

 Tedd's Make Structures Ltd. 20 Gallery Close Northampton, Northants NN3 5NT	Project 45 Bedford Avenue, Hayes UB4 0DR				Job Ref. 210026	
	Section Loft Conversion & Rear/Side Extension				Sheet no./rev. 1	
	Calc. by KL	Date 31/10/2021	Chkd by	Date	App'd by	Date

Existing Two-Storey Single Dwelling Semi-Detached Single Dwelling House to have Loft Conversion with Rear Facing Full Width Dormer, Single Storey Wrap Around Side & Rear Extension and First Floor Internal Openings to Spine Wall, Corridors and Orginal Flank & Rear Elevation. Chimney Breast to be removed at Ground & First Floor Level with a straight Beam to support stack above in new Second Floor. Steelwork required for Ridge Beam, Steel Post within En-Suite Studwork, Floor Beam supporting Post & Chimney Breast, Floor & Pitched Roof via Stud, Rear Dormer Face, Ground Floor Spine Wall opening, Orginal Rear Elevation opening and New Rear Façade openings. Steel & Concrete Lintels for all other openings. Padstones to be specified. Timber Joist Design to Second Floor and Flat Roofs. Double Joist/Flitch Trimmers to be provided for assumed 1.5m x 1.5m Skylights. Foundations to be standard Mass Concrete Strip Footing. Ground Bearing Concrete Slabs throughout Extensions.

Design to BS6399, BS5268, BS5628, BS5950 & BS8110.

LOADINGS	DEAD LOAD	IMPOSED LOAD	TOTAL (kN/m ²)
Pitched Roof – Joists, Battens, Felt, Tiles, Ply, Insulation, Ceiling Ties	1.35	0.75	2.1
Flat Roof – Joists, Battens, Felt, Tiles, Ply, Insulation	1.05	0.75	1.8
Timber Floor – Joists, Battens, Floorboards, Finishes, Insulation, Ceiling	0.7	1.5	2.2
100 Stud Wall with External Finishes	1.0	-	1.0
100 Stud Internal	0.7	-	0.7
225 Brickwork	4.8	-	4.8
Cavity Wall	3.5	-	3.5
112 Brickwork	2.5	-	2.5
100 Blockwork (3.6N)	1.0	-	1.0
New Skylight	1.2	-	1.2

Ridge Beam A

$$\text{UDL DL} = (2.7/2 \times 1.05) + (1.8/2 \times 1.35) = 2.7 \text{ kN/m}$$

F.Roof P.Roof

$$\text{UDL IL} = (2.7/2 \times 0.75) + (1.8/2 \times 0.75) = 1.7 \text{ kN/m}$$

Span = 5.0m

STEEL BEAM A ANALYSIS & DESIGN (BS5950)

STEEL BEAM ANALYSIS & DESIGN (BS5950)

In accordance with BS5950-1:2000 incorporating Corrigendum No.1

TEDDS calculation version 3.0.05

 Tedd's Make Structures Ltd. 20 Gallery Close Northampton, Northants NN3 5NT	Project	Job Ref.				
	Section	45 Bedford Avenue, Hayes UB4 0DR				210026
		Loft Conversion & Rear/Side Extension				Sheet no./rev.
	Calc. by	Date	Chkd by	Date	App'd by	Date
	KL	31/10/2021				3

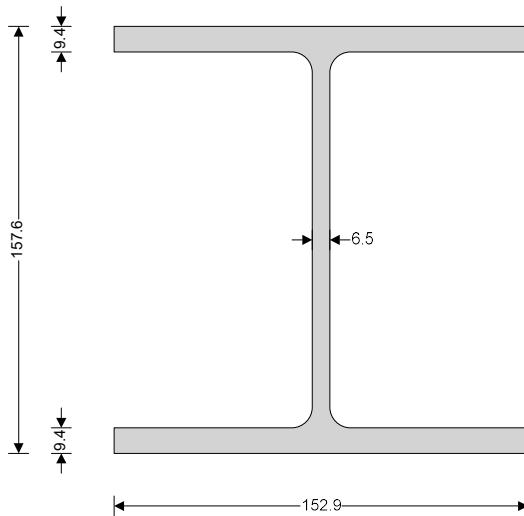
Maximum reaction at support B $R_{B_max} = 17.3 \text{ kN}$ $R_{B_min} = 17.3 \text{ kN}$

Unfactored dead load reaction at support B $R_{B_Dead} = 7.5 \text{ kN}$

Unfactored imposed load reaction at support B $R_{B_Imposed} = 4.3 \text{ kN}$

Section details

Section type **UKC 152x152x30 (Tata Steel Advance)**


Steel grade **S275**

From table 9: Design strength p_y

Thickness of element $\max(T, t) = 9.4 \text{ mm}$

Design strength $p_y = 275 \text{ N/mm}^2$

Modulus of elasticity $E = 205000 \text{ N/mm}^2$

Lateral restraint

Span 1 has lateral restraint at supports only

Effective length factors

Effective length factor in major axis $K_x = 1.00$

Effective length factor in minor axis $K_y = 1.00$

Effective length factor for lateral-torsional buckling $K_{LT,A} = 1.00$

$K_{LT,B} = 1.00$

Classification of cross sections - Section 3.5

$$\varepsilon = \sqrt{[275 \text{ N/mm}^2 / p_y]} = 1.00$$

Internal compression parts - Table 11

Depth of section $d = 123.6 \text{ mm}$

$d / t = 19.0 \times \varepsilon \leq 80 \times \varepsilon$ Class 1 plastic

Outstand flanges - Table 11

Width of section $b = B / 2 = 76.5 \text{ mm}$

$b / T = 8.1 \times \varepsilon \leq 9 \times \varepsilon$ Class 1 plastic

Section is class 1 plastic

Shear capacity - Section 4.2.3

Design shear force $F_v = \max(\text{abs}(V_{max}), \text{abs}(V_{min})) = 17.3 \text{ kN}$

$$d / t < 70 \times \varepsilon$$

Web does not need to be checked for shear buckling

 Make Structures Ltd. 20 Gallery Close Northampton, Northants NN3 5NT	Project 45 Bedford Avenue, Hayes UB4 0DR				Job Ref. 210026	
	Section Loft Conversion & Rear/Side Extension				Sheet no./rev. 4	
	Calc. by KL	Date 31/10/2021	Chkd by	Date	App'd by	Date

Shear area	$A_v = t \times D = 1024 \text{ mm}^2$
Design shear resistance	$P_v = 0.6 \times p_y \times A_v = 169 \text{ kN}$
PASS - Design shear resistance exceeds design shear force	

Moment capacity - Section 4.2.5

Design bending moment	$M = \max(\text{abs}(M_{s1_max}), \text{abs}(M_{s1_min})) = 21.6 \text{ kNm}$
Moment capacity low shear - cl.4.2.5.2	$M_c = \min(p_y \times S_{xx}, 1.2 \times p_y \times Z_{xx}) = 68.1 \text{ kNm}$

Effective length for lateral-torsional buckling - Section 4.3.5

Effective length for lateral torsional buckling	$L_E = 1.0 \times L_{s1} = 5000 \text{ mm}$
Slenderness ratio	$\lambda = L_E / r_{yy} = 130.643$

Equivalent slenderness - Section 4.3.6.7

Buckling parameter	$u = 0.849$
Torsional index	$x = 15.999$
Slenderness factor	$v = 1 / [1 + 0.05 \times (\lambda / x)^2]^{0.25} = 0.693$
Ratio - cl.4.3.6.9	$\beta_w = 1.000$
Equivalent slenderness - cl.4.3.6.7	$\lambda_{LT} = u \times v \times \lambda \times \sqrt{[\beta_w]} = 76.829$
Limiting slenderness - Annex B.2.2	$\lambda_{L0} = 0.4 \times (\pi^2 \times E / p_y)^{0.5} = 34.310$
	$\lambda_{LT} > \lambda_{L0}$ - Allowance should be made for lateral-torsional buckling

Bending strength - Section 4.3.6.5

Robertson constant	$\alpha_{LT} = 7.0$
Perry factor	$\eta_{LT} = \max(\alpha_{LT} \times (\lambda_{LT} - \lambda_{L0}) / 1000, 0) = 0.298$
Euler stress	$p_E = \pi^2 \times E / \lambda_{LT}^2 = 342.8 \text{ N/mm}^2$
	$\phi_{LT} = (p_y + (\eta_{LT} + 1) \times p_E) / 2 = 359.9 \text{ N/mm}^2$
Bending strength - Annex B.2.1	$p_b = p_E \times p_y / (\phi_{LT} + (\phi_{LT}^2 - p_E \times p_y)^{0.5}) = 172.1 \text{ N/mm}^2$

Equivalent uniform moment factor - Section 4.3.6.6

Moment at quarter point of segment	$M_2 = 16.2 \text{ kNm}$
Moment at centre-line of segment	$M_3 = 21.6 \text{ kNm}$
Moment at three quarter point of segment	$M_4 = 16.2 \text{ kNm}$
Maximum moment in segment	$M_{abs} = 21.6 \text{ kNm}$
Maximum moment governing buckling resistance	$M_{LT} = M_{abs} = 21.6 \text{ kNm}$
Equivalent uniform moment factor for lateral-torsional buckling	$m_{LT} = \max(0.2 + (0.15 \times M_2 + 0.5 \times M_3 + 0.15 \times M_4) / M_{abs}, 0.44) = 0.925$

Buckling resistance moment - Section 4.3.6.4

Buckling resistance moment	$M_b = p_b \times S_{xx} = 42.6 \text{ kNm}$
	$M_b / m_{LT} = 46.1 \text{ kNm}$

PASS - Buckling resistance moment exceeds design bending moment

Check vertical deflection - Section 2.5.2

Consider deflection due to dead and imposed loads

Limiting deflection	$\delta_{lim} = \min(16 \text{ mm}, L_{s1} / 300) = 16 \text{ mm}$
Maximum deflection span 1	$\delta = \max(\text{abs}(\delta_{max}), \text{abs}(\delta_{min})) = 10.661 \text{ mm}$
PASS - Maximum deflection does not exceed deflection limit	

 Tedd's Make Structures Ltd. 20 Gallery Close Northampton, Northants NN3 5NT	Project 45 Bedford Avenue, Hayes UB4 0DR				Job Ref. 210026	
	Section Loft Conversion & Rear/Side Extension				Sheet no./rev. 5	
	Calc. by KL	Date 31/10/2021	Chkd by	Date	App'd by	Date

Post @ RA1

$$F_x = 17.3 \text{ kN}$$

Using 100 x 100 SHS Post...

$$M_x = 17.3 \times 0.025 \times 2.4 = 1.1 \text{ kN/m}$$

2.5% H

Or

$$M_x = 17.3 \times (0.1 + 0.05) = 2.6 \text{ kNm}$$

Ecc.

STEEL POST @ RA1 DESIGN (BS5950)

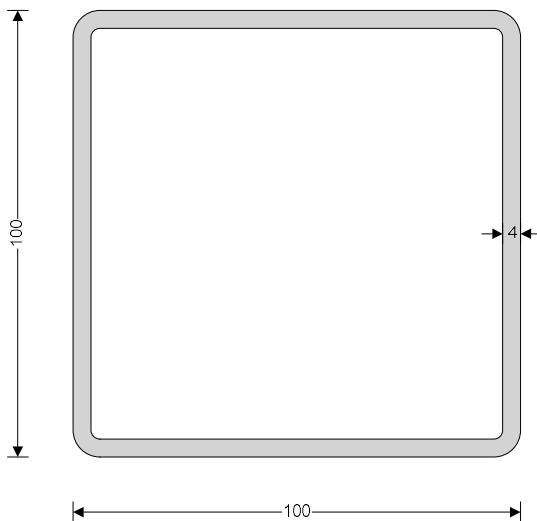
STEEL MEMBER DESIGN (BS5950)

In accordance with BS5950-1:2000 incorporating Corrigendum No.1

TEDDS calculation version 3.0.05

Section details

Section type **SHS 100x100x4.0 (Tata Steel Celsius)**


Steel grade **S275**

From table 9: Design strength p_y

Thickness of element **t = 4.0 mm**

Design strength **$p_y = 275 \text{ N/mm}^2$**

Modulus of elasticity **$E = 205000 \text{ N/mm}^2$**

Lateral restraint

Distance between major axis restraints **$L_x = 2400 \text{ mm}$**

Distance between minor axis restraints **$L_y = 2400 \text{ mm}$**

Effective length factors

Effective length factor in major axis **$K_x = 1.00$**

 Tedd's Make Structures Ltd. 20 Gallery Close Northampton, Northants NN3 5NT	Project 45 Bedford Avenue, Hayes UB4 0DR				Job Ref. 210026	
	Section Loft Conversion & Rear/Side Extension				Sheet no./rev. 6	
	Calc. by KL	Date 31/10/2021	Chkd by	Date	App'd by	Date

Effective length factor in minor axis $K_y = 1.50$

Effective length factor for lateral-torsional buckling $K_{LT} = 1.00$

Classification of cross sections - Section 3.5

$$\varepsilon = \sqrt{[275 \text{ N/mm}^2 / p_y]} = 1.00$$

Web - major axis - Table 12

Depth of section $d = D - 3 \times t = 88 \text{ mm}$

Stress ratios $r1 = \min(F_c / (2 \times d \times t \times p_{yw}), 1) = 0.089$

$$r2 = F_c / (A \times p_{yw}) = 0.041$$

$d / t = 22.0 \times \varepsilon \leq \max(64 \times \varepsilon / (1 + r1), 40 \times \varepsilon)$ Class 1 plastic

Flange - major axis - Table 12

Width of section $b = B - 3 \times t = 88 \text{ mm}$

$$b / t = 22.0 \times \varepsilon \leq 40 \times \varepsilon$$

Class 3 semi-compact

Section is class 3 semi-compact

Moment capacity - Section 4.2.5

Design bending moment $M = 2.6 \text{ kNm}$

Effective plastic modulus - Section 3.5.6

Limiting value for class 2 compact flange $\beta_{2f} = \min(32 \times \varepsilon, 62 \times \varepsilon - 0.5 \times d / t) = 32$

Limiting value for class 3 semi-compact flange $\beta_{3f} = 40 \times \varepsilon = 40$

Limiting value for class 2 compact web $\beta_{2w} = \max(80 \times \varepsilon / (1 + r1), 40 \times \varepsilon) = 73.438$

Limiting value for class 3 semi-compact web $\beta_{3w} = \max(120 \times \varepsilon / (1 + 2 \times r2), 40 \times \varepsilon) = 110.82$

Effective plastic modulus - cl.3.5.6.3

$$S_{eff} = \min(Z + (S - Z) \times \min([(\beta_{3w} / (d / t) - 1) / (\beta_{3w} / \beta_{2w} - 1)], [(\beta_{3f} / (b / t) - 1) / (\beta_{3f} / \beta_{2f} - 1)]), S) = 54444 \text{ mm}^3$$

Moment capacity low shear - cl.4.2.5.2 $M_c = \min(p_y \times S_{eff}, 1.2 \times p_y \times Z) = 15 \text{ kNm}$

Effective length for lateral-torsional buckling - Section 4.3.5

Effective length for lateral torsional buckling $L_E = 1.0 \times L_y = 2400 \text{ mm}$

Slenderness ratio $\lambda = L_E / r_{yy} = 61.432$

Equivalent slenderness - Annex B.2.6.1

Torsion constant $J = 3611034 \text{ mm}^4$

$$\gamma_b = (1 - I_{yy} / I_{xx}) \times (1 - J / (2.6 \times I_{xx})) = 0.000$$

$$\phi_b = [S_{xx}^2 \times \gamma_b / (A \times J)]^{0.5} = 0.000$$

$$\beta_w = S_{eff} / S_{xx} = 1.000$$

$$\beta_w = S_{eff} / S_{xx} = 1.000$$

$$\lambda_{LT} = 2.25 \times \sqrt{[\phi_b \times \lambda \times \beta_w]} = 0.000$$

$$\lambda_{L0} = 0.4 \times (\pi^2 \times E / p_y)^{0.5} = 34.310$$

$\lambda_{LT} < \lambda_{L0}$ - No allowance need be made for lateral-torsional buckling

Buckling resistance moment - Section 4.3.6.4

Bending strength $p_b = p_y = 275 \text{ N/mm}^2$

Buckling resistance moment $M_b = p_b \times S_{eff} = 15 \text{ kNm}$

PASS - Moment capacity exceeds design bending moment

Compression members - Section 4.7

Design compression force $F_c = 17.3 \text{ kN}$

Effective length for major (x-x) axis buckling - Section 4.7.3

Effective length for buckling $L_{Ex} = L_x \times K_x = 2400 \text{ mm}$

Slenderness ratio - cl.4.7.2 $\lambda_x = L_{Ex} / r_{xx} = 61.432$

 Tedd's Make Structures Ltd. 20 Gallery Close Northampton, Northants NN3 5NT	Project 45 Bedford Avenue, Hayes UB4 0DR				Job Ref. 210026	
	Section Loft Conversion & Rear/Side Extension				Sheet no./rev. 7	
	Calc. by KL	Date 31/10/2021	Chkd by	Date	App'd by	Date

Compressive strength - Section 4.7.5

Limiting slenderness

$$\lambda_0 = 0.2 \times (\pi^2 \times E / p_y)^{0.5} = \mathbf{17.155}$$

Strut curve - Table 23

a

Robertson constant

$$\alpha_x = \mathbf{2.0}$$

Perry factor

$$\eta_x = \alpha_x \times (\lambda_x - \lambda_0) / 1000 = \mathbf{0.089}$$

Euler stress

$$p_{Ex} = \pi^2 \times E / \lambda_x^2 = \mathbf{536.1 \text{ N/mm}^2}$$

Compressive strength - Annex C.1

$$\phi_x = (p_y + (\eta_x + 1) \times p_{Ex}) / 2 = \mathbf{429.3 \text{ N/mm}^2}$$

$$p_{cx} = p_{Ex} \times p_y / (\phi_x + (\phi_x^2 - p_{Ex} \times p_y)^{0.5}) = \mathbf{237.3 \text{ N/mm}^2}$$

Compression resistance - Section 4.7.4

Compression resistance - cl.4.7.4

$$P_{cx} = A \times p_{cx} = \mathbf{360.4 \text{ kN}}$$

PASS - Compression resistance exceeds design compression force

Effective length for minor (y-y) axis buckling - Section 4.7.3

Effective length for buckling

$$L_{Ey} = L_y \times K_y = \mathbf{3600 \text{ mm}}$$

Slenderness ratio - cl.4.7.2

$$\lambda_y = L_{Ey} / r_{yy} = \mathbf{92.148}$$

Compressive strength - Section 4.7.5

Limiting slenderness

$$\lambda_0 = 0.2 \times (\pi^2 \times E / p_y)^{0.5} = \mathbf{17.155}$$

Strut curve - Table 23

a

Robertson constant

$$\alpha_y = \mathbf{2.0}$$

Perry factor

$$\eta_y = \alpha_y \times (\lambda_y - \lambda_0) / 1000 = \mathbf{0.150}$$

Euler stress

$$p_{Ey} = \pi^2 \times E / \lambda_y^2 = \mathbf{238.3 \text{ N/mm}^2}$$

Compressive strength - Annex C.1

$$\phi_y = (p_y + (\eta_y + 1) \times p_{Ey}) / 2 = \mathbf{274.5 \text{ N/mm}^2}$$

$$p_{cy} = p_{Ey} \times p_y / (\phi_y + (\phi_y^2 - p_{Ey} \times p_y)^{0.5}) = \mathbf{175.4 \text{ N/mm}^2}$$

Compression resistance - Section 4.7.4

Compression resistance - cl.4.7.4

$$P_{cy} = A \times p_{cy} = \mathbf{266.4 \text{ kN}}$$

PASS - Compression resistance exceeds design compression force

Compression members with moments - Section 4.8.3

Comb.compression & bending check - cl.4.8.3.2

$$F_c / (A \times p_y) + M / M_c = \mathbf{0.215}$$

PASS - Combined bending and compression check is satisfied

Member buckling resistance - Section 4.8.3.3

Max major axis moment governing M_b

$$M_{LT} = M_x = \mathbf{2.60 \text{ kNm}}$$

Equivalent uniform moment factor for major axis flexural buckling

$$m_x = \mathbf{1.000}$$

$$m_y = \mathbf{1.000}$$

Buckling resistance checks - cl.4.8.3.3.3

$$F_c / P_{cx} + m_x \times M / M_c \times (1 + 0.5 \times F_c / P_{cx}) = \mathbf{0.226}$$

$$F_c / P_{cy} + 0.5 \times m_{LT} \times M_{LT} / M_{cx} = \mathbf{0.152}$$

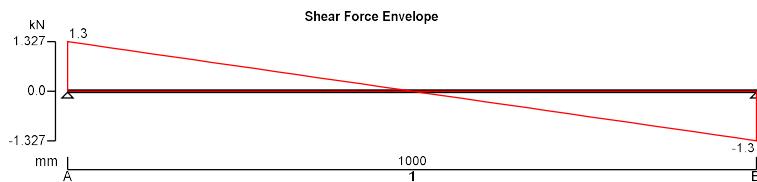
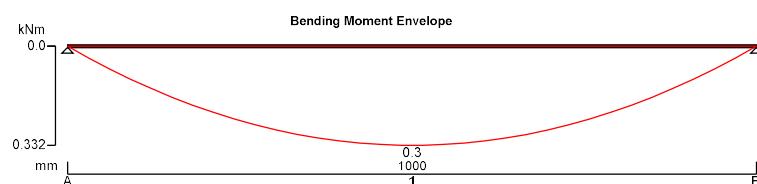
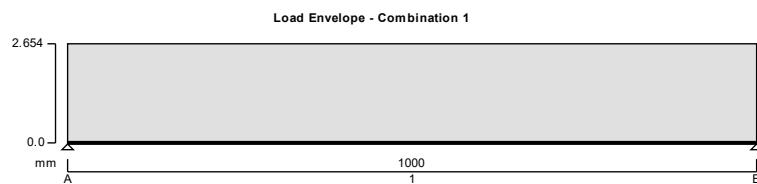
PASS - Member buckling resistance checks are satisfied

 Tedd's Make Structures Ltd. 20 Gallery Close Northampton, Northants NN3 5NT	Project 45 Bedford Avenue, Hayes UB4 0DR				Job Ref. 210026	
	Section Loft Conversion & Rear/Side Extension				Sheet no./rev. 8	
	Calc. by KL	Date 31/10/2021	Chkd by	Date	App'd by	Date

Beam B - Dormer Head Beams

$$\text{UDL DL} = (2.8/2 \times 1.05) = 1.5 \text{ kN/m}$$

F.Roof




$$\text{UDL IL} = (2.8/2 \times 0.75) = 1.1 \text{ kN/m}$$

Span = 1.0m

TIMBER BEAM B ANALYSIS & DESIGN (BS5268)

TIMBER BEAM ANALYSIS & DESIGN TO BS5268-2:2002

TEDDS calculation version 1.5.07

Applied loading

Beam loads

Dead self weight of beam \times 1

Dead full UDL 1.500 kN/m

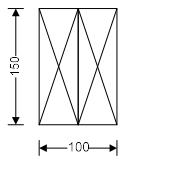
Imposed full UDL 1.100 kN/m

Load combinations

Load combination 1

Support A

Dead \times 1.00



Imposed \times 1.00

Span 1

Dead \times 1.00

Imposed \times 1.00

 Tedd's Make Structures Ltd. 20 Gallery Close Northampton, Northants NN3 5NT	Project	45 Bedford Avenue, Hayes UB4 0DR			Job Ref. 210026	
	Section	Loft Conversion & Rear/Side Extension				Sheet no./rev. 9
	Calc. by	Date	Chkd by	Date	App'd by	Date
	KL	31/10/2021				

	Support B	Dead \times 1.00
		Imposed \times 1.00
Analysis results		
Maximum moment	$M_{\max} = 0.332 \text{ kNm}$	$M_{\min} = 0.000 \text{ kNm}$
Design moment	$M = \max(\text{abs}(M_{\max}), \text{abs}(M_{\min})) = 0.332 \text{ kNm}$	
Maximum shear	$F_{\max} = 1.327 \text{ kN}$	$F_{\min} = -1.327 \text{ kN}$
Design shear	$F = \max(\text{abs}(F_{\max}), \text{abs}(F_{\min})) = 1.327 \text{ kN}$	
Total load on beam	$W_{\text{tot}} = 2.654 \text{ kN}$	
Reactions at support A	$R_{A_max} = 1.327 \text{ kN}$	$R_{A_min} = 1.327 \text{ kN}$
Unfactored dead load reaction at support A	$R_{A_Dead} = 0.777 \text{ kN}$	
Unfactored imposed load reaction at support A	$R_{A_Imposed} = 0.550 \text{ kN}$	
Reactions at support B	$R_{B_max} = 1.327 \text{ kN}$	$R_{B_min} = 1.327 \text{ kN}$
Unfactored dead load reaction at support B	$R_{B_Dead} = 0.777 \text{ kN}$	
Unfactored imposed load reaction at support B	$R_{B_Imposed} = 0.550 \text{ kN}$	
Timber section details		
Breadth of sections	$b = 50 \text{ mm}$	
Depth of sections	$h = 150 \text{ mm}$	
Number of sections in member	$N = 2$	
Overall breadth of member	$b_b = N \times b = 100 \text{ mm}$	
Timber strength class	C16	
Member details		
Service class of timber	1	
Load duration	Long term	
Length of bearing	$L_b = 100 \text{ mm}$	
Section properties		
Cross sectional area of member	$A = N \times b \times h = 15000 \text{ mm}^2$	
Section modulus	$Z_x = N \times b \times h^2 / 6 = 375000 \text{ mm}^3$	
Second moment of area	$Z_y = h \times (N \times b)^2 / 6 = 250000 \text{ mm}^3$	
Radius of gyration	$I_x = N \times b \times h^3 / 12 = 28125000 \text{ mm}^4$	
	$I_y = h \times (N \times b)^3 / 12 = 12500000 \text{ mm}^4$	
	$i_x = \sqrt{I_x / A} = 43.3 \text{ mm}$	
	$i_y = \sqrt{I_y / A} = 28.9 \text{ mm}$	
Modification factors		
Duration of loading - Table 17	$K_3 = 1.00$	
Bearing stress - Table 18	$K_4 = 1.00$	
Total depth of member - cl.2.10.6	$K_7 = (300 \text{ mm} / h)^{0.11} = 1.08$	
Load sharing - cl.2.10.11	$K_8 = 1.10$	
Minimum modulus of elasticity - Table 20	$K_9 = 1.14$	

 Tedd's Make Structures Ltd. 20 Gallery Close Northampton, Northants NN3 5NT	Project 45 Bedford Avenue, Hayes UB4 0DR				Job Ref. 210026	
	Section Loft Conversion & Rear/Side Extension				Sheet no./rev. 10	
	Calc. by KL	Date 31/10/2021	Chkd by	Date	App'd by	Date

Lateral support - cl.2.10.8

No lateral support

Permissible depth-to-breadth ratio - Table 19

2.00

Actual depth-to-breadth ratio

$h / (N \times b) = 1.50$

PASS - Lateral support is adequate

Compression perpendicular to grain

Permissible bearing stress (no wane)

$\sigma_{c_adm} = \sigma_{cp1} \times K_3 \times K_4 \times K_8 = 2.420 \text{ N/mm}^2$

Applied bearing stress

$\sigma_{c_a} = R_{A_max} / (N \times b \times L_b) = 0.133 \text{ N/mm}^2$

$\sigma_{c_a} / \sigma_{c_adm} = 0.055$

PASS - Applied compressive stress is less than permissible compressive stress at bearing

Bending parallel to grain

Permissible bending stress

$\sigma_{m_adm} = \sigma_m \times K_3 \times K_7 \times K_8 = 6.292 \text{ N/mm}^2$

Applied bending stress

$\sigma_{m_a} = M / Z_x = 0.885 \text{ N/mm}^2$

$\sigma_{m_a} / \sigma_{m_adm} = 0.141$

PASS - Applied bending stress is less than permissible bending stress

Shear parallel to grain

Permissible shear stress

$\tau_{adm} = \tau \times K_3 \times K_8 = 0.737 \text{ N/mm}^2$

Applied shear stress

$\tau_a = 3 \times F / (2 \times A) = 0.133 \text{ N/mm}^2$

$\tau_a / \tau_{adm} = 0.180$

PASS - Applied shear stress is less than permissible shear stress

Deflection

Modulus of elasticity for deflection

$E = E_{min} \times K_9 = 6612 \text{ N/mm}^2$

Permissible deflection

$\delta_{adm} = \min(14 \text{ mm}, 0.003 \times L_{s1}) = 3.000 \text{ mm}$

Bending deflection

$\delta_{b_s1} = 0.186 \text{ mm}$

Shear deflection

$\delta_{v_s1} = 0.064 \text{ mm}$

Total deflection

$\delta_a = \delta_{b_s1} + \delta_{v_s1} = 0.250 \text{ mm}$

$\delta_a / \delta_{adm} = 0.083$

PASS - Total deflection is less than permissible deflection

Flat Roof Joists

UDL DL = $1.05 - 0.15 = 0.9 \text{ kN/m}^2$

SWJ

UDL IL = 0.75 kN/m^2

Span = 2.7m

DORMER FLAT ROOF TIMBER JOIST DESIGN (BS5268)

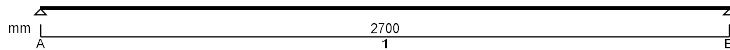
TIMBER JOIST DESIGN (BS5268-2:2002)

TEDDS calculation version 1.1.02

Joist details

Joist breadth

b = 50 mm

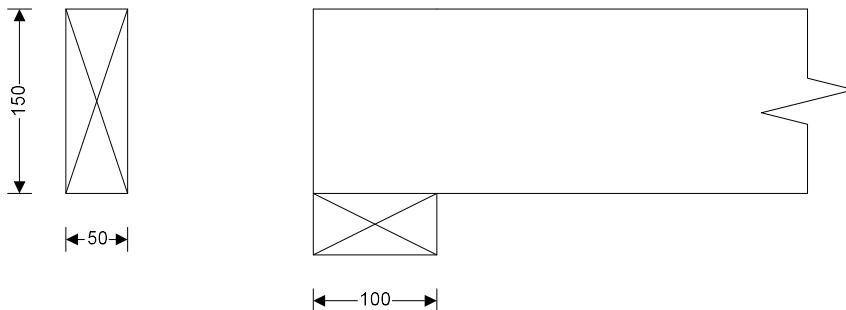

 Tedd's Make Structures Ltd. 20 Gallery Close Northampton, Northants NN3 5NT	Project 45 Bedford Avenue, Hayes UB4 0DR				Job Ref. 210026	
	Section Loft Conversion & Rear/Side Extension				Sheet no./rev. 11	
	Calc. by KL	Date 31/10/2021	Chkd by	Date	App'd by	Date

Joist depth $h = 150 \text{ mm}$

Joist spacing $s = 400 \text{ mm}$

Timber strength class **C16**

Service class of timber **1**



Span details

Number of spans $N_{\text{span}} = 1$

Length of bearing $L_b = 100 \text{ mm}$

Effective length of span $L_{s1} = 2700 \text{ mm}$

Section properties

Second moment of area $I = b \times h^3 / 12 = 14062500 \text{ mm}^4$

Section modulus $Z = b \times h^2 / 6 = 187500 \text{ mm}^3$

Loading details

Joist self weight $F_{\text{swt}} = b \times h \times \rho_{\text{char}} \times g_{\text{acc}} = 0.02 \text{ kN/m}$

Dead load $F_{\text{d_udl}} = 0.90 \text{ kN/m}^2$

Imposed UDL(Medium term) $F_{\text{i_udl}} = 0.75 \text{ kN/m}^2$

Imposed point load (Short term) $F_{\text{i_pt}} = 0.90 \text{ kN}$

Modification factors

Service class for bending parallel to grain $K_{2m} = 1.00$

Service class for compression $K_{2c} = 1.00$

Service class for shear parallel to grain $K_{2s} = 1.00$

Service class for modulus of elasticity $K_{2e} = 1.00$

Section depth factor $K_7 = 1.08$

Load sharing factor $K_8 = 1.10$

Consider medium term loads

Load duration factor $K_3 = 1.25$

Maximum bending moment $M = 0.622 \text{ kNm}$

Maximum shear force $V = 0.922 \text{ kN}$

Maximum support reaction $R = 0.922 \text{ kN}$

 Tedd's Make Structures Ltd. 20 Gallery Close Northampton, Northants NN3 5NT	Project 45 Bedford Avenue, Hayes UB4 0DR				Job Ref. 210026	
	Section Loft Conversion & Rear/Side Extension				Sheet no./rev. 12	
	Calc. by KL	Date 31/10/2021	Chkd by	Date	App'd by	Date

Maximum deflection $\delta = 3.999 \text{ mm}$

Check bending stress

Bending stress $\sigma_m = 5.300 \text{ N/mm}^2$

Permissible bending stress $\sigma_{m_adm} = \sigma_m \times K_{2m} \times K_3 \times K_7 \times K_8 = 7.865 \text{ N/mm}^2$

Applied bending stress $\sigma_{m_max} = M / Z = 3.318 \text{ N/mm}^2$

PASS - Applied bending stress within permissible limits

Check shear stress

Shear stress $\tau = 0.670 \text{ N/mm}^2$

Permissible shear stress $\tau_{adm} = \tau \times K_{2s} \times K_3 \times K_8 = 0.921 \text{ N/mm}^2$

Applied shear stress $\tau_{max} = 3 \times V / (2 \times b \times h) = 0.184 \text{ N/mm}^2$

PASS - Applied shear stress within permissible limits

Check bearing stress

Compression perpendicular to grain (no wane) $\sigma_{cp1} = 2.200 \text{ N/mm}^2$

Permissible bearing stress $\sigma_{c_adm} = \sigma_{cp1} \times K_{2c} \times K_3 \times K_8 = 3.025 \text{ N/mm}^2$

Applied bearing stress $\sigma_{c_max} = R / (b \times L_b) = 0.184 \text{ N/mm}^2$

PASS - Applied bearing stress within permissible limits

Check deflection

Permissible deflection $\delta_{adm} = \min(L_{s1} \times 0.003, 14 \text{ mm}) = 8.100 \text{ mm}$

Bending deflection (based on E_{mean}) $\delta_{bending} = 3.818 \text{ mm}$

Shear deflection $\delta_{shear} = 0.181 \text{ mm}$

Total deflection $\delta = \delta_{bending} + \delta_{shear} = 3.999 \text{ mm}$

PASS - Actual deflection within permissible limits

Consider short term loads

Load duration factor $K_3 = 1.50$

Maximum bending moment $M = 0.956 \text{ kNm}$

Maximum shear force $V = 1.417 \text{ kN}$

Maximum support reaction $R = 1.417 \text{ kN}$

Maximum deflection $\delta = 5.401 \text{ mm}$

Check bending stress

Bending stress $\sigma_m = 5.300 \text{ N/mm}^2$

Permissible bending stress $\sigma_{m_adm} = \sigma_m \times K_{2m} \times K_3 \times K_7 \times K_8 = 9.438 \text{ N/mm}^2$

Applied bending stress $\sigma_{m_max} = M / Z = 5.100 \text{ N/mm}^2$

PASS - Applied bending stress within permissible limits

Check shear stress

Shear stress $\tau = 0.670 \text{ N/mm}^2$

Permissible shear stress $\tau_{adm} = \tau \times K_{2s} \times K_3 \times K_8 = 1.106 \text{ N/mm}^2$

Applied shear stress $\tau_{max} = 3 \times V / (2 \times b \times h) = 0.283 \text{ N/mm}^2$

PASS - Applied shear stress within permissible limits

Check bearing stress

Compression perpendicular to grain (no wane) $\sigma_{cp1} = 2.200 \text{ N/mm}^2$

Permissible bearing stress $\sigma_{c_adm} = \sigma_{cp1} \times K_{2c} \times K_3 \times K_8 = 3.630 \text{ N/mm}^2$

Applied bearing stress $\sigma_{c_max} = R / (b \times L_b) = 0.283 \text{ N/mm}^2$

PASS - Applied bearing stress within permissible limits

 Tedd's Make Structures Ltd. 20 Gallery Close Northampton, Northants NN3 5NT	Project 45 Bedford Avenue, Hayes UB4 0DR				Job Ref. 210026	
	Section Loft Conversion & Rear/Side Extension				Sheet no./rev. 13	
	Calc. by KL	Date 31/10/2021	Chkd by	Date	App'd by	Date

Check deflection

Permissible deflection

$$\delta_{adm} = \min(L_{s1} \times 0.003, 14 \text{ mm}) = \mathbf{8.100 \text{ mm}}$$

Bending deflection (based on E_{mean})

$$\delta_{bending} = \mathbf{5.123 \text{ mm}}$$

Shear deflection

$$\delta_{shear} = \mathbf{0.278 \text{ mm}}$$

Total deflection

$$\delta = \delta_{bending} + \delta_{shear} = \mathbf{5.401 \text{ mm}}$$

PASS - Actual deflection within permissible limits

Above First Floor:

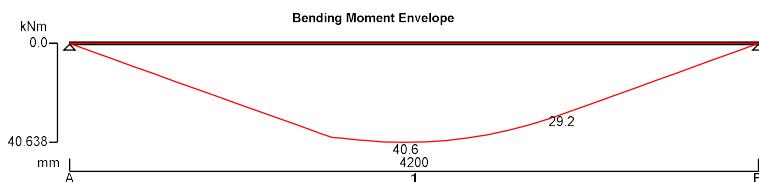
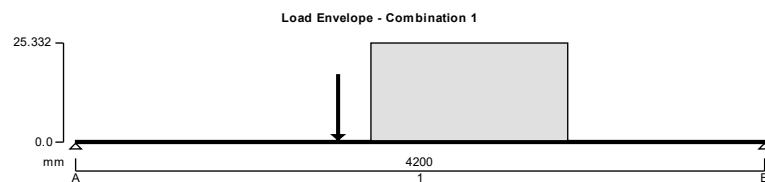
Beam C – Chimney & Post Support

$$\text{UDL DL} = (3.2 \times 7.4 \times 0.75) = 17.8 \text{ kN/m}$$

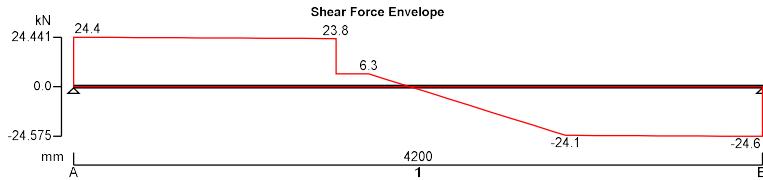
Chim.Breast

$$\text{PL DL} = 7.5 \text{ kN}$$

RA₁



$$\text{PL IL} = 4.3 \text{ kN}$$

STEEL BEAM C ANALYSIS & DESIGN (BS5950)


STEEL BEAM ANALYSIS & DESIGN (BS5950)

In accordance with BS5950-1:2000 incorporating Corrigendum No.1

TEDDS calculation version 3.0.05

 Tedd's Make Structures Ltd. 20 Gallery Close Northampton, Northants NN3 5NT	Project 45 Bedford Avenue, Hayes UB4 0DR				Job Ref. 210026	
	Section Loft Conversion & Rear/Side Extension				Sheet no./rev. 14	
	Calc. by KL	Date 31/10/2021	Chkd by	Date	App'd by	Date

Support conditions

Support A	Vertically restrained Rotationally free
Support B	Vertically restrained Rotationally free

Applied loading

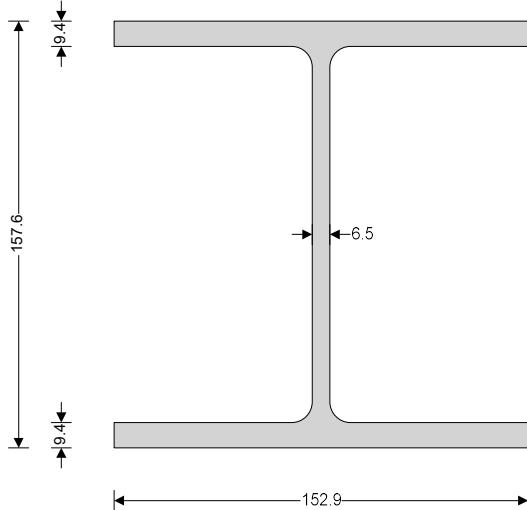
Beam loads	Dead self weight of beam × 1 Dead partial UDL 17.8 kN/m from 1800 mm to 3000 mm Dead point load 7.5 kN at 1600 mm Imposed point load 4.3 kN at 1600 mm
------------	---

Load combinations

Load combination 1	Support A	Dead × 1.40 Imposed × 1.60
	Span 1	Dead × 1.40 Imposed × 1.60
	Support B	Dead × 1.40 Imposed × 1.60

Analysis results

Maximum moment	$M_{\max} = 40.6 \text{ kNm}$	$M_{\min} = 0 \text{ kNm}$
Maximum shear	$V_{\max} = 24.4 \text{ kN}$	$V_{\min} = -24.6 \text{ kN}$
Deflection	$\delta_{\max} = 13.6 \text{ mm}$	$\delta_{\min} = 0 \text{ mm}$
Maximum reaction at support A	$R_{A_max} = 24.4 \text{ kN}$	$R_{A_min} = 24.4 \text{ kN}$
Unfactored dead load reaction at support A	$R_{A_Dead} = 14.4 \text{ kN}$	
Unfactored imposed load reaction at support A	$R_{A_Imposed} = 2.7 \text{ kN}$	
Maximum reaction at support B	$R_{B_max} = 24.6 \text{ kN}$	$R_{B_min} = 24.6 \text{ kN}$
Unfactored dead load reaction at support B	$R_{B_Dead} = 15.7 \text{ kN}$	
Unfactored imposed load reaction at support B	$R_{B_Imposed} = 1.6 \text{ kN}$	


Section details

Section type	UKC 152x152x30 (Tata Steel Advance)
Steel grade	S275

From table 9: Design strength p_y

Thickness of element	$\max(T, t) = 9.4 \text{ mm}$
Design strength	$p_y = 275 \text{ N/mm}^2$
Modulus of elasticity	$E = 205000 \text{ N/mm}^2$

 Tedd's Make Structures Ltd. 20 Gallery Close Northampton, Northants NN3 5NT	Project	Job Ref.			
	Section	45 Bedford Avenue, Hayes UB4 0DR			
	Loft Conversion & Rear/Side Extension		Sheet no./rev.		15
	Calc. by	Date	Chkd by	Date	App'd by
	KL	31/10/2021			

Lateral restraint

Span 1 has lateral restraint at supports only

Effective length factors

Effective length factor in major axis	$K_x = 1.00$
Effective length factor in minor axis	$K_y = 1.00$
Effective length factor for lateral-torsional buckling	$K_{LT,A} = 1.00$
	$K_{LT,B} = 1.00$

Classification of cross sections - Section 3.5

$$\varepsilon = \sqrt{[275 \text{ N/mm}^2 / p_y]} = 1.00$$

Internal compression parts - Table 11

Depth of section	$d = 123.6 \text{ mm}$
	$d / t = 19.0 \times \varepsilon \leq 80 \times \varepsilon$ Class 1 plastic

Outstand flanges - Table 11

Width of section	$b = B / 2 = 76.5 \text{ mm}$
	$b / T = 8.1 \times \varepsilon \leq 9 \times \varepsilon$ Class 1 plastic

Section is class 1 plastic

Shear capacity - Section 4.2.3

Design shear force	$F_v = \max(\text{abs}(V_{\max}), \text{abs}(V_{\min})) = 24.6 \text{ kN}$
	$d / t < 70 \times \varepsilon$

Web does not need to be checked for shear buckling

Shear area	$A_v = t \times D = 1024 \text{ mm}^2$
Design shear resistance	$P_v = 0.6 \times p_y \times A_v = 169 \text{ kN}$

PASS - Design shear resistance exceeds design shear force

Moment capacity - Section 4.2.5

Design bending moment	$M = \max(\text{abs}(M_{s1_max}), \text{abs}(M_{s1_min})) = 40.6 \text{ kNm}$
Moment capacity low shear - cl.4.2.5.2	$M_c = \min(p_y \times S_{xx}, 1.2 \times p_y \times Z_{xx}) = 68.1 \text{ kNm}$

Effective length for lateral-torsional buckling - Section 4.3.5

Effective length for lateral torsional buckling	$L_E = 1.0 \times L_{s1} = 4200 \text{ mm}$
Slenderness ratio	$\lambda = L_E / r_{yy} = 109.740$

 Make Structures Ltd. 20 Gallery Close Northampton, Northants NN3 5NT	Project 45 Bedford Avenue, Hayes UB4 0DR				Job Ref. 210026
	Section Loft Conversion & Rear/Side Extension				Sheet no./rev. 16
	Calc. by KL	Date 31/10/2021	Chkd by	Date	App'd by

Equivalent slenderness - Section 4.3.6.7

Buckling parameter	$u = 0.849$
Torsional index	$x = 15.999$
Slenderness factor	$v = 1 / [1 + 0.05 \times (\lambda / x)^2]^{0.25} = 0.739$
Ratio - cl.4.3.6.9	$\beta_w = 1.000$
Equivalent slenderness - cl.4.3.6.7	$\lambda_{LT} = u \times v \times \lambda \times \sqrt{[\beta_w]} = 68.815$
Limiting slenderness - Annex B.2.2	$\lambda_{L0} = 0.4 \times (\pi^2 \times E / p_y)^{0.5} = 34.310$
	$\lambda_{LT} > \lambda_{L0}$ - Allowance should be made for lateral-torsional buckling

Bending strength - Section 4.3.6.5

Robertson constant	$\alpha_{LT} = 7.0$
Perry factor	$\eta_{LT} = \max(\alpha_{LT} \times (\lambda_{LT} - \lambda_{L0}) / 1000, 0) = 0.242$
Euler stress	$p_E = \pi^2 \times E / \lambda_{LT}^2 = 427.3 \text{ N/mm}^2$
Bending strength - Annex B.2.1	$\phi_{LT} = (p_y + (\eta_{LT} + 1) \times p_E) / 2 = 402.7 \text{ N/mm}^2$
	$p_b = p_E \times p_y / (\phi_{LT} + (\phi_{LT}^2 - p_E \times p_y)^{0.5}) = 191.3 \text{ N/mm}^2$

Equivalent uniform moment factor - Section 4.3.6.6

Moment at quarter point of segment	$M_2 = 25.4 \text{ kNm}$
Moment at centre-line of segment	$M_3 = 40.6 \text{ kNm}$
Moment at three quarter point of segment	$M_4 = 25.6 \text{ kNm}$
Maximum moment in segment	$M_{abs} = 40.6 \text{ kNm}$
Maximum moment governing buckling resistance	$M_{LT} = M_{abs} = 40.6 \text{ kNm}$
Equivalent uniform moment factor for lateral-torsional buckling	$m_{LT} = \max(0.2 + (0.15 \times M_2 + 0.5 \times M_3 + 0.15 \times M_4) / M_{abs}, 0.44) = 0.888$

Buckling resistance moment - Section 4.3.6.4

Buckling resistance moment	$M_b = p_b \times S_{xx} = 47.4 \text{ kNm}$
	$M_b / m_{LT} = 53.4 \text{ kNm}$

PASS - Buckling resistance moment exceeds design bending moment

Check vertical deflection - Section 2.5.2

Consider deflection due to dead and imposed loads

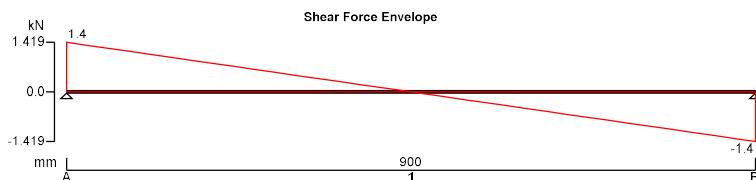
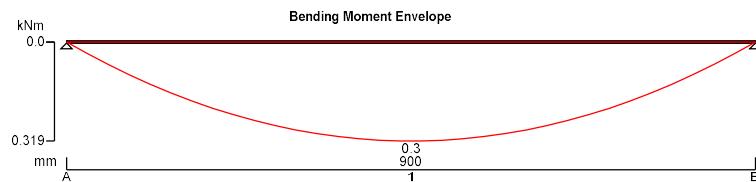
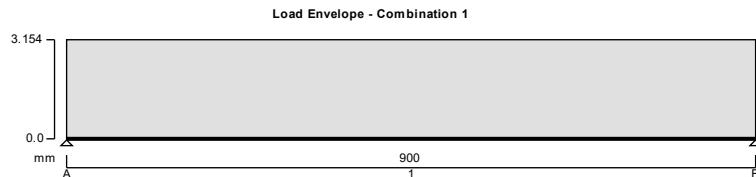
Limiting deflection	$\delta_{lim} = \min(16 \text{ mm}, L_{s1} / 300) = 14 \text{ mm}$
Maximum deflection span 1	$\delta = \max(\text{abs}(\delta_{max}), \text{abs}(\delta_{min})) = 13.641 \text{ mm}$
PASS - Maximum deflection does not exceed deflection limit	

Beam D – Stair Landing Trimmer

$$\text{UDL DL} = 2.8/2 \times 0.7 = 1.0 \text{ kN/m}$$

2nd Flr

$$\text{UDL IL} = 2.8/2 \times 1.5 = 2.1 \text{ kN/m}$$




Span = 0.9m

 Tedd's Make Structures Ltd. 20 Gallery Close Northampton, Northants NN3 5NT	Project	Job Ref.				
	Section	45 Bedford Avenue, Hayes UB4 0DR				210026
	Loft Conversion & Rear/Side Extension				Sheet no./rev.	
	Calc. by	Date	Chkd by	Date	App'd by	17
	KL	31/10/2021				

TIMBER BEAM D ANALYSIS & DESIGN (BS5268)

TIMBER BEAM ANALYSIS & DESIGN TO BS5268-2:2002

TEDDS calculation version 1.5.07

Applied loading

Beam loads

Dead self weight of beam $\times 1$

Dead full UDL 1.000 kN/m

Imposed full UDL 2.100 kN/m

Load combinations

Load combination 1

Support A

Dead $\times 1.00$

Imposed $\times 1.00$

Span 1

Dead $\times 1.00$

Imposed $\times 1.00$

Support B

Dead $\times 1.00$

Imposed $\times 1.00$

Analysis results

Maximum moment

$$M_{\max} = 0.319 \text{ kNm}$$

$$M_{\min} = 0.000 \text{ kNm}$$

Design moment

$$M = \max(\text{abs}(M_{\max}), \text{abs}(M_{\min})) = 0.319 \text{ kNm}$$

Maximum shear

$$F_{\max} = 1.419 \text{ kN}$$

$$F_{\min} = -1.419 \text{ kN}$$

Design shear

$$F = \max(\text{abs}(F_{\max}), \text{abs}(F_{\min})) = 1.419 \text{ kN}$$

Total load on beam

$$W_{\text{tot}} = 2.839 \text{ kN}$$

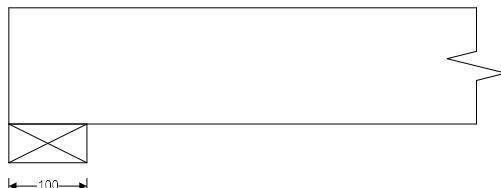
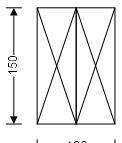
Reactions at support A

$$R_{A_max} = 1.419 \text{ kN}$$

$$R_{A_min} = 1.419 \text{ kN}$$

 Tedd's Make Structures Ltd. 20 Gallery Close Northampton, Northants NN3 5NT	Project	45 Bedford Avenue, Hayes UB4 0DR				Job Ref.	210026
	Section	Loft Conversion & Rear/Side Extension				Sheet no./rev.	18
	Calc. by	KL	Date	31/10/2021	Chkd by	Date	App'd by
							Date

Unfactored dead load reaction at support A $R_{A_Dead} = 0.474 \text{ kN}$



Unfactored imposed load reaction at support A $R_{A_Imposed} = 0.945 \text{ kN}$

Reactions at support B

$R_{B_max} = 1.419 \text{ kN}$ $R_{B_min} = 1.419 \text{ kN}$

Unfactored dead load reaction at support B $R_{B_Dead} = 0.474 \text{ kN}$

Unfactored imposed load reaction at support B $R_{B_Imposed} = 0.945 \text{ kN}$

Timber section details

Breadth of sections $b = 50 \text{ mm}$

Depth of sections $h = 150 \text{ mm}$

Number of sections in member $N = 2$

Overall breadth of member $b_b = N \times b = 100 \text{ mm}$

Timber strength class **C16**

Member details

Service class of timber **1**

Load duration **Long term**

Length of bearing $L_b = 100 \text{ mm}$

Section properties

Cross sectional area of member $A = N \times b \times h = 15000 \text{ mm}^2$

Section modulus $Z_x = N \times b \times h^2 / 6 = 375000 \text{ mm}^3$

$Z_y = h \times (N \times b)^2 / 6 = 250000 \text{ mm}^3$

$I_x = N \times b \times h^3 / 12 = 28125000 \text{ mm}^4$

$I_y = h \times (N \times b)^3 / 12 = 12500000 \text{ mm}^4$

$i_x = \sqrt{I_x / A} = 43.3 \text{ mm}$

$i_y = \sqrt{I_y / A} = 28.9 \text{ mm}$

Modification factors

Duration of loading - Table 17 $K_3 = 1.00$

Bearing stress - Table 18 $K_4 = 1.00$

Total depth of member - cl.2.10.6 $K_7 = (300 \text{ mm} / h)^{0.11} = 1.08$

Load sharing - cl.2.10.11 $K_8 = 1.10$

Minimum modulus of elasticity - Table 20 $K_9 = 1.14$

Lateral support - cl.2.10.8

Ends held in position and members held in line, as by direct connection of sheathing, deck or joists

Permissible depth-to-breadth ratio - Table 19 **5.00**

Actual depth-to-breadth ratio $h / (N \times b) = 1.50$

PASS - Lateral support is adequate

Compression perpendicular to grain

Permissible bearing stress (no wane) $\sigma_{c_adm} = \sigma_{cp1} \times K_3 \times K_4 \times K_8 = 2.420 \text{ N/mm}^2$

Applied bearing stress $\sigma_{c_a} = R_{A_max} / (N \times b \times L_b) = 0.142 \text{ N/mm}^2$

$\sigma_{c_a} / \sigma_{c_adm} = 0.059$

PASS - Applied compressive stress is less than permissible compressive stress at bearing

 Tedd's Make Structures Ltd. 20 Gallery Close Northampton, Northants NN3 5NT	Project 45 Bedford Avenue, Hayes UB4 0DR				Job Ref. 210026	
	Section Loft Conversion & Rear/Side Extension				Sheet no./rev. 19	
	Calc. by KL	Date 31/10/2021	Chkd by	Date	App'd by	Date

Bending parallel to grain

Permissible bending stress $\sigma_{m_adm} = \sigma_m \times K_3 \times K_7 \times K_8 = 6.292 \text{ N/mm}^2$

Applied bending stress $\sigma_{m_a} = M / Z_x = 0.852 \text{ N/mm}^2$

$\sigma_{m_a} / \sigma_{m_adm} = 0.135$

PASS - Applied bending stress is less than permissible bending stress

Shear parallel to grain

Permissible shear stress $\tau_{adm} = \tau \times K_3 \times K_8 = 0.737 \text{ N/mm}^2$

Applied shear stress $\tau_a = 3 \times F / (2 \times A) = 0.142 \text{ N/mm}^2$

$\tau_a / \tau_{adm} = 0.193$

PASS - Applied shear stress is less than permissible shear stress

Deflection

Modulus of elasticity for deflection $E = E_{min} \times K_9 = 6612 \text{ N/mm}^2$

Permissible deflection $\delta_{adm} = \min(14 \text{ mm}, 0.003 \times L_{s1}) = 2.700 \text{ mm}$

Bending deflection $\delta_{b_s1} = 0.145 \text{ mm}$

Shear deflection $\delta_{v_s1} = 0.062 \text{ mm}$

Total deflection $\delta_a = \delta_{b_s1} + \delta_{v_s1} = 0.207 \text{ mm}$

$\delta_a / \delta_{adm} = 0.077$

PASS - Total deflection is less than permissible deflection

Use 2No.175 x 50 C16 due to Floor Depth Required – See Floor Design Below

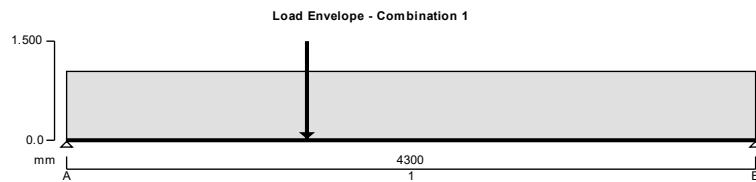
Beam E – Stair Side Trimmer

UDL DL = $0.4 \times (0.7 - 0.15) = 0.3 \text{ kN/m}$

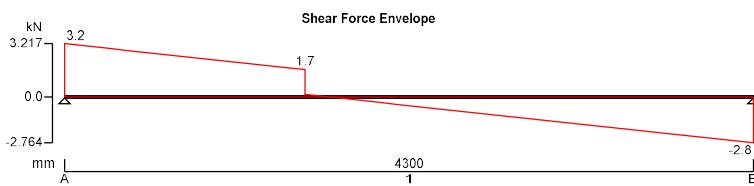
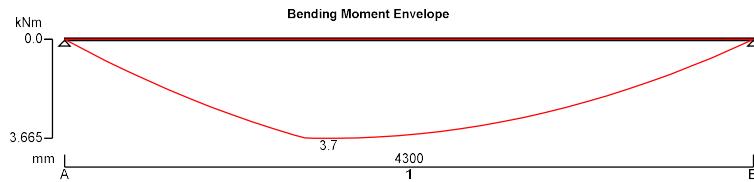
c/c SWJ

UDL IL = $0.4 \times 1.5 = 0.6 \text{ kN/m}$

PL DL = 0.5 kN


RD₁

PL IL = 1.0 kN



TIMBER BEAM E ANALYSIS & DESIGN (BS5268)

FLITCH BEAM ANALYSIS & DESIGN TO BS5268-2:2002

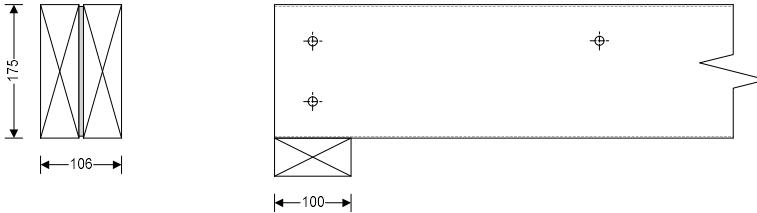
TEDDS calculation version 1.5.07

 Tedd's Make Structures Ltd. 20 Gallery Close Northampton, Northants NN3 5NT	Project	Job Ref.			
	Section	45 Bedford Avenue, Hayes UB4 0DR			
	Loft Conversion & Rear/Side Extension		Sheet no./rev.		20

Applied loading

Beam loads

Dead self weight of beam $\times 1$
Dead full UDL 0.300 kN/m
Imposed full UDL 0.600 kN/m
Dead point load 0.500 kN at 1500 mm
Imposed point load 1.000 kN at 1500 mm


Load combinations

Load combination 1	Support A	Dead $\times 1.00$
	Span 1	Imposed $\times 1.00$
	Support B	Dead $\times 1.00$
		Imposed $\times 1.00$

Analysis results

Maximum moment	$M_{\max} = 3.665$ kNm	$M_{\min} = 0.000$ kNm
Design moment	$M = \max(\text{abs}(M_{\max}), \text{abs}(M_{\min})) = 3.665$ kNm	
Maximum shear	$F_{\max} = 3.217$ kN	$F_{\min} = -2.764$ kN
Design shear	$F = \max(\text{abs}(F_{\max}), \text{abs}(F_{\min})) = 3.217$ kN	
Total load on beam	$W_{\text{tot}} = 5.981$ kN	
Reactions at support A	$R_{A_max} = 3.217$ kN	$R_{A_min} = 3.217$ kN
Unfactored dead load reaction at support A	$R_{A_Dead} = 1.276$ kN	
Unfactored imposed load reaction at support A	$R_{A_Imposed} = 1.941$ kN	
Reactions at support B	$R_{B_max} = 2.764$ kN	$R_{B_min} = 2.764$ kN
Unfactored dead load reaction at support B	$R_{B_Dead} = 1.125$ kN	
Unfactored imposed load reaction at support B	$R_{B_Imposed} = 1.639$ kN	

 Tedd's Make Structures Ltd. 20 Gallery Close Northampton, Northants NN3 5NT	Project	45 Bedford Avenue, Hayes UB4 0DR				Job Ref.	210026
	Section	Loft Conversion & Rear/Side Extension				Sheet no./rev.	21
	Calc. by	KL	Date	31/10/2021	Chkd by	Date	App'd by

Timber section details

Breadth of timber sections	b = 50 mm
Depth of timber sections	h = 175 mm
Number of timber sections in member	N = 2
Timber strength class	C16

Steel section details

Breadth of steel plate	b_s = 6 mm
Depth of steel plate	h_s = 170 mm
Number of steel plates in beam	N_s = 1
Steel stress	p_y = 165 N/mm²
Bolt diameter	φ_b = 12 mm

Member details

Service class of timber	1
Load duration	Long term
Length of bearing	L_b = 100 mm

Section properties

Cross sectional area of beam	A = N × b × h = 17500 mm²
Timber section modulus	Z_{xt} = N × b × h² / 6 = 510417 mm³
Steel section modulus	Z_{xs} = N_s × b_s × h_s² / 6 = 28900 mm³
Second moment of area of timber	I_{xt} = N × b × h³ / 12 = 44661458 mm⁴
Second moment of area of steel	I_{xs} = N_s × b_s × h_s³ / 12 = 2456500 mm⁴

Load proportions

Instant deflection under permanent actions	U_{instG} = 3.006 mm
Instant deflection under principal variable action	U_{instQ1} = 4.604 mm
	k_{def} = 0.6
	ψ₂ = 0.3

Final minimum modulus of elasticity

$$E_{min,fin} = E_{min} \times (U_{instG} + U_{instQ1}) / (U_{instG} + U_{instQ1} + k_{def} \times (U_{instG} + \psi_2 \times U_{instQ1})) = 4309 \text{ N/mm}^2$$

$$k_t = E_{mean} \times I_{xt} / (E_{mean} \times I_{xt} + E_{S5950} \times I_{xs}) = 0.438$$

$$k_s = 1.1 \times E_{S5950} \times I_{xs} / (E_{min,fin} \times I_{xt} + E_{S5950} \times I_{xs}) = 0.796$$

Modification factors

Duration of loading - Table 17	K₃ = 1.00
Bearing stress - Table 18	K₄ = 1.00
Total depth of member - cl.2.10.6	K₇ = (300 mm / h)^{0.11} = 1.06
Load sharing - cl.2.10.11	K₈ = 1.10
Minimum modulus of elasticity - Table 20	K₉ = 1.14

Lateral support - cl.2.10.8

No lateral support

Permissible depth-to-breadth ratio - Table 19 **2.00**

 Tedd's Make Structures Ltd. 20 Gallery Close Northampton, Northants NN3 5NT	Project	Job Ref.				
	Section	45 Bedford Avenue, Hayes UB4 0DR				210026
	Loft Conversion & Rear/Side Extension				Sheet no./rev.	
	Calc. by	Date	Chkd by	Date	App'd by	Date
KL	31/10/2021					

Actual depth-to-breadth ratio $h / (N \times b + N_s \times b_s) = 1.65$

PASS - Lateral support is adequate

Compression perpendicular to grain

Permissible bearing stress (no wane)

$$\sigma_{c_adm} = \sigma_{cp1} \times K_3 \times K_4 \times K_8 = 2.420 \text{ N/mm}^2$$

Applied bearing stress

$$\sigma_{c_a} = R_{A_max} / (N \times b \times L_b) = 0.322 \text{ N/mm}^2$$

$$\sigma_{c_a} / \sigma_{c_adm} = 0.133$$

PASS - Applied compressive stress is less than permissible compressive stress at bearing

Bending parallel to grain

Permissible bending stress

$$\sigma_{m_adm} = \sigma_m \times K_3 \times K_7 \times K_8 = 6.186 \text{ N/mm}^2$$

Applied timber bending stress

$$\sigma_{m_a} = k_t \times M / Z_{xt} = 3.147 \text{ N/mm}^2$$

$$\sigma_{m_a} / \sigma_{m_adm} = 0.509$$

PASS - Timber bending stress is less than permissible timber bending stress

Applied steel bending stress

$$\sigma_{m_a_s} = k_s \times M / Z_{xs} = 100.919 \text{ N/mm}^2$$

$$\sigma_{m_a_s} / p_y = 0.612$$

PASS - Steel bending stress is less than permissible steel bending stress

Check beam in shear

Permissible shear stress

$$\tau_{adm} = \tau \times K_{2s} \times K_3 \times K_8 = 0.737 \text{ N/mm}^2$$

Applied shear stress

$$\tau_a = 3 \times k_t \times F / (2 \times A) = 0.121 \text{ N/mm}^2$$

$$\tau_a / \tau_{adm} = 0.164$$

PASS - Shear stress within permissible limits

Deflection

Modulus of elasticity for deflection

$$E = E_{mean} = 8800 \text{ N/mm}^2$$

Permissible deflection

$$\delta_{adm} = \min(14 \text{ mm}, 0.003 \times L_{s1}) = 12.900 \text{ mm}$$

Bending deflection

$$\delta_{b_s1} = 7.610 \text{ mm}$$

Shear deflection

$$\delta_{v_s1} = 0.457 \text{ mm}$$

Total deflection

$$\delta_a = \delta_{b_s1} + \delta_{v_s1} = 8.067 \text{ mm}$$

$$\delta_a / \delta_{adm} = 0.625$$

PASS - Total deflection is less than permissible deflection

Flitch plate bolting requirements

Total load on beam

$$W_{tot} = 5.981 \text{ kN}$$

Total load taken by steel

$$W_s = k_s \times W_{tot} = 4.760 \text{ kN}$$

Basic bolt shear load - Table 70

$$v_{90} = 1.659 \text{ kN}$$

Number of interfaces

$$N_{int} = (N + N_s) - 1 = 2$$

Number of bolts required at supports

$$N_{be} = \max(k_s \times R_{A_max} / (N_{int} \times v_{90}), 2) = 2$$

Limiting bolt spacing

$$S_{limit} = \min(2.5 \times h, 600 \text{ mm}) = 438 \text{ mm}$$

Maximum bolt spacing

$$S_{max} = 375 \text{ mm}$$

Minimum number of bolts along length of beam

$$N_{bl} = W_s / (N_{int} \times v_{90}) = 1.434$$

- Provide a minimum of 2 No.12 mm diameter bolts at each support

- Provide 12 mm diameter bolts at maximum 375 mm centres staggered 40 mm alternately above and below the centre line

Minimum bolt spacings

Minimum end spacing

$$S_{end} = 4 \times \phi_b = 48 \text{ mm}$$

Minimum edge spacing

$$S_{edge} = 4 \times \phi_b = 48 \text{ mm}$$

Minimum bolt spacing

$$S_{bolt} = 4 \times \phi_b = 48 \text{ mm}$$

Minimum washer diameter

$$\phi_w = 3 \times \phi_b = 36 \text{ mm}$$

Minimum washer thickness

$$t_w = 0.25 \times \phi_b = 3 \text{ mm}$$

 Tedd's Make Structures Ltd. 20 Gallery Close Northampton, Northants NN3 5NT	Project 45 Bedford Avenue, Hayes UB4 0DR	Job Ref. 210026
	Section Loft Conversion & Rear/Side Extension	Sheet no./rev. 23
	Calc. by KL	Date 31/10/2021

Beam F – Front Party-to-Flank Wall

$$\text{UDL DL} = (4.3/2 \times 0.7) + (1.3 \times 0.7) + (4.2/2 \times 1.35) = 5.3 \text{ kN/m}$$

2nd Flr Int.Stud P.Roof

$$\text{UDL IL} = (4.3/2 \times 1.5) + (4.2/2 \times 0.75) = 4.8 \text{ kN/m}$$

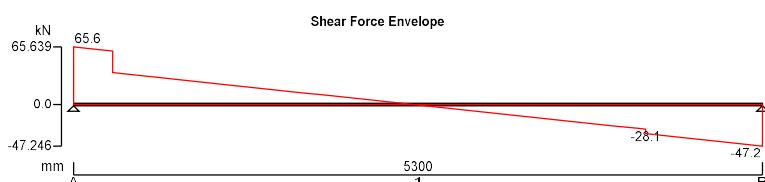
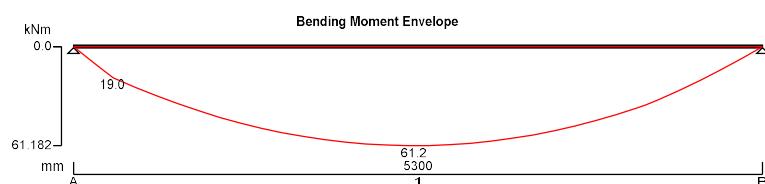
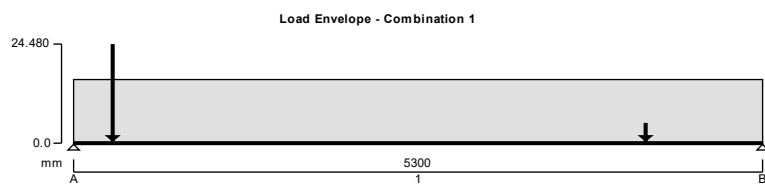
$$\text{PL1 DL} = 14.4 \text{ kN}$$

RC₁

$$\text{PL1 IL} = 2.7 \text{ kN}$$

$$\text{PL2 DL} = 1.3 \text{ kN}$$

RE₁




$$\text{PL2 IL} = 2.0 \text{ kN}$$

STEEL BEAM F ANALYSIS & DESIGN (BS5950)

STEEL BEAM ANALYSIS & DESIGN (BS5950)

In accordance with BS5950-1:2000 incorporating Corrigendum No.1

TEDDS calculation version 3.0.05

Support conditions

Support A

Vertically restrained

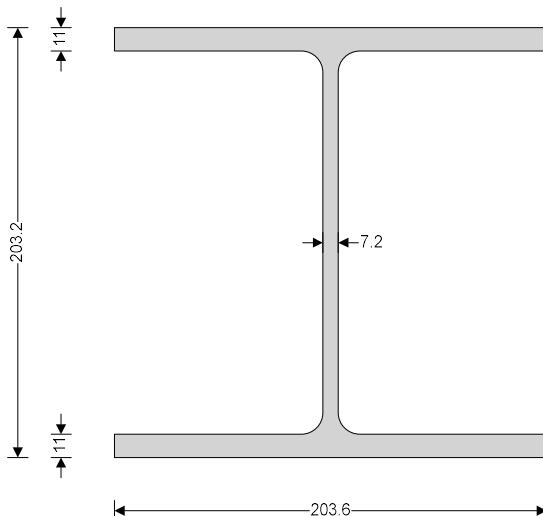
 Tedd's Make Structures Ltd. 20 Gallery Close Northampton, Northants NN3 5NT	Project 45 Bedford Avenue, Hayes UB4 0DR				Job Ref. 210026	
	Section Loft Conversion & Rear/Side Extension				Sheet no./rev. 24	
	Calc. by KL	Date 31/10/2021	Chkd by	Date	App'd by	Date

Support B Rotationally free
Vertically restrained
Rotationally free

Applied loading

Beam loads Dead self weight of beam $\times 1$
Dead full UDL 5.3 kN/m
Imposed full UDL 4.8 kN/m
Dead point load 14.4 kN at 300 mm
Imposed point load 2.7 kN at 300 mm
Dead point load 1.3 kN at 4400 mm
Imposed point load 2 kN at 4400 mm

Load combinations


Load combination 1	Support A	Dead $\times 1.40$
	Span 1	Imposed $\times 1.60$
	Support B	Dead $\times 1.40$
		Imposed $\times 1.60$

Analysis results

Maximum moment	$M_{\max} = 61.2$ kNm	$M_{\min} = 0$ kNm
Maximum shear	$V_{\max} = 65.6$ kN	$V_{\min} = -47.2$ kN
Deflection	$\delta_{\max} = 13.1$ mm	$\delta_{\min} = 0$ mm
Maximum reaction at support A	$R_{A_max} = 65.6$ kN	$R_{A_min} = 65.6$ kN
Unfactored dead load reaction at support A	$R_{A_Dead} = 29$ kN	
Unfactored imposed load reaction at support A	$R_{A_Imposed} = 15.6$ kN	
Maximum reaction at support B	$R_{B_max} = 47.2$ kN	$R_{B_min} = 47.2$ kN
Unfactored dead load reaction at support B	$R_{B_Dead} = 17.1$ kN	
Unfactored imposed load reaction at support B	$R_{B_Imposed} = 14.5$ kN	

Section details

Section type **UKC 203x203x46 (Tata Steel Advance)** Steel grade **S275**

 Tedd's Make Structures Ltd. 20 Gallery Close Northampton, Northants NN3 5NT	Project 45 Bedford Avenue, Hayes UB4 0DR	Job Ref. 210026
	Section Loft Conversion & Rear/Side Extension	Sheet no./rev. 25
	Calc. by KL	Date 31/10/2021

Classification of cross sections - Section 3.5

Tensile strain coefficient $\epsilon = 1.00$

Section classification

Compact

Shear capacity - Section 4.2.3

Design shear force $F_v = 65.6$ kN

Design shear resistance

$P_v = 241.4$ kN

PASS - Design shear resistance exceeds design shear force

Moment capacity - Section 4.2.5

Design bending moment $M = 61.2$ kNm

Moment capacity low shear

$M_c = 136.8$ kNm

Buckling resistance moment - Section 4.3.6.4

Buckling resistance moment $M_b = 95.9$ kNm

$M_b / m_{LT} = 102.9$ kNm

PASS - Buckling resistance moment exceeds design bending moment

Check vertical deflection - Section 2.5.2

Consider deflection due to dead and imposed loads

Limiting deflection $\delta_{lim} = 16$ mm

Maximum deflection

$\delta = 13.072$ mm

PASS - Maximum deflection does not exceed deflection limit

Beam G – Rear Dormer Support

$$\text{UDL DL} = (4.3/2 \times 0.7) + (2.5 \times 1.0 \times 0.85) + (2.8/2 \times 1.05) = 5.1 \text{ kN/m}$$

2nd Flr 100 Stud Ext. F.Roof

$$\text{UDL IL} = (4.3/2 \times 1.5) + (2.8/2 \times 0.75) = 4.3 \text{ kN/m}$$

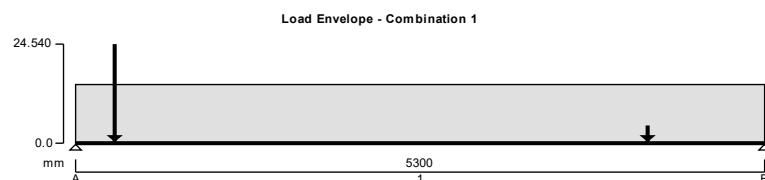
$$\text{PL1 DL} = 15.7 \text{ kN}$$

RC₂

$$\text{PL1 IL} = 1.6 \text{ kN}$$

$$\text{PL2 DL} = 1.2 \text{ kN}$$

RE₂

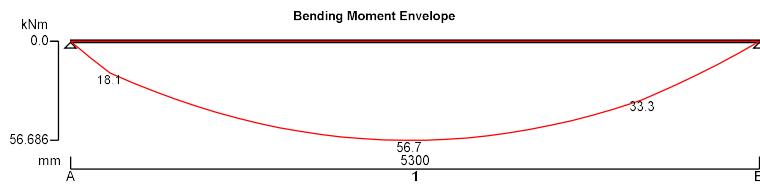

$$\text{PL2 IL} = 1.7 \text{ kN}$$

STEEL BEAM G ANALYSIS & DESIGN (BS5950)

STEEL BEAM ANALYSIS & DESIGN (BS5950)

In accordance with BS5950-1:2000 incorporating Corrigendum No.1

TEDDS calculation version 3.0.05



 Tedd's Make Structures Ltd. 20 Gallery Close Northampton, Northants NN3 5NT	Project	Job Ref.			
	Section	45 Bedford Avenue, Hayes UB4 0DR			
	Loft Conversion & Rear/Side Extension		Sheet no./rev.		26

Calc. by Date Chkd by Date App'd by Date

KL

31/10/2021

Support conditions

Support A	Vertically restrained Rotationally free
Support B	Vertically restrained Rotationally free

Applied loading

Beam loads	Dead self weight of beam $\times 1$ Dead full UDL 5.1 kN/m Imposed full UDL 4.3 kN/m Dead point load 15.7 kN at 300 mm Imposed point load 1.6 kN at 300 mm Dead point load 1.2 kN at 4400 mm Imposed point load 1.7 kN at 4400 mm
------------	---

Load combinations

Load combination 1	Support A	Dead $\times 1.40$ Imposed $\times 1.60$
	Span 1	Dead $\times 1.40$ Imposed $\times 1.60$
	Support B	Dead $\times 1.40$ Imposed $\times 1.60$

Analysis results

Maximum moment	$M_{\max} = 56.7$ kNm	$M_{\min} = 0$ kNm
Maximum shear	$V_{\max} = 62.4$ kN	$V_{\min} = -43.5$ kN
Deflection	$\delta_{\max} = 10.5$ mm	$\delta_{\min} = 0$ mm
Maximum reaction at support A	$R_{A_max} = 62.4$ kN	$R_{A_min} = 62.4$ kN
Unfactored dead load reaction at support A	$R_{A_Dead} = 29.5$ kN	
Unfactored imposed load reaction at support A	$R_{A_Imposed} = 13.2$ kN	
Maximum reaction at support B	$R_{B_max} = 43.5$ kN	$R_{B_min} = 43.5$ kN
Unfactored dead load reaction at support B	$R_{B_Dead} = 16.4$ kN	
Unfactored imposed load reaction at support B	$R_{B_Imposed} = 12.9$ kN	

 Tedd's Make Structures Ltd. 20 Gallery Close Northampton, Northants NN3 5NT	Project 45 Bedford Avenue, Hayes UB4 0DR	Job Ref. 210026
	Section Loft Conversion & Rear/Side Extension	Sheet no./rev. 27
	Calc. by KL	Date 31/10/2021

Section details

Section type **UKC 152x152x37 (Tata Steel Advance)** Steel grade **S275**

Classification of cross sections - Section 3.5

Tensile strain coefficient $\epsilon = 1.00$

Section classification

Plastic

Shear capacity - Section 4.2.3

Design shear force $F_v = 62.4$ kN

Design shear resistance

$P_v = 213.6$ kN

PASS - Design shear resistance exceeds design shear force

Moment capacity - Section 4.2.5

Design bending moment $M = 56.7$ kNm

Moment capacity low shear

$M_c = 84.9$ kNm

Buckling resistance moment - Section 4.3.6.4

Buckling resistance moment $M_b = 55.7$ kNm

$M_b / m_{LT} = 59.7$ kNm

PASS - Buckling resistance moment exceeds design bending moment

Check vertical deflection - Section 2.5.2

Consider deflection due to imposed loads

Limiting deflection

$\delta_{lim} = 14.722$ mm

Maximum deflection

$\delta = 10.505$ mm

PASS - Maximum deflection does not exceed deflection limit

First Floor Joists

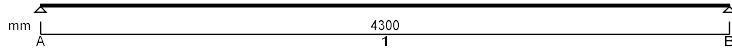
$$\text{UDL DL} = 0.7 - 0.15 = 0.55 \text{ kN/m}^2$$

SWJ

$$\text{UDL IL} = 1.5 \text{ kN/m}^2$$

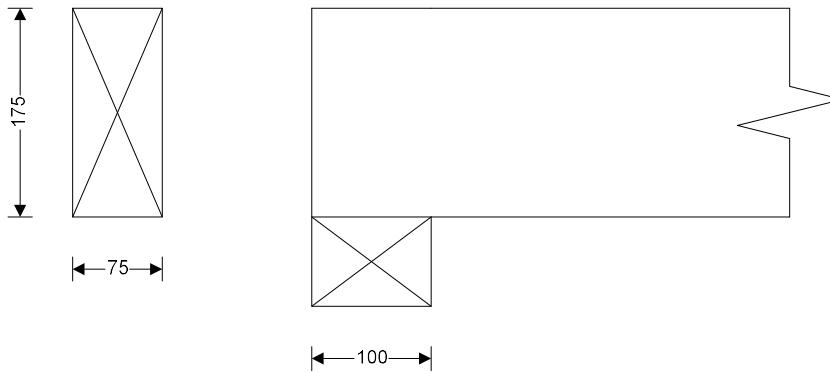
Span = 4.3m

 Tedd's Make Structures Ltd. 20 Gallery Close Northampton, Northants NN3 5NT	Project	45 Bedford Avenue, Hayes UB4 0DR				Job Ref.	210026
	Section	Loft Conversion & Rear/Side Extension				Sheet no./rev.	28
	Calc. by	KL	Date	31/10/2021	Chkd by	Date	App'd by


SECOND FLOOR TIMBER JOIST DESIGN (BS5268)

TIMBER JOIST DESIGN (BS5268-2:2002)

TEDDS calculation version 1.1.02


Joist details

Joist breadth	b = 75 mm
Joist depth	h = 175 mm
Joist spacing	s = 300 mm
Timber strength class	C16
Service class of timber	1

Span details

Number of spans	N_{span} = 1
Length of bearing	L_b = 100 mm
Effective length of span	L_{s1} = 4300 mm

Section properties

Second moment of area	$I = b \times h^3 / 12 = 33496094 \text{ mm}^4$
Section modulus	$Z = b \times h^2 / 6 = 382813 \text{ mm}^3$

Loading details

Joist self weight	$F_{swt} = b \times h \times \rho_{char} \times g_{acc} = 0.04 \text{ kN/m}$
Dead load	$F_{d_udl} = 0.55 \text{ kN/m}^2$
Imposed UDL(Long term)	$F_{i_udl} = 1.50 \text{ kN/m}^2$
Imposed point load (Medium term)	$F_{i_pt} = 1.40 \text{ kN}$

Modification factors

Service class for bending parallel to grain	K_{2m} = 1.00
Service class for compression	K_{2c} = 1.00
Service class for shear parallel to grain	K_{2s} = 1.00
Service class for modulus of elasticity	K_{2e} = 1.00

 Tedd's Make Structures Ltd. 20 Gallery Close Northampton, Northants NN3 5NT	Project 45 Bedford Avenue, Hayes UB4 0DR				Job Ref. 210026	
	Section Loft Conversion & Rear/Side Extension				Sheet no./rev. 29	
	Calc. by KL	Date 31/10/2021	Chkd by	Date	App'd by	Date

Section depth factor $K_7 = 1.06$

Load sharing factor $K_8 = 1.10$

Consider long term loads

Load duration factor $K_3 = 1.00$

Maximum bending moment $M = 1.514 \text{ kNm}$

Maximum shear force $V = 1.408 \text{ kN}$

Maximum support reaction $R = 1.408 \text{ kN}$

Maximum deflection $\delta = 10.142 \text{ mm}$

Check bending stress

Bending stress $\sigma_m = 5.300 \text{ N/mm}^2$

Permissible bending stress $\sigma_{m_adm} = \sigma_m \times K_{2m} \times K_3 \times K_7 \times K_8 = 6.186 \text{ N/mm}^2$

Applied bending stress $\sigma_{m_max} = M / Z = 3.954 \text{ N/mm}^2$

PASS - Applied bending stress within permissible limits

Check shear stress

Shear stress $\tau = 0.670 \text{ N/mm}^2$

Permissible shear stress $\tau_{adm} = \tau \times K_{2s} \times K_3 \times K_8 = 0.737 \text{ N/mm}^2$

Applied shear stress $\tau_{max} = 3 \times V / (2 \times b \times h) = 0.161 \text{ N/mm}^2$

PASS - Applied shear stress within permissible limits

Check bearing stress

Compression perpendicular to grain (no wane) $\sigma_{cp1} = 2.200 \text{ N/mm}^2$

Permissible bearing stress $\sigma_{c_adm} = \sigma_{cp1} \times K_{2c} \times K_3 \times K_8 = 2.420 \text{ N/mm}^2$

Applied bearing stress $\sigma_{c_max} = R / (b \times L_b) = 0.188 \text{ N/mm}^2$

PASS - Applied bearing stress within permissible limits

Check deflection

Permissible deflection $\delta_{adm} = \min(L_{s1} \times 0.003, 14 \text{ mm}) = 12.900 \text{ mm}$

Bending deflection (based on E_{mean}) $\delta_{bending} = 9.890 \text{ mm}$

Shear deflection $\delta_{shear} = 0.252 \text{ mm}$

Total deflection $\delta = \delta_{bending} + \delta_{shear} = 10.142 \text{ mm}$

PASS - Actual deflection within permissible limits

Consider medium term loads

Load duration factor $K_3 = 1.25$

Maximum bending moment $M = 1.979 \text{ kNm}$

Maximum shear force $V = 1.841 \text{ kN}$

Maximum support reaction $R = 1.841 \text{ kN}$

Maximum deflection $\delta = 11.290 \text{ mm}$

Check bending stress

Bending stress $\sigma_m = 5.300 \text{ N/mm}^2$

Permissible bending stress $\sigma_{m_adm} = \sigma_m \times K_{2m} \times K_3 \times K_7 \times K_8 = 7.733 \text{ N/mm}^2$

Applied bending stress $\sigma_{m_max} = M / Z = 5.169 \text{ N/mm}^2$

PASS - Applied bending stress within permissible limits

Check shear stress

Shear stress $\tau = 0.670 \text{ N/mm}^2$

Permissible shear stress $\tau_{adm} = \tau \times K_{2s} \times K_3 \times K_8 = 0.921 \text{ N/mm}^2$

Applied shear stress $\tau_{max} = 3 \times V / (2 \times b \times h) = 0.210 \text{ N/mm}^2$

 Tedd's Make Structures Ltd. 20 Gallery Close Northampton, Northants NN3 5NT	Project 45 Bedford Avenue, Hayes UB4 0DR				Job Ref. 210026	
	Section Loft Conversion & Rear/Side Extension				Sheet no./rev. 30	
	Calc. by KL	Date 31/10/2021	Chkd by	Date	App'd by	Date

PASS - Applied shear stress within permissible limits

Check bearing stress

Compression perpendicular to grain (no wane)	$\sigma_{cp1} = 2.200 \text{ N/mm}^2$
Permissible bearing stress	$\sigma_{c_adm} = \sigma_{cp1} \times K_{2c} \times K_3 \times K_8 = 3.025 \text{ N/mm}^2$
Applied bearing stress	$\sigma_{c_max} = R / (b \times L_b) = 0.245 \text{ N/mm}^2$

PASS - Applied bearing stress within permissible limits

Check deflection

Permissible deflection	$\delta_{adm} = \min(L_{s1} \times 0.003, 14 \text{ mm}) = 12.900 \text{ mm}$
Bending deflection (based on E_{mean})	$\delta_{bending} = 10.962 \text{ mm}$
Shear deflection	$\delta_{shear} = 0.329 \text{ mm}$
Total deflection	$\delta = \delta_{bending} + \delta_{shear} = 11.290 \text{ mm}$

PASS - Actual deflection within permissible limits

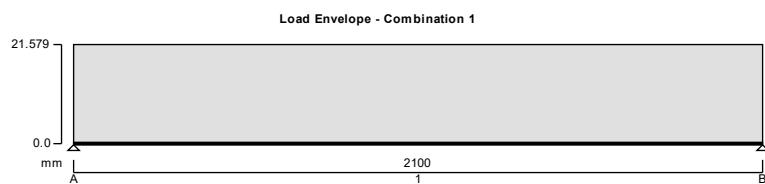
Above Ground Floor:

Beam H – Spine Wall

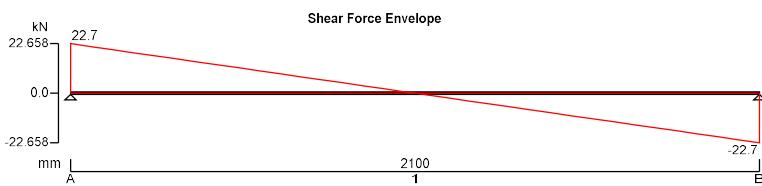
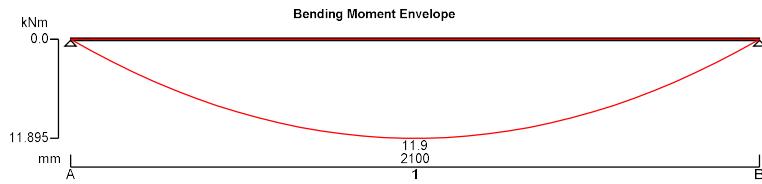
$$\text{UDL DL} = (7.0/2 \times 0.7) + (2.7 \times 2.5) = 9.2 \text{ kN/m}$$

1st Flr 112 Brk

$$\text{UDL IL} = (7.0/2 \times 1.5) = 5.3 \text{ kN/m}$$


Span = 2.1m

STEEL BEAM H ANALYSIS & DESIGN (BS5950)



STEEL BEAM ANALYSIS & DESIGN (BS5950)

In accordance with BS5950-1:2000 incorporating Corrigendum No.1

TEDDS calculation version 3.0.05

 Tedd's Make Structures Ltd. 20 Gallery Close Northampton, Northants NN3 5NT	Project	45 Bedford Avenue, Hayes UB4 0DR			Job Ref. 210026	
	Section	Loft Conversion & Rear/Side Extension				Sheet no./rev. 31
	Calc. by	Date	Chkd by	Date	App'd by	Date
	KL	31/10/2021				

Support conditions

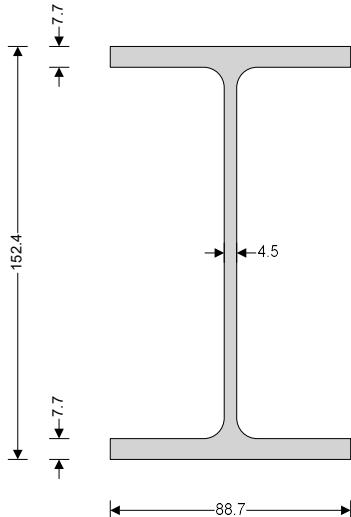
Support A	Vertically restrained Rotationally free
Support B	Vertically restrained Rotationally free

Applied loading

Beam loads	Dead self weight of beam $\times 1$
	Dead full UDL 9.2 kN/m
	Imposed full UDL 5.3 kN/m

Load combinations

Load combination 1	Support A	Dead \times 1.40
		Imposed \times 1.60
	Span 1	Dead \times 1.40
		Imposed \times 1.60
	Support B	Dead \times 1.40
		Imposed \times 1.60


Analysis results

Maximum moment	$M_{\max} = 11.9 \text{ kNm}$	$M_{\min} = 0 \text{ kNm}$
Maximum shear	$V_{\max} = 22.7 \text{ kN}$	$V_{\min} = -22.7 \text{ kN}$
Deflection	$\delta_{\max} = 2.2 \text{ mm}$	$\delta_{\min} = 0 \text{ mm}$
Maximum reaction at support A	$R_{A_max} = 22.7 \text{ kN}$	$R_{A_min} = 22.7 \text{ kN}$
Unfactored dead load reaction at support A	$R_{A_Dead} = 9.8 \text{ kN}$	
Unfactored imposed load reaction at support A	$R_{A_Imposed} = 5.6 \text{ kN}$	
Maximum reaction at support B	$R_{B_max} = 22.7 \text{ kN}$	$R_{B_min} = 22.7 \text{ kN}$
Unfactored dead load reaction at support B	$R_{B_Dead} = 9.8 \text{ kN}$	
Unfactored imposed load reaction at support B	$R_{B_Imposed} = 5.6 \text{ kN}$	

Section details

UKB 152x89x16 (Tata Steel Advance)

 Tedd's Make Structures Ltd. 20 Gallery Close Northampton, Northants NN3 5NT	Project 45 Bedford Avenue, Hayes UB4 0DR				Job Ref. 210026	
	Section Loft Conversion & Rear/Side Extension				Sheet no./rev. 32	
	Calc. by KL	Date 31/10/2021	Chkd by	Date	App'd by	Date

Classification of cross sections - Section 3.5

Tensile strain coefficient $\varepsilon = 1.00$

Section classification **Plastic**

Shear capacity - Section 4.2.3

Design shear force $F_v = 22.7 \text{ kN}$

Design shear resistance $P_v = 113.2 \text{ kN}$

PASS - Design shear resistance exceeds design shear force

Moment capacity - Section 4.2.5

Design bending moment $M = 11.9 \text{ kNm}$

Moment capacity low shear $M_c = 33.9 \text{ kNm}$

Buckling resistance moment - Section 4.3.6.4

Buckling resistance moment $M_b = 22.6 \text{ kNm}$

$M_b / m_{LT} = 24.4 \text{ kNm}$

PASS - Buckling resistance moment exceeds design bending moment

Check vertical deflection - Section 2.5.2

Consider deflection due to dead and imposed loads

Limiting deflection $\delta_{lim} = 7 \text{ mm}$

Maximum deflection $\delta = 2.17 \text{ mm}$

PASS - Maximum deflection does not exceed deflection limit

Lintel I – Corridor Lintel

UDL SLS = $(1.8/2 \times 2.2) + (2.8 \times 2.5 \times 0.85) = 8.0 \text{ kN/m}$

Ass. 1st Flr 112 Brk w/Void

Span = 1.0m

Use 100 x 100 S4 Naylor Concrete Lintel (SWL = 12.8 kN/m)

 Make Structures Ltd. 20 Gallery Close Northampton, Northants NN3 5NT	Project 45 Bedford Avenue, Hayes UB4 0DR				Job Ref. 210026
	Section Loft Conversion & Rear/Side Extension				Sheet no./rev. 33
	Calc. by KL	Date 31/10/2021	Chkd by	Date	App'd by

Lintel J – Entrance Hall to Side Extension

$$\text{UDL SLS} = (1.8/2 \times 2.2) + (4.6 \times 4.8) + (2.2/2 \times 1.8) + ((17.1 + 14.5) / (2.8 + 2.0)) + ((0.5 + 1.0) / (2.8 + 2.8)) = 32.9 \text{ kN/m}$$

1 st Flr	225 Brk	F.Roof	RF ₂	Spread	RD ₂	Spread
---------------------	---------	--------	-----------------	--------	-----------------	--------

Span = 0.9m

Use 2No. 100 x 140 R6 Naylor Concrete Lintels (SWL = 2 x 29.06 = 58.12 kN/m)

Lintel K – Front Elevation of Side Extension

$$\text{UDL SLS} = (0.8 \times 3.5) = 2.8 \text{ kN/m}$$

Cav.Wall

Span = 1.2m

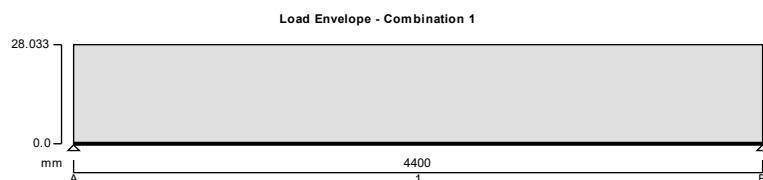
Total Load = $2.8 \times 1.2 = 3.4 \text{ kN}$ → Use Use Catnic CG90/100 Lintel (SWL = 15 kN)

Beam L – Original Rear Elevation Opening

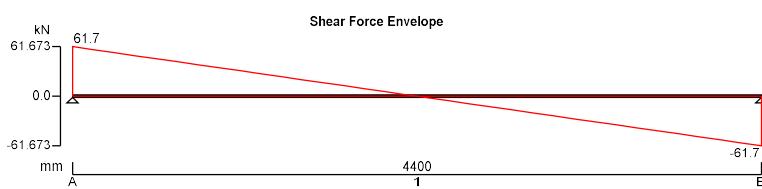
$$\text{UDL DL} = (2.9 \times 4.8 \times 0.85) + (3.7/2 \times 1.05) + (3.4/2 \times 0.7) = 15.0 \text{ kN/m}$$

225 Brk w/Win	F.Roof	1 st Flr
---------------	--------	---------------------

$$\text{UDL IL} = (3.7/2 \times 0.75) + (3.4/2 \times 1.5) = 4.0 \text{ kN/m}$$


Span = 4.4m

STEEL BEAM L ANALYSIS & DESIGN (BS5950)


STEEL BEAM ANALYSIS & DESIGN (BS5950)

In accordance with **BS5950-1:2000 incorporating Corrigendum No.1**

TEDDS calculation version 3.0.05

 Tedd's Make Structures Ltd. 20 Gallery Close Northampton, Northants NN3 5NT	Project	Job Ref.			
	Section	45 Bedford Avenue, Hayes UB4 0DR			
	Loft Conversion & Rear/Side Extension				Sheet no./rev.
	Calc. by	Date	Chkd by	Date	App'd by
	KL	31/10/2021			

Support conditions

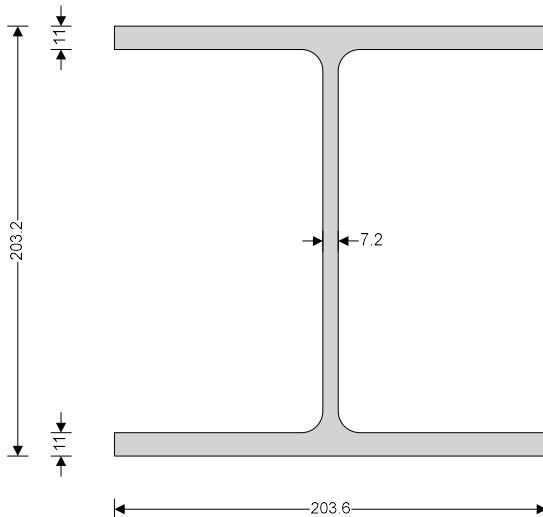
Support A	Vertically restrained Rotationally free
Support B	Vertically restrained Rotationally free

Applied loading

Beam loads	Dead self weight of beam × 1 Dead full UDL 15 kN/m Imposed full UDL 4 kN/m
------------	--

Load combinations

Load combination 1	Support A	Dead × 1.40 Imposed × 1.60
	Span 1	Dead × 1.40 Imposed × 1.60
	Support B	Dead × 1.40 Imposed × 1.60


Analysis results

Maximum moment	$M_{\max} = 67.8 \text{ kNm}$	$M_{\min} = 0 \text{ kNm}$
Maximum shear	$V_{\max} = 61.7 \text{ kN}$	$V_{\min} = -61.7 \text{ kN}$
Deflection	$\delta_{\max} = 10.1 \text{ mm}$	$\delta_{\min} = 0 \text{ mm}$
Maximum reaction at support A	$R_{A_max} = 61.7 \text{ kN}$	$R_{A_min} = 61.7 \text{ kN}$
Unfactored dead load reaction at support A	$R_{A_Dead} = 34 \text{ kN}$	
Unfactored imposed load reaction at support A	$R_{A_Imposed} = 8.8 \text{ kN}$	
Maximum reaction at support B	$R_{B_max} = 61.7 \text{ kN}$	$R_{B_min} = 61.7 \text{ kN}$
Unfactored dead load reaction at support B	$R_{B_Dead} = 34 \text{ kN}$	
Unfactored imposed load reaction at support B	$R_{B_Imposed} = 8.8 \text{ kN}$	

Section details

Section type	UKC 203x203x46 (Tata Steel Advance)	Steel grade	S275
--------------	-------------------------------------	-------------	------

 Tedd's Make Structures Ltd. 20 Gallery Close Northampton, Northants NN3 5NT	Project 45 Bedford Avenue, Hayes UB4 0DR				Job Ref. 210026	
	Section Loft Conversion & Rear/Side Extension				Sheet no./rev. 35	
	Calc. by KL	Date 31/10/2021	Chkd by	Date	App'd by	Date

Classification of cross sections - Section 3.5

Tensile strain coefficient $\varepsilon = 1.00$

Section classification **Compact**

Shear capacity - Section 4.2.3

Design shear force $F_v = 61.7 \text{ kN}$

Design shear resistance $P_v = 241.4 \text{ kN}$

PASS - Design shear resistance exceeds design shear force

Moment capacity - Section 4.2.5

Design bending moment $M = 67.8 \text{ kNm}$

Moment capacity low shear $M_c = 136.8 \text{ kNm}$

Buckling resistance moment - Section 4.3.6.4

Buckling resistance moment $M_b = 106.4 \text{ kNm}$

$M_b / m_{LT} = 115 \text{ kNm}$

PASS - Buckling resistance moment exceeds design bending moment

Check vertical deflection - Section 2.5.2

Consider deflection due to dead and imposed loads

Limiting deflection $\delta_{lim} = 14.667 \text{ mm}$

Maximum deflection $\delta = 10.138 \text{ mm}$

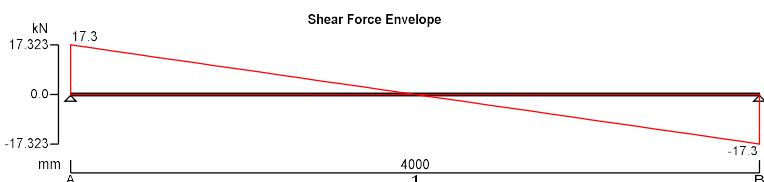
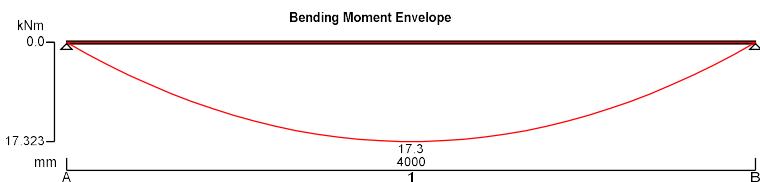
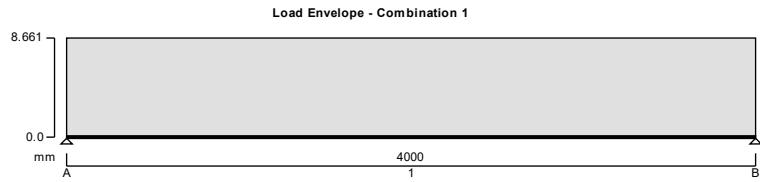
PASS - Maximum deflection does not exceed deflection limit

Beam M – New Rear Elevation Folding Doors

$$\text{UDL DL} = (0.7 \times 3.5) + (3.7/2 \times 1.05) = 4.4 \text{ kN/m}$$

Cav.Wall F.Roof

$$\text{UDL IL} = (3.7/2 \times 0.75) = 1.4 \text{ kN/m}$$




Span = 4.0m

STEEL BEAM M ANALYSIS & DESIGN (BS5950)

STEEL BEAM ANALYSIS & DESIGN (BS5950)

In accordance with BS5950-1:2000 incorporating Corrigendum No.1

 Tedd's Make Structures Ltd. 20 Gallery Close Northampton, Northants NN3 5NT	Project	45 Bedford Avenue, Hayes UB4 0DR			Job Ref.	210026
	Section	Loft Conversion & Rear/Side Extension			Sheet no./rev.	36
	Calc. by	Date	Chkd by	Date	App'd by	Date

Support conditions

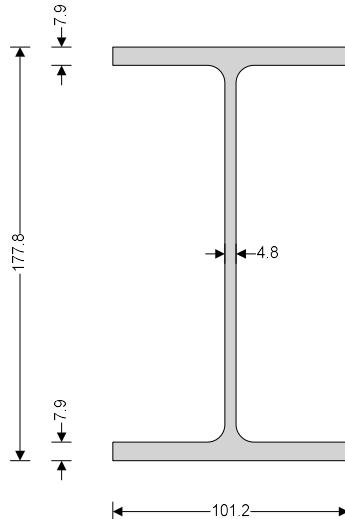
Applied loading

Beam loads	Dead self weight of beam $\times 1$
	Dead full UDL 4.4 kN/m
	Imposed full UDL 1.4 kN/m

Load combinations

Load combination 1	Support A	Dead \times 1.40
		Imposed \times 1.60
	Span 1	Dead \times 1.40
		Imposed \times 1.60
	Support B	Dead \times 1.40
		Imposed \times 1.60

Analysis results


Maximum moment	$M_{\max} = 17.3 \text{ kNm}$	$M_{\min} = 0 \text{ kNm}$
Maximum shear	$V_{\max} = 17.3 \text{ kN}$	$V_{\min} = -17.3 \text{ kN}$
Deflection	$\delta_{\max} = 7.2 \text{ mm}$	$\delta_{\min} = 0 \text{ mm}$
Maximum reaction at support A	$R_{A_max} = 17.3 \text{ kN}$	$R_{A_min} = 17.3 \text{ kN}$
Unfactored dead load reaction at support A	$R_{A_Dead} = 9.2 \text{ kN}$	

 Tedd's Make Structures Ltd. 20 Gallery Close Northampton, Northants NN3 5NT	Project	45 Bedford Avenue, Hayes UB4 0DR				Job Ref.	210026
	Section	Loft Conversion & Rear/Side Extension				Sheet no./rev.	37
	Calc. by	KL	Date	31/10/2021	Chkd by	Date	App'd by

Unfactored imposed load reaction at support A $R_{A_Imposed} = 2.8 \text{ kN}$
 Maximum reaction at support B $R_{B_max} = 17.3 \text{ kN}$ $R_{B_min} = 17.3 \text{ kN}$
 Unfactored dead load reaction at support B $R_{B_Dead} = 9.2 \text{ kN}$
 Unfactored imposed load reaction at support B $R_{B_Imposed} = 2.8 \text{ kN}$

Section details

Section type **UB 178x102x19 (BS4-1)** Steel grade **S275**

Classification of cross sections - Section 3.5

Tensile strain coefficient $\varepsilon = 1.00$ Section classification **Plastic**

Shear capacity - Section 4.2.3

Design shear force $F_v = 17.3 \text{ kN}$ Design shear resistance $P_v = 140.8 \text{ kN}$

PASS - Design shear resistance exceeds design shear force

Moment capacity - Section 4.2.5

Design bending moment $M = 17.3 \text{ kNm}$ Moment capacity low shear $M_c = 47.1 \text{ kNm}$

Buckling resistance moment - Section 4.3.6.4

Buckling resistance moment $M_b = 19.4 \text{ kNm}$ $M_b / m_{LT} = 21 \text{ kNm}$

PASS - Buckling resistance moment exceeds design bending moment

Check vertical deflection - Section 2.5.2

Consider deflection due to dead and imposed loads

Limiting deflection $\delta_{lim} = 13.333 \text{ mm}$ Maximum deflection $\delta = 7.179 \text{ mm}$

PASS - Maximum deflection does not exceed deflection limit

8mm Steel Plate Intermittent Welded to Bottom Flange. Section to be Fully Galvanised.

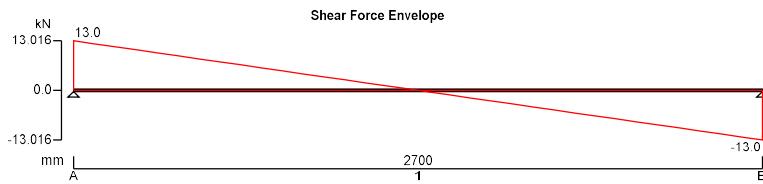
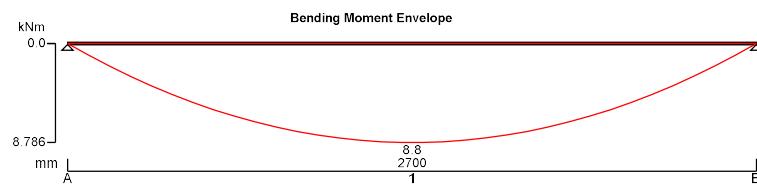
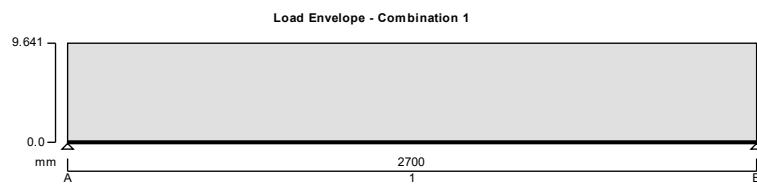
 Make Structures Ltd. 20 Gallery Close Northampton, Northants NN3 5NT	Project 45 Bedford Avenue, Hayes UB4 0DR	Job Ref. 210026
	Section Loft Conversion & Rear/Side Extension	Sheet no./rev. 38
	Calc. by KL	Date 31/10/2021

Beam N – New Rear Elevation Window

$$\text{UDL DL} = (0.9 \times 3.5) + (3.7/2 \times 1.05) = 5.1 \text{ kN/m}$$

Cav.Wall F.Roof

$$\text{UDL IL} = (3.7/2 \times 0.75) = 1.4 \text{ kN/m}$$




Span = 2.0m

STEEL BEAM N ANALYSIS & DESIGN (BS5950)

STEEL BEAM ANALYSIS & DESIGN (BS5950)

In accordance with BS5950-1:2000 incorporating Corrigendum No.1

TEDDS calculation version 3.0.05

Support conditions

Support A	Vertically restrained Rotationally free
Support B	Vertically restrained Rotationally free

Applied loading

Beam loads	Dead self weight of beam × 1 Dead full UDL 5.1 kN/m
------------	--

 Tedd's Make Structures Ltd. 20 Gallery Close Northampton, Northants NN3 5NT	Project	Job Ref.			
	Section	45 Bedford Avenue, Hayes UB4 0DR			
		Loft Conversion & Rear/Side Extension		Sheet no./rev.	39

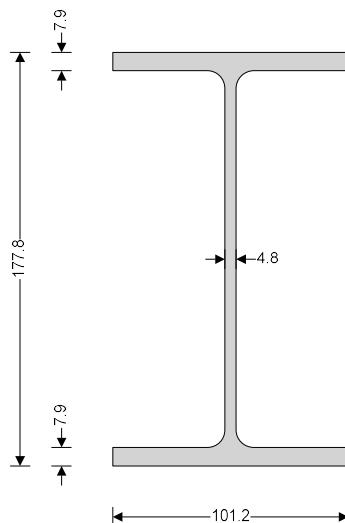
Calc. by	Date	Chkd by	Date	App'd by	Date
KL	31/10/2021				

Imposed full UDL 1.4 kN/m

Load combinations

Load combination 1	Support A	Dead \times 1.40
	Span 1	Imposed \times 1.60
	Support B	Dead \times 1.40
		Imposed \times 1.60
		Dead \times 1.40
		Imposed \times 1.60

Analysis results


Maximum moment	$M_{\max} = 8.8 \text{ kNm}$	$M_{\min} = 0 \text{ kNm}$
Maximum shear	$V_{\max} = 13 \text{ kN}$	$V_{\min} = -13 \text{ kN}$
Deflection	$\delta_{\max} = 1.7 \text{ mm}$	$\delta_{\min} = 0 \text{ mm}$
Maximum reaction at support A	$R_{A_max} = 13 \text{ kN}$	$R_{A_min} = 13 \text{ kN}$
Unfactored dead load reaction at support A	$R_{A_Dead} = 7.1 \text{ kN}$	
Unfactored imposed load reaction at support A	$R_{A_Imposed} = 1.9 \text{ kN}$	
Maximum reaction at support B	$R_{B_max} = 13 \text{ kN}$	$R_{B_min} = 13 \text{ kN}$
Unfactored dead load reaction at support B	$R_{B_Dead} = 7.1 \text{ kN}$	
Unfactored imposed load reaction at support B	$R_{B_Imposed} = 1.9 \text{ kN}$	

Section details

Section type	UKB 178x102x19 (Tata Steel Advance)
Steel grade	S275

From table 9: Design strength p_y

Thickness of element	$\max(T, t) = 7.9 \text{ mm}$
Design strength	$p_y = 275 \text{ N/mm}^2$
Modulus of elasticity	$E = 205000 \text{ N/mm}^2$

Lateral restraint

Span 1 has lateral restraint at supports only

Effective length factors

Effective length factor in major axis	$K_x = 1.00$
Effective length factor in minor axis	$K_y = 1.00$

 Tedd's Make Structures Ltd. 20 Gallery Close Northampton, Northants NN3 5NT	Project 45 Bedford Avenue, Hayes UB4 0DR				Job Ref. 210026	
	Section Loft Conversion & Rear/Side Extension				Sheet no./rev. 40	
	Calc. by KL	Date 31/10/2021	Chkd by	Date	App'd by	Date

Effective length factor for lateral-torsional buckling $K_{LT,A} = 1.00$
 $K_{LT,B} = 1.00$

Classification of cross sections - Section 3.5

$$\varepsilon = \sqrt{[275 \text{ N/mm}^2 / p_y]} = 1.00$$

Internal compression parts - Table 11

Depth of section $d = 146.8 \text{ mm}$
 $d / t = 30.6 \times \varepsilon \leq 80 \times \varepsilon$ Class 1 plastic

Outstand flanges - Table 11

Width of section $b = B / 2 = 50.6 \text{ mm}$
 $b / T = 6.4 \times \varepsilon \leq 9 \times \varepsilon$ Class 1 plastic

Section is class 1 plastic

Shear capacity - Section 4.2.3

Design shear force $F_v = \max(\text{abs}(V_{\max}), \text{abs}(V_{\min})) = 13 \text{ kN}$
 $d / t < 70 \times \varepsilon$

Web does not need to be checked for shear buckling

Shear area $A_v = t \times D = 853 \text{ mm}^2$

Design shear resistance $P_v = 0.6 \times p_y \times A_v = 140.8 \text{ kN}$

PASS - Design shear resistance exceeds design shear force

Moment capacity - Section 4.2.5

Design bending moment $M = \max(\text{abs}(M_{s1_max}), \text{abs}(M_{s1_min})) = 8.8 \text{ kNm}$
Moment capacity low shear - cl.4.2.5.2 $M_c = \min(p_y \times S_{xx}, 1.2 \times p_y \times Z_{xx}) = 47.1 \text{ kNm}$

Effective length for lateral-torsional buckling - Section 4.3.5

Effective length for lateral torsional buckling $L_E = 1.0 \times L_{s1} = 2700 \text{ mm}$
Slenderness ratio $\lambda = L_E / r_{yy} = 113.744$

Equivalent slenderness - Section 4.3.6.7

Buckling parameter $u = 0.888$
Torsional index $x = 22.560$
Slenderness factor $v = 1 / [1 + 0.05 \times (\lambda / x)^2]^{0.25} = 0.815$
Ratio - cl.4.3.6.9 $\beta_w = 1.000$
Equivalent slenderness - cl.4.3.6.7 $\lambda_{LT} = u \times v \times \lambda \times \sqrt{[\beta_w]} = 82.246$
Limiting slenderness - Annex B.2.2 $\lambda_{L0} = 0.4 \times (\pi^2 \times E / p_y)^{0.5} = 34.310$
 $\lambda_{LT} > \lambda_{L0}$ - **Allowance should be made for lateral-torsional buckling**

Bending strength - Section 4.3.6.5

Robertson constant $\alpha_{LT} = 7.0$
Perry factor $\eta_{LT} = \max(\alpha_{LT} \times (\lambda_{LT} - \lambda_{L0}) / 1000, 0) = 0.336$
Euler stress $p_E = \pi^2 \times E / \lambda_{LT}^2 = 299.1 \text{ N/mm}^2$
 $\phi_{LT} = (p_y + (\eta_{LT} + 1) \times p_E) / 2 = 337.2 \text{ N/mm}^2$
Bending strength - Annex B.2.1 $p_b = p_E \times p_y / (\phi_{LT} + (\phi_{LT}^2 - p_E \times p_y)^{0.5}) = 159.8 \text{ N/mm}^2$

Equivalent uniform moment factor - Section 4.3.6.6

Moment at quarter point of segment $M_2 = 6.6 \text{ kNm}$
Moment at centre-line of segment $M_3 = 8.8 \text{ kNm}$
Moment at three quarter point of segment $M_4 = 6.6 \text{ kNm}$
Maximum moment in segment $M_{abs} = 8.8 \text{ kNm}$
Maximum moment governing buckling resistance $M_{LT} = M_{abs} = 8.8 \text{ kNm}$

 Tedd's Make Structures Ltd. 20 Gallery Close Northampton, Northants NN3 5NT	Project 45 Bedford Avenue, Hayes UB4 0DR				Job Ref. 210026	
	Section Loft Conversion & Rear/Side Extension				Sheet no./rev. 41	
	Calc. by KL	Date 31/10/2021	Chkd by	Date	App'd by	Date

Equivalent uniform moment factor for lateral-torsional buckling

$$m_{LT} = \max(0.2 + (0.15 \times M_2 + 0.5 \times M_3 + 0.15 \times M_4) / M_{abs}, 0.44) = 0.925$$

Buckling resistance moment - Section 4.3.6.4

Buckling resistance moment

$$M_b = p_b \times S_{xx} = 27.4 \text{ kNm}$$

$$M_b / m_{LT} = 29.6 \text{ kNm}$$

PASS - Buckling resistance moment exceeds design bending moment

Check vertical deflection - Section 2.5.2

Consider deflection due to dead and imposed loads

Limiting deflection

$$\delta_{lim} = \min(16 \text{ mm}, L_{s1} / 300) = 9 \text{ mm}$$

Maximum deflection span 1

$$\delta = \max(\text{abs}(\delta_{max}), \text{abs}(\delta_{min})) = 1.665 \text{ mm}$$

PASS - Maximum deflection does not exceed deflection limit

Steel Posts to Rear Corner Piers

$$F_x = 17.3 \text{ kN}$$

RM₂

$$M_x = 17.3 \times 0.025 \times 2.3 = 1.0 \text{ kNm}$$

2.5% H

Or

$$M_x = 17.3 \times (0.1 + 0.05) = 2.6 \text{ kNm}$$

Ecc.

Or

$$M_x = 4.0/2 \times 0.7 \times 2.3^2 / 2 = 3.7 \text{ kNm}$$

Ass.Wind Panel L-arm

$$V_x = 4.0/2 \times 0.7 \times 2.3/2 = 1.7 \text{ kNm}$$

Ass.Wind Panel

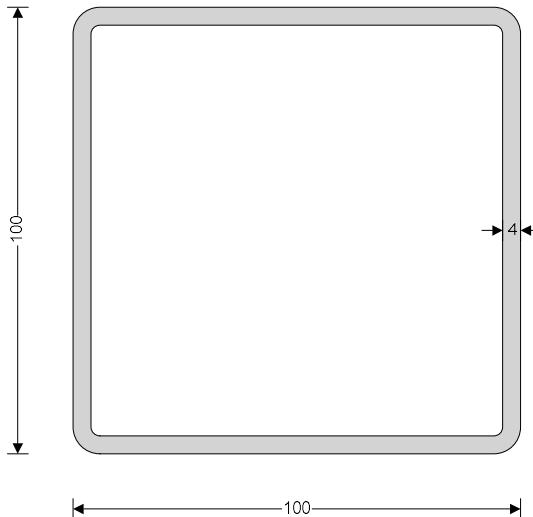
STEEL POST @ RM2 DESIGN (BS5950)

STEEL MEMBER DESIGN (BS5950)

In accordance with BS5950-1:2000 incorporating Corrigendum No.1

TEDDS calculation version 3.0.05

Section details


Section type

SHS 100x100x4.0 (Tata Steel Celsius)

Steel grade

S275

 Tedd's Make Structures Ltd. 20 Gallery Close Northampton, Northants NN3 5NT	Project 45 Bedford Avenue, Hayes UB4 0DR	Job Ref. 210026
	Section Loft Conversion & Rear/Side Extension	Sheet no./rev. 42
	Calc. by KL	Date 31/10/2021

Classification of cross sections - Section 3.5

Tensile strain coefficient $\varepsilon = 1.00$

Section classification

Semi-compact

Shear capacity - Section 4.2.3

Design shear force $F_v = 1.7$ kN

Design shear resistance $P_{y,v} = 125.3$ kN

PASS - Design shear resistance exceeds design shear force

Shear capacity - Section 4.2.3

Moment capacity - Section 4.2.5

Design bending moment $M = 3.7$ kNm

Moment capacity low shear $M_c = 15$ kNm

Buckling resistance moment - Section 4.3.6.4

Bending strength $p_b = 275$ N/mm²

Buckling resistance moment $M_b = 15$ kNm

PASS - Moment capacity exceeds design bending moment

Compression members - Section 4.7

Design compression force $F_c = 17.3$ kN

Compression resistance $P_{cx} = 185.9$ kN

PASS - Compression resistance exceeds design compression force

Design compression force $F_c = 17.3$ kN

Compression resistance $P_{cy} = 365.7$ kN

PASS - Compression resistance exceeds design compression force

Compression members with moments - Section 4.8.3

Comp.and bending check $F_c / (A \times p_y) + M / M_c = 0.289$

PASS - Combined bending and compression check is satisfied

Member buckling resistance - cl.4.8.3.3.3

Buckling resistance checks $F_c / P_{cx} + m_x \times M / M_c \times (1 + 0.5 \times F_c / P_{cx}) = 0.352$

$F_c / P_{cy} + 0.5 \times m_{LT} \times M_{LT} / M_{cx} = 0.171$

PASS - Member buckling resistance checks are satisfied

 Tedd's Make Structures Ltd. 20 Gallery Close Northampton, Northants NN3 5NT	Project 45 Bedford Avenue, Hayes UB4 0DR				Job Ref. 210026	
	Section Loft Conversion & Rear/Side Extension				Sheet no./rev. 43	
	Calc. by KL	Date 31/10/2021	Chkd by	Date	App'd by	Date

Steel Posts to Middle Pier

$$F_x = 17.3 + 13.0 = 30.3 \text{ kN}$$

RM₁/RN₂

$$M_x = 30.3 \times 0.025 \times 2.3 = 1.0 \text{ kNm}$$

2.5% H

Or

$$M_x = (30.3 - 7.1) \times (0.1 + 0.05) = 3.5 \text{ kNm}$$

F_x RN₂DL Ecc.

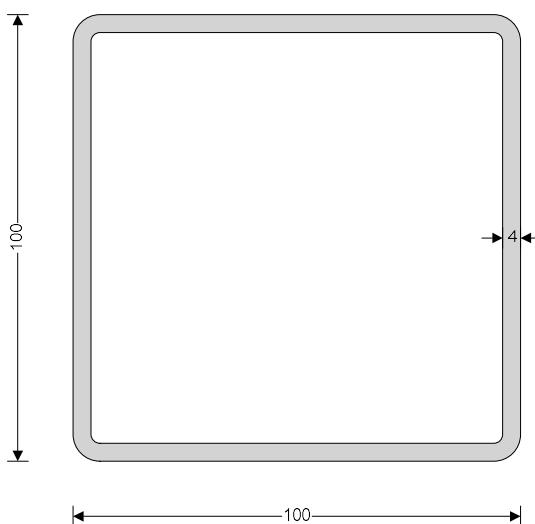
$$M_y = 7.0/2 \times 0.7 \times 2.3^2 / 2 = 6.5 \text{ kNm}$$

Ass.Wind Panel L-arm

$$V_y = 7.0/2 \times 0.7 \times 2.3/2 = 2.9 \text{ kNm}$$

Ass.Wind Panel

STEEL POST @ RM1/RN2 DESIGN (BS5950)


STEEL MEMBER DESIGN (BS5950)

In accordance with BS5950-1:2000 incorporating Corrigendum No.1

TEDDS calculation version 3.0.05

Section details

Section type **SHS 100x100x4.0 (Tata Steel Celsius)** Steel grade **S275**

Classification of cross sections - Section 3.5

Tensile strain coefficient $\varepsilon = 1.00$ Section classification

Semi-compact

Shear capacity - Section 4.2.3

Shear capacity - Section 4.2.3

Design shear force $F_v = 2.9 \text{ kN}$ Design shear resistance $P_{x,v} = 125.3 \text{ kN}$

 Tedd's Make Structures Ltd. 20 Gallery Close Northampton, Northants NN3 5NT	Project 45 Bedford Avenue, Hayes UB4 0DR				Job Ref. 210026	
	Section Loft Conversion & Rear/Side Extension				Sheet no./rev. 44	
	Calc. by KL	Date 31/10/2021	Chkd by	Date	App'd by	Date

PASS - Design shear resistance exceeds design shear force

Moment capacity - Section 4.2.5

Design bending moment $M_x = 3.5 \text{ kNm}$

Moment capacity low shear $M_{cx} = 15 \text{ kNm}$

Buckling resistance moment - Section 4.3.6.4

Bending strength $p_b = 275 \text{ N/mm}^2$

Buckling resistance moment $M_b = 15 \text{ kNm}$

PASS - Moment capacity exceeds design bending moment

Moment capacity - Section 4.2.5

Design bending moment $M_y = 6.5 \text{ kNm}$

Moment capacity low shear $M_{cy} = 15 \text{ kNm}$

PASS - Moment capacity exceeds design bending moment

Compression members - Section 4.7

Design compression force $F_c = 30.3 \text{ kN}$

Compression resistance $P_{cx} = 185.9 \text{ kN}$

PASS - Compression resistance exceeds design compression force

Design compression force $F_c = 30.3 \text{ kN}$

Compression resistance $P_{cy} = 185.9 \text{ kN}$

PASS - Compression resistance exceeds design compression force

Compression members with moments - Section 4.8.3

Comp.and bending check $F_c / (A \times p_y) + M_x / M_{cx} + M_y / M_{cy} = 0.740$

PASS - Combined bending and compression check is satisfied

Member buckling resistance - cl.4.8.3.3.3

Buckling resistance checks $F_c / P_{cx} + m_x \times M_x / M_{cx} \times (1 + 0.5 \times F_c / P_{cx}) + 0.5 \times m_{yx} \times M_y / M_{cy} = 0.633$

$F_c / P_{cy} + 0.5 \times m_{LT} \times M_{LT} / M_{cx} + m_y \times M_y / M_{cy} \times (1 + 0.5 \times F_c / P_{cy}) = 0.749$

Interactive buckling

$m_x \times M_x \times (1 + 0.5 \times (F_c / P_{cx})) / (M_{cx} \times (1 - F_c / P_{cx})) + m_y \times M_y \times (1 + 0.5 \times (F_c / P_{cy})) / (M_{cy} \times (1 - F_c / P_{cy})) = 0.863$

PASS - Member buckling resistance checks are satisfied

Base of Post Connection

Worst Case @ RM₁/RN₂:

$M_x = 3.5 \text{ kNm}$, $M_y = 6.5 \text{ kNm}$

Designing for M_y in both directions, using 250 x 250 x 10mm Steel Base Plate and 4No.M12 Bolts/Resin Anchors with 30mm Edge & End Distances...

Tension per Pair = $M / s = 6.5 / 0.18 = 36.2 \text{ kN}$ → Tension Per Bolt = $36.2 / 2 = 18.1 \text{ kN} < 37.8 \text{ kN } P_{Nom}$ Therefore OK

 Make Structures Ltd. 20 Gallery Close Northampton, Northants NN3 5NT	Project 45 Bedford Avenue, Hayes UB4 0DR	Job Ref. 210026
	Section Loft Conversion & Rear/Side Extension	Sheet no./rev. 45
	Calc. by KL	Date 31/10/2021

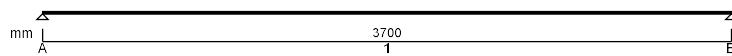
Lower Flat Roof Joists to Extensions

$$\text{UDL DL} = 1.05 - 0.15 = 0.9 \text{ kN/m}^2$$

SWJ

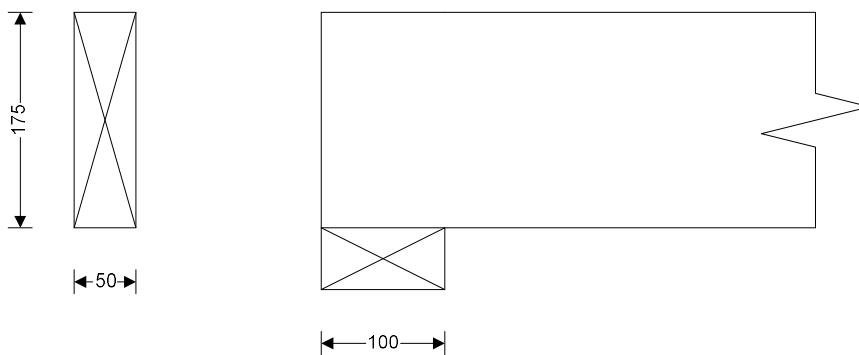
$$\text{UDL IL} = 0.75 \text{ kN/m}^2$$

$$\text{Span} = 3.7 \text{ m}$$


FLAT ROOF TIMBER JOIST EXTENSION DESIGN (BS5268)

TIMBER JOIST DESIGN (BS5268-2:2002)

TEDDS calculation version 1.1.02


Joist details

Joist breadth	b = 50 mm	Joist depth	h = 175 mm
Joist spacing	s = 400 mm	Service class of timber	1
Timber strength class	C16		

Span details

Number of spans	N_{span} = 1	Length of bearing	L_b = 100 mm
Clear length of span	L_{s1} = 3700 mm		

Section properties

Second moment of area	I = 22330729 mm⁴	Section modulus	Z = 255208 mm³
-----------------------	------------------------------------	-----------------	----------------------------------

Loading details

Joist self weight	F_{swt} = 0.03 kN/m	Dead load	F_{d_udl} = 0.90 kN/m²
Imposed UDL(Medium term)	F_{i_udl} = 0.75 kN/m²		
Imposed point load (Short)	F_{i_pt} = 0.90 kN		

 Tedd's Make Structures Ltd. 20 Gallery Close Northampton, Northants NN3 5NT	Project 45 Bedford Avenue, Hayes UB4 0DR				Job Ref. 210026	
	Section Loft Conversion & Rear/Side Extension				Sheet no./rev. 46	
	Calc. by KL	Date 31/10/2021	Chkd by	Date	App'd by	Date

Consider medium term loads

Design bending moment $M = 1.175 \text{ kNm}$

Design support reaction $R = 1.270 \text{ kN}$

Check bending stress

Permissible bending stress $\sigma_{m_adm} = 7.733 \text{ N/mm}^2$

Design shear force

$V = 1.270 \text{ kN}$

Design deflection

$\delta = 8.819 \text{ mm}$

Check shear stress

Permissible shear stress $\tau_{adm} = 0.921 \text{ N/mm}^2$

Applied bending stress $\sigma_{m_max} = 4.604 \text{ N/mm}^2$

PASS - Applied bending stress within permissible limits

Check bearing stress

Permissible bearing stress $\sigma_{c_adm} = 3.025 \text{ N/mm}^2$

Applied bearing stress $\sigma_{c_max} = 0.254 \text{ N/mm}^2$

PASS - Applied bearing stress within permissible limits

Check deflection

Permissible deflection $\delta_{adm} = 11.100 \text{ mm}$

Actual deflection $\delta = 8.819 \text{ mm}$

PASS - Actual deflection within permissible limits

Consider short term loads

Design bending moment $M = 1.494 \text{ kNm}$

Design support reaction $R = 1.615 \text{ kN}$

Design shear force $V = 1.615 \text{ kN}$

$\delta = 10.006 \text{ mm}$

Check bending stress

Permissible bending stress $\sigma_{m_adm} = 9.279 \text{ N/mm}^2$

Applied bending stress $\sigma_{m_max} = 5.854 \text{ N/mm}^2$

PASS - Applied bending stress within permissible limits

Check shear stress

Permissible shear stress $\tau_{adm} = 1.106 \text{ N/mm}^2$

Applied shear stress $\tau_{max} = 0.277 \text{ N/mm}^2$

PASS - Applied shear stress within permissible limits

Check bearing stress

Permissible bearing stress $\sigma_{c_adm} = 3.630 \text{ N/mm}^2$

Applied bearing stress $\sigma_{c_max} = 0.323 \text{ N/mm}^2$

PASS - Applied bearing stress within permissible limits

Check deflection

Permissible deflection $\delta_{adm} = 11.100 \text{ mm}$

Actual deflection $\delta = 10.006 \text{ mm}$

PASS - Actual deflection within permissible limits

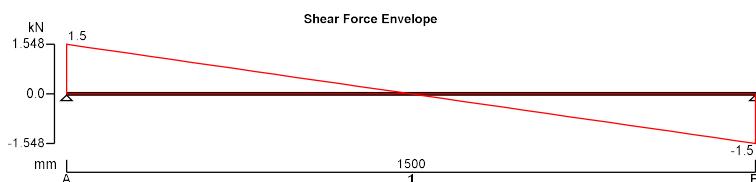
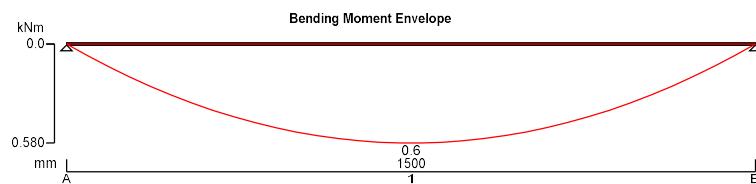
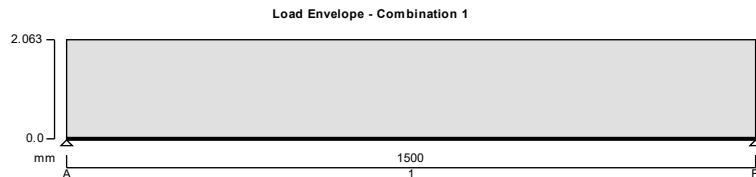
Assuming 1.5m x 1.5m Skylights...

Skylight Trimmer T1

$$\text{UDL DL} = (1.1/2 \times 1.05) + (1.5/2 \times 1.2) = 1.5 \text{ kN/m}$$

F.Roof Skylight

$$\text{UDL IL} = (1.1/2 \times 0.75) = 0.5 \text{ kN/m}$$




Span = 1.5m

 Tedd's Make Structures Ltd. 20 Gallery Close Northampton, Northants NN3 5NT	Project	Job Ref.				
	Section	45 Bedford Avenue, Hayes UB4 0DR				210026
	Loft Conversion & Rear/Side Extension				Sheet no./rev.	
	Calc. by	Date	Chkd by	Date	App'd by	Date
	KL	31/10/2021				

TIMBER BEAM T1 ANALYSIS & DESIGN (BS5268)

TIMBER BEAM ANALYSIS & DESIGN TO BS5268-2:2002

TEDDS calculation version 1.5.07

Applied loading

Beam loads

Dead self weight of beam $\times 1$

Dead full UDL 1.500 kN/m

Imposed full UDL 0.500 kN/m

Load combinations

Load combination 1

Support A

Dead $\times 1.00$

Imposed $\times 1.00$

Span 1

Dead $\times 1.00$

Imposed $\times 1.00$

Support B

Dead $\times 1.00$

Imposed $\times 1.00$

Analysis results

Maximum moment

$$M_{\max} = 0.580 \text{ kNm}$$

$$M_{\min} = 0.000 \text{ kNm}$$

Design moment

$$M = \max(\text{abs}(M_{\max}), \text{abs}(M_{\min})) = 0.580 \text{ kNm}$$

Maximum shear

$$F_{\max} = 1.548 \text{ kN}$$

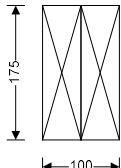
$$F_{\min} = -1.548 \text{ kN}$$

Design shear

$$F = \max(\text{abs}(F_{\max}), \text{abs}(F_{\min})) = 1.548 \text{ kN}$$

Total load on beam

$$W_{\text{tot}} = 3.095 \text{ kN}$$



Reactions at support A

$$R_{A_max} = 1.548 \text{ kN}$$

$$R_{A_min} = 1.548 \text{ kN}$$

 Make Structures Ltd. 20 Gallery Close Northampton, Northants NN3 5NT	Project	Job Ref.				210026
	Section	Sheet no./rev.				48
	Calc. by	Date	Chkd by	Date	App'd by	Date
	KL	31/10/2021				

Unfactored dead load reaction at support A	$R_{A_Dead} = 1.173 \text{ kN}$
Unfactored imposed load reaction at support A	$R_{A_Imposed} = 0.375 \text{ kN}$
Reactions at support B	$R_{B_max} = 1.548 \text{ kN}$
Unfactored dead load reaction at support B	$R_{B_Dead} = 1.173 \text{ kN}$
Unfactored imposed load reaction at support B	$R_{B_Imposed} = 0.375 \text{ kN}$

Timber section details

Breadth of sections	$b = 50 \text{ mm}$
Depth of sections	$h = 175 \text{ mm}$
Number of sections in member	$N = 2$
Overall breadth of member	$b_b = N \times b = 100 \text{ mm}$
Timber strength class	C16

Member details

Service class of timber	1
Load duration	Long term
Length of bearing	$L_b = 100 \text{ mm}$

Section properties

Cross sectional area of member	$A = N \times b \times h = 17500 \text{ mm}^2$
Section modulus	$Z_x = N \times b \times h^2 / 6 = 510417 \text{ mm}^3$
	$Z_y = h \times (N \times b)^2 / 6 = 291667 \text{ mm}^3$
Second moment of area	$I_x = N \times b \times h^3 / 12 = 4461458 \text{ mm}^4$
	$I_y = h \times (N \times b)^3 / 12 = 14583333 \text{ mm}^4$
Radius of gyration	$i_x = \sqrt{I_x / A} = 50.5 \text{ mm}$
	$i_y = \sqrt{I_y / A} = 28.9 \text{ mm}$

Modification factors

Duration of loading - Table 17	$K_3 = 1.00$
Bearing stress - Table 18	$K_4 = 1.00$
Total depth of member - cl.2.10.6	$K_7 = (300 \text{ mm} / h)^{0.11} = 1.06$
Load sharing - cl.2.10.11	$K_8 = 1.10$
Minimum modulus of elasticity - Table 20	$K_9 = 1.14$

Lateral support - cl.2.10.8

Ends held in position and members held in line, as by direct connection of sheathing, deck or joists	
Permissible depth-to-breadth ratio - Table 19	5.00
Actual depth-to-breadth ratio	$h / (N \times b) = 1.75$

PASS - Lateral support is adequate

Compression perpendicular to grain

Permissible bearing stress (no wane)	$\sigma_{c_adm} = \sigma_{cp1} \times K_3 \times K_4 \times K_8 = 2.420 \text{ N/mm}^2$
Applied bearing stress	$\sigma_{c_a} = R_{A_max} / (N \times b \times L_b) = 0.155 \text{ N/mm}^2$
	$\sigma_{c_a} / \sigma_{c_adm} = 0.064$

 Tedd's Make Structures Ltd. 20 Gallery Close Northampton, Northants NN3 5NT	Project	Job Ref.				
	Section	45 Bedford Avenue, Hayes UB4 0DR				210026
		Loft Conversion & Rear/Side Extension				Sheet no./rev.
	Calc. by	Date	Chkd by	Date	App'd by	49
	KL	31/10/2021				Date

PASS - Applied compressive stress is less than permissible compressive stress at bearing

Bending parallel to grain

Permissible bending stress

$$\sigma_{m_adm} = \sigma_m \times K_3 \times K_7 \times K_8 = 6.186 \text{ N/mm}^2$$

Applied bending stress

$$\sigma_{m_a} = M / Z_x = 1.137 \text{ N/mm}^2$$

$$\sigma_{m_a} / \sigma_{m_adm} = 0.184$$

PASS - Applied bending stress is less than permissible bending stress

Shear parallel to grain

Permissible shear stress

$$\tau_{adm} = \tau \times K_3 \times K_8 = 0.737 \text{ N/mm}^2$$

Applied shear stress

$$\tau_a = 3 \times F / (2 \times A) = 0.133 \text{ N/mm}^2$$

$$\tau_a / \tau_{adm} = 0.180$$

PASS - Applied shear stress is less than permissible shear stress

Deflection

Modulus of elasticity for deflection

$$E = E_{min} \times K_9 = 6612 \text{ N/mm}^2$$

Permissible deflection

$$\delta_{adm} = \min(14 \text{ mm}, 0.003 \times L_{s1}) = 4.500 \text{ mm}$$

Bending deflection

$$\delta_{b_s1} = 0.461 \text{ mm}$$

Shear deflection

$$\delta_{v_s1} = 0.096 \text{ mm}$$

Total deflection

$$\delta_a = \delta_{b_s1} + \delta_{v_s1} = 0.557 \text{ mm}$$

$$\delta_a / \delta_{adm} = 0.124$$

PASS - Total deflection is less than permissible deflection

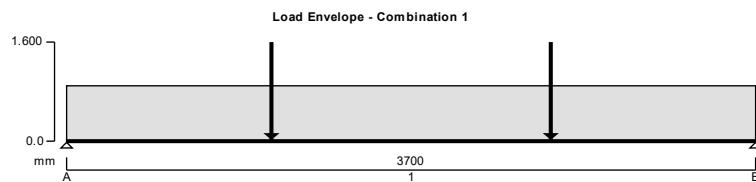
Trimmer T2 – Skylight Trimmer Side

$$\text{UDL DL} = 0.4 \times 1.05 = 0.5 \text{ kN/m}$$

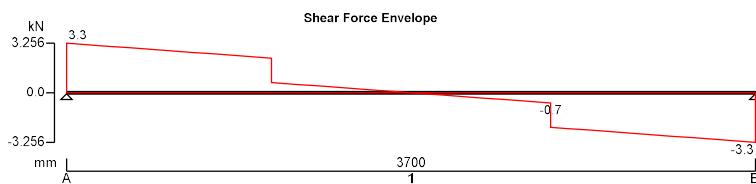
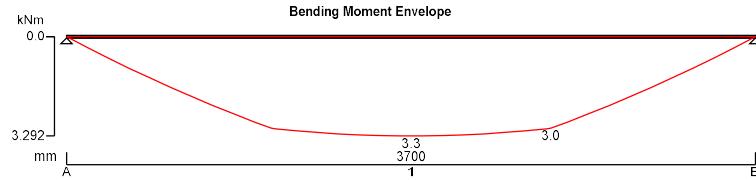
Nom.F.Roof

$$\text{UDL IL} = 0.4 \times 0.75 = 0.3 \text{ kN/m}$$

$$\text{PL DL} = 1.2 \text{ kN}$$


RT1_{1/2}

$$\text{PL IL} = 0.4 \text{ kN}$$



TIMBER BEAM T2 ANALYSIS & DESIGN (BS5268)

TIMBER BEAM ANALYSIS & DESIGN TO BS5268-2:2002

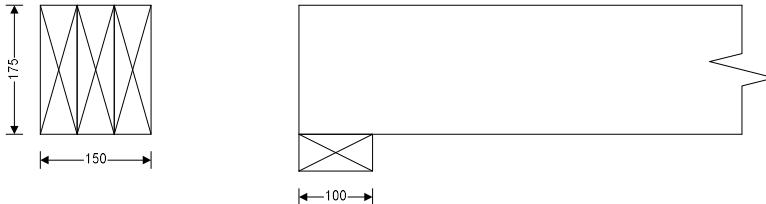
TEDDS calculation version 1.5.07

 Tedd's Make Structures Ltd. 20 Gallery Close Northampton, Northants NN3 5NT	Project 45 Bedford Avenue, Hayes UB4 0DR				Job Ref. 210026	
	Section Loft Conversion & Rear/Side Extension				Sheet no./rev. 50	
	Calc. by KL	Date 31/10/2021	Chkd by	Date	App'd by	Date

Applied loading

Beam loads

Dead self weight of beam $\times 1$
Dead full UDL 0.500 kN/m
Imposed full UDL 0.300 kN/m
Dead point load 1.200 kN at 1100 mm
Imposed point load 0.400 kN at 1100 mm
Dead point load 1.200 kN at 2600 mm
Imposed point load 0.400 kN at 2600 mm


Load combinations

Load combination 1	Support A	Dead $\times 1.00$
	Span 1	Dead $\times 1.00$
	Support B	Dead $\times 1.00$
		Imposed $\times 1.00$

Analysis results

Design moment	M = 3.292 kNm	Design shear	F = 3.256 kN
Total load on beam	W_{tot} = 6.512 kN		
Reactions at support A	R_{A_max} = 3.256 kN	R_{A_min} = 3.256 kN	
Unfactored dead load reaction at support A		R_{A_Dead} = 2.301 kN	
Unfactored imposed load reaction at support A		R_{A_Imposed} = 0.955 kN	
Reactions at support B	R_{B_max} = 3.256 kN	R_{B_min} = 3.256 kN	
Unfactored dead load reaction at support B		R_{B_Dead} = 2.301 kN	
Unfactored imposed load reaction at support B		R_{B_Imposed} = 0.955 kN	

 Tedd's Make Structures Ltd. 20 Gallery Close Northampton, Northants NN3 5NT	Project	Job Ref.				210026
	Section	Sheet no./rev.				51
	Loft Conversion & Rear/Side Extension	Calc. by	Date	Chkd by	Date	App'd by
	KL	31/10/2021				

Timber section details

Breadth of section	b = 50 mm	Depth of section	h = 175 mm
Number of sections	N = 3	Breadth of beam	b_b = 150 mm
Timber strength class	C16		

Member details

Service class of timber	1	Load duration	Long term
Length of bearing	L_b = 100 mm		

Lateral support - cl.2.10.8

Permiss.depth-to-breadth ratio	2.00	Actual depth-to-breadth ratio	1.17
PASS - Lateral support is adequate			

Check bearing stress

Permissible bearing stress	σ_{c_adm} = 2.420 N/mm²	Applied bearing stress	σ_{c_a} = 0.217 N/mm²
PASS - Applied compressive stress is less than permissible compressive stress at bearing			

Bending parallel to grain

Permissible bending stress	σ_{m_adm} = 6.186 N/mm²	Applied bending stress	σ_{m_a} = 4.300 N/mm²
PASS - Applied bending stress is less than permissible bending stress			

Shear parallel to grain

Permissible shear stress	τ_{adm} = 0.737 N/mm²	Applied shear stress	τ_a = 0.186 N/mm²
PASS - Applied shear stress is less than permissible shear stress			

Deflection

Permissible deflection	δ_{adm} = 11.100 mm	Total deflection	δ_a = 10.641 mm
PASS - Total deflection is less than permissible deflection			

 Tedd's Make Structures Ltd. 20 Gallery Close Northampton, Northants NN3 5NT	Project 45 Bedford Avenue, Hayes UB4 0DR				Job Ref. 210026
	Section Loft Conversion & Rear/Side Extension				Sheet no./rev. 52
	Calc. by KL	Date 31/10/2021	Chkd by	Date	App'd by

Padstones

Perpendicular Bearing on 3.6N Blockwork, Factor = $1.5 F_k / y_m = 1.5 \times 3.5 / 3.5 = 1.5 \text{ N/mm}^2$

Parallel Bearing on 3.6N Blockwork, Factor = $1.25 F_k / y_m = 1.25 \times 3.5 / 3.5 = 1.25 \text{ N/mm}^2$

Basic Brickwork Bearing Factor = 0.42 N/mm^2

Local Design Good Brickwork Factor = $1.5 \times 0.42 = 0.63 \text{ N/mm}^2$ – *To be Checked On Site*

@ $RA_2 - (7.5 + 4.3) \times 10^3 / (0.42 \times 100) = 281.0 \rightarrow \text{Use } 300 \times 100 \times 215 \text{ Deep Padstone}$

@ $RF_1 - (29 + 15.6) \times 10^3 / (0.63 \times 100) = 707.9 \rightarrow \text{Use } 750 \text{ Long Concrete Encased Channel}$

@ $RF_2 - (17.1 + 14.5) \times 10^3 / (0.63 \times 100) = 501.6 \rightarrow \text{Use } 660 \times 100 \times 215 \text{ Deep Padstone}$

@ $RG_1 - (29.5 + 13.2) \times 10^3 / (0.63 \times 100) = 677.8 \rightarrow \text{Use } 700 \text{ Long Concrete Encased Channel}$

@ $RG_2 - (16.4 + 12.9) \times 10^3 / (0.63 \times 100) = 465.1 \rightarrow \text{Use } 660 \times 100 \times 215 \text{ Deep Padstone}$

@ $RH_{1/2} - (9.8 + 5.6) \times 10^3 / (0.42 \times 100) = 366.7 \rightarrow \text{Use } 440 \times 100 \times 215 \text{ Deep Padstone}$

@ $RL_{1/2} - (34 + 8.8) \times 10^3 / (0.42 \times 215) = 474.0 \rightarrow \text{Use } 660 \times 215 \times 215 \text{ Deep Padstone}$

Foundations

From British Geological Survey, Expected Soil Conditions to be Langley Silt Member – Clay & Silt

Use conservative Ground Bearing Pressure of 75 kN/m^2

Worst Case – Rear Elevation under middle Pier:

$\text{UDL SLS} = ((17.3 + 9.2 + 7.1 + 1.9) / (1.0 + 1.0) + (3.5 \times 3.2) + (3.7/2 \times 1.8)) = 32.3 \text{ kN/m}$

RM₁ RN₂ Spread Cav.Wall F.Roof

$\text{UDL / GBP} = 32.3 / 75 = 0.43\text{m} \rightarrow \text{Use } 500\text{mm Wide Mass Concrete Strip Foundation}$

Assuming No Significant Trees within close proximity of New Construction, Use 1000mm Depth – To Be Confirmed by Building Control Officer On Site.