

CONTAMINATED LAND RISK ASSESSMENT

Phase 2 Environmental Site Investigation Report

Site

Former Garage
Bartram Close
Uxbridge
UB8 3AX

Client

Melim Management

Report Reference
PH2-2022-000018

Prepared by

STM Environmental Consultants Ltd

Date

14/04/2022

A collage of various environmental images, including a wind farm, a person working on a laptop, a globe, a car, and a landscape, arranged in a diamond pattern.

**CONSULTING GEO-ENVIRONMENTAL
ENGINEERS AND SCIENTISTS**

Phase 1 Contaminated Land Desk Studies, Geo-Environmental Site Investigations, Environmental Due Diligence, Flood Risk Assessments, Surface Water Management Strategies (SuDS), Ecology, Noise and Air Quality Assessments, Environmental Management Systems, GIS & Data Management Systems

TABLE OF CONTENTS

TABLE OF CONTENTS.....	2
1 DOCUMENT CONTROL.....	5
2 DISCLAIMERS.....	6
3 EXECUTIVE SUMMARY.....	7
4 INTRODUCTION.....	9
4.1 Development Proposal.....	9
4.2 Report Objectives	9
5 SUMMARY OF DESK STUDY FINDINGS	9
5.1 Site Location	9
5.2 Current Site and Surrounding Land Uses.....	9
5.3 Site History	9
5.4 Previous Site Investigations.....	11
5.5 Qualitative Risk Assessment.....	11
5.5.1 Potential Sources	11
5.5.2 Potential Receptors.....	11
5.5.3 Conceptual Site Risk Model	12
6 SITE INVESTIGATION.....	12
6.1 Strategy and Scope of the Site Investigation and Risk Assessment	12
6.1.1 On-site Screening of Volatile Organic Compounds	12
6.1.2 Sample Collection and Transport.....	13
6.1.3 Laboratory Analysis.....	13
6.1.4 Groundwater, Ground Gas and Vapour Monitoring	13
6.2 Site Investigation Findings	13
6.2.1 Ground Conditions	13
6.2.2 Groundwater.....	13
6.2.3 Visual and Olfactory Signs of Contamination.....	13
6.3 Laboratory Sample Analysis Results	13
7 GENERIC QUANTITATIVE RISK ASSESSMENT	14
7.1 Generic Assessment Criteria for Soils	14
7.1.1 Soil Organic Matter Content.....	14
7.2 Statistical Tests.....	14
7.2.1 Test Scenario	14
7.2.2 Non-Detects	14

7.2.3	Data Distribution.....	14
7.3	Results of Statistical Analysis.....	14
7.3.1	Contaminants Exceeding Generic Assessment Criteria	14
7.3.2	Statistical Analysis	15
7.4	Asbestos.....	15
8	RE-ASSESSMENT OF POTENTIAL POLLUTANT LINKAGES	15
8.1	Potential Risks to On-Site Human Health.....	17
8.2	Potential Risks to Off-Site Human Health	17
8.3	Potential Risks to Groundwater Receptors.....	17
8.4	Potential Risks to Surface Water Receptors.....	17
8.5	Potential Risks to Ecological Receptors	17
8.6	Potential Risks to Property Receptors	17
9	CONCLUSIONS	18
10	RECOMMENDATIONS	19
10.1	Remedial Action	19
10.2	Watching Brief and Discovery Strategy	19
10.3	Health and Safety	20
10.4	Waste Disposal	20
10.5	Services	20
11	INFORMATION GAPS AND UNCERTAINTIES	20
12	APPENDICES	22
12.1	Appendix 1 – Proposed Development Plans	22
12.2	Appendix 2 - Borehole Location Plan.....	23
12.3	Appendix 3 - Borehole Logs.....	24
12.4	Appendix 4 - Photographs.....	25
12.5	Appendix 5 – Laboratory Certification	28
12.6	Appendix 6 – Adopted Generic Assessment Criteria	29
12.6.1	Soils Criteria.....	29
12.7	Appendix 7 – Exceedances and Statistical Analysis Summary	31
12.8	Appendix 8 - Assessment Methodology	32
13	ABBREVIATIONS.....	34
14	REFERENCES	35

TABLES

Table 1: Summary of potential contamination sources, period of operation and distance from site....	11
Table 2: Groundwater Abstraction Licenses identified within 250m of the site.....	11
Table 3: Contaminants Exceeding GAC	15

Table 4: Results of Qualitative Risk Assessment.....	16
Table 5: Summary of revised conceptual site risk model	18
Table 6: Contamination Risk Matrix.....	32
Table 7: Assessment description for risk scores.....	32
Table 8: Risk Classification System.....	33
Figure 1: Maps showing the location of the site	10

1 DOCUMENT CONTROL

CONTAMINATED LAND RISK ASSESSMENT PHASE 2 ENVIRONMENTAL SITE INVESTIGATION REPORT

Site Address:	Former Garage Bartram Close Uxbridge UB8 3AX
Site Coordinates:	507678, 182105
Prepared for:	Melim Management
Report Reference:	PH2-2022-000018
Version No:	1.0
Date:	14/04/2022
Report Author:	Kelley Swana (BSc, MSc) GeoEnvironmental Consultant
Authorised by:	Simon Makoni (BSc, MSc) Environmental Engineer, Director

2 DISCLAIMERS

This report and any information or advice which it contains, is provided by STM Environmental Consultants Ltd (STM) and can only be used and relied upon by Melim Management (Client).

STM has exercised such professional skill, care and diligence as may reasonably be expected of a properly qualified and competent consultant when undertaking works of this nature. However, STM gives no warranty, representation or assurance as to the accuracy or completeness of any information, assessments or evaluations presented within this report. Furthermore, STM accepts no liability whatsoever for any loss or damage arising from the interpretation or use of the information contained within this report. Any party other than the Client using or placing reliance upon any information contained in this report, do so at their own risk.

This report excludes consideration of potential hazards arising from any activities at the Site other than normal use and occupancy for the intended land uses. Hazards associated with any other activities have not been assessed and must be subject to a specific risk assessment by the parties responsible for those activities.

It should be noted that this report has been produced for environmental purposes only. It should not in any way be construed to be or used to replace a geotechnical survey, structural survey, asbestos survey, buried services survey, unexploded ordnance survey or invasive plant survey.

3 EXECUTIVE SUMMARY

SECTION	SUMMARY
Site Location and Description	The site is located at Former Garage, Bartram Close, Uxbridge, UB8 3AX and is centred at national grid reference 507678, 182105. The site has an area of approximately 0.03 ha.
Proposed Development	<p>The development proposal is for the '<i>Construction of 2 bungalows with dormers, parking spaces, changes to existing crossover and all associated external works.</i>' It is understood that there are proposals to include soft landscaping in the development.</p> <p>It is understood that private gardens are included in the proposed development.</p>
Summary of Phase 1 Desk Study	<p>A Phase 1 Desk Study was carried out by STM in March 2022 which indicated that the site has been subject to past potentially contaminative land uses (PCLUs) including a Car Park, an Orchard and Domestic Garages while off site PCLUs have included an Orchard (adjacent N) and 3no. Infilled Ponds (40m SW, 90m SW, and 180m E). A conceptual risk site model was constructed and a qualitative risk assessment carried out. This identified potentially significant potential pollutant linkages with respect to human health and property receptors.</p> <p>The Desk Study recommended that an intrusive site investigation be carried out with the objective of determining the presence and extent of any soil contamination at the site.</p>
Summary of Site Investigation	<p>Site investigation works were carried out on the 22nd of March 2022. A total of 4no. boreholes (BH01 – BH04) were excavated to a maximum depth of 2 mbgl using a dynamic windowless sampler rig.</p> <p>A total of 6no. soil samples were collected from depths ranging between 0.3 – 0.9 mbgl and submitted to a UKAS/MCERTS accredited laboratory for analysis of Heavy Metals, TPH, BTEX, PAHs, SVOCs and Asbestos.</p>
Updated Contamination Assessment	<p>The strata encountered generally consisted of Made Ground comprising clayey Silt and gravelly Sand to a maximum depth of 0.5 mbgl. This was underlain by sandy and gravelly clayey Silt. Visual indications of contamination of the Made Ground were observed (i.e. fragments of bituminous material and concrete) generally across the site. No significant odours or PID readings were recorded during the investigation.</p> <p>A Generic Quantitative Risk Assessment was carried out where the results of the soil sample analysis were compared to Generic Assessment Criteria (GAC) for a residential housing with home-grown produce land use scenario.</p>

SECTION	SUMMARY
	<p>Results of the soil sample analysis indicate that concentrations of Lead and Dibenzo(ah)anthracene, marginally exceeded their adopted GAC for a residential with home-grown produce scenario in 1no. of the 4no. borehole locations. Asbestos was not identified in any of the samples screened.</p> <p>The Conceptual Risk Model for the site was reassessed incorporating the results of the site investigation. Potentially Significant Potential Pollutant Linkages were considered to exist with respect to human health receptors due to the elevated Lead and Dibenzo(ah)anthracene that were identified in the area of BH04. This was concerned with the risk of human health receptors (future occupiers) being exposed to the contamination identified while undertaking recreational activities in the proposed garden area surrounding BH04.</p>
Conclusions and Recommendations	<p>Given the findings of the site investigation, it is recommended that remedial measures are undertaken in the area of BH04 in order to break the Potential Pollutant Linkages identified and to render the site suitable for the proposed residential end use.</p> <p>Remedial measures will likely comprise of the excavation of Made Ground and replacement with clean certified fill around this area depending on visual signs of contamination observed during the excavation.</p> <p>A formal remediation strategy will need to be submitted to the Local Planning Authority for approval. Once completed, the remedial works will need to be validated and a remediation verification report submitted to the Local Planning Authority for approval prior to occupation of the development.</p> <p>It is recommended that a “watching brief” is kept at all times during the development. Should any unexpected contamination be encountered then the discovery strategy outlined in this document should be followed.</p>

4 INTRODUCTION

STM Environmental Consultants Limited were commissioned by Melim Management to undertake a preliminary risk assessment at Former Garage, Bartram Close, Uxbridge, UB8 3AX (the site).

4.1 Development Proposal

The report was produced to support the discharge of Condition 13(b) attached to Planning Permission 75240/APP/2021/4431 for the *“Construction of 2 bungalows with dormers, parking spaces, changes to existing crossover and all associated external works.”* It is understood that there are proposals to include soft landscaping in the development.

The proposed development plans are available in Appendix 1.

4.2 Report Objectives

The main objectives of the study were to:

- Provide information for a generic quantitative risk assessment (GQRA) to be undertaken;
- Refine the Conceptual Site Risk Model using the findings of the GQRA;
- Inform the need for and scope of any remedial works that may be required.

A summary of the findings of the site investigation and GQRA are detailed within this report.

This report should be read in conjunction with the Desk Study Report (Ref: PH1-2022-000025) produced for the site by STM Environmental Consultants in March 2022 which is summarised below.

5 SUMMARY OF DESK STUDY FINDINGS

5.1 Site Location

The site is located at Former Garage, Bartram Close, Uxbridge, UB8 3AX and is centred at national grid reference 507678, 182105. The site has an area of approximately 0.03 ha.

The site lies within the jurisdiction of London Borough of Hillingdon Council in terms of the planning process. Maps showing the location of the site are shown in the figure below.

5.2 Current Site and Surrounding Land Uses

The site is currently used as a car parking area. The surrounding area is predominantly residential.

5.3 Site History

Examination of Ordnance Survey historic maps revealed that the site was an Orchard from c.1895-97 until c.1965-66, when the site was redeveloped as 9no. Small Domestic Garages. The Garages were demolished in c.2022 after which the site use changed to a Car Park. The surrounding area has been predominately residential since c.1935 to present day.

The Phase 1 Desktop Study indicated that the site and immediate surrounding area had been subject to past potentially contaminative uses including a Car Park, an Orchard, Domestic Garages, Orchard (adjacent N) and 3no. Infilled Ponds (40m SW, 90m SW, and 180m E).

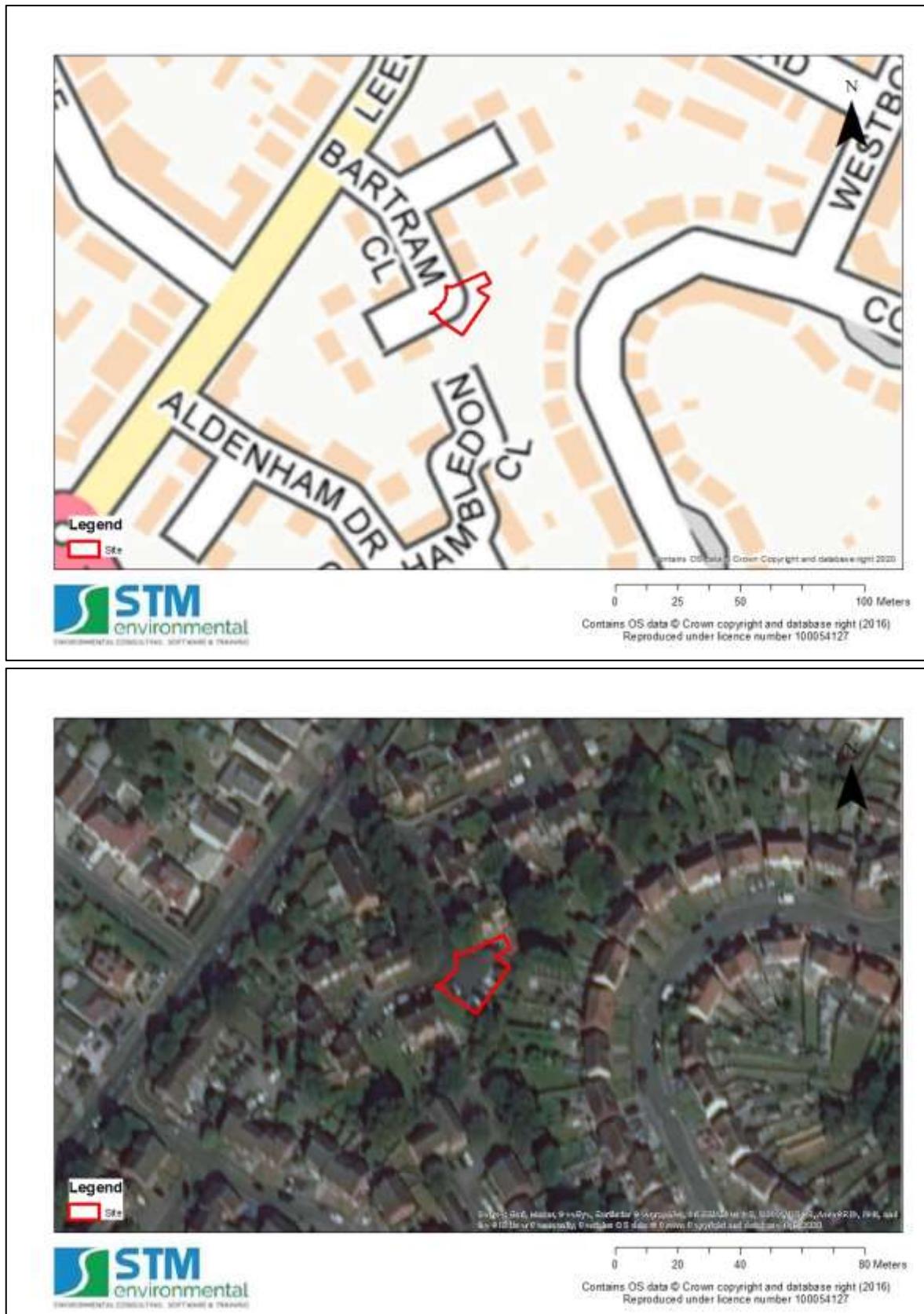


Figure 1: Maps showing the location of the site

5.4 Previous Site Investigations

A search of relevant information on London Borough of Hillingdon Council's planning portal did not identify any records of previous contaminated land site investigations at or in the vicinity of the site.

5.5 Qualitative Risk Assessment

A qualitative risk assessment was undertaken in order to assess the magnitude of the potential risks identified in the Phase 1 Report.

5.5.1 Potential Sources

Any Potentially Contaminative Land Uses (PCLUs) within a 50m radius of the site as well as any PCLUs with high pollution migration potential within 250m of the site were considered to be of concern and were included within the assessment.

A summary is provided in the table below.

Table 1: Summary of potential contamination sources, period of operation and distance from site.

Site Name	Industrial Profile	Approx. Year Use Established	Approx. Year Use Ended	Direction	Approx. Distance from Site (m)
Car Park	Road Vehicle - Garages and Filling Station	Unknown	Current (c. 2022)	On-Site	0
Orchards	-	c. 1895-87	c. 1965-66	On Site N	0 Adjacent
Domestic Garages	Road Vehicle: Garages and Filling Station	c. 1965-66	Unknown	On Site	0
Infilled Ponds	Unknown Filled Ground (Pond, Marsh, River, Stream, Dock etc)	c. 1935 c. 1938 c. 1935	Current (c. 2022)	SW SW E	40 90 180

5.5.2 Potential Receptors

Potential human health receptors were considered to include future site users, construction workers and neighbours. Property receptors were considered to include onsite buildings and services.

Data from the BGS indicates that the site is underlain by superficial deposits consisting of Boyn Hill Gravel Member comprising Sand and Gravel which are classified as a Secondary A Aquifer. The bedrock consists of London Clay Formation comprising Clay, Silt and Sand and is classified as an Unproductive Aquifer. There are no groundwater Source Protection Zones on or within 250m of the site and no Surface Water or Potable Water Abstraction Licenses were identified on or within 250m of the site. However, the following Groundwater Abstraction Licenses were identified within 250m of the site:

Table 2: Groundwater Abstraction Licenses identified within 250m of the site.

Point	Status	Details	Source	Distance/Direction
BOREHOLE AT WHITELYS PARADE	Historical	Laundry Use	Thames Groundwater	212m NE
BLUE DRAGON (HILLINGDON) LTD	Active	Laundry Use	Thames Groundwater	221m NE

No surface water bodies were identified on or within 250m of the site.

No designated ecological receptors were identified onsite or within 250m of the site.

5.5.3 Conceptual Site Risk Model

A preliminary conceptual site risk model (CSM) was constructed in order to assess potential pollutant linkages.

Potentially significant potential pollutant linkages (PPLs) were identified with respect to:

- Human health receptors (PPL1a, PPL1b; and PPL2a, PPL2b)
- Property (PPL6a and PPL6b)

The desk study recommended that an intrusive site investigation be carried out to determine the presence and extent of any soil contamination at the site.

6 SITE INVESTIGATION

The site investigation works were carried out on the 22nd of March 2022 and were undertaken in general accordance with the following guidance:

- Land contamination risk management (LCRM) guidance - DEFRA;
- BS 10175 - Code of practice for the Investigation of potentially contaminated sites British Standard Institution;
- BS5930:2015 Code of Practice for Ground Investigation
- BS 8485: 2015 - Code of practice for the Characterisation and remediation from Ground Gas in Affected Developments. British Standard Institution;
- BS8576:2013, Guidance on investigations for ground gas – Permanent gases and Volatile Organic Compounds (VOCs);
- C665, 2007 - Assessing Risks posed by Hazardous Ground Gases to Buildings CIRIA.

6.1 Strategy and Scope of the Site Investigation and Risk Assessment

A total of 4no. sampling locations (BH01 – BH04) were excavated to 2 mbgl for contamination assessment purposes. A semi-targeted sampling strategy was used to select the locations of the exploratory positions with boreholes being generally equally spaced out across the site with efforts being made to ensure that samples were collected from the most sensitive areas (i.e. gardens) of the proposed development.

As the investigation was primarily focused on assessing the quality of near surface soils, samples were collected at depths between 0.3 – 0.9 mbgl.

A map showing the locations of boreholes and the borehole logs are available in [Appendix 2](#).

6.1.1 On-site Screening of Volatile Organic Compounds

Soil from each borehole was screened on site for volatile organic compounds (VOCs) using a hand held Minirae photo-ionisation detector (PID) which has a detection limit of 0.1 parts per billion (ppb). The PID was calibrated in the field prior to use using a gas of known concentration (isobutylene gas – 100ppm).

Soil vapour readings were taken using the headspace method, which involved placing the soil sample into a sealed plastic bag and then taking a reading by placing the PID filter into the bag.

6.1.2 Sample Collection and Transport

All samples were put into sample containers (jars and tubs) that were tightly sealed with minimal headspace. The sample containers were put into a cooler box immediately on collection and kept cool until analysis was undertaken at the laboratory.

6.1.3 Laboratory Analysis

A total of 6no. soil samples were submitted to a UKAS\MCERTs accredited laboratory for analysis of the following:

- Heavy Metals – Arsenic, Boron, Cadmium, Chromium, Copper, Lead, Mercury, Nickel, Selenium, Zinc;
- Petroleum Hydrocarbons (TPHCWG);
- Total Phenols - Total Phenols (Monohydric);
- Monoaromatics – Benzene, Toluene, Ethylbenzene, p & m-xylene, o-xylene, MTBE (Methyl Tertiary Butyl Ether);
- Speciated PAHs – Naphthalene, Acenaphthylene, Acenaphthene, Fluorene, Phenanthrene, Anthracene, Fluoranthene, Pyrene, Benzo(a)anthracene, Chrysene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Indeno(1,2,3-cd)pyrene, Dibenz(a,h)anthracene, Benzo(ghi)perylene;
- Total PAHs - Speciated Total EPA-16 PAHs;
- Asbestos Screening and Quantification;
- Inorganics - pH – Automated, Total Cyanide, Water Soluble Sulphate, Sulphide, Total Organic Carbon (TOC);
- SVOCs.

6.1.4 Groundwater, Ground Gas and Vapour Monitoring

No ground gas or vapour monitoring was carried out as part of the site investigation.

6.2 Site Investigation Findings

6.2.1 Ground Conditions

Made Ground comprising clayey Silt and gravelly Sand was encountered to a maximum depth of 0.5 mbgl. This was underlain by sandy and gravelly clayey Silt.

The borehole logs shown in Appendix 3 and photographs from some of the soils extracted from the boreholes are presented in Appendix 4.

6.2.2 Groundwater

Groundwater was not encountered during the site investigation.

6.2.3 Visual and Olfactory Signs of Contamination

Visual indications of contamination of the Made Ground were observed (i.e. fragments of bituminous material and concrete) generally across the site. No significant odours or PID readings were recorded during the investigation. The PID readings can be seen in the borehole logs shown in Appendix 3.

6.3 Laboratory Sample Analysis Results

A total of 6no. soil samples were submitted for analysis. The full results of the laboratory sample analysis can be seen in Appendix 5.

7 GENERIC QUANTITATIVE RISK ASSESSMENT

A GQRA was conducted using the soil analytical results in order to further evaluate the significance of the potential pollutant linkages identified in the Preliminary Risk Assessment in the Desk Study.

7.1 Generic Assessment Criteria for Soils

The GAC used for the screening of the soils and their sources are outlined in the table in [Appendix 6](#). The GAC used are a combination of the DEFRA's Category 4 Screening Levels and the CIEH\LQM GAC for residential with homegrown produce.

7.1.1 Soil Organic Matter Content

Sample results indicated that soils on the site have an average Total Organic Carbon (TOC) content of 1.15%, which based on a conversion factor of 1.72, indicates a Soil Organic Matter (SOM) of around 1.98%. For reasons of conservatism, a soil organic matter content of 1% rather than 2.5% was assumed.

7.2 Statistical Tests

Although the sample size was insufficient to be considered statistically valid, it was nonetheless considered useful to undertake statistical analysis on the sample results.

The statistical analysis was carried out in accordance with the methodology laid out in the document "Guidance on comparing soil contamination data with a critical concentration" published by the Chartered Institute of Environmental Health and CLAIRE.

7.2.1 Test Scenario

The "Planning" scenario was used to undertake the statistical tests. Under this scenario, the Alternative Hypothesis is that "the true mean is lower than the critical concentration" and the Null hypothesis is that "the true mean is equal to or greater than the critical concentration". The critical concentration was taken as the relevant GAC for each contaminant.

7.2.2 Non-Detects

For the purpose of the statistical tests, sample results where the contaminant concentrations were below the limit of detection were set to zero. Statistical tests were only carried out on datasets where at least one of the samples returned a contaminant concentration above the limit of detection.

7.2.3 Data Distribution

The Shapiro-Wilk normality test was used to assess whether datasets were normally or non-normally distributed.

7.3 Results of Statistical Analysis

7.3.1 Contaminants Exceeding Generic Assessment Criteria

A summary of contaminants that were found to be present in concentrations that marginally exceeded the GAC is shown Table 3 below.

Table 3: Contaminants Exceeding GAC

Contaminant	GAC (mg/kg)	No. of Exceedances	Measured Concentrations (mg/kg)		Exceedance Borehole Locations
			Mean	Maximum	
Dibenzo(ah)anthracene	0.24	1	0.05	0.28	BH04/1*
Lead	200	1	97.67	240	BH04/1*

*Maximum value location

7.3.2 Statistical Analysis

The results of statistical analysis are presented in [Appendix 7](#). Statistical analysis indicated that the Lead dataset had a normal distribution while Dibenzo(ah)anthracene had a non-normal distribution. They both passed the Mean Value test but failed the Chebychev test. When the maximum values (i.e. exceedances) were excluded from the dataset, the remaining results passed both the Mean Value and Chebychev tests indicating that BH04 is likely to be a hotspot.

7.4 Asbestos

No Asbestos was not detected in any of the samples analysed.

8 RE-ASSESSMENT OF POTENTIAL POLLUTANT LINKAGES

The Potential Pollutant Linkages (PPLs) identified as being plausible in the Desk Study are concerned with the following risks:

- Risk of direct contact (ingestion and absorption) with and inhalation of contaminants to on-site human health receptors (PPL1a – Future Occupiers and PPL1c – Construction Workers);
- Risk of injury/death of on-site human health receptors as a result of explosion due to accumulation of ground gas from on and off-site sources in confined spaces within on-site dwellings. (PPL1b – Future Occupiers and PPL1d - Construction Workers);
- Risk of direct contact with (ingestion and absorption) and inhalation of contaminants to off-site human health receptors as a result of on-site contaminants migrating off-site (PPL2a);
- Risk of injury/death to off-site human health receptors as a result of explosion due to migration of on-site ground gas and subsequent accumulation in confined spaces in off-site buildings. (PPL2b);
- Risk of deterioration of groundwater quality resulting from the migration of on-site contaminants into the underlying aquifer (PPL3);
- Risk of deterioration of surface water quality resulting from the migration and entry of on-site contaminants into the surface water receptor (PPL4);
- Risk of deterioration of ecological quality resulting from the migration and entry of on-site contaminants to the ecological receptor during development and after completion (PPL5);
- Risk of damage to buildings and services from on and off-site contaminants (PPL6a);
- Risk of damage to property as a result of explosion due to accumulation of ground gas from on and off-site sources in confined spaces within buildings (PPL6b).

The Desk Study concluded that PPL1a, PPL1b, PPL6a and PPL6b had the potential to be significant. All of the PPLs were re-assessed considering the soil analytical results obtained from site investigation. The table below presents the results of the re-assessment.

A detailed explanation of the risk assessment methodology is available in [Appendix 8](#).

Table 4: Results of Qualitative Risk Assessment.

CRITERIA	POTENTIAL POLLUTANT LINKAGES										
	PPL1a	PPL1b	PPL1c	PPL1d	PPL2a	PPL2b	PPL3	PPL4	PPL5	PPL6a	PPL6b
SEVERITY	Major (4)	Major (4)	Major (4)	Major (4)	Major (4)	Major (4)	Moderate (3)				
LIKELIHOOD	Possible (3)	Improbable (1)									
RISK	Moderate (12)	Low (4)	Very Low (3)								
POTENTIALLY SIGNIFICANT?	YES	NO									

8.1 Potential Risks to On-Site Human Health

PPL1a and PPL1c are concerned with the risk of direct contact (ingestion and dermal absorption) with and inhalation of on and off-site contaminants by on site human health receptors. PPL1a is considered to have the potential to be significant given the Lead and Dibenzo(ah)anthracene contamination identified in location BH04. As the proposal is to introduce residential dwellings with gardens, it is possible that human health receptors (i.e. future occupiers of the dwellings) could be exposed to contamination while undertaking recreational activities in the gardens.

PPL1c is considered unlikely to be significant as it is considered that any potential risks to groundworkers can be adequately dealt with by ensuring that standard health and safety measures are implemented during the construction phase.

PPL1b and PPL1d are concerned with the risk of injury/death of on-site human health receptors as a result of explosion due to the potential accumulation of ground gases and vapours from on and off-site sources. PPL1b is considered unlikely to have the potential to be significant as no potential sources of explosive ground gases (i.e. landfills) were identified on or in the vicinity of the site.

8.2 Potential Risks to Off-Site Human Health

PPL2a is concerned with the risk of direct contact and inhalation of contaminants emanating from the site by off-site human health receptors. PPL2a is considered unlikely to have the potential to be significant as it is considered that the contaminants present at the site are not of sufficient magnitude or mobility as to significantly impact off-site human receptors.

PPL2b is concerned with the risk of injury/death of on-site human health receptors as a result of explosion due to accumulation of ground gases from on-site sources. PPL2b is considered unlikely to have the potential to be significant as no sources of potentially explosive ground gases (i.e. landfills) were identified on the site.

8.3 Potential Risks to Groundwater Receptors

PPL3 is concerned with the risk of deterioration of groundwater quality resulting from the migration of on-site contaminants into the underlying aquifer. PPL3 is considered unlikely to have the potential to be significant. Although the underlying aquifer is classified as Secondary A, it is considered that the contaminants identified at the site are unlikely to be of sufficient magnitude or mobility to significantly impact groundwater receptors. Additionally, the site does not lie within a Source Protection Zone.

8.4 Potential Risks to Surface Water Receptors

PPL4 is concerned with the risk of negative impacts on surface water quality resulting from the migration and entry of on-site contaminants into surface water receptors. PPL4 is considered unlikely to have the potential to be significant as no surface water bodies were identified within the vicinity of the site.

8.5 Potential Risks to Ecological Receptors

PPL5 is concerned with the risk of negative ecological impacts resulting from potential on-site contaminants. PPL5 is considered unlikely to have the potential to be significant given that no designated ecological receptors were identified onsite or within 250m of the site.

8.6 Potential Risks to Property Receptors

PPL6a is concerned with the risk of damage to on site buildings and services from on and off-site contaminants. If contaminated, the soil may contain aggressive chemicals (i.e. Sulphates, VOCs) that

can attack building materials and services. PPL6a is considered unlikely to have the potential to be significant as site investigation did not identify any elevated levels of aggressive contaminants.

PPL6b is concerned with the risk of damage to property as a result of explosion due to migration of on and off-site ground gases and vapours and their subsequent accumulation in confined spaces in on-site buildings. PPL6b is considered unlikely to have the potential to be significant as no potential sources of explosive ground gases (i.e. landfills) were identified on or in the vicinity of the site.

9 CONCLUSIONS

In response to the findings of the Desk Study carried out for the site by STM Environmental Consultants, an environmental site investigation was carried out on the 22nd of March 2022. The objective of the investigation was to determine the presence and extent of potential contamination at the site in order to further inform the risk assessment process.

A total of 4no. boreholes were advanced to a maximum depth of 2 mbgl for the purposes of environmental soil sampling. 6no. soil samples were taken from depths ranging from 0.3 – 0.6 mbgl. The samples were submitted to a UKAS/MCERTS accredited laboratory for analysis of Heavy Metals, TPH, BTEX, PAHs, SVOCs and Asbestos.

A Generic Quantitative Risk Assessment was carried out where the results of the soil sample analysis were compared to Generic Assessment Criteria (GAC) for the proposed residential with homegrown produce land use scenario.

Results of the soil sample analysis indicate that concentrations of Lead and Dibenzo(ah)anthracene, marginally exceeded their adopted GAC for a residential with home-grown produce scenario in 1no. of the 4no. borehole locations. Asbestos was not identified in any of the samples screened.

The Conceptual Risk Model for the site was reassessed incorporating the results of the site investigation. Potentially Significant Potential Pollutant Linkages were considered to exist with respect to human health receptors due to the elevated Lead and Dibenzo(ah)anthracene that were identified in the area of BH04. This was concerned with the risk of human health receptors (future occupiers) being exposed to the contamination identified while undertaking recreational activities in the proposed garden area surrounding BH04.

The revised conceptual site risk model is summarised in Table 5 below.

Table 5: Summary of revised conceptual site risk model

Potential Receptor	Potential Pathway	Potential Hazard	PSPPL?	Risk
On-Site Human Health (Future Occupiers)	Ingestion/Absorption Inhalation	Adverse health Injury/Death	Yes	Moderate
	Build-up of Methane/ VOCs in confined spaces	Explosion/ Fire Injury/Death	No	Low
Off-Site Human Health	Ingestion/Absorption Inhalation	Adverse health Injury/Death	No	Low
	Build-up of Methane/ VOCs in confined spaces	Explosion/ Fire Injury/Death	No	Low
Groundwater	Percolation/Leaching	Adverse groundwater quality	No	Very Low

Potential Receptor	Potential Pathway	Potential Hazard	PSPPL?	Risk
Surface Water	Lateral Migration Groundwater baseflow	Adverse Surface water quality	No	Very Low
Ecology	Ingestion/Absorption	Adverse health Injury/Death	No	Very Low
Property	Physical Contact/Absorption	Damage to building and services	No	Very Low
	Build-up of Methane/ VOCs in confined spaces	Explosion/ Fire Damage to building	No	Very Low

10 RECOMMENDATIONS

10.1 Remedial Action

Given the findings of the site investigation, it is recommended that remedial measures are undertaken in the area of BH04 in order to break the Potential Pollutant Linkages identified and to render the site suitable for the proposed residential end use.

Remedial measures will likely comprise of the excavation of Made Ground and replacement with clean certified fill around this area depending on visual signs of contamination observed during the excavation.

A formal remediation strategy will need to be submitted to the Local Planning Authority for approval. Once completed, the remedial works will need to be validated by a qualified Environmental Consultant and a remediation verification report submitted to the Local Planning Authority for approval prior to occupation of the development.

10.2 Watching Brief and Discovery Strategy

It is recommended that a “watching brief” is kept at all times during the development. Should any unexpected contamination be encountered then the discovery strategy outlined below should be followed.

- Works should be halted if any suspicious ground conditions are identified by groundworkers;
- The Contractor should assess the need for any immediate health and safety or environmental management control measures. If control measures are considered to be required, they should be implemented;
- The Contractor should notify the Client’s Environmental Consultant and the Local Planning Authority;
- The Environmental Consultant should attend the site to record the extent of ‘contamination’ and if necessary, to collect samples;
- If remedial action is considered necessary then the proposed works should be agreed with the Local Planning Authority prior to implementation;
- Once remediation is complete, the Environmental Consultant should collate evidence of work carried out for inclusion in a Remediation Verification Report which should be submitted to the Local Planning Authority.

10.3 Health and Safety

Given that contaminants have been identified on the site, measures will be necessary to protect the health and safety of site workers during the site works. The following measures are suggested to provide a minimum level of protection.

- Provision of appropriate Personal Protective Equipment (PPE) including protective clothing, footwear, gloves and dust masks to all groundworkers on-site. These should not be removed from site, and advice should be given on when and how they are to be used.
- Great care should be taken to minimise the amount of dust and mud generated on-site.
- Good practices relating to personal hygiene (i.e. washing and changing procedures) should be adhered to on-site, i.e. food and drink should only be consumed within designated areas on the site and smoking should be prohibited in all working areas.
- Availability of site welfare;
- Daily safety briefings

All site works should be carried out in accordance with Health and Safety Executive regulations and guidelines and the Contractor's Construction Health and Safety Plan. Particular should be made to the Health and Safety Executive (HSE) document "Protection of Workers and the General Public during the Development of Contaminated Land".

10.4 Waste Disposal

Groundworks at the site are likely to give rise to waste soils. These may require classification before removal from site to an appropriately licensed facility for treatment or final disposal. The Environment Agency's Hazardous Waste Technical Guidance document (WM3) outlines the methodology for classifying wastes.

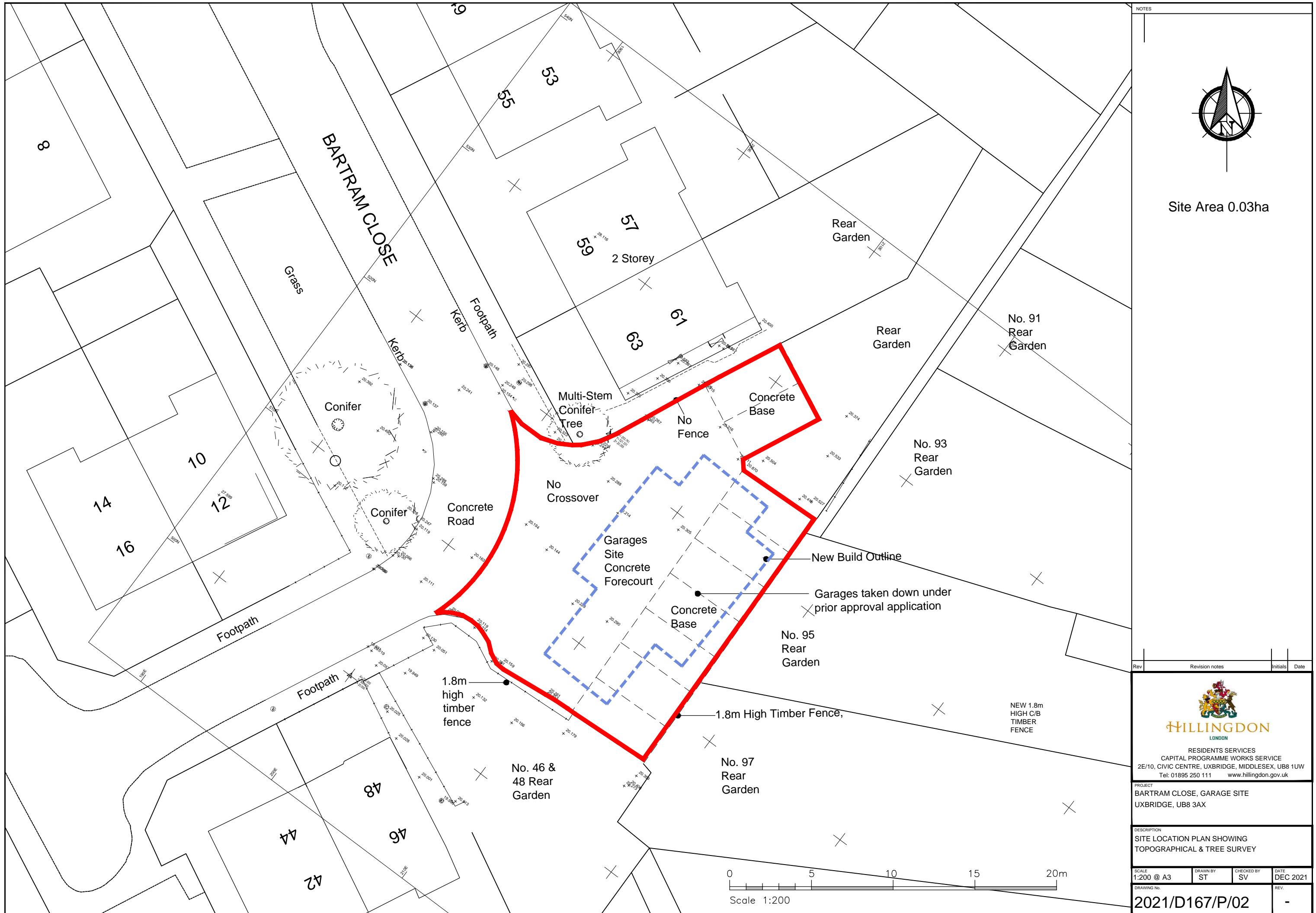
The contractor will need to keep a full documentary record of the waste disposal works in line with Duty of Care requirements. The record will include waste transfer notes and details of the receiving site. Copies of all relevant documents should be provided to the Client's Environmental Consultant for inclusion in the remediation verification report.

10.5 Services

The Statutory Water Undertaker for the area should be contacted in relation to new services that are to be installed as part of the proposed development in order to determine their specification for the type of pipework/conduits that should be used on this site.

11 INFORMATION GAPS AND UNCERTAINTIES

Assumptions have been made regarding the nature and scale of the activities that took place on the site and the types of potential contaminants that may have resulted. There are therefore a number of uncertainties associated with the investigation which include, but are not limited to, the following:


- This report is based on data obtained from the chosen sampling locations only. Although efforts have been made to ensure adequate coverage of the site when designing the investigation, it is nonetheless possible that (as with any site investigation) there may be locations which were not sampled where localised pockets of contamination exist.
- The site investigation and risk assessment were designed to investigate only the most likely contaminants associated with the former commercial/industrial uses. The presence of additional unknown contaminants cannot be discounted.

These uncertainties will need to be reviewed along with the Conceptual Site Risk Model should further information come to light in the future.

12 APPENDICES

12.1 Appendix 1 – Proposed Development Plans

RESIDENTS SERVICES
CAPITAL PROGRAMME WORKS SERVICE
2E/10, CIVIC CENTRE, UXBRIDGE, MIDDLESEX, UB8 1UW
Tel: 01895 250 111 www.hillingdon.gov.uk

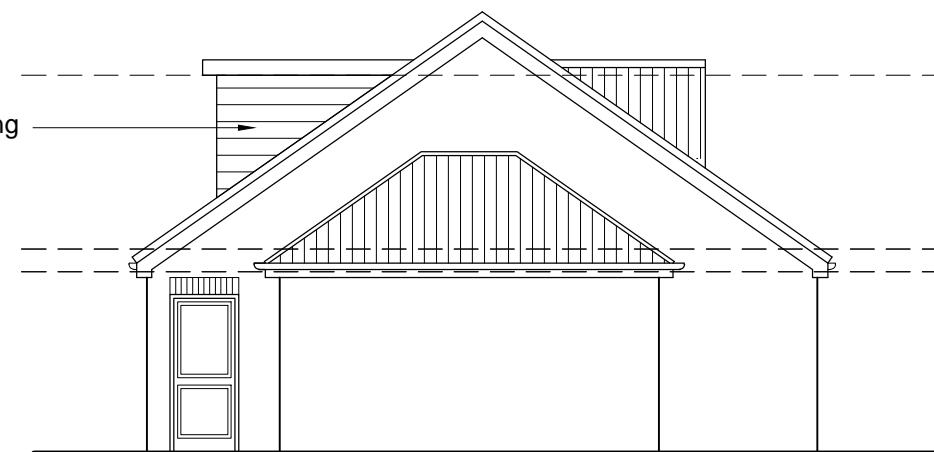
PROJECT
BARTRAM CLOSE, GARAGE SITE
UXBRIDGE, UB8 3AX

DESCRIPTION
SITE LOCATION PLAN SHOWING
TOPOGRAPHICAL & TREE SURVEY

SCALE 1:200 @ A3 DRAWN BY ST CHECKED BY SV DATE DEC 2021

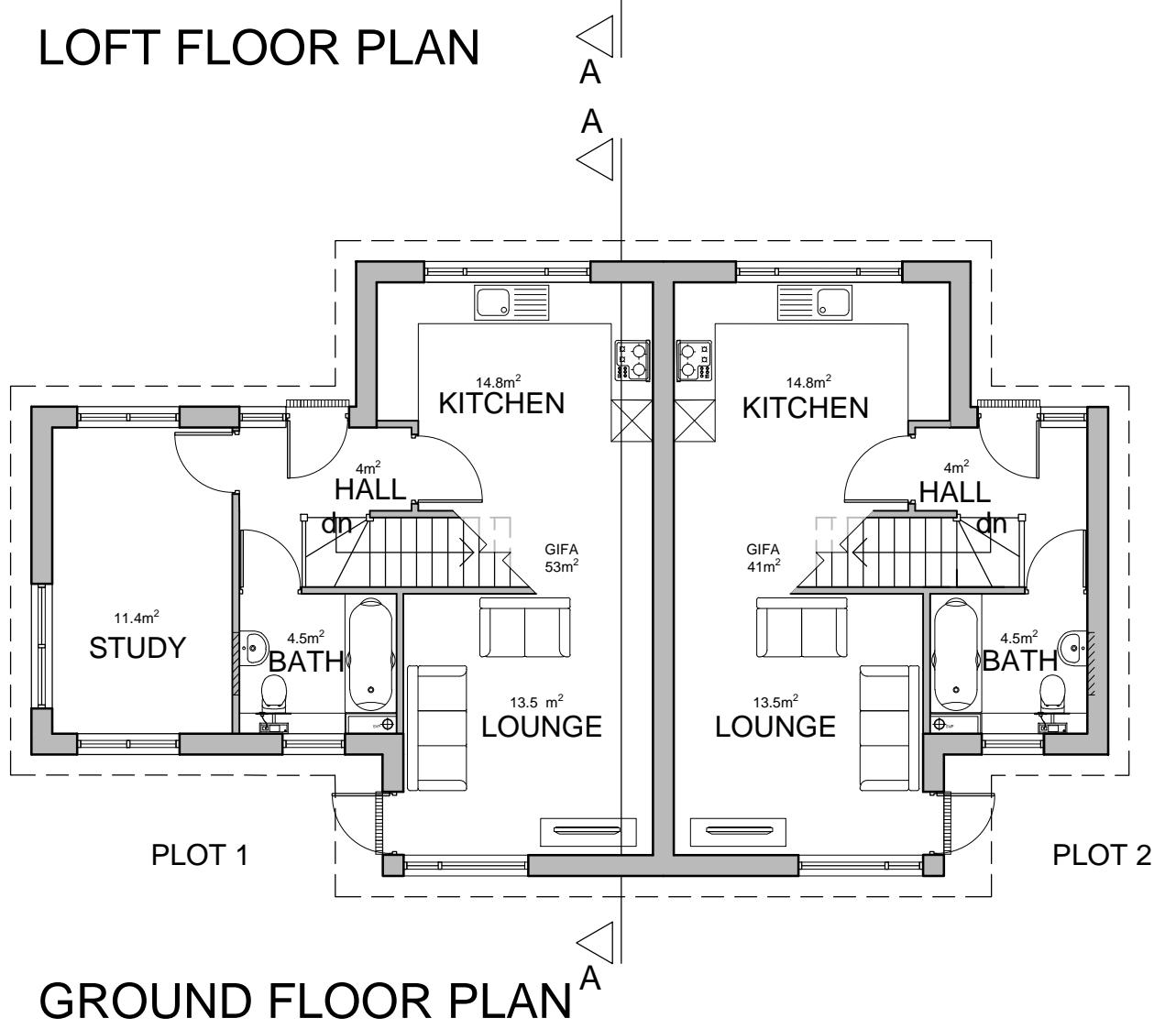
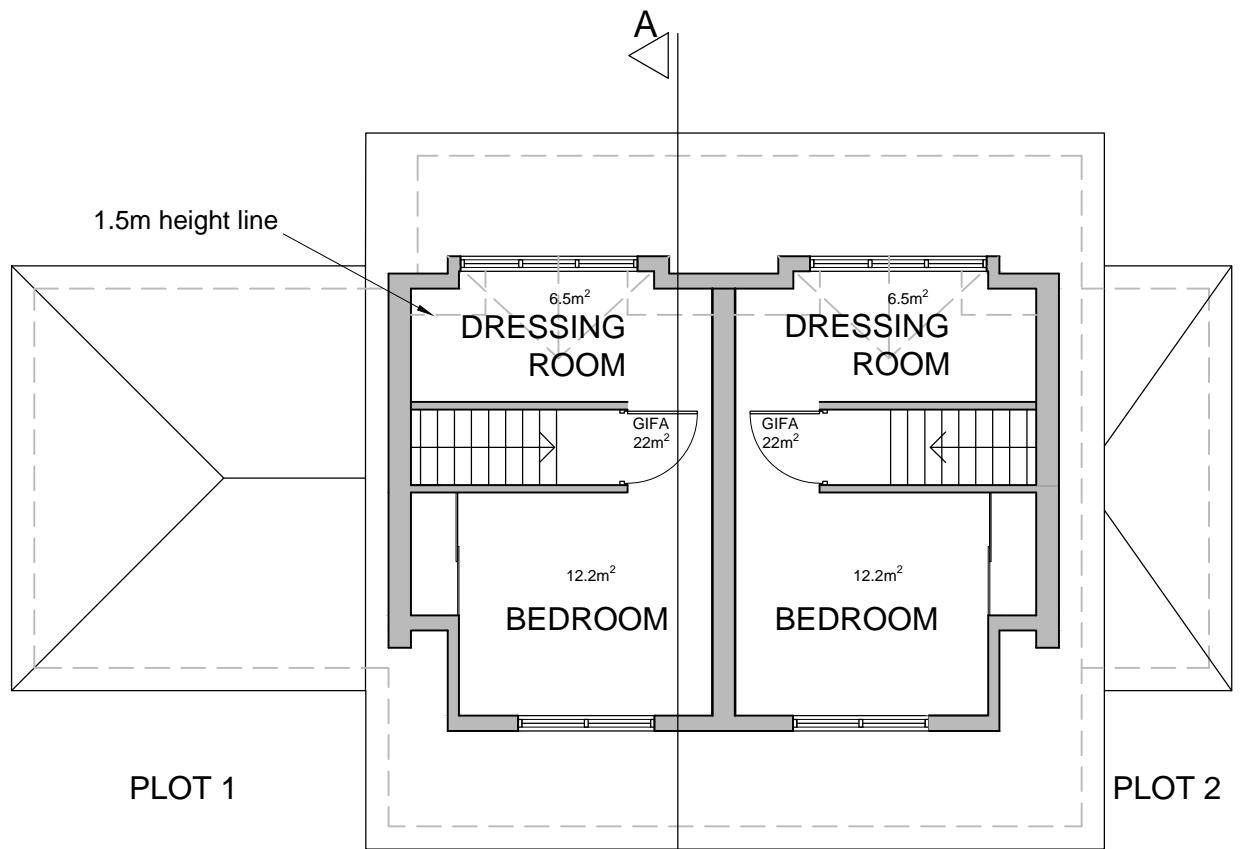
DRAWING No. REV.

2021/D167/P/02

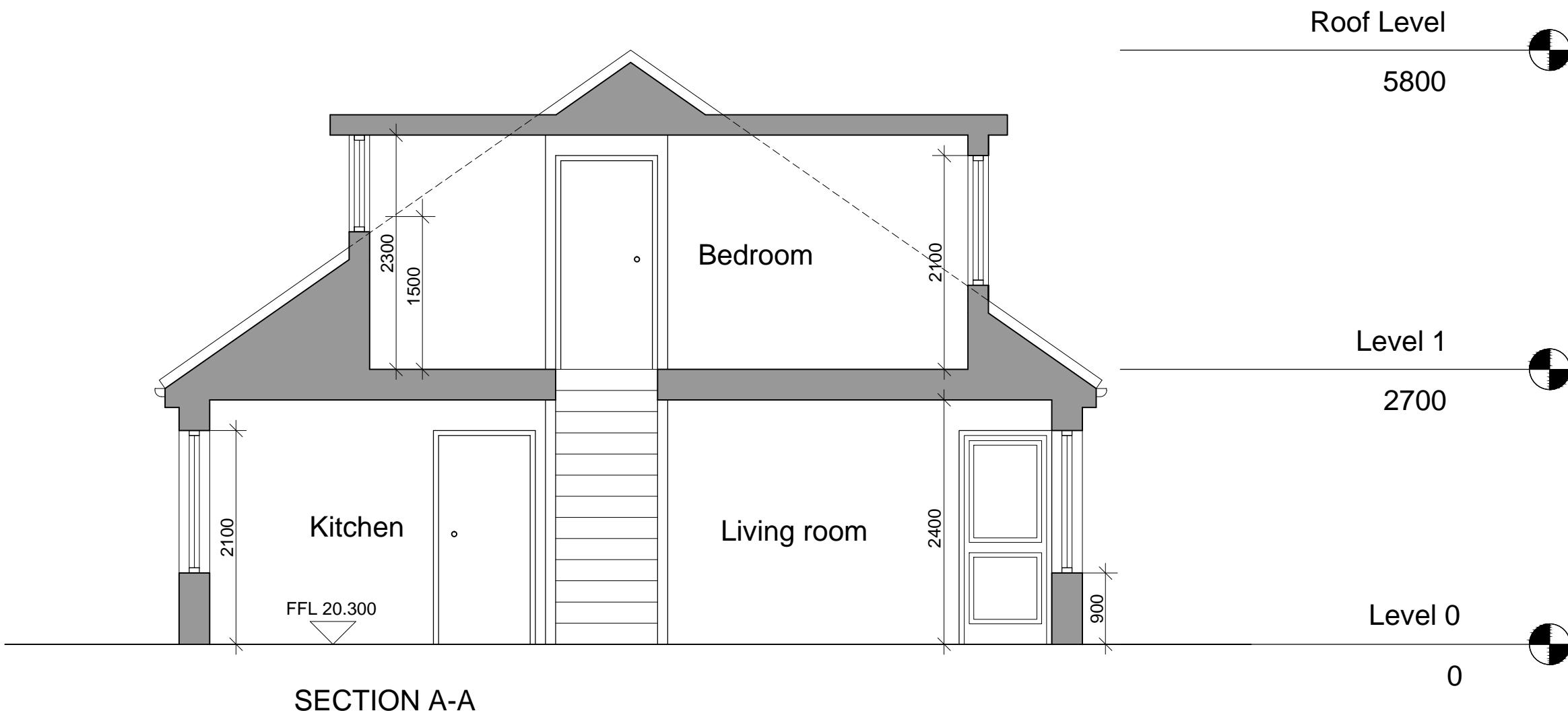

- UPVC rainwater gutters & downpipes
- UPVC fascia & Soffit boards
- Fairface brick walls
- Aluminium windows & doors

NORTH WEST ELEVATION

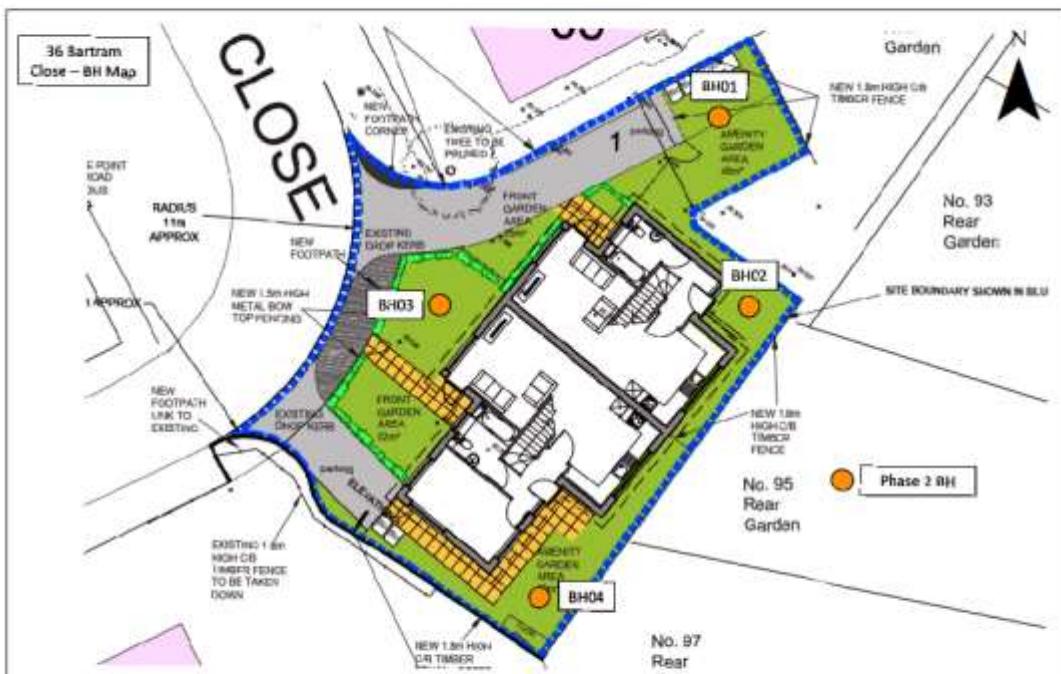
SOUTH WEST ELEVATION



NORTH EAST ELEVATION

SOUTH EAST ELEVATION


0 2.5 5 7.5 10m
Scale 1:100

NOTES			
Rev	Revision notes	Initials	Date
HILLINGDON LONDON			
RESIDENTS SERVICES, CAPITAL PROGRAMME WORKS SERVICE 2E/10, CIVIC CENTRE, UXBRIDGE, MIDDLESEX, UB8 1UW Tel: 01895 250 111 www.hillingdon.gov.uk			
PROJECT	BARTRAM CLOSE		
	GARAGE SITE		
	UXBRIDGE, UB8 3AX		
DESCRIPTION	PROPOSED ELEVATIONS		
SCALE	1:100 @ A3	DRAWN BY	CHECKED BY
	ST	SV	REV.
DRAWING No.	2021/D167/P/05		
DATE	DEC 2021		


NOTES			
 HILLINGDON <small>LONDON</small>			
Rev	Revision notes	Initials	Date
<small>RESIDENTS SERVICES, CAPITAL PROGRAMME WORKS SERVICE 2E/10, CIVIC CENTRE, UXBRIDGE, MIDDLESEX, UB8 1UW Tel: 01895 250 111 www.hillingdon.gov.uk</small>			
<small>PROJECT BARTRAM CLOSE GARAGE SITE UXBRIDGE, UB8 3AX</small>			
<small>DESCRIPTION GROUND & LOFT FLOOR PLANS</small>			
SCALE	DRAWN BY	CHECKED BY	DATE
1:100 @ A3	ST	SV	DEC 2021
DRAWING No.			REV.
2021/D167/P/04			-

NOTES			
Rev	Revision notes	Initials	Date
HILLINGDON <small>LONDON</small> <p>RESIDENTS SERVICE, CAPITAL PROGRAMME WORKS SERVICE 4N/11, CIVIC CENTRE, UXBRIDGE, MIDDLESEX, UB8 1UW Tel: 01895 250 111 www.hillingdon.gov.uk</p>			
PROJECT BARTRUM CLOSE, GARAGE SITE UXBRIDGE, UB8 3AX			
DESCRIPTION TYPICAL SECTION			
SCALE 1:50 @ A3	DRAWN BY ST	CHECKED BY SV	DATE DEC 2021
DRAWING No. 2021/D167/P/06			REV.

12.2 Appendix 2 - Borehole Location Plan

12.3 Appendix 3 - Borehole Logs

Borehole Log

Borehole No.

BH01

Sheet 1 of 1

Project Name: Former Garages, Bartram Close, Uxbridge, UB8 3AX			Project No. PH2-2022-000018			Co-ords: 507674.00 - 182135.00			Hole Type WLS
Location: Former Garages, Bartram Close, Uxbridge, UB8 3AX			Level: 46.00			Scale 1:50			
Client: Melim Management			Dates: 22/03/2022 - 22/03/2022			Logged By MF/GN			
Well	Water Strikes	Samples and In Situ Testing			Depth (m)	Level (m)	Legend	Stratum Description	
		Depth (m)	Type	Results					
		0.30	ES	PID=0	0.20 0.30	45.80 45.70	<img alt="X pattern" data-bbox="545 10		

Borehole Log

Borehole No.

BH02

Sheet 1 of 1

Project Name: Former Garages, Bartram Close, Uxbridge, UB8 3AX			Project No. PH2-2022-000018			Co-ords: 507674.00 - 182135.00		Hole Type WLS
Location: Former Garages, Bartram Close, Uxbridge, UB8 3AX						Level: 46.00		Scale 1:50
Client: Melim Management						Dates: 22/03/2022 - 22/03/2022		Logged By MF/GN
Well	Water Strikes	Samples and In Situ Testing			Depth (m)	Level (m)	Legend	Stratum Description
		Depth (m)	Type	Results	Depth (m)	Level (m)		
		0.40	ES	PID=0 PID=0	0.20 0.30 0.40	45.80 45.70 45.60		<p>Made Ground - Concrete Hardstand</p> <p>Made Ground - Black and dark grey slightly gravelly SAND. Abundant bituminous material and rare small concrete fragments</p> <p>Made Ground - Mottled dark greyish brown, dark orange and dark grey clayey SILT. Occasional small bituminous fragments</p> <p>Mottled dark greyish brown, dark orange and dark grey cobbly very gravelly clayey SILT</p>
		1.00	ES	PID=0		2.00	44.00	
								End of borehole at 2.00 m
								1
								2
								3
								4
								5
								6
								7
								8
								9
								10
Remarks								
Borehole advanced to a maximum depth of 2mbgl. No water encountered. Elevation levels and borehole location grid references are approximated based on satellite imagery (not measured).								

Borehole Log

Borehole No.

BH03

Sheet 1 of 1

Project Name: Former Garages, Bartram Close,
Uxbridge, UB8 3AX

Project No.
PH2-2022-000018

Co-ords: 507674.00 - 182135.00

Hole Type
WLS

Location: Former Garages, Bartram Close, Uxbridge, UB8 3AX

Level: 46.00

Scale
1:50

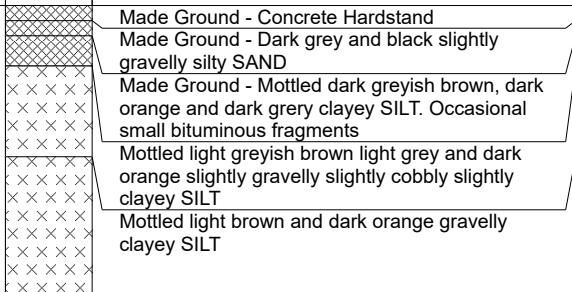
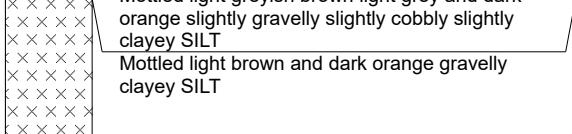
Client: Melim Management

Dates: 22/03/2022 - 22/03/2022

Logged By
MF/GN

Remarks

Borehole advanced to a maximum depth of 2mbgl. No water encountered. Elevation levels and borehole location grid references are approximated based on satellite imagery (not measured).

Borehole Log

Borehole No.

BH04

Sheet 1 of 1

Project Name: Former Garages, Bartram Close, Uxbridge, UB8 3AX			Project No. PH2-2022-000018			Co-ords: 507674.00 - 182135.00		Hole Type WLS	
Location: Former Garages, Bartram Close, Uxbridge, UB8 3AX						Level: 46.00		Scale 1:50	
Client: Melim Management						Dates: 22/03/2022 - 22/03/2022		Logged By MF/GN	
Well	Water Strikes	Samples and In Situ Testing			Depth (m)	Level (m)	Legend	Stratum Description	
		Depth (m)	Type	Results					
		0.30	ES	PID=0	0.10 0.20 0.40	45.90 45.80 45.60		Made Ground - Concrete Hardstand Made Ground - Dark grey and black slightly gravelly silty SAND Made Ground - Mottled dark greyish brown, dark orange and dark grey clayey SILT. Occasional small bituminous fragments Mottled light greyish brown light grey and dark orange slightly gravelly slightly cobbly slightly clayey SILT Mottled light brown and dark orange gravelly clayey SILT	
		0.80	ES		1.00	45.00		Mottled light greyish brown light grey and dark orange slightly gravelly slightly cobbly slightly clayey SILT Mottled light brown and dark orange gravelly clayey SILT	
					2.00	44.00		End of borehole at 2.00 m	
									10
Remarks Borehole advanced to a maximum depth of 2mbgl. No water encountered. Elevation levels and borehole location grid references are approximated based on satellite imagery (not measured).									

12.4 Appendix 4 - Photographs

General overview of the site and drilling rig

Soils encountered in BH01 and BH02

Soils encountered in BH03 and BH04

12.5 Appendix 5 – Laboratory Certification

Lab Info

STM ENVIRONMENTAL LTD
Unit 6 Crane Mews
32 Gould Road
Twickenham
London
TW2 6RS

e: labinfo@stmenvironmental.co.uk

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404
f: 01923 237404
e: reception@i2analytical.com

Analytical Report Number : 22-47302

Replaces Analytical Report Number: 22-47302, issue no. 2
Client references/information amended.

Project / Site name:	Former Garages, Bartram Close, Uxbridge, UB8 3AX	Samples received on:	23/03/2022
Your job number:	BARTRAM CLOSE UXBRIDGE	Samples instructed on/ Analysis started on:	23/03/2022
Your order number:	BARTRAM CLOSE	Analysis completed by:	19/04/2022
Report Issue Number:	3	Report issued on:	19/04/2022
Samples Analysed:	6 soil samples		

Signed:

Adam Fenwick
Technical Reviewer
For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils - 4 weeks from reporting
leachates - 2 weeks from reporting
waters - 2 weeks from reporting
asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement.
Application of uncertainty of measurement would provide a range within which the true result lies.
An estimate of measurement uncertainty can be provided on request.

Analytical Report Number: 22-47302

Project / Site name: Former Garages, Bartram Close, Uxbridge, UB8 3AX

Your Order No: BARTRAM CLOSE

Lab Sample Number		2213955	2213956	2213957	2213958	2213959
Sample Reference		BH01/1	BH01/2	BH02/1	BH03/1	BH03/2
Sample Number		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)		0.30	0.90	0.40	0.40	0.90
Date Sampled		22/03/2022	22/03/2022	22/03/2022	22/03/2022	22/03/2022
Time Taken		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Status	Accreditation		
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	13	12	14
Total mass of sample received	kg	0.001	NONE	1	0.4	1
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Not-detected	Not-detected
Asbestos Analyst ID	N/A	N/A	N/A	SPU	SPU	SPU

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	5	7.6	6	6.8	7.5
Total Cyanide	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Sulphate as SO4	mg/kg	50	MCERTS	-	230	910	-	360
Water Soluble Sulphate as SO4 16hr extraction (2:1)	mg/kg	2.5	MCERTS	650	-	-	71	-
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.32	-	-	0.036	-
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	324	-	-	35.6	-
Sulphide	mg/kg	1	MCERTS	15	< 1.0	< 1.0	2.7	< 1.0
Total Organic Carbon (TOC) - Automated	%	0.1	MCERTS	1.6	0.2	0.9	1.1	0.4

Total Phenols

Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
----------------------------	-------	---	--------	-------	-------	-------	-------	-------

Speciated PAHs

Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05

Total PAH

Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	< 0.80	< 0.80	< 0.80	< 0.80
-----------------------------	-------	-----	--------	--------	--------	--------	--------	--------

Analytical Report Number: 22-47302

Project / Site name: Former Garages, Bartram Close, Uxbridge, UB8 3AX

Your Order No: BARTRAM CLOSE

Lab Sample Number		2213955	2213956	2213957	2213958	2213959
Sample Reference		BH01/1	BH01/2	BH02/1	BH03/1	BH03/2
Sample Number		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)		0.30	0.90	0.40	0.40	0.90
Date Sampled		22/03/2022	22/03/2022	22/03/2022	22/03/2022	22/03/2022
Time Taken		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Status	Accreditation		

Heavy Metals / Metalloids

Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	12	21	10	14	24
Boron (water soluble)	mg/kg	0.2	MCERTS	1.1	0.6	0.5	0.7	0.8
Boron (total)	mg/kg	1	MCERTS	-	7.9	6.8	-	6.7
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	22	34	25	24	34
Copper (aqua regia extractable)	mg/kg	1	MCERTS	52	28	18	24	24
Lead (aqua regia extractable)	mg/kg	1	MCERTS	110	27	93	91	25
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	24	-	-	18	-
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	50	57	55	63	51

Monoaromatics & Oxygenates

Benzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Petroleum Hydrocarbons

TPH C10 - C40 EH CU ID TOTAL	mg/kg	10	MCERTS	-	< 10	< 10	-	< 10
------------------------------	-------	----	--------	---	------	------	---	------

TPH-CWG - Aliphatic >EC5 - EC6 HS_ID_AL	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8 HS_ID_AL	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10 HS_ID_AL	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12 EH CU ID AL	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16 EH CU ID AL	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21 EH CU ID AL	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35 EH CU ID AL	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic (EC5 - EC35) EH CU+HS_ID_AL	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10

TPH-CWG - Aromatic >EC5 - EC7 HS_ID_AR	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8 HS_ID_AR	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10 HS_ID_AR	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12 EH CU ID AR	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16 EH CU ID AR	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21 EH CU ID AR	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35 EH CU ID AR	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (EC5 - EC35) EH CU+HS_ID_AR	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10

4041

MCERTS

Environmental Science

Analytical Report Number: 22-47302

Project / Site name: Former Garages, Bartram Close, Uxbridge, UB8 3AX

Your Order No: BARTRAM CLOSE

Lab Sample Number	2213955	2213956	2213957	2213958	2213959
Sample Reference	BH01/1	BH01/2	BH02/1	BH03/1	BH03/2
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)	0.30	0.90	0.40	0.40	0.90
Date Sampled	22/03/2022	22/03/2022	22/03/2022	22/03/2022	22/03/2022
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation		

SVOCs

Aniline	mg/kg	0.1	NONE	-	< 0.1	< 0.1	-	< 0.1
Phenol	mg/kg	0.2	ISO 17025	-	< 0.2	< 0.2	-	< 0.2
2-Chlorophenol	mg/kg	0.1	MCERTS	-	< 0.1	< 0.1	-	< 0.1
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	-	< 0.2	< 0.2	-	< 0.2
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	-	< 0.2	< 0.2	-	< 0.2
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	-	< 0.1	< 0.1	-	< 0.1
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS	-	< 0.2	< 0.2	-	< 0.2
Bis(2-chloroisopropyl)ether	mg/kg	0.1	MCERTS	-	< 0.1	< 0.1	-	< 0.1
2-Methylphenol	mg/kg	0.3	MCERTS	-	< 0.3	< 0.3	-	< 0.3
Hexachloroethane	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	-	< 0.05
Nitrobenzene	mg/kg	0.3	MCERTS	-	< 0.3	< 0.3	-	< 0.3
4-Methylphenol	mg/kg	0.2	NONE	-	< 0.2	< 0.2	-	< 0.2
Isophorone	mg/kg	0.2	MCERTS	-	< 0.2	< 0.2	-	< 0.2
2-Nitrophenol	mg/kg	0.3	MCERTS	-	< 0.3	< 0.3	-	< 0.3
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	-	< 0.3	< 0.3	-	< 0.3
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	-	< 0.3	< 0.3	-	< 0.3
1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS	-	< 0.3	< 0.3	-	< 0.3
Naphthalene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	-	< 0.05
2,4-Dichlorophenol	mg/kg	0.3	MCERTS	-	< 0.3	< 0.3	-	< 0.3
4-Chloroaniline	mg/kg	0.1	NONE	-	< 0.1	< 0.1	-	< 0.1
Hexachlorobutadiene	mg/kg	0.1	MCERTS	-	< 0.1	< 0.1	-	< 0.1
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	-	< 0.1	< 0.1	-	< 0.1
2,4,6-Trichlorophenol	mg/kg	0.1	MCERTS	-	< 0.1	< 0.1	-	< 0.1
2,4,5-Trichlorophenol	mg/kg	0.2	MCERTS	-	< 0.2	< 0.2	-	< 0.2
2-Methylnaphthalene	mg/kg	0.1	NONE	-	< 0.1	< 0.1	-	< 0.1
2-Chloronaphthalene	mg/kg	0.1	MCERTS	-	< 0.1	< 0.1	-	< 0.1
Dimethylphthalate	mg/kg	0.1	MCERTS	-	< 0.1	< 0.1	-	< 0.1
2,6-Dinitrotoluene	mg/kg	0.1	MCERTS	-	< 0.1	< 0.1	-	< 0.1
Acenaphthylene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	-	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	-	< 0.05
2,4-Dinitrotoluene	mg/kg	0.2	MCERTS	-	< 0.2	< 0.2	-	< 0.2
Dibenzofuran	mg/kg	0.2	MCERTS	-	< 0.2	< 0.2	-	< 0.2
4-Chlorophenyl phenyl ether	mg/kg	0.3	ISO 17025	-	< 0.3	< 0.3	-	< 0.3
Diethyl phthalate	mg/kg	0.2	MCERTS	-	< 0.2	< 0.2	-	< 0.2
4-Nitroaniline	mg/kg	0.2	MCERTS	-	< 0.2	< 0.2	-	< 0.2
Fluorene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	-	< 0.05
Azobenzene	mg/kg	0.3	MCERTS	-	< 0.3	< 0.3	-	< 0.3
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS	-	< 0.2	< 0.2	-	< 0.2
Hexachlorobenzene	mg/kg	0.3	MCERTS	-	< 0.3	< 0.3	-	< 0.3
Phenanthrene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	-	< 0.05
Anthracene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	-	< 0.05
Carbazole	mg/kg	0.3	MCERTS	-	< 0.3	< 0.3	-	< 0.3
Dibutyl phthalate	mg/kg	0.2	MCERTS	-	< 0.2	< 0.2	-	< 0.2
Anthraquinone	mg/kg	0.3	MCERTS	-	< 0.3	< 0.3	-	< 0.3
Fluoranthene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	-	< 0.05
Pyrene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	-	< 0.05
Butyl benzyl phthalate	mg/kg	0.3	ISO 17025	-	< 0.3	< 0.3	-	< 0.3
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	-	< 0.05
Chrysene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	-	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	-	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	-	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	-	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	-	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	-	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	-	< 0.05

Analytical Report Number: 22-47302

Project / Site name: Former Garages, Bartram Close, Uxbridge, UB8 3AX

Your Order No: BARTRAM CLOSE

Lab Sample Number	2213955	2213956	2213957	2213958	2213959
Sample Reference	BH01/1	BH01/2	BH02/1	BH03/1	BH03/2
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)	0.30	0.90	0.40	0.40	0.90
Date Sampled	22/03/2022	22/03/2022	22/03/2022	22/03/2022	22/03/2022
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation	Status	

U/S = Unsuitable Sample I/S = Insufficient Sample

Analytical Report Number: 22-47302

Project / Site name: Former Garages, Bartram Close, Uxbridge, UB8 3AX

Your Order No: BARTRAM CLOSE

Lab Sample Number	2213960		
Sample Reference	BH04/1		
Sample Number	None Supplied		
Depth (m)	0.30		
Date Sampled	22/03/2022		
Time Taken	None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status
Stone Content	%	0.1	NONE
Moisture Content	%	0.01	NONE
Total mass of sample received	kg	0.001	NONE
			1

Asbestos in Soil	Type	N/A	ISO 17025	Not-detected
Asbestos Analyst ID	N/A	N/A	N/A	SPU

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	5.2
Total Cyanide	mg/kg	1	MCERTS	< 1.0
Total Sulphate as SO4	mg/kg	50	MCERTS	-
Water Soluble Sulphate as SO4 16hr extraction (2:1)	mg/kg	2.5	MCERTS	1800
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.89
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	885
Sulphide	mg/kg	1	MCERTS	2.3
Total Organic Carbon (TOC) - Automated	%	0.1	MCERTS	2.7

Total Phenols

Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0
----------------------------	-------	---	--------	-------

Speciated PAHs

Naphthalene	mg/kg	0.05	MCERTS	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	4.1
Anthracene	mg/kg	0.05	MCERTS	0.41
Fluoranthene	mg/kg	0.05	MCERTS	6.6
Pyrene	mg/kg	0.05	MCERTS	5.5
Benzo(a)anthracene	mg/kg	0.05	MCERTS	2
Chrysene	mg/kg	0.05	MCERTS	2.9
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	2.6
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	1.2
Benzo(a)pyrene	mg/kg	0.05	MCERTS	2.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	1
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	0.28
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	0.96

Total PAH

Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	29.6
-----------------------------	-------	-----	--------	------

Analytical Report Number: 22-47302

Project / Site name: Former Garages, Bartram Close, Uxbridge, UB8 3AX

Your Order No: BARTRAM CLOSE

Lab Sample Number	2213960		
Sample Reference	BH04/1		
Sample Number	None Supplied		
Depth (m)	0.30		
Date Sampled	22/03/2022		
Time Taken	None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status
Heavy Metals / Metalloids			
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS 21
Boron (water soluble)	mg/kg	0.2	MCERTS 1.7
Boron (total)	mg/kg	1	MCERTS -
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS < 0.2
Chromium (aqua regia extractable)	mg/kg	1	MCERTS 22
Copper (aqua regia extractable)	mg/kg	1	MCERTS 38
Lead (aqua regia extractable)	mg/kg	1	MCERTS 240
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS < 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS 25
Selenium (aqua regia extractable)	mg/kg	1	MCERTS < 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS 98

Monoaromatics & Oxygenates

Benzene	µg/kg	1	MCERTS	< 1.0
Toluene	µg/kg	1	MCERTS	< 1.0
Ethylbenzene	µg/kg	1	MCERTS	< 1.0
p & m-xylene	µg/kg	1	MCERTS	< 1.0
o-xylene	µg/kg	1	MCERTS	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0

Petroleum Hydrocarbons

TPH C10 - C40 EH CU ID TOTAL	mg/kg	10	MCERTS	-
------------------------------	-------	----	--------	---

TPH-CWG - Aliphatic >EC5 - EC6 HS_ID_AL	mg/kg	0.001	MCERTS	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8 HS_ID_AL	mg/kg	0.001	MCERTS	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10 HS_ID_AL	mg/kg	0.001	MCERTS	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12 EH CU ID AL	mg/kg	1	MCERTS	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16 EH CU ID AL	mg/kg	2	MCERTS	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21 EH CU ID AL	mg/kg	8	MCERTS	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35 EH CU ID AL	mg/kg	8	MCERTS	< 8.0
TPH-CWG - Aliphatic (EC5 - EC35) EH CU+HS_ID_AL	mg/kg	10	MCERTS	< 10

TPH-CWG - Aromatic >EC5 - EC7 HS_ID_AR	mg/kg	0.001	MCERTS	< 0.001
TPH-CWG - Aromatic >EC7 - EC8 HS_ID_AR	mg/kg	0.001	MCERTS	< 0.001
TPH-CWG - Aromatic >EC8 - EC10 HS_ID_AR	mg/kg	0.001	MCERTS	< 0.001
TPH-CWG - Aromatic >EC10 - EC12 EH CU ID AR	mg/kg	1	MCERTS	< 1.0
TPH-CWG - Aromatic >EC12 - EC16 EH CU ID AR	mg/kg	2	MCERTS	< 2.0
TPH-CWG - Aromatic >EC16 - EC21 EH CU ID AR	mg/kg	10	MCERTS	< 10
TPH-CWG - Aromatic >EC21 - EC35 EH CU ID AR	mg/kg	10	MCERTS	19
TPH-CWG - Aromatic (EC5 - EC35) EH CU+HS_ID_AR	mg/kg	10	MCERTS	27

Analytical Report Number: 22-47302

Project / Site name: Former Garages, Bartram Close, Uxbridge, UB8 3AX

Your Order No: BARTRAM CLOSE

Lab Sample Number	2213960		
Sample Reference	BH04/1		
Sample Number	None Supplied		
Depth (m)	0.30		
Date Sampled	22/03/2022		
Time Taken	None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation
SVOCs			
Aniline	mg/kg	0.1	NONE
Phenol	mg/kg	0.2	ISO 17025
2-Chlorophenol	mg/kg	0.1	MCERTS
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS
Bis(2-chloroisopropyl)ether	mg/kg	0.1	MCERTS
2-Methylphenol	mg/kg	0.3	MCERTS
Hexachloroethane	mg/kg	0.05	MCERTS
Nitrobenzene	mg/kg	0.3	MCERTS
4-Methylphenol	mg/kg	0.2	NONE
Isophorone	mg/kg	0.2	MCERTS
2-Nitrophenol	mg/kg	0.3	MCERTS
2,4-Dimethylphenol	mg/kg	0.3	MCERTS
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS
1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS
Naphthalene	mg/kg	0.05	MCERTS
2,4-Dichlorophenol	mg/kg	0.3	MCERTS
4-Chloroaniline	mg/kg	0.1	NONE
Hexachlorobutadiene	mg/kg	0.1	MCERTS
4-Chloro-3-methylphenol	mg/kg	0.1	NONE
2,4,6-Trichlorophenol	mg/kg	0.1	MCERTS
2,4,5-Trichlorophenol	mg/kg	0.2	MCERTS
2-Methylnaphthalene	mg/kg	0.1	NONE
2-Chloronaphthalene	mg/kg	0.1	MCERTS
Dimethylphthalate	mg/kg	0.1	MCERTS
2,6-Dinitrotoluene	mg/kg	0.1	MCERTS
Acenaphthylene	mg/kg	0.05	MCERTS
Acenaphthene	mg/kg	0.05	MCERTS
2,4-Dinitrotoluene	mg/kg	0.2	MCERTS
Dibenzofuran	mg/kg	0.2	MCERTS
4-Chlorophenyl phenyl ether	mg/kg	0.3	ISO 17025
Diethyl phthalate	mg/kg	0.2	MCERTS
4-Nitroaniline	mg/kg	0.2	MCERTS
Fluorene	mg/kg	0.05	MCERTS
Azobenzene	mg/kg	0.3	MCERTS
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS
Hexachlorobenzene	mg/kg	0.3	MCERTS
Phenanthrene	mg/kg	0.05	MCERTS
Anthracene	mg/kg	0.05	MCERTS
Carbazole	mg/kg	0.3	MCERTS
Dibutyl phthalate	mg/kg	0.2	MCERTS
Anthraquinone	mg/kg	0.3	MCERTS
Fluoranthene	mg/kg	0.05	MCERTS
Pyrene	mg/kg	0.05	MCERTS
Butyl benzyl phthalate	mg/kg	0.3	ISO 17025
Benzo(a)anthracene	mg/kg	0.05	MCERTS
Chrysene	mg/kg	0.05	MCERTS
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS
Benzo(a)pyrene	mg/kg	0.05	MCERTS
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS
Benzo(ghi)perylene	mg/kg	0.05	MCERTS

Analytical Report Number: 22-47302

Project / Site name: Former Garages, Bartram Close, Uxbridge, UB8 3AX

Your Order No: BARTRAM CLOSE

Lab Sample Number	2213960		
Sample Reference	BH04/1		
Sample Number	None Supplied		
Depth (m)	0.30		
Date Sampled	22/03/2022		
Time Taken	None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status

U/S = Unsuitable Sample I/S = Insufficient Sample

Analytical Report Number : 22-47302

Project / Site name: Former Garages, Bartram Close, Uxbridge, UB8 3AX

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
2213955	BH01/1	None Supplied	0.3	Brown clay and sand with gravel and coal.
2213956	BH01/2	None Supplied	0.9	Light brown clay and sand with gravel.
2213957	BH02/1	None Supplied	0.4	4.4.3.17
2213958	BH03/1	None Supplied	0.4	Light brown clay and sand with gravel.
2213959	BH03/2	None Supplied	0.9	4.4.3.17
2213960	BH04/1	None Supplied	0.3	Brown clay and sand with gravel and clinker.

Analytical Report Number : 22-47302

Project / Site name: Former Garages, Bartram Close, Uxbridge, UB8 3AX

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Sulphide in soil	Determination of sulphide in soil by acidification and heating to liberate hydrogen sulphide, trapped in an alkaline solution then assayed by ion selective electrode.	In-house method	L010-PL	D	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Semi-volatile organic compounds in soil	Determination of semi-volatile organic compounds in soil by extraction in dichloromethane and hexane followed by GC-MS.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS
TPH Banding in Soil by FID	Determination of hexane extractable hydrocarbons in soil by GC-FID.	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	D	MCERTS

Analytical Report Number : 22-47302

Project / Site name: Former Garages, Bartram Close, Uxbridge, UB8 3AX

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
D.O. for Gravimetric Quant if Screen/ID positive	Dependent option for Gravimetric Quant if Screen/ID positive scheduled.	In house asbestos methods A001 & A006.	A006-PL	D	NONE
Sulphate, water soluble, in soil	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Information in Support of Analytical Results

List of HWOL Acronyms and Operators

Acronym	Descriptions
HS	Headspace Analysis
MS	Mass spectrometry
FID	Flame Ionisation Detector
GC	Gas Chromatography
EH	Extractable Hydrocarbons (i.e. everything extracted by the solvent(s))
CU	Clean-up - e.g. by Florisil®, silica gel
1D	GC - Single coil/column gas chromatography
2D	GC-GC - Double coil/column gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics
AR	Aromatics
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
-	Operator - underscore to separate acronyms (exception for +)
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total

12.6 Appendix 6 – Adopted Generic Assessment Criteria

12.6.1 Soils Criteria

Contaminant	Concentration (mg/kg)	GAC Literature Source
Arsenic	37	Category 4 Screening Levels - Residential (with Home-grown Produce)
Cadmium	11	LQM SULs - RWHP
Chromium	910	LQM SULs - RWHP
Chromium - Hexavalent	6	LQM SULs - RWHP
Copper	2400	LQM SULs - RWHP
Lead	200	LQM SULs - RWHP
Mercury	40	LQM SULs - RWHP
Nickel	180	LQM SULs - RWHP
Selenium	250	LQM SULs - RWHP
Zinc	3700	LQM SULs - RWHP
Toluene	130	LQM SULs - RWHP (1% SOM)
Benzene	0.42	Category 4 Screening Levels - Residential (with home-grown produce)
Ethylbenzene	47	LQM SULs - RWHP (1% SOM)
m,p xylenes	56	LQM SULs - RWHP (1% SOM)
Acenaphthylene	170	LQM SULs - RWHP (1% SOM)
Acenaphthene	210	LQM SULs - RWHP (1% SOM)
Fluorene	170	LQM SULs - RWHP (1% SOM)
Phenanthrene	95	LQM SULs - RWHP (1% SOM)
Anthracene	2400	LQM SULs - RWHP (1% SOM)
Fluoranthene	280	LQM SULs - RWHP (1% SOM)
Pyrene	620	LQM SULs - RWHP (1% SOM)
Benzo(a)anthracene	7.2	LQM SULs - RWHP (1% SOM)
Chrysene	15	LQM SULs - RWHP (1% SOM)
Benzo (b) fluoranthene	2.6	LQM SULs - RWHP (1% SOM)
Benzo(k)fluoranthene	77	LQM SULs - RWHP (1% SOM)
Benzo(a)pyrene	2.2	LQM SULs - RWHP (1% SOM)
Dibenz-a-h-anthracene	0.24	LQM SULs - RWHP (1% SOM)
Indeno(1,2,3-cd) pyrene	27	LQM SULs - RWHP (1% SOM)
Benzo (g,h,i) perylene	320	LQM SULs - RWHP (1% SOM)
Aliphatics >C5-6	42	LQM SULs - RWHP (1% SOM)
Aliphatics >C6-8	100	LQM SULs - RWHP (1% SOM)
Aliphatics >C8-10	27	LQM SULs - RWHP (1% SOM)
Aliphatics >C10-12	130	LQM SULs - RWHP (1% SOM)
Aliphatics >C12-16	1100	LQM SULs - RWHP (1% SOM)
Aliphatics >C16-C35	65000	LQM SULs - RWHP (1% SOM)
Aliphatics >C21-35	1100	LQM SULs - RWHP (1% SOM)
Aliphatics >C35-44	65000	LQM SULs - RWHP (1% SOM)

Contaminant	Concentration (mg/kg)	GAC Literature Source
Aromatics >C5-7	0.087	LQM SULs - RWHP (1% SOM)
Aromatics >C8-10	34	LQM SULs - RWHP (1% SOM)
Aromatics >C10-12	74	LQM SULs - RWHP (1% SOM)
Aromatics >C12-16	140	LQM SULs - RWHP (1% SOM)
Aromatics >C16-21	260	LQM SULs - RWHP (1% SOM)
Aromatics >C21-35	1100	LQM SULs - RWHP (1% SOM)
Aromatics >C35-44	1100	LQM SULs - RWHP (1% SOM)
Naphthalene	2.3	LQM SULs - RWHP (1% SOM)
Phenol	120	LQM SULs - RWHP (1% SOM)

LQM S4ULs – RWHP: LQM Suitable for Use Levels - Residential (With Home-grown Produce - 1% Soil Organic Matter)

LQM S4ULs - RWHP (1% SSOM): LQM Suitable for Use Levels - Residential (With Home-grown Produce - 1% Organic Matter)

The LQM values quoted are copyright Land Quality Management Limited reproduced with permission; publication number S4UL3637. All rights reserved.

12.7 Appendix 7 – Exceedances and Statistical Analysis Summary

Parameter	GAC	GAC Source	No. Samples	Mean	Maximum	Outliers Excluded	Max. Value	Mean	Std	Non-Detects	W_Shapiro-Wilk	W_Critical	Distribution	T Statistic	Upper 95th percentile (US95)	Mean Value Test Result	Max Value Test Result	One Sample T Test - TO	One Sample T Test - Tn	One Sample T Test Result	One Sample T Evidence Level (%)	Krit-Chebychev	UCL95-Chebychev	K0-Chebychev	Chebychev Test Result	Chebychev Evidence Level (%)	Samples Exceeding GAC
Arsenic	37	Category 4 Screening Levels - Residential (with homegrown produce)	6	17	24	0	BH03/2	No	5.73	0	0.8997	0.788	Normal	2.015	21.713	PASSED	Max. Value NOT Outlier	-8.554	-1.943	Reject H0 0 < t(n-1, 0.95)	99.5	4.36	27.1940741	-8.55398923	Reject H0 (k0 < kcrit)	99	None
Cadmium	11	LOM Suitable for Use Levels - Residential (With Plant Uptake)	6	0	0	0	N/A	No	0	6	0.7337	0.829	N/A	2.015	0	N/A	N/A	N/A	N/A	99.5	4.36	0	-8.55398923	Reject H0 (k0 < kcrit)	99	None	
Chromium	910	LOM Suitable for Use Levels - Residential (With Plant Uptake)	6	26.83	34	0	BH01/2	No	5.67	0	0.7766	0.788	Non-Normal	2.015	31.4989	PASSED	Max. Value NOT Outlier	-381.43	-1.943	Reject H0 0 < t(n-1, 0.95)	99.5	4.36	36.9285093	-381.430366	Reject H0 (k0 < kcrit)	99	None
Copper	2400	LOM Suitable for Use Levels - Residential (With Plant Uptake)	6	30.67	52	0	BH01/1	No	12.37	0	0.8934	0.788	Normal	2.015	40.8441	PASSED	Max. Value NOT Outlier	-469.096	-1.943	Reject H0 0 < t(n-1, 0.95)	99.5	4.36	52.6883836	-469.095727	Reject H0 (k0 < kcrit)	99	None
Mercury	40	LOM Suitable for Use Levels - Residential (With Plant Uptake)	6	0	0	0	N/A	No	0	6	0.8934	0.788	N/A	2.015	0	N/A	N/A	N/A	99.5	4.36	0	-469.095727	Reject H0 (k0 < kcrit)	99	None		
Nickel	180	LOM Suitable for Use Levels - Residential (With Plant Uptake)	3	22.33	25	0	BH04/1	No	3.79	0	0.8544	0.767	Normal	2.92	28.7159	PASSED	Max. Value is Outlier	-72.132	-2.353	Reject H0 0 < t(n-1, 0.95)	99.5	4.36	31.8634773	-72.1318238	Reject H0 (k0 < kcrit)	99	None
Lead	200	LOM Suitable for Use Levels - Residential (With Plant Uptake)	6	97.67	240	0	BH04/1	No	78.42	0	0.8507	0.788	Normal	2.015	162.1795	PASSED	Max. Value is Outlier	-3.196	-1.943	Reject H0 0 < t(n-1, 0.95)	99	4.36	237.257801	-3.19628703	DO NOT Reject H0 (k0 > kcrit)	91	BH04/1
Selenium	250	LOM Suitable for Use Levels - Residential (With Plant Uptake)	6	0	0	0	N/A	No	0	6	0.6582	0.788	N/A	2.015	0	N/A	N/A	N/A	99	4.36	0	-3.19628703	Reject H0 (k0 < kcrit)	91	None		
Zinc	3700	LOM Suitable for Use Levels - Residential (With Plant Uptake)	6	62.33	98	0	BH04/1	No	18.08	0	0.7241	0.788	Non-Normal	2.015	77.2104	PASSED	Max. Value is Outlier	-492.698	-1.943	Reject H0 0 < t(n-1, 0.95)	99.5	4.36	94.5239285	-492.697528	Reject H0 (k0 < kcrit)	99	None
Benzene	0.42	Category 4 Screening Levels - Residential (with homegrown produce)	6	0	0	0	N/A	No	0	6	0.7241	0.788	N/A	2.015	0	N/A	N/A	N/A	99.5	4.36	0	-492.697528	Reject H0 (k0 < kcrit)	99	None		
Ethylbenzene	47	LOM Suitable for Use Levels - Residential (With Plant Uptake - 1% Organic Matter)	6	0	0	0	N/A	No	0	6	0.7241	0.788	N/A	2.015	0	N/A	N/A	N/A	99.5	4.36	0	-492.697528	Reject H0 (k0 < kcrit)	99	None		
m & p - Xylene	56	LOM Suitable for Use Levels - Residential (With Plant Uptake - 1% Organic Matter)	6	0	0	0	N/A	No	0	6	0.7241	0.788	N/A	2.015	0	N/A	N/A	N/A	99.5	4.36	0	-492.697528	Reject H0 (k0 < kcrit)	99	None		
Toluene	130	LOM Suitable for Use Levels - Residential (With Plant Uptake - 1% Organic Matter)	6	0	0	0	N/A	No	0	6	0.7241	0.788	N/A	2.015	0	N/A	N/A	N/A	99.5	4.36	0	-492.697528	Reject H0 (k0 < kcrit)	99	None		
Naphthalene	2.3	LOM Suitable for Use Levels - Residential (With Plant Uptake - 1% Organic Matter)	6	0	0	0	N/A	No	0	6	0.7241	0.788	N/A	2.015	0	N/A	N/A	N/A	99.5	4.36	0	-492.697528	Reject H0 (k0 < kcrit)	99	None		
Phenanthrene	95	LOM Suitable for Use Levels - Residential (With Plant Uptake - 1% Organic Matter)	6	0.68	4.1	0	BH04/1	No	1.67	5	0.4961	0.788	Non-Normal	2.015	2.0603	PASSED	Max. Value is Outlier	-138.024	-1.943	Reject H0 0 < t(n-1, 0.95)	99.5	4.36	3.66266667	-138.02439	Reject H0 (k0 < kcrit)	99	None
Anthracene	2400	LOM Suitable for Use Levels - Residential (With Plant Uptake - 1% Organic Matter)	6	0.07	0.41	0	BH04/1	No	0.17	5	0.4961	0.788	Non-Normal	2.015	0.206	PASSED	Max. Value is Outlier	-35120.95	-1.943	Reject H0 0 < t(n-1, 0.95)	99.5	4.36	0.36626667	-35120.9512	Reject H0 (k0 < kcrit)	99	None
Fluoranthene	280	LOM Suitable for Use Levels - Residential (With Plant Uptake - 1% Organic Matter)	6	1.1	6.6	0	BH04/1	No	2.69	5	0.4961	0.788	Non-Normal	2.015	3.3165	PASSED	Max. Value is Outlier	-253.545	-1.943	Reject H0 0 < t(n-1, 0.95)	99.5	4.36	5.896	-253.545455	Reject H0 (k0 < kcrit)	99	None
Benzo (a) anthracene	7.2	LOM Suitable for Use Levels - Residential (With Plant Uptake - 1% Organic Matter)	6	0.33	2	0	BH04/1	No	0.82	5	0.4961	0.788	Non-Normal	2.015	1.005	PASSED	Max. Value is Outlier	-20.6	-1.943	Reject H0 0 < t(n-1, 0.95)	99.5	4.36	1.78666667	-20.6	Reject H0 (k0 < kcrit)	99	None
Chrysene	15	LOM Suitable for Use Levels - Residential (With Plant Uptake - 1% Organic Matter)	6	0.48	2.9	0	BH04/1	No	1.18	5	0.4961	0.788	Non-Normal	2.015	1.4573	PASSED	Max. Value is Outlier	-30.034	-1.943	Reject H0 0 < t(n-1, 0.95)	99.5	4.36	2.59066667	-30.0344828	Reject H0 (k0 < kcrit)	99	None
Benzo (k) fluoranthene	77	LOM Suitable for Use Levels - Residential (With Plant Uptake - 1% Organic Matter)	6	0.2	1.2	0	BH04/1	No	0.49	5	0.4961	0.788	Non-Normal	2.015	0.603	PASSED	Max. Value is Outlier	-384	-1.943	Reject H0 0 < t(n-1, 0.95)	99.5	4.36	1.072	-384	Reject H0 (k0 < kcrit)	99	None
Benzo (a) pyrene	2.2	LOM Suitable for Use Levels - Residential (With Plant Uptake - 1% Organic Matter)	6	0.35	2.1	0	BH04/1	No	0.86	5	0.4961	0.788	Non-Normal	2.015	1.0553	PASSED	Max. Value is Outlier	-5.286	-1.943	Reject H0 0 < t(n-1, 0.95)	99.5	4.36	1.876	-5.28571429	Reject H0 (k0 < kcrit)	96	None
Indeno (1,2,3 - cd) pyrene	27	LOM Suitable for Use Levels - Residential (With Plant Uptake - 1% Organic Matter)	6	0.17	1	0	BH04/1	No	0.41	5	0.4961	0.788	Non-Normal	2.015	0.5025	PASSED	Max. Value is Outlier	-161	-1.943	Reject H0 0 < t(n-1, 0.95)	99.5	4.36	0.89333333	-161	Reject H0 (k0 < kcrit)	99	None
Benzo (ghi) perylene	320	LOM Suitable for Use Levels - Residential (With Plant Uptake - 1% Organic Matter)	6	0.16	0.96	0	BH04/1	No	0.39	5	0.4961	0.788	Non-Normal	2.015	0.4824	PASSED	Max. Value is Outlier	-1999	-1.943	Reject H0 0 < t(n-1, 0.95)	99.5	4.36	0.8576	-1999	Reject H0 (k0 < kcrit)	99	None
Acenaphthylene	170	LOM Suitable for Use Levels - Residential (With Plant Uptake - 1% Organic Matter)	6	0	0	0	N/A	No	0	6	0.4961	0.788	N/A	2.015	0	N/A	N/A	N/A	99.5	4.36	0	-1999	Reject H0 (k0 < kcrit)	99	None		
Acenaphthene	210	LOM Suitable for Use Levels - Residential (With Plant Uptake - 1% Organic Matter)	6	0	0	0	N/A	No	0	6	0.4961	0.788	N/A	2.015	0	N/A	N/A	N/A	99.5	4.36	0	-1999	Reject H0 (k0 < kcrit)	99	None		
Fluorene	170	LOM Suitable for Use Levels - Residential (With Plant Uptake - 1% Organic Matter)	6	0	0	0	N/A	No	0	6	0.4961	0.788	N/A	2.015	0	N/A	N/A	N/A	99.5	4.36	0	-1999	Reject H0 (k0 < kcrit)	99	None		
Pyrene	620	LOM Suitable for Use Levels - Residential (With Plant Uptake - 1% Organic Matter)	6	0.92	5.5	0	BH04/1	No	2.25	5	0.4961	0.788	Non-Normal	2.015	2.7638	PASSED	Max. Value is Outlier	-675.364	-1.943	Reject H0 0 < t(n-1, 0.95)	99.5	4.36	4.91333333	-675.363636	Reject H0 (k0 < kcrit)	99	None
Benzo (b) fluoranthene	2.6	LOM Suitable for Use Levels - Residential (With Plant Uptake - 1% Organic Matter)	6	0.43	2.6	0	BH04/1	No	1.06	5	0.4961	0.788	Non-Normal	2.015	1.3065	PASSED	Max. Value is Outlier	-5	-1.943	Reject H0 0 < t(n-1, 0.95)	99.5	4.36	2.32266667	-5	Reject H0 (k0 < kcrit)	96	None
Dibenzo (ah) anthracene	0.24	LOM Suitable for Use Levels - Residential (With Plant Uptake - 1% Organic Matter)	6	0.05	0.28	0	BH04/1	No	0.11	5	0.4961	0.788	Non-Normal	2.015	0.1407	PASSED	Max. Value is Outlier	-4.143	-1.943	Reject H0 0 < t(n-1, 0.95)	99.5	4.36	0.25013333	-4.14285714	DO NOT Reject H0 (k0 > kcrit)	94	BH04/1
Aliphatic >C5-C6	42	LOM Suitable for Use Levels - Residential (With Plant Uptake - 1% Organic Matter)	6	0	0	0	N/A	No	0	6	0.4961	0.788	N/A	2.015	0	N/A	N/A	N/A	99.5	4.36	0	-4.14285714	Reject H0 (k0 < kcrit)	94	None		
Aliphatic >C6-C8	100	LOM Suitable for Use Levels - Residential (With Plant Uptake - 1% Organic Matter)	6	0	0	0	N/A	No	0	6	0.4961	0.788	N/A	2.015	0	N/A	N/A	N/A	99.5	4.36	0	-4.14285714	Reject H0 (k0 < kcrit)	94	None		
Aliphatic >C8-C10	27	LOM Suitable for Use Levels - Residential (With Plant Uptake - 1% Organic Matter)	6	0	0	0	N/A	No	0	6	0.4961	0.788	N/A	2.015	0	N/A	N/A	N/A	99.5	4.36	0	-4.14285714	Reject H0 (k0 < kcrit)	94	None		
Aliphatic >C10-C12	130	LOM Suitable for Use Levels - Residential (With Plant Uptake - 1% Organic Matter)	6	0	0	0	N/A	No	0	6	0.4961	0.788	N/A	2.015	0	N/A	N/A	N/A	99.5	4.36	0	-4.14285714	Reject H0 (k0 < kcrit)	94	None		
Aliphatic >C12-C16	1100	LOM Suitable for Use Levels - Residential (With Plant Uptake - 1% Organic Matter)	6	0	0	0	N/A	No	0	6	0.4961	0.788	N/A	2.015	0	N/A	N/A	N/A	99.5	4.36	0	-4.14285714	Reject H0 (k0 < kcrit)	94	None		
Aliphatic >C21-C35	1100	LOM Suitable for Use Levels - Residential (With Plant Uptake - 1% Organic Matter)	6	0	0	0	N/A	No	0	6	0.4961	0.788	N/A	2.015	0	N/A	N/A	N/A	99.5	4.36	0	-4.14285714	Reject H0 (k0 < kcrit)	94	None		
Aromatic >C8-C10	34	LOM Suitable for Use Levels - Residential (With Plant Uptake - 1% Organic Matter)	6	0	0	0	N/A	No	0	6	0.4961	0.788	N/A	2.015	0	N/A	N/A	N/A	99.5	4.36	0	-4.14285714	Reject H0 (k0 < kcrit)	94	None		
Aromatic >C10-C12	74	LOM Suitable for Use Levels - Residential (With Plant Uptake - 1% Organic Matter)	6	0	0	0	N/A	No	0	6	0.4961	0.788	N/A	2.015	0	N/A	N/A	N/A	99.5	4.36	0	-4.14285714	Reject H0 (k0 < kcrit)	94	None		
Aromatic >C12-C16	140	LOM Suitable for Use Levels - Residential (With Plant Uptake - 1% Organic Matter)	6	0	0	0	N/A	No	0	6	0.4961	0.788	N/A	2.015	0	N/A	N/A	N/A	99.5	4.36	0	-4.14285714	Reject H0 (k0 < kcrit)	94	None		
Aromatic >C16-C21	260	LOM Suitable for Use Levels - Residential (With Plant Uptake - 1% Organic Matter)	6	0	0	0	N/A	No	0	6	0.4961	0.788	N/A	2.015	0	N/A	N/A	N/A	99.5	4.36	0	-4.14285714	Reject H0 (k0 < kcrit)	94	None		
Aromatic >C21-C21	1100	LOM Suitable for Use Levels - Residential (With Plant Uptake - 1% Organic Matter)	6	3.17	19	0	BH04/1	No	7.76	5	0.4961	0.788	Non-Normal	2.015	9.5475	PASSED	Max. Value is Outlier	-346.368	-1.943	Reject H0 0 < t(n-1, 0.95)	99.5	4.36	16.97333333	-346.368421	Reject H0 (k0 < kcrit)	99	None
Phenol	120	LOM Suitable for Use Levels - Residential (With Plant Uptake - 1% Organic Matter)	3	0	0	0	N/A	No	0	3	0.4961	0.788	N/A	2.92	0	N/A	N/A	N/A	99.5</								

Parameter	GAC	GAC Source	No. Samples	Mean	Maximum	Outliers Excluded	Max. Value Location	Mean Exceedence	Std Deviation	W. Shapiro-Wilk	W. Critical	Distribution	T Statistic	Upper 95th percentile (US95)	Mean Value Test Result	Max Value Test Result	One Sample T Test - TO	One Sample T Test - Tn	One Sample T Test Result	One Sample T Test - %	Kcrit-Chebychev	UCL95-Chebychev	K0-Chebychev	Chebychev - Test Result	Chebychev - Evidence Level (%)	Samples Exceeding GAC	
Arsenic	37	Category 4 Screening Levels - Residential (with homegrown produce)	6	17	24	0	BH03/2	No	5.73	0	0.8997	0.788	Normal	2.015	21.7113	PASSED	Max. Value NOT Outlier	-8.554	-1.943	Reject HO t0 < t(n-1, 0.95)	99.5	4.36	27.1940741	-8.5539892	Reject HO (k0 < kcrit)	99	None
Cadmium	11	LOM Suitable for Use Levels - Residential (With Plant Uptake)	6	0	0	0	N/A	No	0	6	0.7337	0.829	N/A	2.015	0	N/A	N/A	N/A	N/A	99.5	4.36	0	-8.5539892	Reject HO (k0 < kcrit)	99	None	
Chromium	910	LOM Suitable for Use Levels - Residential (With Plant Uptake)	6	26.83	34	0	BH01/2	No	5.67	0	0.7766	0.788	Non-Normal	2.015	31.4989	PASSED	Max. Value NOT Outlier	-381.43	-1.943	Reject HO t0 < t(n-1, 0.95)	99.5	4.36	36.9285093	-381.43037	Reject HO (k0 < kcrit)	99	None
Copper	2400	LOM Suitable for Use Levels - Residential (With Plant Uptake)	6	30.67	52	0	BH01/1	No	12.37	0	0.8934	0.788	Normal	2.015	40.8441	PASSED	Max. Value NOT Outlier	-469.096	-1.943	Reject HO t0 < t(n-1, 0.95)	99.5	4.36	52.6883836	-469.09573	Reject HO (k0 < kcrit)	99	None
Mercury	40	LOM Suitable for Use Levels - Residential (With Plant Uptake)	6	0	0	0	N/A	No	0	6	0.8934	0.788	N/A	2.015	0	N/A	N/A	N/A	N/A	99.5	4.36	0	-469.09573	Reject HO (k0 < kcrit)	99	None	
Nickel	180	LOM Suitable for Use Levels - Residential (With Plant Uptake)	3	22.33	25	0	BH04/1	No	3.79	0	0.8544	0.767	Normal	2.92	28.7159	PASSED	Max. Value is Outlier	-72.132	-2.353	Reject HO t0 < t(n-1, 0.95)	99.5	4.36	31.8634773	-72.131824	Reject HO (k0 < kcrit)	99	None
Lead	200	LOM Suitable for Use Levels - Residential (With Plant Uptake)	5	69.2	110	1 (BH04/1-240)	BH01/1	No	40.13	0	0.8145	0.762	Normal	2.132	107.4597	PASSED	Max. Value NOT Outlier	-7.289	-2.015	Reject HO t0 < t(n-1, 0.95)	99.5	4.36	147.442262	-7.2887463	Reject HO (k0 < kcrit)	98	None
Selenium	250	LOM Suitable for Use Levels - Residential (With Plant Uptake)	6	0	0	0	N/A	No	0	6	0.6582	0.788	N/A	2.015	0	N/A	N/A	N/A	N/A	99.5	4.36	0	-7.2887463	Reject HO (k0 < kcrit)	98	None	
Zinc	3700	LOM Suitable for Use Levels - Residential (With Plant Uptake)	6	62.33	98	0	BH04/1	No	18.08	0	0.7241	0.788	Non-Normal	2.015	77.2104	PASSED	Max. Value is Outlier	-492.698	-1.943	Reject HO t0 < t(n-1, 0.95)	99.5	4.36	94.5239285	-492.69753	Reject HO (k0 < kcrit)	99	None
Benzene	0.42	Category 4 Screening Levels - Residential (with homegrown produce)	6	0	0	0	N/A	No	0	6	0.7241	0.788	N/A	2.015	0	N/A	N/A	N/A	N/A	99.5	4.36	0	-492.69753	Reject HO (k0 < kcrit)	99	None	
Ethylbenzene	47	LOM Suitable for Use Levels - Residential (With Plant Uptake - 1% Organic Matter)	6	0	0	0	N/A	No	0	6	0.7241	0.788	N/A	2.015	0	N/A	N/A	N/A	N/A	99.5	4.36	0	-492.69753	Reject HO (k0 < kcrit)	99	None	
m & p - Xylene	56	LOM Suitable for Use Levels - Residential (With Plant Uptake - 1% Organic Matter)	6	0	0	0	N/A	No	0	6	0.7241	0.788	N/A	2.015	0	N/A	N/A	N/A	N/A	99.5	4.36	0	-492.69753	Reject HO (k0 < kcrit)	99	None	
Toluene	130	LOM Suitable for Use Levels - Residential (With Plant Uptake - 1% Organic Matter)	6	0	0	0	N/A	No	0	6	0.7241	0.788	N/A	2.015	0	N/A	N/A	N/A	N/A	99.5	4.36	0	-492.69753	Reject HO (k0 < kcrit)	99	None	
Naphthalene	2.3	LOM Suitable for Use Levels - Residential (With Plant Uptake - 1% Organic Matter)	6	0	0	0	N/A	No	0	6	0.7241	0.788	N/A	2.015	0	N/A	N/A	N/A	N/A	99.5	4.36	0	-492.69753	Reject HO (k0 < kcrit)	99	None	
Phenanthrene	95	LOM Suitable for Use Levels - Residential (With Plant Uptake - 1% Organic Matter)	6	0.68	4.1	0	BH04/1	No	1.67	5	0.4961	0.788	Non-Normal	2.015	2.0603	PASSED	Max. Value is Outlier	-138.024	-1.943	Reject HO t0 < t(n-1, 0.95)	99.5	4.36	3.66266667	-138.02439	Reject HO (k0 < kcrit)	99	None
Anthracene	2400	LOM Suitable for Use Levels - Residential (With Plant Uptake - 1% Organic Matter)	6	0.07	0.41	0	BH04/1	No	0.17	5	0.4961	0.788	Non-Normal	2.015	0.206	PASSED	Max. Value is Outlier	-35120.95	-1.943	Reject HO t0 < t(n-1, 0.95)	99.5	4.36	0.36626667	-35120.951	Reject HO (k0 < kcrit)	99	None
Fluoranthene	280	LOM Suitable for Use Levels - Residential (With Plant Uptake - 1% Organic Matter)	6	1.1	6.6	0	BH04/1	No	2.69	5	0.4961	0.788	Non-Normal	2.015	3.3165	PASSED	Max. Value is Outlier	-253.545	-1.943	Reject HO t0 < t(n-1, 0.95)	99.5	4.36	5.896	-253.54545	Reject HO (k0 < kcrit)	99	None
Benzo (a)anthracene	7.2	LOM Suitable for Use Levels - Residential (With Plant Uptake - 1% Organic Matter)	6	0.33	2	0	BH04/1	No	0.82	5	0.4961	0.788	Non-Normal	2.015	1.005	PASSED	Max. Value is Outlier	-20.6	-1.943	Reject HO t0 < t(n-1, 0.95)	99.5	4.36	1.78666667	-20.6	Reject HO (k0 < kcrit)	99	None
Chrysene	15	LOM Suitable for Use Levels - Residential (With Plant Uptake - 1% Organic Matter)	6	0.48	2.9	0	BH04/1	No	1.18	5	0.4961	0.788	Non-Normal	2.015	1.4573	PASSED	Max. Value is Outlier	-30.034	-1.943	Reject HO t0 < t(n-1, 0.95)	99.5	4.36	2.59066667	-30.034483	Reject HO (k0 < kcrit)	99	None
Benzo (k) fluoranthene	77	LOM Suitable for Use Levels - Residential (With Plant Uptake - 1% Organic Matter)	6	0.2	1.2	0	BH04/1	No	0.49	5	0.4961	0.788	Non-Normal	2.015	0.603	PASSED	Max. Value is Outlier	-384	-1.943	Reject HO t0 < t(n-1, 0.95)	99.5	4.36	1.072	-384	Reject HO (k0 < kcrit)	99	None
Benzo (a) pyrene	2.2	LOM Suitable for Use Levels - Residential (With Plant Uptake - 1% Organic Matter)	6	0.35	2.1	0	BH04/1	No	0.86	5	0.4961	0.788	Non-Normal	2.015	1.0553	PASSED	Max. Value is Outlier	-5.286	-1.943	Reject HO t0 < t(n-1, 0.95)	99.5	4.36	1.876	-5.2857143	Reject HO (k0 < kcrit)	96	None
Indeno (1,2,3 - cd) pyrene	27	LOM Suitable for Use Levels - Residential (With Plant Uptake - 1% Organic Matter)	6	0.17	1	0	BH04/1	No	0.41	5	0.4961	0.788	Non-Normal	2.015	0.5025	PASSED	Max. Value is Outlier	-161	-1.943	Reject HO t0 < t(n-1, 0.95)	99.5	4.36	0.89333333	-161	Reject HO (k0 < kcrit)	99	None
Benzo (ghi) perylene	320	LOM Suitable for Use Levels - Residential (With Plant Uptake - 1% Organic Matter)	6	0.16	0.96	0	BH04/1	No	0.39	5	0.4961	0.788	Non-Normal	2.015	0.4824	PASSED	Max. Value is Outlier	-1999	-1.943	Reject HO t0 < t(n-1, 0.95)	99.5	4.36	0.8576	-1999	Reject HO (k0 < kcrit)	99	None
Acenaphthylene	170	LOM Suitable for Use Levels - Residential (With Plant Uptake - 1% Organic Matter)	6	0	0	0	N/A	No	0	6	0.4961	0.788	N/A	2.015	0	N/A	N/A	N/A	N/A	99.5	4.36	0	-1999	Reject HO (k0 < kcrit)	99	None	
Acenaphthene	210	LOM Suitable for Use Levels - Residential (With Plant Uptake - 1% Organic Matter)	6	0	0	0	N/A	No	0	6	0.4961	0.788	N/A	2.015	0	N/A	N/A	N/A	N/A	99.5	4.36	0	-1999	Reject HO (k0 < kcrit)	99	None	
Fluorene	170	LOM Suitable for Use Levels - Residential (With Plant Uptake - 1% Organic Matter)	6	0	0	0	N/A	No	0	6	0.4961	0.788	N/A	2.015	0	N/A	N/A	N/A	N/A	99.5	4.36	0	-1999	Reject HO (k0 < kcrit)	99	None	
Pyrene	620	LOM Suitable for Use Levels - Residential (With Plant Uptake - 1% Organic Matter)	6	0.92	5.5	0	BH04/1	No	2.25	5	0.4961	0.788	Non-Normal	2.015	2.7638	PASSED	Max. Value is Outlier	-675.364	-1.943	Reject HO t0 < t(n-1, 0.95)	99.5	4.36	4.91333333	-675.36364	Reject HO (k0 < kcrit)	99	None
Benzo (b) fluoranthene	2.6	LOM Suitable for Use Levels - Residential (With Plant Uptake - 1% Organic Matter)	6	0.43	2.6	0	BH04/1	No	1.06	5	0.4961	0.788	Non-Normal	2.015	1.3065	PASSED	Max. Value is Outlier	-5	-1.943	Reject HO t0 < t(n-1, 0.95)	99.5	4.36	2.32266667	-5	Reject HO (k0 < kcrit)	96	None
Dibenzo (ah) anthracene	0.24	LOM Suitable for Use Levels - Residential (With Plant Uptake - 1% Organic Matter)	5	0	0	0	1 (BH04/1-0.28)	N/A	No	0	5	0.4961	0.788	N/A	2.132	0	N/A	N/A	N/A	N/A	99.5	4.36	0	-5	Reject HO (k0 < kcrit)	96	None
Aliphatic C5-C6	42	LOM Suitable for Use Levels - Residential (With Plant Uptake - 1% Organic Matter)	6	0	0	0	N/A	No	0	6	0.4961	0.788	N/A	2.015	0	N/A	N/A	N/A	N/A	99.5	4.36	0	-5	Reject HO (k0 < kcrit)	96	None	
Aliphatic >C6-C8	100	LOM Suitable for Use Levels - Residential (With Plant Uptake - 1% Organic Matter)	6	0	0	0	N/A	No	0	6	0.4961	0.788	N/A	2.015	0	N/A	N/A	N/A	N/A	99.5	4.36	0	-5	Reject HO (k0 < kcrit)	96	None	
Aliphatic >C8-C10	27	LOM Suitable for Use Levels - Residential (With Plant Uptake - 1% Organic Matter)	6	0	0	0	N/A	No	0	6	0.4961	0.788	N/A	2.015	0	N/A	N/A	N/A	N/A	99.5	4.36	0	-5	Reject HO (k0 < kcrit)	96	None	
Aliphatic >C10-C12	130	LOM Suitable for Use Levels - Residential (With Plant Uptake - 1% Organic Matter)	6	0	0	0	N/A	No	0	6	0.4961	0.788	N/A	2.015	0	N/A	N/A	N/A	N/A	99.5	4.36	0	-5	Reject HO (k0 < kcrit)	96	None	
Aliphatic >C12-C16	1100	LOM Suitable for Use Levels - Residential (With Plant Uptake - 1% Organic Matter)	6	0	0	0	N/A	No	0	6	0.4961	0.788	N/A	2.015	0	N/A	N/A	N/A	N/A	99.5	4.36	0	-5	Reject HO (k0 < kcrit)	96	None	
Aliphatic >C21-C35	1100	LOM Suitable for Use Levels - Residential (With Plant Uptake - 1% Organic Matter)	6	0	0	0	N/A	No	0	6	0.4961	0.788	N/A	2.015	0	N/A	N/A	N/A	N/A	99.5	4.36	0	-5	Reject HO (k0 < kcrit)	96	None	
Aromatic >C8-C10	34	LOM Suitable for Use Levels - Residential (With Plant Uptake - 1% Organic Matter)	6	0	0	0	N/A	No	0	6	0.4961	0.788	N/A	2.015	0	N/A	N/A	N/A	N/A	99.5	4.36	0	-5	Reject HO (k0 < kcrit)	96	None	
Aromatic >C10-C12	74	LOM Suitable for Use Levels - Residential (With Plant Uptake - 1% Organic Matter)	6	0	0	0	N/A	No	0	6	0.4961	0.788	N/A	2.015	0	N/A	N/A	N/A	N/A	99.5	4.36	0	-5	Reject HO (k0 < kcrit)	96	None	
Aromatic >C12-C16	140	LOM Suitable for Use Levels - Residential (With Plant Uptake - 1% Organic Matter)	6	0	0	0	N/A	No	0	6	0.4961	0.788	N/A	2.015	0	N/A	N/A	N/A	N/A	99.5	4.36	0	-5	Reject HO (k0 < kcrit)	96	None	
Aromatic >C16-C21	260	LOM Suitable for Use Levels - Residential (With Plant Uptake - 1% Organic Matter)	6	0	0	0	N/A	No	0	6	0.4961	0.788	N/A	2.015	0	N/A	N/A	N/A	N/A	99.5	4.36	0	-5	Reject HO (k0 < kcrit)	96	None	
Aromatic >C21-C35	1100	LOM Suitable for Use Levels - Residential (With Plant Uptake - 1% Organic Matter)	6	3.17	19	0	BH04/1	No	7.76	5	0.4961	0.788	Non-Normal	2.015	9.5475	PASSED	Max. Value is Outlier	-346.368	-1.943	Reject HO t0 < t(n-1, 0.95)	99.5	4.36	16.9733333	-346.36842	Reject HO (k0 < kcrit)	99	None
Phenol	120	LOM Suitable for Use Levels - Residential (With Plant Uptake - 1% Organic Matter)	3	0	0	0	N/A	No	0	3	0.4961	0.788	N/A	2.92	0	N/A	N/A	N/A	N/A	99.5	4.36	0	-346.36842	Reject HO (k0 < kcrit)	99	None	

12.8 Appendix 8 - Assessment Methodology

- Severity considers the potential impact of the linkage on the receptors if the linkage was active. Categories range from slight/superficial to fatal.
- Likelihood considers the chances of the linkage occurring and is classified into categories from improbable to frequent.

By assigning scores with each of the above categories, the risk assessment can be undertaken using the formula:

$$\text{RISK} = \text{LIKELIHOOD} \times \text{SEVERITY}$$

The matrix given in Table 8 provides a means of calculating the overall risk; while Table 7 provides the qualitative assessment based on the risk score.

Table 6: Contamination Risk Matrix

		Potential Severity				
		Fatal 5	Major 4	Moderate 3	Minor 2	Slight 1
Probable Likelihood	Frequent 5	Very High	High	Moderate	Low - Moderate	Low
	Probable 4	High	High	Moderate	Low - Moderate	Low
	Possible 3	Moderate	Moderate	Low - Moderate	Low - Moderate	Very Low
	Remote 2	Low - Moderate	Low - Moderate	Low - Moderate	Low	Very Low
	Improbable 1	Low	Low	Very Low	Very Low	Very Low

Table 7: Assessment description for risk scores

Risk Score	Risk Assessment
1-3	Very Low
4-5	Low
6-10	Low to Moderate
11-15	Moderate
16-20	High
21-25	Very High

Table 8: Risk Classification System

Risk Term	Description
Very Low	The presence of an identified hazard does not give rise to the potential to cause significant harm to groundwater, surface water, ecological and/or property receptors. In the event of such harm being realized, it is not likely to be Severe.
Low	The presence of an identified hazard does not give rise to the potential to cause significant harm to human health receptors. In the event of such harm being realized, it is not likely to be Severe.
Low to Moderate	It is possible that harm could arise to a designated receptor from an identified hazard, but it is likely that this harm, if realized, would at worst normally be mild.
Moderate	It is possible that harm could arise to a designated receptor from an identified hazard. However, it is either relatively unlikely that such harm would be severe, or if any harm were to occur it is more likely that the harm would be relatively mild. Investigation (if not already undertaken) is normally required to clarify the risk and to determine the potential liability. Some remedial works may be required in the longer term.
High	Harm is likely to arise to a designated receptor from an identified hazard at the site without appropriate remedial action. Investigation is required and remedial works may be necessary in the short term and are likely over the longer term.
Very High	There is a high probability that severe harm could arise to a designated receptor from an identified hazard, or, there is an evidence that severe harm to a designated receptor is currently happening. Urgent investigation and remediation are likely to be required.

13 ABBREVIATIONS

Abbreviation	Description
BTEX	Benzene, Tolulene, Ethylene and Xylene
c.	Circa
CLRA	Contaminated Land Risk Assessment
CSM	Conceptual Site Risk Model
EA	Environment Agency
GAC	Generic Assessment Criteria
IPC	Integrated Pollution Control
LAPC	Local Authority Pollution Control
LQM S4ULs	Land Quality Management Suitable for Use Levels
NPPF	National Planning Policy Framework
OS	Ordnance Survey
PAHs	Polycyclic aromatic hydrocarbons
Part IIA	Part IIA of the Environmental Protection Act 1990
PID	Photoionization Detector
PCB	Polychlorinated Biphenyl
PCLU	Potentially Contaminative Land Use
PPL	Potential Pollutant Linkage
PRA	Preliminary Risk Assessment
PSPPL	Potentially Significant Potential Pollutant Linkage
RWHP	Residential with Home-grown Produce
SI	Site Investigation
SOM	Soil Organic Matter
SPOSH	Significant Possibility of Significant Harm
TOC	Total Organic Carbon
TPH	Total Petroleum Hydrocarbons
TPHCWG	Total Petroleum Hydrocarbon Criteria Working Group
UXO	Unexploded Ordnance

14 REFERENCES

1. CLAIRE\ Chartered Institute of Environmental Health (May 2008) - Guidance on comparing soil contamination data with a critical concentration
2. Department of Environment (1994), CLR 3, Documentary Research on Industrial Sites, 3. Contaminated Land Research Report
3. Environment Agency (2005) - Model Procedures for the Management of Land Contamination
4. British Standards Institution (2011) - BS 10175 2011 Investigation of Contaminated Sites – Code of Practice
5. Department of Environment (2002) - Priority Contaminants Report, CLR8
6. Department of Environment: Contaminated Land Research Report No. 6, (1995) – Prioritisation and Categorisation Procedure for Sites which may be contaminated
7. Department of Environment, Food and Rural Affairs, Environment Agency (2002) - The Contaminated Land Exposure Assessment Model (CLEA): Technical Basis and Algorithms
8. National House-Building Council, Environment Agency, Chartered Institute of Environmental Health (2008) - Guidance for the Safe Development of Housing on Land Affected by Contamination - R&D Publication 66: 2008.