

daylight&sunlight

**Daylight and Sunlight Report
for the Proposed Development at
53 Hoylake Crescent, Ickenham, Uxbridge UB10 8JF**

Prepared for: **Gillet Macleod Partnership**
Prepared by: **Jonathan Nash LLB (Hons)**
Date: **14 October 2022**
Job Reference: **1945/JN**

Daylight and Sunlight (UK) Limited
20 - 22 Wenlock Road, London, N1 7GU
T 0845 052 1146 W daylightandsunlight.co.uk

Daylight and Sunlight (UK) Limited, a Limited Company. Registered in England and Wales number 6956811
Registered office: 20 - 22 Wenlock Road, London, N1 7GU
VAT number 978498532.

Contents	Page
1. Executive Summary.....	3
1.1 Scope of Service	3
1.2 BRE Assessment Criteria	3
1.3 Daylight and Sunlight	3
1.4 Generally	3
2. Introduction.....	4
2.1 Scope of Service	4
2.2 Assessment.....	4
2.3 Limitations	5
3. BRE Criteria and Mitigating Factors.....	5
3.1 BRE Daylight Criteria.....	5
3.2 Mitigating Factors	5
4. Results and Consideration.....	7
4.1 Daylight and Sunlight	7
5. Conclusion.....	9
5.1 Daylight and Sunlight	9
5.2 Generally	9

Appendix A BRE Assessments

Appendix B Context Drawings

Appendix C Daylight Results/ Annual Probable Sunlight Hours Results

1. Executive Summary

1.1 Scope of Service

1.1.1 We have been instructed by Gillet Macleod Partnership to consider the potential impact upon the amenity of 55 Hoylake Crescent, which may arise from the proposed development at 53 Hoylake Crescent, Ickenham, Uxbridge UB10 8JF.

1.2 BRE Assessment Criteria

1.2.1 To ensure that this assessment has been appropriately considered, daylight and sunlight assessments have been undertaken in accordance with the Building Research Establishment Report 'Site Layout Planning for Daylight and Sunlight – A Guide to Good Practice' 2022 (the "BRE guide") and also on British Standard 8206 – 2: 2008 – 'Lighting for Buildings – Part 2: Code of Practice for Daylighting', to which the BRE report refers.

1.2.2 The standards and tests applied within this assessment are briefly described in Appendix A.

1.3 Daylight and Sunlight

1.3.1 Regarding 55 Hoylake Crescent, the proposed development meets the BRE guidelines for daylight and sunlight.

1.3.2 There are no valid grounds to challenge the proposed development with regards to daylight and sunlight amenity.

1.4 Generally

1.4.1 When considering the numerical results, it is important to approach and interpret the BRE guidelines flexibly along with the following material mitigating factors:

*The BRE guidelines recognise that buildings located uncommonly close to the site boundary, as is the case here, may be considered as "bad" neighbours, taking more than their fair share of light. Accordingly, a greater reduction in daylight or sunlight may be unavoidable and so the local authority may wish to apply different target values.

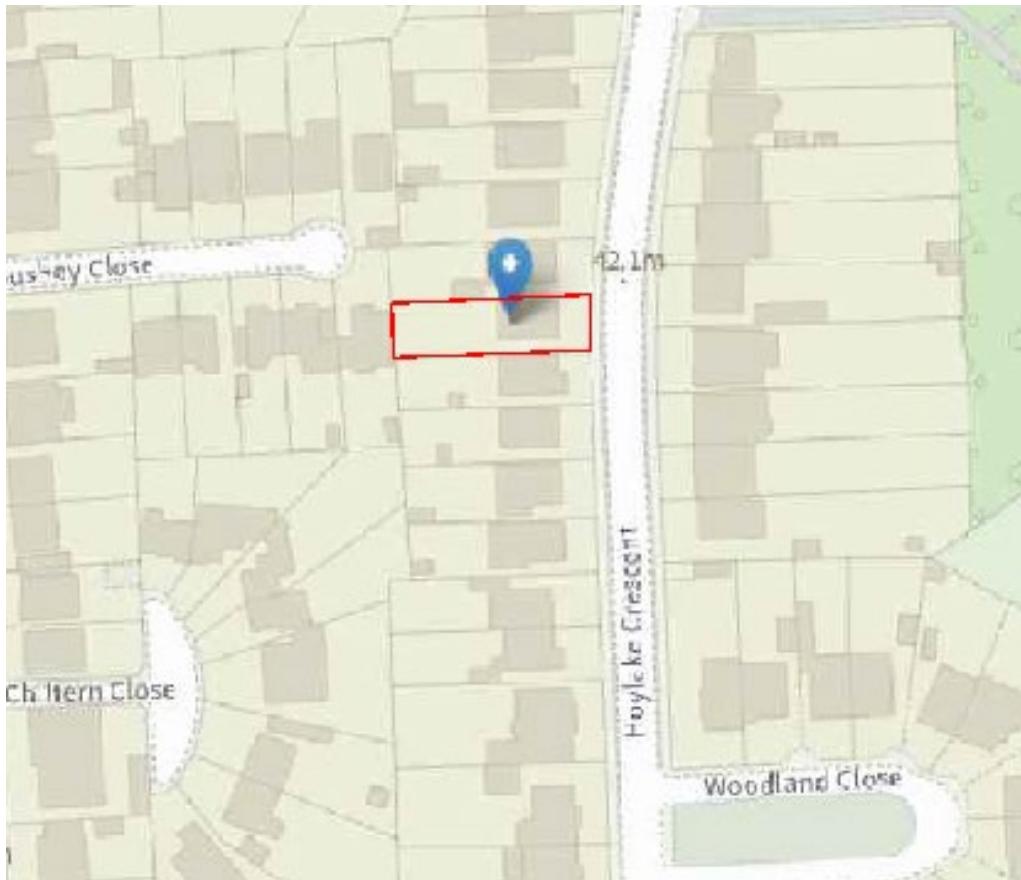
*Kitchens and bedrooms are given less weighting than that of a living room.

*It is reasonable to expect future occupiers of proposed developments to utilise the natural light and arrange their rooms accordingly.

2. Introduction

2.1 Scope of Service

2.1.1 We have been instructed by Gillet Macleod Partnership to consider the potential impact upon the amenity of 55 Hoylake Crescent, which may arise from the proposed development at 53 Hoylake Crescent, Ickenham, Uxbridge UB10 8JF.


2.2 Assessment

2.2.1 To ensure that this assessment has been appropriately considered, daylight and sunlight assessments have been undertaken in accordance with the Building Research Establishment Report 'Site Layout Planning for Daylight and Sunlight – A Guide to Good Practice' 2022 (the "BRE guide") and with the British Standard 8206 – 2: 2008 – 'Lighting for Buildings – Part 2: Code of Practice for Daylighting', to which the BRE report refers.

2.2.2 The standards and tests applied within this assessment are briefly described in Appendix A.

2.2.3 The existing buildings adjacent to the site are shown on the Site Location Plan below.

Site Location Plan

2.2.4 The existing buildings adjacent to the site considered for this report are listed in the following table. Some of these buildings may not require a comprehensive assessment with the reasons for these findings given later in this report under section 3: Results and Consideration.

Adjacent Building Summary Table		
Name/Address of Building	Assumed Use of Building	Position in Relation to the Proposed Development
55 Hoylake Crescent	Residential	North

2.3 Limitations

2.3.1 Our assessment is based on the proposed planning drawings by Gillett Macleod Partnership.

2.3.2 Topographical survey information was not provided with relation to the existing buildings on site along with elevations of surrounding buildings. Where buildings were not surveyed, the locations and heights were derived from the aforementioned drawings, site photographs and oblique aerial photography.

2.3.3 We refer you to the drawings which accompany this report for a list of the third-party information relied upon which our 3D computer model and resultant analyses are based.

2.3.4 Evergreen trees, hedges and shrubs have been represented in our 3D model where appropriate, but deciduous trees have not.

3. BRE Criteria and Mitigating Factors

3.1 BRE Daylight Criteria

3.1.1 The BRE guide target value for the Vertical Sky Component Assessment (VSC) is 27%. However, where the values are lower than this in the existing situation, the BRE allows a reduction of 20%, *subject to mitigating factors*.

3.1.2 For Daylight Distribution, namely, sky visibility at table level, the BRE allows a reduction of 20%, *subject to mitigating factors*.

3.1.3 These criteria are, however, purely numerical guidelines. They can be misinterpreted as a hard and fast rule, which is of course an unsustainable argument at planning. A loss of greater than 20% implies that the loss may be noticeable by its occupants, but noticeable does not mean, significant or adverse, it just means that it needs to be considered in the broader context. Namely, is the development acceptable in respect of all of the surrounding circumstances? This leads us on to the mitigating factors.

3.2 Mitigating Factors

3.2.1 As with all development sites, it would be helpful at this stage to outline the mitigating factors.

- 3.2.2 Mitigating factors are to be considered in conjunction with the numerical data, particularly with regards to the specific surrounding circumstances, to arrive at a more balanced view.
- 3.2.3 By balanced, it is meant that the two often conflicting material considerations at planning, (to have amenity protected (neighbours) and to utilise adjacent land in a reasonable manner (developer), need to be considered fairly.
- 3.2.4 The BRE guidelines states at the beginning and throughout that it is “to be interpreted flexibly”; “not intended to constrain but help the designer”; and “not to be used as an instrument of planning policy”.
- 3.2.5 The simplest way of approaching all of the above is to keep in mind one basic question – “is it [the development] fair/balanced/acceptable in consideration of all the surrounding circumstances”.

Mitigating Factor #1

- 3.2.6 The main mitigating factor is, that where buildings located uncommonly close to the site boundary, they may be considered as “bad” neighbours, taking more than their fair share of light. Accordingly, a greater reduction in daylight or sunlight may be unavoidable and so the local authority may wish to apply different target values.

Mitigating Factor #2

- 3.2.7 Where sites are undeveloped or are infill sites, again a higher degree of obstruction may be unavoidable, leading to a higher frequency of non-compliance. So, for example, you have a gap in a line of terraced properties, or an existing street scape of 6-storey high buildings. Where a developer wishes to fill this gap, or indeed reinstate a previous building, it would certainly be acceptable in planning terms, irrespective of the potential effect on surrounding buildings.

Mitigating Factor #3

- 3.2.8 The BRE guidelines also recognises that where buildings match the height and proportions of existing surrounding buildings a higher degree of obstruction may be unavoidable, leading to a higher frequency of non-compliance.

Mitigating Factor #4

- 3.2.9 Additionally, kitchens and bedrooms are generally given less weighting than that of a principal room such as a living room.

4. Results and Consideration

4.1 Daylight and Sunlight

Existing Baseline

4.1.1 The existing accommodation comprises a bungalow, situated to the west side of Hoylake Crescent, see accompanying drawing 1945/DSO/01.

Proposed Development

4.1.2 The proposed development will extend the dwelling westwards and increase the height of the roof slightly to incorporate a new floor level within the roof. Dormers will also be introduced to both the north and south sides, see accompanying drawing 1945/DSO/01.

55 Hoylake Crescent

4.1.3 Immediately north is 55 Hoylake Crescent. It looks to be a mirror image of the current #53 before itself was extended.

4.1.4 In its original form this dwelling largely resembled #53 and #57. In circa 2000 the dwelling was extended westwards in to the garden, creating a dual aspect kitchen dining room with 4 tall windows and a corner window to the southern elevation and a larger window and a glazed door to the east elevation.

4.1.5 Turning now to the assessments results:

4.1.6 Regarding vertical sky component (VSC), whilst the 4 no. individual south facing tall windows will fall below the BRE guidelines, the room itself, by taking in to account all the windows serving the same open plan dual aspect kitchen dining room, will meet the BRE guidelines.

4.1.7 The daylight distribution (DD) results show that the open plan dual aspect kitchen dining room will remain unaffected. This is because this rooms can still see skylight at table level from over the top of the proposed development, from around the side of it and also along the rear garden.

4.1.8 When closer to the window, skylight will be available from all directions and so the DD target threshold is easily met. As one moves further back in to the room, although the sky visibility diminishes, making it harder for the DD target threshold to be met, the proposed development cannot be seen any more, so no additional change will be registered there either.

4.1.9 For sunlight, similarly to VSC above, whilst individual windows will fall below the BRE guidelines, the room itself, by taking in to account all the windows serving the same open plan dual aspect kitchen dining room, will meet the BRE guidelines.

4.1.10 This dwelling will therefore not be materially affected by the proposed development.

Technical Clarification

4.1.11 For calculating the VSC to tall windows, the BRE guide at paragraph 2.2.5 states that:

Any reduction in the total amount of skylight can be calculated by finding the VSC at the centre of each main window. In the case of a floor-to-ceiling window such as a patio door, a point 1.6 m above ground... on the centre line of the window may be used.

4.1.12 For calculating the APSH to tall windows, the BRE guide at paragraph 3.2.5 states that:

In the case of a floor-to-ceiling window such as a patio door, a point on the centre line of the window 1.6 m above the ground (or balcony level in the case of an upper storey window) may be used.

4.1.13 Obviously, the BRE guidelines does not mean literally a window from the floor to the ceiling, it means a tall window such as a patio door, which are typically just over 2.0m high but fully glazed. Crucially, what these statements mean is, a fully glazed patio door has the potential for more light than a normal window with the same head height and width. Using the usual centre point as a reference point, the fully glazed door in calculation terms would yield a lower VSC/APSH result than that of a window half its size set at the same head height. Accordingly, the BRE guidelines compensates for this by allowing a calculation point of 1.6m above ground level.

4.1.14 We have therefore used a calculation point of 1.6 m above ground floor level for the four tall windows (W2 to W5) to the south elevation of #55.

4.1.15 As is correct and appropriate, the impact to a dwelling should not be considered on an isolated window by window basis, but to the rooms as a whole. The BRE guidelines provides the methodology for both VSC and APSH to rooms where multiple windows serve the same space.

4.1.16 We have therefore provided results for each individual window, but considered the overall impact to the room as a whole, using the prescribed methodology (it is built in to the software).

4.1.17 In summary, the proposed development meets the BRE guidelines for daylight and sunlight. There will be a reduction to the natural light of the kitchen diner, as the results show, but not one that will be material.

Further Commentary

4.1.18 We should also mention that the extension to #55 circa 2000 could have benefitted from a better solution; it does not seem to have taken in to account the possibility of any future development by #53 to the south. It looks as though the original south wall was extended west, almost abutting the garage, (or the garage was built too close at a later date), the glazed door was kept at the same width, and 4 tall windows were introduced to the southern elevation. We find it hard to believe that the owners were not warned at the time that, if #53 was to be developed, to expect the natural light to those 4 tall windows to remain unaffected, given their juxtaposition to the common boundary, would be wholly unjustified.

4.1.19 A combined kitchen and dining room (KD) is a habitable room, but because it is combined, each window serving the open plan area must be considered and then the room taken as a whole; it cannot be notionally separated to skew the potential results.

4.1.20 Sunlight (APSH) is primarily for living rooms, with kitchens and bedrooms being less important though care should be taken to not block out too much sun. The upshot of that is, the BRE guidelines criteria do not necessarily apply to kitchens or KDs and even less so where they are located so close to the common boundary, see below at 4.1.23.

4.1.21 The BRE guidelines states at paragraph 3.2.3:

To assess loss of sunlight to an existing building, it is suggested that all main living rooms of dwellings, and conservatories, should be checked if they have a window facing within 90° of due south. Kitchens and bedrooms are less important, although care should be taken not to block too much sun. Normally loss of sunlight need not be analysed to kitchens and bedrooms, except for bedrooms that also comprise a living space, for example a bed sitting room in an old people's home.

4.1.22 Nonetheless, we have included the sunlight to the KD in our assessments, considered the results, and reported upon them.

4.1.23 As with all development sites, the mitigating factors outlined above at paragraphs 3.2.6 to 3.2.9 apply here. Namely, the windows to the south facing elevation of #55 are located very close to the common boundary and therefore fall into the category of “bad neighbours” taking more than their fair share of natural light. Accordingly, the local authority may apply different target values.

4.1.24 What this means is, the BRE criteria of circa 20% loss does not necessarily apply in these situations, allowing much larger losses at the local authority’s discretion.

4.1.25 And finally, the proposed development at #53 is not a 10-storey building, it is an increase in the ridge height of circa 800mm, which should put all the above in context.

4.1.26 The local authority has enough information to determine whether or not #55 will be adversely affected by the proposed development. There will not be any additional submissions or commentary on the matter, and certainly not from any further piecemeal objections.

5. Conclusion

5.1 Daylight and Sunlight

5.1.1 Regarding 55 Hoylake Crescent, the proposed development meets the BRE guidelines for daylight and

sunlight.

5.1.2 There are no valid grounds to challenge the proposed development with regards to daylight and sunlight amenity.

5.2 Generally

5.2.1 When considering the numerical results, it is important to approach and interpret the BRE guidelines flexibly along with the following material mitigating factors:

*The BRE guidelines recognises that buildings located uncommonly close to the site boundary, as is the case here, may be considered as “bad” neighbours, taking more than their fair share of light. Accordingly, a greater reduction in daylight or sunlight may be unavoidable and so the local authority may wish to apply different target values.

*Kitchens and bedrooms are given less weighting than that of a living room.

*It is reasonable to expect future occupiers of proposed developments to utilise the natural light and arrange their rooms accordingly.

Appendix A

BRE Assessments

BRE Assessments

Introduction

The Building Research Establishment Report “Site Layout Planning for Daylight and Sunlight – a guide to good practice 1991” (“the BRE Guidelines”) provides advice to building designers on site layout planning in order to achieve good daylight and sunlight amenity, not only to the proposed development and the open spaces between the proposed blocks, but also to the existing surrounding properties.

As part of this advice, the Building Research Establishment (BRE) have developed a series of assessments along with numerical guidelines so that the potential for good daylight and sunlight amenity can be achieved.

In general, the application of the BRE Guidelines is more appropriate for low density suburban development sites where there is a greater flexibility for site layout planning. In dense urban areas, however, development sites are usually constrained to a greater degree, often by immediately adjacent buildings etc. Accordingly, when dealing with dense urban areas the guidelines should be applied flexibly. This point is expressly recognised by the BRE Guidelines, which states in the introduction at page 1:

‘The Guide is intended for building designers and their clients, consultants and planning officials. The advice given here is not mandatory and this document should not be seen as an instrument of planning policy. Its aim is to help rather than constrain the designer. Although it gives numerical guidelines, these should be interpreted flexibly because natural lighting is only one of many factors in site layout design.... In special circumstances the developer or Planning Authority may wish to use different target values. For example, in a historic city centre a higher degree of obstruction may be unavoidable if new developments are to match the height and proportions of existing buildings.....’

Daylight

The criteria for assessing daylight to existing surrounding buildings are outlined at pages 4 to 8 of the BRE Guidelines. Generally, daylight assessments should be undertaken to habitable rooms within dwellings and to principal rooms in non-domestic buildings such as schools, hospitals and offices where the occupants have a reasonable expectation of daylight.

Whilst the BRE Guidelines contain a number of rules of thumb that inform site layout design some relate to specific situations, such as domestic developments to the rear of a property, which although useful may not be considered appropriate for general site layout design.

The principal assessments used to assess daylight to existing surrounding buildings are outlined in more detail below along with a further daylight assessment, usually applied to proposed dwellings, which is admissible provided it is agreed with the local authority, or there are past precedents.

25° section line assessment

The first assessment is known as the [modified] 25° section line test. It is a simple rule of thumb that determines whether an existing building should still receive adequate daylight with the proposed development in place.

The BRE guide states at page 11:

“If any part of a new building or development, measured in a vertical section perpendicular to a main window wall of an existing building, from the centre of a lowest window, subtends an angle of more than 25° to the horizontal may be affected.”

This assessment is most appropriate for well spaced, low-density or low-rise, uniform proposed developments. It is not an appropriate assessment for dense urban environments, where the existing building on the development site already subtends at an angle greater than 25° to the horizontal from the subject window. It is for this reason this 25° assessment is generally dispensed with and the more detailed assessments outlined below are entered into at the outset.

The Vertical Sky Component (“VSC”) Assessment

The Vertical Sky Component (“VSC”) assessment represents the amount of available daylight received directly from the sky at a particular window. The reference point for this assessment is the centre of the window, on the plane of the outer window wall.

A VSC is expressed as a percentage, being a ratio of that part of illuminance on a vertical plane (a window) that is received from a Standard Overcast Sky (CIE Sky), to the illuminance received on a horizontal plane on an unobstructed hemisphere of Standard Overcast Sky. To put it another way it is simply the amount of direct sky visibility a window receives, howsoever obstructed, expressed as a percentage of the amount of direct sky a horizontal unobstructed roof-light would receive.

The maximum percentage of direct skylight a vertical window can receive from a Standard Overcast Sky is 39.62%, or 40% when rounded. The BRE have determined that where a VSC value of 27% is achieved, then enough skylight (direct daylight) should reach the window of an existing building. This value is roughly equivalent to a uniform obstruction of 25°, with reference to the above assessment. The Guidelines go on to state:

“If the vertical sky component, with the new development in place, is both less than 27% and less than 0.8 times its former value, (a 20% reduction), then the occupants of the existing building will notice the difference.”

Consequently, the daylight to an existing building, as a result of a proposed development, may be reduced by 20% before that loss becomes noticeable.

The Daylight Distribution (“DD”) Assessment

The Daylight Distribution Assessment is undertaken at working plane level from within a subject room and represents the change in skyline when viewed through a subject window. The working plane level is set at 0.85m above floor level in dwellings and 0.70m in offices, however, in practice this distinction in height is not normally made, and so the working plane is generally set at 0.85m.

If significant areas beyond the no-sky line i.e. the point beyond the line where no sky can be seen at working plane level, the room will usually appear gloomy and supplementary electric lighting will be required. The BRE Guidance states:

“If, following construction of a new development, the no-sky line moves so that the area of the existing

room which does not receive direct skylight is reduced to less than 0.8 times its former value, (a 20% reduction), then this will be noticeable to the occupants, and more of the room will be poorly lit.”

Consequently, the daylight to an existing building, as a result of a proposed development, may be reduced by 20% before that loss becomes noticeable.

The VSC and DD are the 2 principal assessments that are required to be undertaken in order to assess daylight to existing surrounding buildings.

The Average Daylight Factor (“ADF”) Assessment

A further daylight assessment, which may be undertaken, provided it is accepted by the local authority, is known as the Average Daylight Factor (ADF). Strictly speaking ADF assessments are used to determine the daylight availability to units within a proposed development, however, in more recent times the ADF assessment has been accepted by local authorities as a valid assessment for existing surrounding buildings.

An ADF assessment takes into account the amount of direct sky visibility incident on a window serving a subject room, the transmittance of the light through the glass, and the reflectance of that resultant light from the entire surface area of the room, which is then expressed as a percentage.

The ADF values recommended in the British Standard BS8206 Part 2 to which the BRE refers are: 2% for kitchens or open plan living areas (LKD), 1.5% for living rooms and 1% for bedrooms, if supplementary electric lighting is provided.

Nb. The guidelines outlined in the latest edition of BS8206 Part 2: 2008 are now applied.

Sunlight

Sunlight is valued in both residential and commercial buildings. It is seen as providing warmth and cheerfulness to a room, whilst also giving the occupants a therapeutic effect and a sense of wellbeing.

In residential properties the main requirement for sunlight is in the living room or conservatories, which should be assessed if they have a main window facing within 90° of due south. Sunlight is considered less important in kitchens and bedroom, although care should be taken not to block out too much.

In commercial or non-domestic buildings, the requirement for sunlight varies according to the use of the building. The BRE recommends that for a commercial building any space that has a particular or special requirement for sunlight should be assessed.

Annual Probable Sunlight Hours (APSH) Assessment

The APSH assessment is undertaken to the main window of residential and commercial buildings, where the window faces within 90° of due south. “Probable Sunlight Hours” may be defined as the total number of hours in the year that the sun is expected to shine on unobstructed ground, allowing for average levels of cloudiness.

At page 17 of the BRE guidelines the criteria for the APSH assessment are as follows: -

'If a living room of an existing dwelling has a main window facing within 90° of due south, and any part of a new development subtends an angle of more than 25° to the horizontal measured from the centre of the window in a vertical section perpendicular to the window, then the sunlighting of the existing dwelling may be adversely affected. This will be the case if a point at the centre of the window, in the plane of the inner window wall, received in the year less than one quarter (25%) of annual probable sunlight hours including at least 5% of annual probable sunlight hours between 21 September and 21 March, and less than 0.8 times its former sunlight hours during either period and has a reduction in sunlight received over the whole year greater than 4% of annual probable sunlight hours.'

Consequently, the sunlight to a living room within an existing building, as a result of a proposed development, may be reduced by 20% in either the annual or winter periods *and* has a reduction of more than 4% of APSH before that loss becomes noticeable. Accordingly, if a room is reduced by 4% APSH or less, it is considered to meet the BRE criteria.

Overshadowing

The BRE guidance also offers advice on how to preserve sunlight to both existing and proposed open amenity spaces. Areas such as main back gardens of dwellings, parks, playing fields, playgrounds, waterways and public spaces such should be assessed. Small front gardens to dwellings and parking areas need not be assessed.

The permanent overshadowing assessment

The permanent overshadowing assessment is undertaken on 21 March, the spring equinox. This assessment shows areas of a subject amenity area where no sunlight will be available during the winter period, however, the subject area may still receive some sunlight during the summer.

The BRE states at page 20:

"for it to appear adequately sunlight throughout the year, at least half of a garden or amenity area should receive at least 2 hours of sunlight on 21 March. If, as a result of new development, an existing garden or amenity area does not meet these guidelines, and the area which can receive 2 hours of sun on 21 March is less than 0.8 times its former value (a 20% reduction), then the loss of sunlight is likely to be noticeable".

Consequently, if an open amenity area, is more than 50% in shade for more than 2 hours in either existing or proposed situations and is reduced by more than 20% of its existing value as a result of new development, then that loss is likely to be noticeable.

The transient overshadowing assessment

A further overshadowing assessment, sometimes requested by the local authority for larger developments, is the temporary, or transient overshadowing assessment. This assessment usually comprises hourly overshadowing images of the existing and proposed situations undertaken on key dates during the year such as 21 March, the spring equinox; 21 June, the summer solstice; and 21 December, the winter solstice.

The BRE guidance offers no express numerical values for this type of assessment, consequently it is purely subjective.

Proposed Accommodation

For the proposed accommodation assessments the ADF, DD and Room Depth Assessments (RD) are used, with ADF being the principal assessment.

Regarding the room depth assessment, provided that the depth of the subject room meets the criterion below it meets the BRE guidelines, however, this calculation does not take into reference any exterior obstructions.

$$L/W + L/H < 2/1-R$$

Where:-

L = Depth of subject room

W = Width of subject room

H = Head of window above floor level

R = Average reflectance value of room

Appendix B

Context Drawings

Appendix C

Daylight Results / Sunlight Results

daylight & sunlight

Vertical Sky Component (VSC) Assessment / Sunlight (APSH) Assessment

daylight&sunlight

Daylight Distribution (DD) Assessment

Floor Ref.	Room Ref.	Room Use	Property Type	Room Area	Lit Area Existing	Lit Area Proposed	Pr/Ex	Meets BRE Criteria
55 Holylake Crescent								
Ground	R1	Bathroom	Area m2 % of room	3.45	2.97 86.21%	2.97 86.21%	1.00	YES
	R2	KD	Area m2 % of room	16.79	16.79 99.99%	16.79 99.99%	1.00	YES