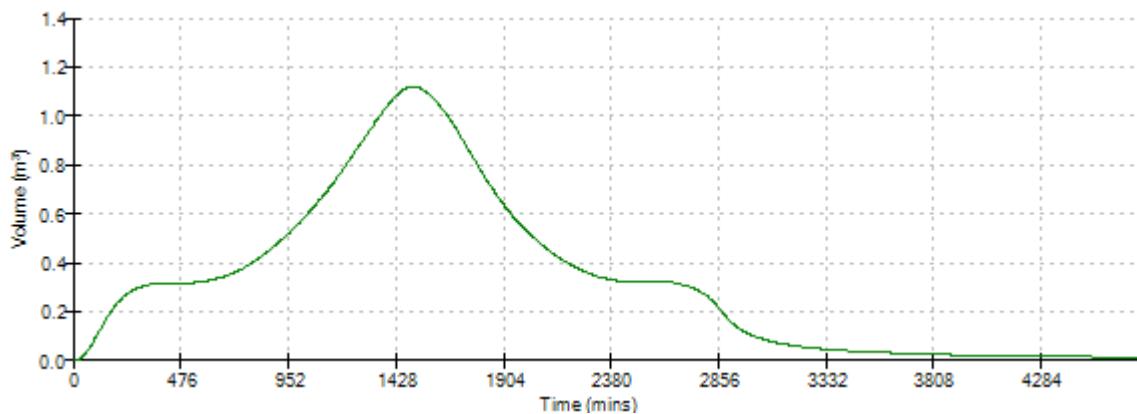
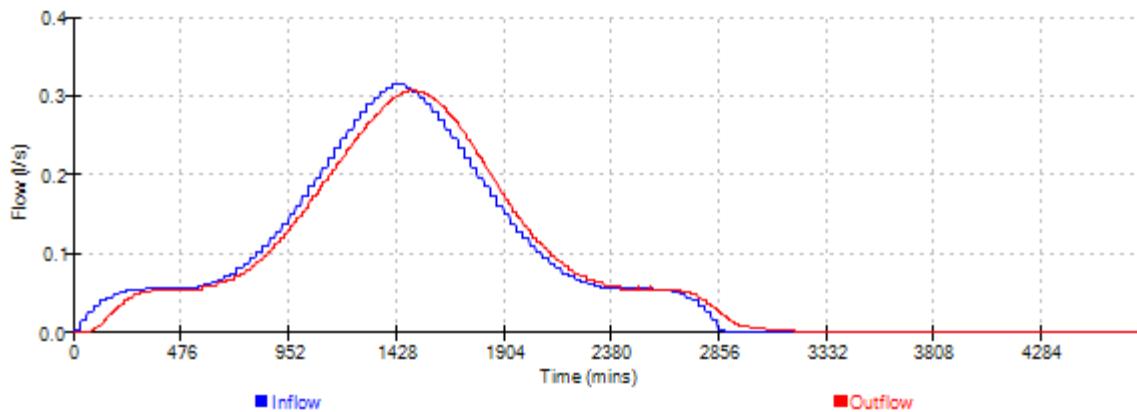




Event: 720 min Winter




Event: 960 min Winter






Event: 1440 min Winter



Event: 2160 min Winter

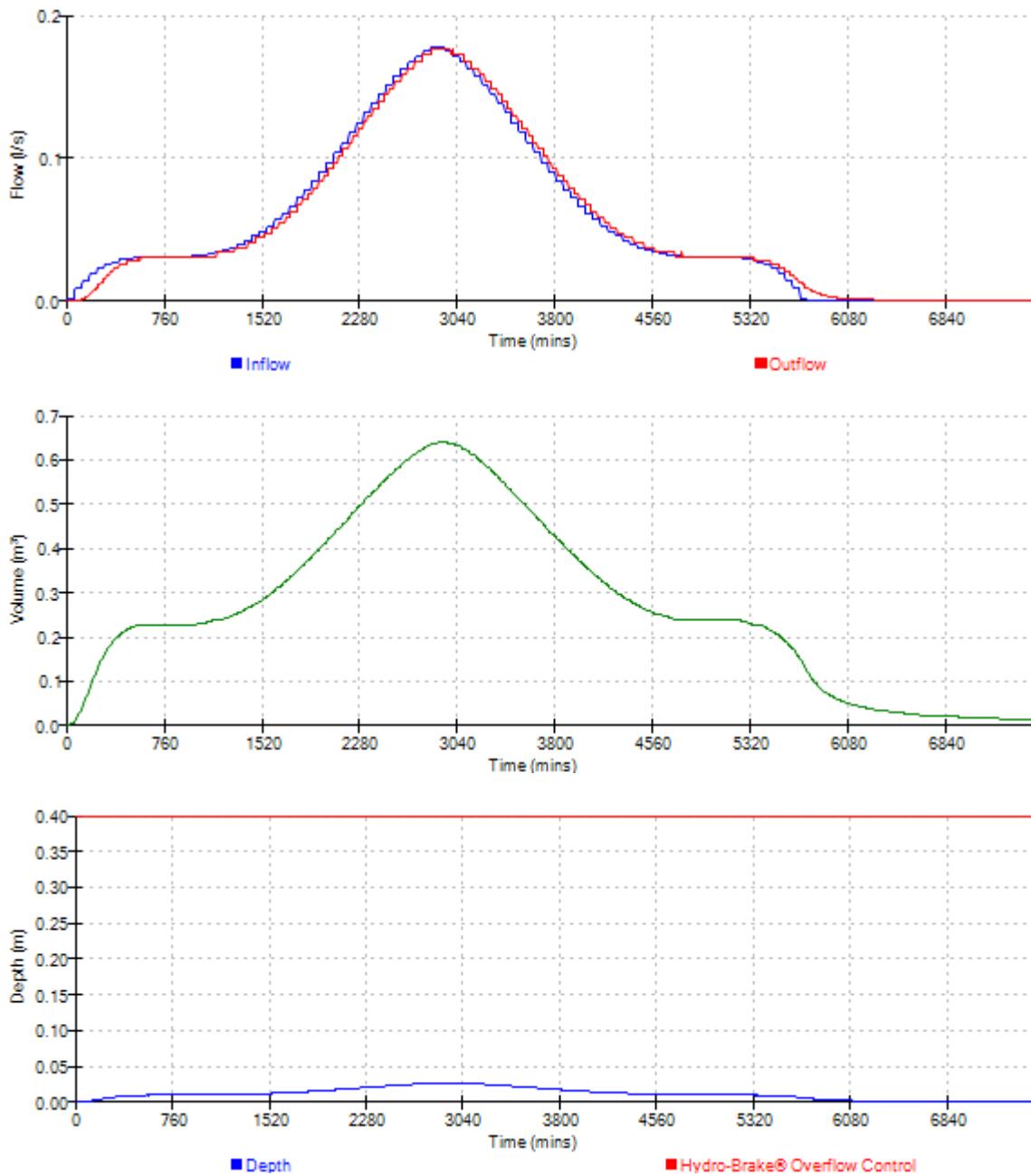


Event: 2880 min Winter



Easy Flood Risk  
 55 Shepherds Lane  
 Dartford  
 DA1 2NL  
 Date 14/02/2025 08:23  
 File Blackhorseyard.SRCX  
 Innovyze

Designed by sheph  
 Checked by  
 Source Control 2020.1

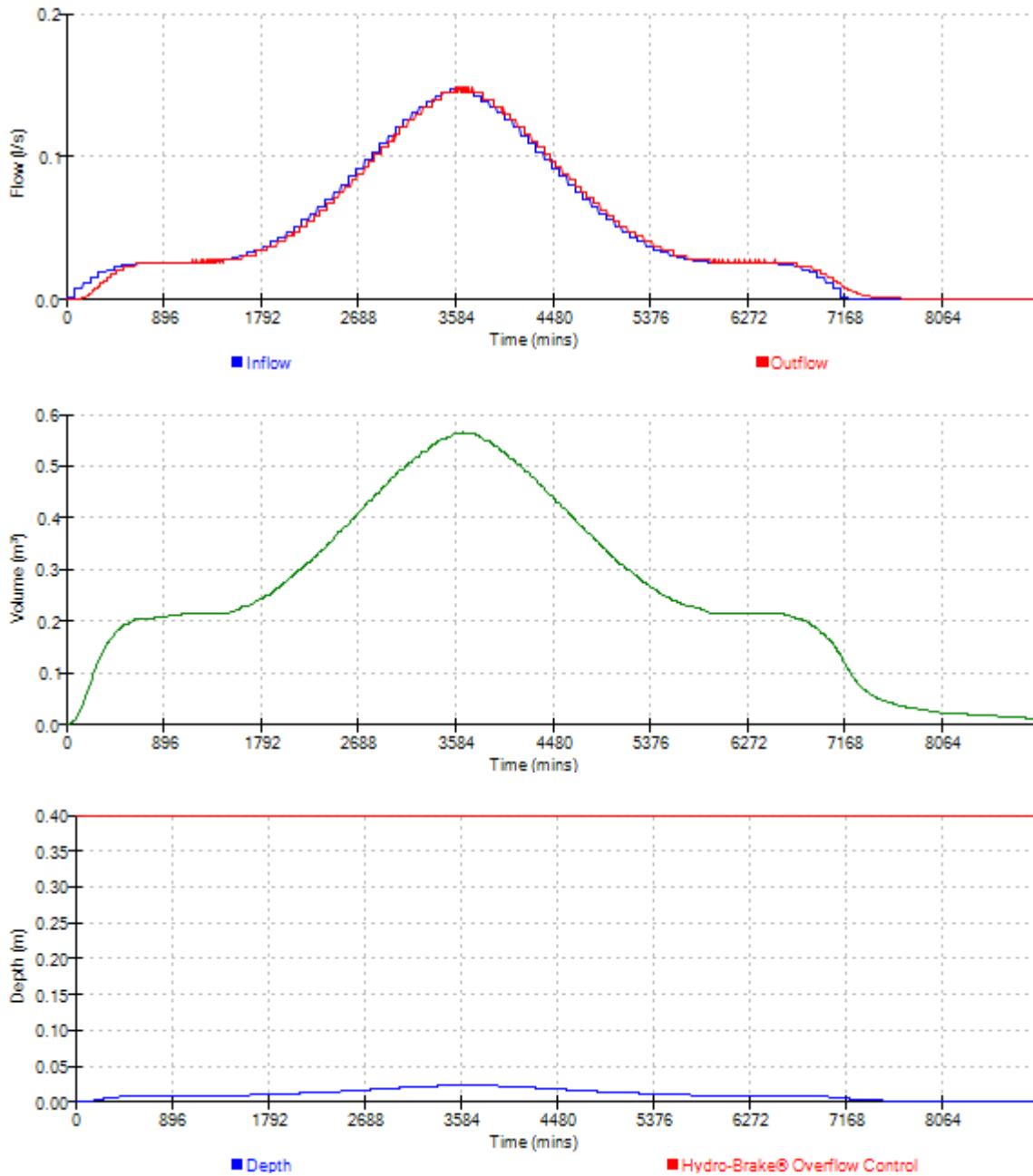

Page 39



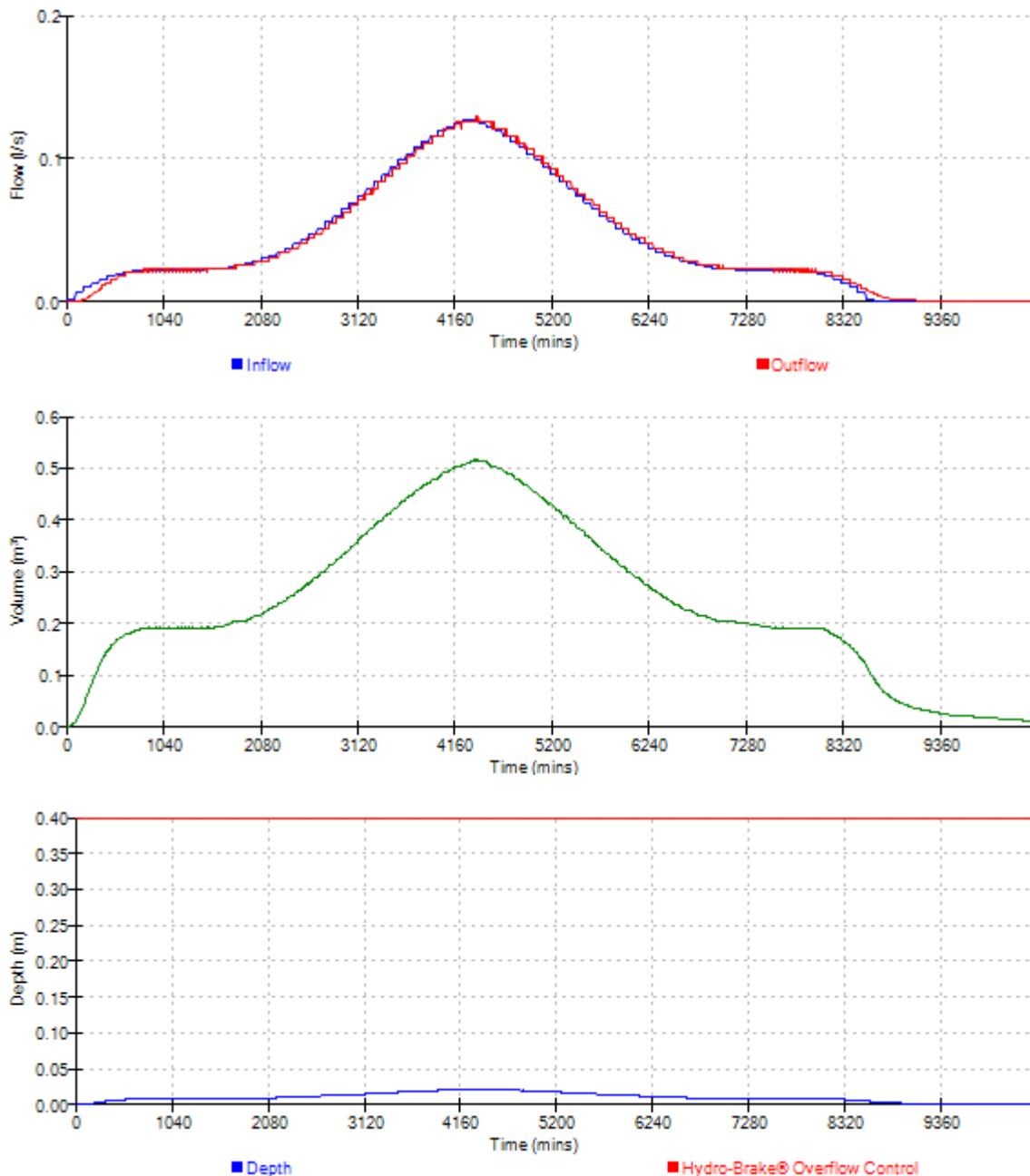
Event: 4320 min Winter



Event: 5760 min Winter




Easy Flood Risk  
 55 Shepherds Lane  
 Dartford  
 DA1 2NL  
 Date 14/02/2025 08:23  
 File Blackhorseyard.SRCX  
 Innovyze


Designed by sheph  
 Checked by  
 Source Control 2020.1

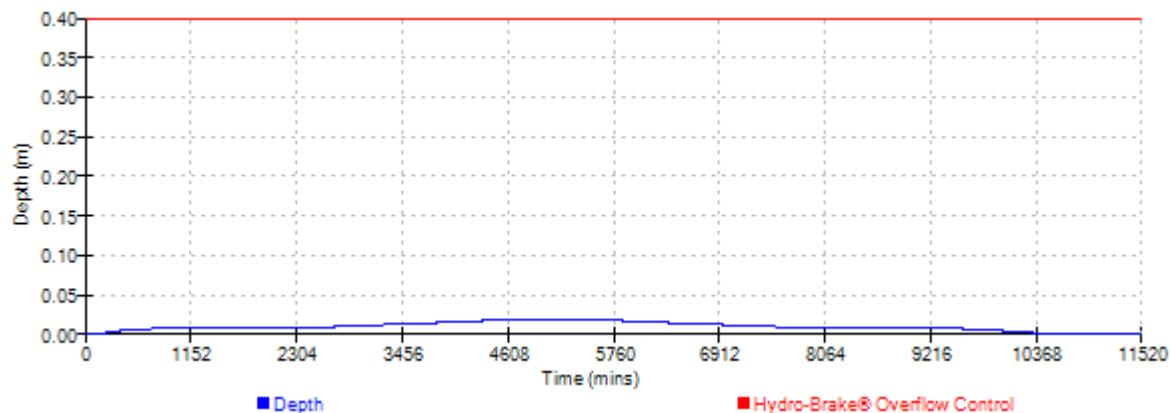
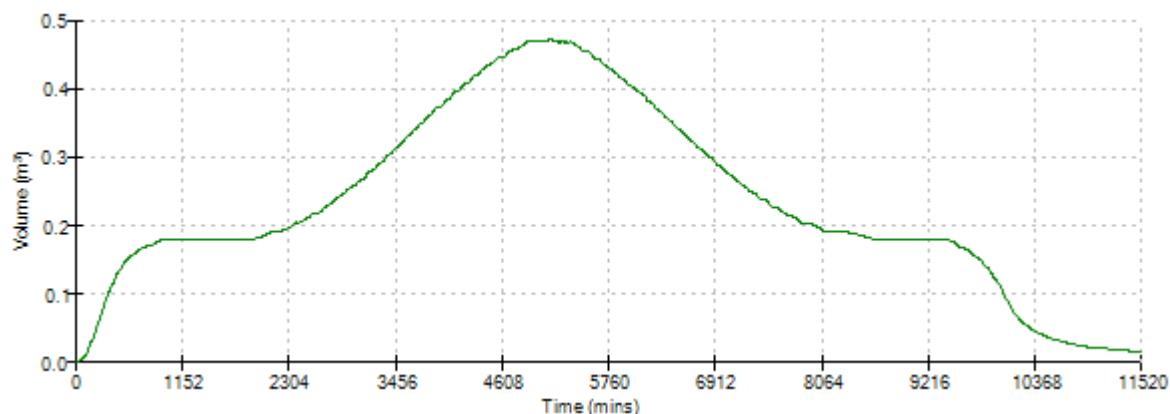
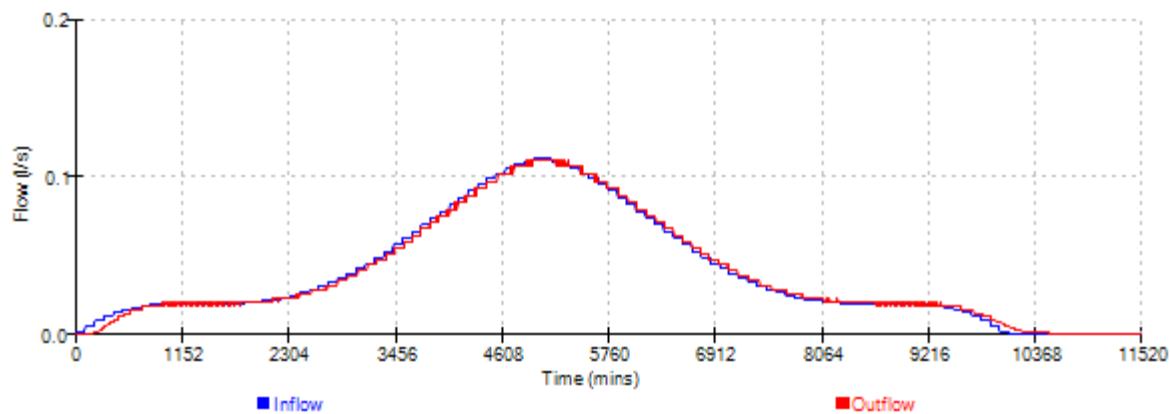


Event: 7200 min Winter



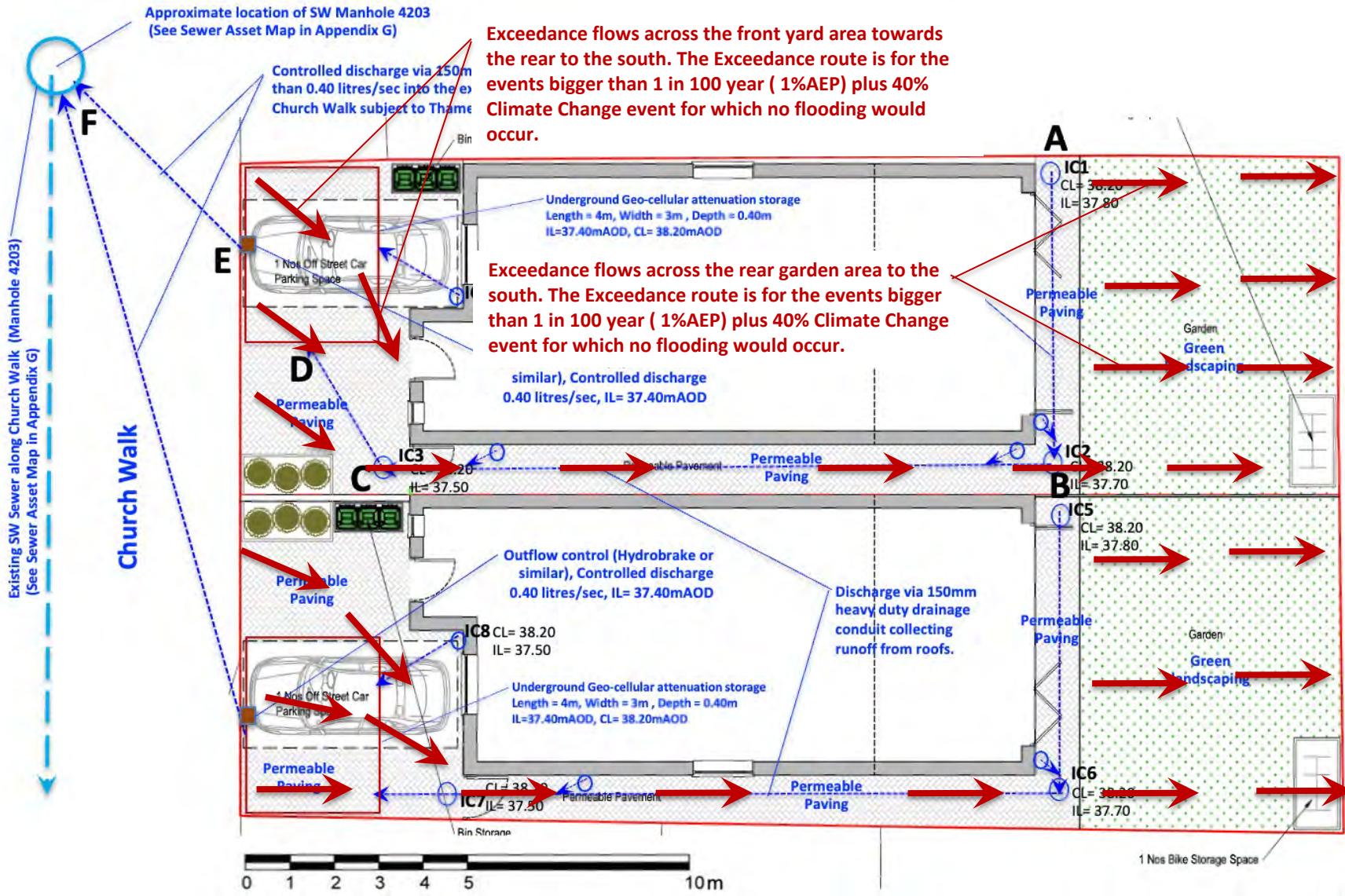
Event: 8640 min Winter






Easy Flood Risk  
 55 Shepherds Lane  
 Dartford  
 DA1 2NL  
 Date 14/02/2025 08:23  
 File Blackhorseyard.SRCX  
 Innovyze

Designed by sheph  
 Checked by  
 Source Control 2020.1

Page 43




Event: 10080 min Winter



# **Appendix L Exceedance Flow Routes**

## Appendix L Exceedance Flow Routes

