

TIM O'HARE ASSOCIATES
SOIL & LANDSCAPE CONSULTANCY

Mr Ian Elwick
Hallstone Developments Ltd
The Airfield
Seaton Ross
York
YO42 4NF

8th March 2024
Our Ref: TOHA/24/1258/SS
Your Ref: PO IE12019

Dear Sirs

Topsoil Analysis Report: Hallstone Blended Loam (07/02)

We have completed the analysis of the soil sample recently submitted, referenced *Hallstone Blended Loam (07/02)*, and have pleasure reporting our findings.

The purpose of the analysis was to determine the suitability of the topsoil sample for general landscape purposes, including residential back gardens. In addition, this sample has been assessed to determine its compliance with the requirements of the British Standard for Topsoil (*BS3882:2015 – Specification for Topsoil – Table 1, Multipurpose Topsoil*).

This report presents the results of analysis for the sample submitted to our office, and it should be considered 'indicative' of the topsoil source. The report and results should therefore not be used by third parties as a means of verification or validation testing or waste designation purposes, especially after the topsoil has left the Hallstone Developments Ltd site.

SAMPLE EXAMINATION

The sample was described as a very dark grey (Munsell Colour 10YR 3/1), moist, friable, very slightly calcareous LOAMY SAND with a weakly developed, very fine to medium, granular and sub-angular structure*. The sample was virtually stone free and contained a high proportion of organic fines and occasional woody fragments. No unusual odours, deleterious materials, roots or rhizomes of pernicious weeds were observed.

*This appraisal of soil structure was made from examination of a disturbed sample. Structure is a key soil characteristic that may only be accurately assessed by examination in an in-situ state.

Tim O'Hare Associates LLP
Howbery Park Wallingford Oxfordshire OX10 8BA
T:01491 822653 E:info@toha.co.uk
www.toha.co.uk

ANALYTICAL SCHEDULE

The sample was submitted to a UKAS and MCERTS accredited laboratory for a range of physical and chemical tests to confirm the composition and fertility of the soil, and the concentration of selected potential contaminants. The following parameters were determined:

- particle size analysis (% sand, silt, clay);
- stone content (2-20mm, 20-50mm, >50mm);
- pH and electrical conductivity values;
- exchangeable sodium percentage;
- major plant nutrients (N, P, K, Mg);
- organic matter content;
- C:N ratio;
- heavy metals (As, B, Ba, Be, Cd, Cr, Cu, Pb, Hg, Ni, Se, V, Zn);
- total cyanide and total (mono) phenols;
- speciated PAHs (US EPA16 suite);
- aromatic and aliphatic TPH (C5-C35 banding);
- benzene, toluene, ethylbenzene, xylene (BTEX);
- asbestos screen.

The results are presented on the attached Certificate of Analysis and an interpretation of the results is given below.

RESULTS OF ANALYSIS

Particle Size Analysis and Stone Content

The sample fell into the *loamy sand* texture class, which is usually considered suitable for general landscape applications provided the soil's physical condition is satisfactory.

The sample was virtually stone free and, as such, stones should not restrict the use of the soil for general landscape purposes.

pH and Electrical Conductivity Values

The sample was strongly alkaline in reaction (pH 8.4). This pH value would be considered suitable for general landscape purposes provided species with a wide pH tolerance or those known to prefer alkaline soils are selected for planting, turfing and seeding.

The electrical conductivity (salinity) value (water extract) was moderate, which indicates that soluble salts should not be present at levels that would be harmful to plants.

The electrical conductivity value by CaSO₄ extract (BS3882 requirement) fell below the maximum specified value (3300 µS/cm) given in BS3882:2015 – Table 1.

Organic Matter and Fertility Status

The sample was well supplied with organic matter and all major plant nutrients.

The C:N ratio of the sample was acceptable for general landscape purposes.

Potential Contaminants

With reference to BS3882:2015 - Table 1: Notes 3 and 4, there is a requirement to confirm levels of potential contaminants in relation to the topsoil's proposed end use. This includes human health, environmental protection and metals considered toxic to plants. In the absence of site-specific criteria, the concentrations that affect human health have been compared with the *residential with homegrown produce* land use in the Suitable For Use Levels (S4ULs) presented in the *LQM/CIEH S4ULs for Human Health Risk Assessment* (2015) and the DEFRA SP1010: *Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination – Policy Companion Document* (2014). The concentration of barium has been compared with the *residential* land use given in the document *EIC/AGS/CL:AIRE Soil Generic Assessment Criteria for Human Health Risk Assessment* (2010).

Of the potential contaminants determined, none were found at levels that exceeded their guideline values.

Phytotoxic Contaminants

Of the phytotoxic (toxic to plants) contaminants determined (copper, nickel, zinc), none were found at levels that exceeded the maximum permissible levels specified in BS3882:2015 – Table 1.

CONCLUSION

The purpose of the analysis was to determine the suitability of the topsoil sample for general landscape purposes, including residential back gardens. The analysis has also been undertaken to determine the sample's compliance with the requirements of the British Standard for Topsoil (BS3882:2015 – *Specification for Topsoil – Table 1, Multipurpose Topsoil*).

From the soil examination and subsequent laboratory analysis, the sample was described as a strongly alkaline, non-saline, very slightly calcareous, *loamy sand* with a weakly developed structure and very low stone content. The sample was well supplied with organic matter and all major plant nutrients. Of the potential contaminants determined, none exceeded their respective guideline values.

To conclude, based on our findings, the topsoil represented by this sample would be considered suitable for general planting purposes (trees, shrubs and amenity grass) provided species with a wide pH tolerance or those known to prefer alkaline soils are selected and the soil's physical condition is satisfactory.

The sample was fully compliant with the requirements of the British Standard for Topsoil (BS3882:2015 – *Specification for Topsoil – Table 1, Multipurpose Topsoil*).

RECOMMENDATIONS

Soil Handling Recommendations

It is important to maintain the physical condition of the soil and avoid structural damage during all phases of soil handling (e.g. stockpiling, respreading, cultivating, planting, seeding or turfing). As a consequence, soil handling operations should be carried out when soil is sufficiently dry to be non-plastic (friable) in consistency.

It is important to ensure that the soil is not unnecessarily compacted by trampling or trafficking by site machinery, and soil handling should be stopped during and after heavy rainfall and not continued until the soil is friable in consistency. If the soil is structurally damaged and compacted at any stage during the course of soiling or landscaping works, it should be cultivated appropriately to relieve the compaction and to restore the soil's structure prior to any planting, turfing or seeding.

Further details on soil handling are provided in Annex A of BS3882:2015.

We hope this report meets with your approval and provides the necessary information. Please do not hesitate to contact the undersigned if we can be of further assistance.

Yours faithfully

H. MacRae

Harriet MacRae
BSc MSc
Graduate Soil Scientist

A. Cross

Aaron Cross
BSc MSc MISoilSci
Senior Soil Scientist

For & on behalf of Tim O'Hare Associates LLP

Hallstone Developments Ltd

Client:	Hallstone Developments Ltd
Project:	Hallstone Blended Loam (09/02)
Job:	Topsoil Analysis - BS3882:2015
Date:	08/03/2024
Job Ref No:	TOHA/24/1258/SS

Sample Reference		Accreditation
Clay (<0.002mm)	%	UKAS
Silt (0.002-0.063mm)	%	UKAS
Sand (0.063-2.0mm)	%	UKAS
Texture Class (UK Classification)	-	UKAS
Stones (2-20mm)	% DW	GLP
Stones (20-50mm)	% DW	GLP
Stones (>50mm)	% DW	GLP

pH Value (1:2.5 water extract)	units	UKAS
Electrical Conductivity (1:2.5 water extract)	µS/cm	UKAS
Electrical Conductivity (1:2 CaSO ₄ extract)	µS/cm	UKAS
Exchangeable Sodium Percentage	%	UKAS
Organic Matter (LOI)	%	UKAS
Total Nitrogen (Dumas)	%	UKAS
C : N Ratio	ratio	UKAS
Extractable Phosphorus	mg/l	UKAS
Extractable Potassium	mg/l	UKAS
Extractable Magnesium	mg/l	UKAS

Total Arsenic (As)	mg/kg	MCERTS
Total Barium (Ba)	mg/kg	MCERTS
Total Beryllium (Be)	mg/kg	MCERTS
Total Cadmium (Cd)	mg/kg	MCERTS
Total Chromium (Cr)	mg/kg	MCERTS
Hexavalent Chromium (Cr VI)	mg/kg	MCERTS
Total Copper (Cu)	mg/kg	MCERTS
Total Lead (Pb)	mg/kg	MCERTS
Total Mercury (Hg)	mg/kg	MCERTS
Total Nickel (Ni)	mg/kg	MCERTS
Total Selenium (Se)	mg/kg	MCERTS
Total Vanadium (V)	mg/kg	MCERTS
Total Zinc (Zn)	mg/kg	MCERTS
Water Soluble Boron (B)	mg/kg	MCERTS
Total Cyanide (CN)	mg/kg	MCERTS
Total (mono) Phenols	mg/kg	MCERTS

Naphthalene	mg/kg	MCERTS
Acenaphthylene	mg/kg	MCERTS
Acenaphthene	mg/kg	MCERTS
Fluorene	mg/kg	MCERTS
Phenanthrene	mg/kg	MCERTS
Anthracene	mg/kg	MCERTS
Fluoranthene	mg/kg	MCERTS
Pyrene	mg/kg	MCERTS
Benzo(a)anthracene	mg/kg	MCERTS
Chrysene	mg/kg	MCERTS
Benzo(b)fluoranthene	mg/kg	MCERTS
Benzo(k)fluoranthene	mg/kg	MCERTS
Benzo(a)pyrene	mg/kg	MCERTS
Indeno(1,2,3-cd)pyrene	mg/kg	MCERTS
Dibenz(a,h)anthracene	mg/kg	MCERTS
Benzo(a,h)perylene	mg/kg	MCERTS
Total PAHs (sum USEPA16)	mg/kg	MCERTS

Aliphatic TPH (C5-C8)	mg/kg	MCERTS
Aliphatic TPH (C8-C18)	mg/kg	MCERTS
Aliphatic TPH (C8-C10)	mg/kg	MCERTS
Aliphatic TPH (C10-C12)	mg/kg	MCERTS
Aliphatic TPH (C12-C16)	mg/kg	MCERTS
Aliphatic TPH (C16-C21)	mg/kg	MCERTS
Aliphatic TPH (C21-C35)	mg/kg	MCERTS
Aliphatic TPH (C5-C35)	mg/kg	MCERTS
Aromatic TPH (C5-C7)	mg/kg	MCERTS
Aromatic TPH (C7-C8)	mg/kg	MCERTS
Aromatic TPH (C8-C10)	mg/kg	MCERTS
Aromatic TPH (C10-C12)	mg/kg	MCERTS
Aromatic TPH (C12-C16)	mg/kg	MCERTS
Aromatic TPH (C16-C21)	mg/kg	MCERTS
Aromatic TPH (C21-C35)	mg/kg	MCERTS
Aromatic TPH (C5-C85)	mg/kg	MCERTS

Benzene	mg/kg	MCERTS
Toluene	mg/kg	MCERTS
Ethylbenzene	mg/kg	MCERTS
p & m-xylene	mg/kg	MCERTS
o-xylene	mg/kg	MCERTS
MTBE (Methyl Tertiary Butyl Ether)	mg/kg	MCERTS

Asbestos Screen	ND/D	ISO17025
		Not-detected

Hallstone Blended Loam (07/02)

6	✓
10	✓
84	✓
LS	✓
.1	✓
0	✓
0	✓

8.4	✓
1068	✓
2951	✓
4.8	✓
5.5	✓
0.27	✓
12	✓
61	✓
1325	✓
154	✓

5	✓
56	✓
0.46	✓
0.3	✓
10	✓
< 1.8	✓
27	✓
27	✓
< 0.3	✓
8	✓
< 1.0	✓
12	✓
74	✓
2.8	✓
< 1.0	✓
< 1.0	✓

< 0.05	✓
< 0.05	✓
< 0.05	✓
0.11	✓
< 0.05	✓
0.32	✓
0.31	✓
0.16	✓
0.19	✓
0.24	✓
0.12	✓
0.16	✓
0.13	✓
< 0.05	✓
0.15	✓
1.9	✓

< 0.020	✓
< 0.020	✓
< 0.050	✓
< 1.0	✓
< 2.0	✓
< 8.0	✓
< 8.0	✓
< 10	✓
< 0.010	✓
< 0.010	✓
< 0.050	✓
< 1.0	✓
< 2.0	✓
< 10	✓
< 10	✓
< 10	✓

< 0.005	✓
< 0.005	✓
< 0.005	✓
< 0.005	✓
< 0.005	✓
< 0.005	✓

H. MacRae
Harriet MacRae
BSc MSc
Graduate Soil Scientist

The sample was described as a very dark grey (Munsell Colour 10YR 3/1), moist, friable, very slightly calcareous LOAMY SAND with a weakly developed, very fine to medium, granular and sub-angular structure. The sample was virtually stone free and contained a high proportion of organic fines and occasional woody fragments. No unusual odours, deleterious materials, roots or rhizomes of pernicious weeds were observed.

✓	Meets General Landscape Specification
X	Fails General Landscape Specification
*	See Report Comments
LS	Loamy Sand Texture Class
PAH	Polyaromatic Hydrocarbons
ND	Not-detected

Results of analysis should be read in conjunction with the report they were issued with