

APPENDIX 2: PHOTOGRAPHS

01: Front of the Abellio Bus Garage (west part)

02: Site entrance (north part of the site)

03: Petrol Filling Area

04: Southeast part of the site facing west

05: Northeast part of the site with associated diesel oil AST in background

06: ASTs and spill identified at the rear of the building

07: Installed monitoring well

08: Drilling of BH01

APPENDIX 3: FIELD METHODS

FIELD METHODS

3.1.	<h3>Design of Investigation</h3>
3.1.1	<p>The site investigation was broadly undertaken in general accordance and with reference, where relevant to the following documents:</p>
	<ul style="list-style-type: none"> • Specification for Ground Investigation, Site Investigation Steering Group, Thomas Telford, 1994; • British Standard BS10175:2011 (A2) Investigation of potentially contaminated sites – code of practice, as amended; • Code of Practice for the Investigation of Potentially Contaminated Sites BS10175:2011+A2:2017; • Land Contamination: Risk Management (LCRM) 2020; • Environment Agency (2000) Secondary model procedures for the development of appropriate soil sampling strategies for land contamination. Technical Report P5-066/TR; • DEFRA/Environmental Agency Report: Land Contamination: Risk Management (LCRM) 2019; • BS5930, 2015. Code of Practice for Ground Investigation; • BS1377 (1990) Methods of test for Soils for Civil Engineering Purposes; • BS EN 1997-2 (2007) Eurocode 7 – Geotechnical Design – Ground Investigation and Testing; and • BS ISO 5667-22:2010 Water quality. Sampling Guidance on the design and installation of groundwater monitoring points.
3.1.2	<p>The works were progressed on site by a subcontractor who have been scrutinised by Paragon and are on Paragon's approved sub-contractor list. The investigation was designed to provide a preliminary assessment of the ground conditions at the subject site. Prior to the progression of the site investigation, all areas were checked for services through the use of a Cable Avoidance Tool and by Ground Penetrating Radar (GPR).</p>
3.2.	<h3>Onsite Methods</h3>
3.2.1	<p>Eight boreholes were drilled using windowless drilling rig, and one borehole was drilled using cable percussion drilling rig. In addition, two hand excavated trial pits were completed.</p>
3.2.2	<p>Onsite geotechnical testing included Standard Penetration Testing (SPT).</p>
3.2.3	<p>Soils were logged by a qualified engineering geologist in general accordance with BS 5930: 1999+A2:2010 and BS EN ISO 14688 Pt 1&2.</p>
3.2.4	<p>A Photoionisation Detector (PID) was used to screen the soils onsite to provide an indication of contamination.</p>

3.3.	Constraints
3.3.1	The ground conditions reported relate only to the point of excavation and do not necessarily guarantee a continuation of the ground conditions throughout the non-inspected area of the site. Whilst such exploratory holes would usually provide a reasonable indication as to the general ground conditions these cannot be determined with complete certainty.
3.3.2	A number of constraints were identified during investigation by Paragon. These included pedestrian movements as well as parked and moving buses across the area. Due to active operations onsite, the positions of boreholes were agreed with the Abellio management team and no boreholes were allowed to be drilled within the centre of the site.
3.3.3	Additionally, during drilling, dense Made Ground or concrete was encountered which led to refusals and boreholes terminating at shallow depths.
3.3.4	During drilling UXO clearance was provided using a Magnetometer. In one location a potential UXO was identified at 1.00mbgl. This led to the termination of the position.
3.4.	Monitoring Well Installation
3.4.1	Upon completion of the boreholes, where required a monitoring well was installed with 50mm HDPE well pipe to depths presented on the borehole logs. A slotted section of well pipe was surrounded by gravel to provide a 'response zone'. A plain section of pipe was surrounded by bentonite to produce a seal.
3.4.2	Groundwater levels within the monitoring wells were recorded during each visit using an electronic dip/interface meter.
3.5.	Sampling and Testing Strategy
3.5.1	All the exploratory holes were logged and sampled by a site engineer. Testing and sampling at the site was undertaken to investigate the ground conditions present.
3.5.2	Soil samples were collected from agreed locations across the site and at different depths within each trial position to provide an even coverage of the site.
3.5.3	Environmental soil samples representative of the underlying conditions were collected and submitted for a suite of determinants. The soil samples were transported to an appointed United Kingdom Accreditation Service (UKAS) accredited laboratory.
3.5.4	Geotechnical disturbed, bulk and undisturbed U100 samples were collected during drilling. These were submitted for testing at a geotechnical laboratory.
3.6.	Quality Control
3.6.1	The samples were despatched under a chain of custody procedure to a UKAS accredited laboratory, for subsequent chemical analysis. Where appropriate, samples were stored within cool boxes containing ice packs. A Chain of Custody is included with all sample consignments.

3.7.	Gas Monitoring
3.7.1	The wells were monitored for methane, carbon dioxide, oxygen and hydrogen sulphide using a multi-gas analyser (GFM436).
3.7.2	Ground gas monitoring was carried out in general accordance with the guidelines presented in CIRIA C665 'Assessing risk posed by hazard ground gases to buildings'. Flow was monitored for a period of two minutes where possible; maximum flow was recorded. Ground gases, including concentrations of methane, carbon dioxide, hydrogen sulphide and carbon monoxide were monitored for up to five minutes. During monitoring, ground gas readings were logged every thirty seconds.
3.7.3	Following gas monitoring, water levels were checked using an interface meter, which is also capable of detecting the presence of free product. If groundwater is present, then water samples were retrieved using bailers. Prior to groundwater sampling, up to three times the well volume was purged to remove stagnant / rain water.
3.8.	Health and Safety
3.8.1	A site-specific Risk Assessment and Method Statement (RAMS) was produced prior to the works beginning on site; works were completed in general accordance with the methodology set up in this assessment. No incidents occurred during this investigation.

APPENDIX 4: BOREHOLE LOGS

Percussion Drilling Log

Project Name: Abellio Bus Garage				Client: HDR				Date: 30/06/2021			
Location: Abellio Bus Garage, Hayes, UB3 4QQ				Contractor: Oakland SI Ltd				Co-ords: E510455.94 N179226.92			
Project No. : 211177				Crew Name:				Drilling Equipment:			
Borehole Number BH01		Hole Type BH		Level 30.86m AoD		Logged By CB		Scale 1:50		Page Number Sheet 1 of 4	
Well	Water Strikes	Sample and In Situ Testing			Depth (m)	Level (m)	Legend	Stratum Description			
		Depth (m)	Type	Results							
		0.50 - 1.00 0.50 - 1.00	B ES		0.20	30.66		MACADAM.			
		1.20	SPT	N=13 (4,2/2,3,4,4)				MADE GROUND comprising brown and black slightly clayey sandy GRAVEL. Gravel is fine to coarse, sub-angular to angular brick, flint and concrete with occasional glass and clinker.			
								<i>PID reading at 0.50mbgl = 2.50ppm.</i>			
								<i>PID reading at 1.00mbgl = 1.90ppm</i>			
								<i>PID reading at 1.20mbgl = 1.20ppm</i>			
		2.00 - 2.50 2.00 - 2.50 2.00	B ES SPT	N=13 (1,3/2,5,3,3)				<i>PID reading at 1.80mbgl = 0.80ppm</i>			
		3.00	SPT	N=13 (1,1/2,2,4,5)				<i>PID reading at 2.00mbgl = 5.00ppm</i>			
		4.00	SPT	N=7 (1,1/1,1,2,3)				<i>PID reading at 2.50mbgl = 13.50ppm</i>			
		4.50 - 5.00 4.50 - 5.00	B ES		4.50	26.36		<i>PID reading at 3.00mbgl = 2.30ppm</i>			
		5.00	SPT	N=7 (1,1/1,2,2,2)	5.00	25.86		<i>PID reading at 3.50mbgl = 1.20ppm</i>			
		6.50 - 7.00 6.50 - 7.00 6.50	B ES SPT	N=14 (3,3/3,3,4,4)				<i>PID reading at 4.00mbgl = 1.00ppm</i>			
		8.00 - 8.45	U		7.50	23.36		<i>PID reading at 4.50mbgl = 2.30ppm</i>			
		9.50	SPT	N=13 (2,2/2,3,3,5)				<i>Strong hydrocarbon odour between 4.50mbgl and 5.00mbgl.</i>			
								Brown, blue and grey, mottled, slightly plastic CLAY. (WEATHERED LONDON CLAY)			
								<i>PID reading at 5.00mbgl = 0.70ppm</i>			
								<i>PID reading at 6.00mbgl = 0.80ppm</i>			
								<i>PID reading at 6.50mbgl = 0.80ppm</i>			
								<i>PID reading at 7.50mbgl = 0.60ppm</i>			
								<i>PID reading at 9.00mbgl = 0.50ppm</i>			
								<i>PID reading at 9.50mbgl = 0.50ppm</i>			
Remarks		Drilled using a cable percussive drilling rig. SPT Energy Ratio = 62%. Borehole remained dry.									

Percussion Drilling Log

Percussion Drilling Log

Project Name: Abellio Bus Garage		Client: HDR		Date: 30/06/2021	
Location: Abellio Bus Garage, Hayes, UB3 4QQ		Contractor: Oakland SI Ltd		Co-ords: E510455.94 N179226.92	
Project No. : 211177		Crew Name:		Drilling Equipment:	
Borehole Number BH01	Hole Type BH	Level 30.86m AoD	Logged By CB	Scale 1:50	Page Number Sheet 3 of 4

Remarks

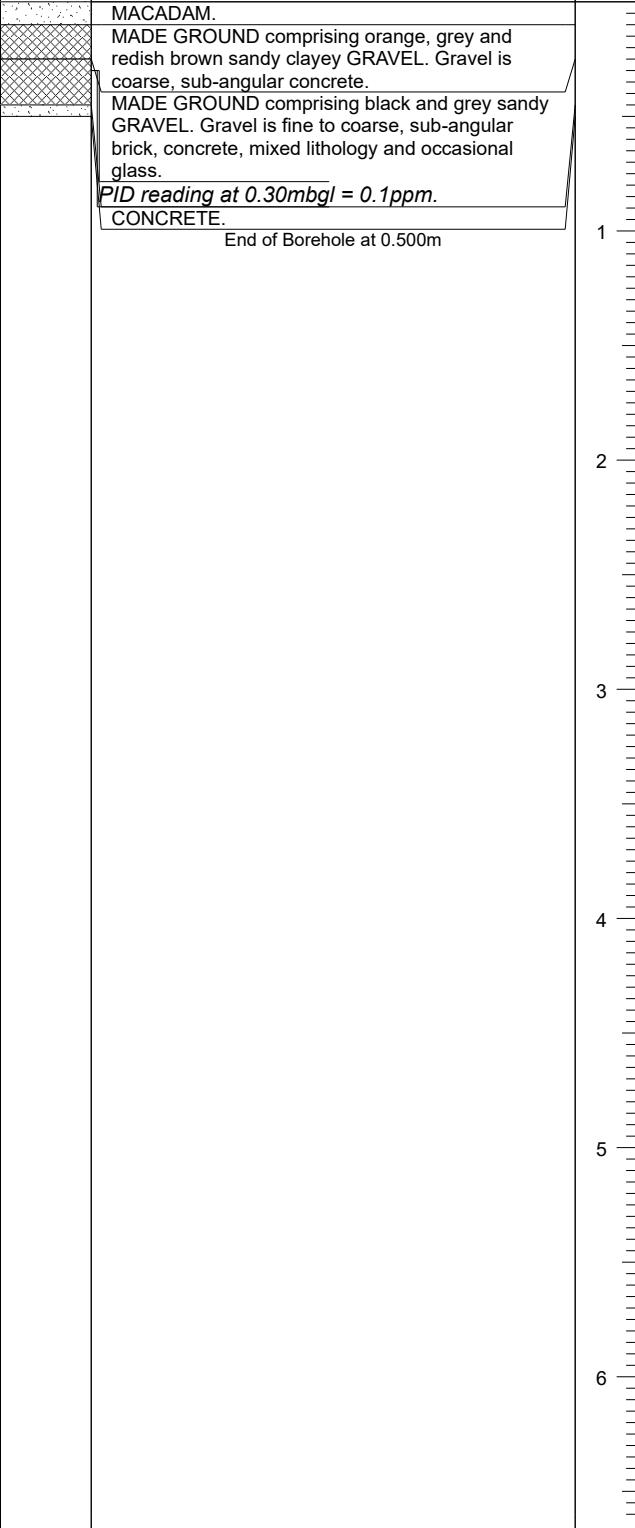
Drilled using a cable percussive drilling rig. SPT Energy Ratio = 62%. Borehole remained dry.

Percussion Drilling Log

Project Name: Abellio Bus Garage	Client: HDR	Date: 30/06/2021			
Location: Abellio Bus Garage, Hayes, UB3 4QQ	Contractor: Oakland SI Ltd	Co-ords: E510455.94 N179226.92			
Project No. : 211177	Crew Name:	Drilling Equipment:			
Borehole Number BH01	Hole Type BH	Level 30.86m AoD	Logged By CB	Scale 1:50	Page Number Sheet 4 of 4

This figure is a geological borehole log diagram. It features a vertical axis on the right with numerical labels from 31 to 40, representing depth in meters. The borehole path is indicated by a series of vertical lines. A legend on the left shows symbols for different geological features: a solid black square for 'Water Strikes', a dashed line for 'Stratum Description', a horizontal line with a dot for 'Depth (m)', and a horizontal line with a cross for 'Level (m)'. The 'Stratum Description' column contains the following entries:

Stratum	Description
31	Brown, blue and grey, mottled, stiff to very stiff CLAY with selenite crystals.(LONDON CLAY)
32	
33	
34	
35	End of Borehole at 35.000m
36	
37	
38	
39	
40	


The borehole starts at a depth of 35.00m and ends at a level of -4.14m. A 'Water Strike' is indicated by a solid black vertical bar at the top of the borehole. The borehole path is shown as a series of vertical lines, with the bottom section being a dashed line.

Remarks

Drilled using a cable percussive drilling rig. SPT Energy Ratio = 62%. Borehole remained dry.

Percussion Drilling Log

Project Name: Abellio Bus Garage			Client: HDR				Date: 22/06/2021									
Location: Abellio Bus Garage, Hayes, UB3 4QQ			Contractor: Oakland SI Ltd				Co-ords: E510475.39 N179217.52									
Project No. : 211177			Crew Name:				Drilling Equipment:									
Borehole Number WS01		Hole Type WS		Level 30.89m AoD		Logged By CB		Scale 1:33	Page Number Sheet 1 of 1							
Well	Water Strikes	Sample and In Situ Testing			Depth (m)	Level (m)	Legend	Stratum Description								
		Depth (m)	Type	Results				MACADAM. MADE GROUND comprising orange, grey and reddish brown sandy clayey GRAVEL. Gravel is coarse, sub-angular concrete. MADE GROUND comprising black and grey sandy GRAVEL. Gravel is fine to coarse, sub-angular brick, concrete, mixed lithology and occasional glass. <i>PID reading at 0.30mbgl = 0.1ppm.</i> CONCRETE. End of Borehole at 0.500m								
Hole Diameter		Casing Diameter		Chiselling				Inclination and Orientation								
Depth	Base	Diameter	Depth	Base	Diameter	Depth Top	Depth Base	Duration	Tool	Depth Top	Depth Base	Inclination	Orientation			
Remarks																
Refusal on concrete at 0.50mbgl. No install.																

Percussion Drilling Log

Project Name: Abellio Bus Garage		Client: HDR				Date: 22/06/2021	
Location: Abellio Bus Garage, Hayes, UB3 4QQ		Contractor: Oakland SI Ltd				Co-ords: E510473.08 N179218.82	
Project No. : 211177		Crew Name:				Drilling Equipment:	
Borehole Number WS01a		Hole Type WS		Level 30.71m AoD		Logged By CB	

Well	Water Strikes	Sample and In Situ Testing			Depth (m)	Level (m)	Legend	Stratum Description		1
		Depth (m)	Type	Results						
					0.20	30.51		MACADAM.		1
					0.35	30.36		MADE GROUND comprising black and grey sandy GRAVEL. Gravel is fine to coarse, sub-angular brick, concrete, mixed lithology and occasional glass.		2
					0.40	30.31		CONCRETE.	End of Borehole at 0.400m	3
										4
										5
										6

Hole Diameter		Casing Diameter		Chiselling				Inclination and Orientation					
Depth	Base	Diameter	Depth	Base	Diameter	Depth	Top	Duration	Tool	Depth	Base	Inclination	Orientation

Remarks

Refusal on concrete at 0.40mbgl. No install.

Percussion Drilling Log

Project Name: Abellio Bus Garage		Client: HDR				Date: 22/06/2021	
Location: Abellio Bus Garage, Hayes, UB3 4QQ		Contractor: Oakland SI Ltd				Co-ords: E510475.21 N179222.74	
Project No. : 211177		Crew Name:				Drilling Equipment:	
Borehole Number WS01b		Hole Type WS		Level 30.63m AoD		Logged By CB	

Well	Water Strikes	Sample and In Situ Testing			Depth (m)	Level (m)	Legend	Stratum Description		1
		Depth (m)	Type	Results						
					0.20 0.25 0.30	30.43 30.38 30.33		MACADAM. MADE GROUND comprising black and grey sandy GRAVEL. Gravel is fine to coarse, sub-angular brick, concrete, mixed lithology and occasional glass. CONCRETE. End of Borehole at 0.300m		2 3 4 5 6

Hole Diameter		Casing Diameter		Chiselling				Inclination and Orientation					
Depth	Base	Diameter	Depth	Base	Diameter	Depth	Top	Duration	Tool	Depth	Base	Inclination	Orientation

Remarks

Refusal on concrete at 0.30mbgl. No install.

Percussion Drilling Log

Project Name: Abellio Bus Garage		Client: HDR				Date: 22/06/2021	
Location: Abellio Bus Garage, Hayes, UB3 4QQ		Contractor: Oakland SI Ltd				Co-ords: E510450.79 N179196.66	
Project No. : 211177		Crew Name:				Drilling Equipment:	
Borehole Number WS02		Hole Type WS		Level 31.34m AoD		Logged By CB	

Well	Water Strikes	Sample and In Situ Testing			Depth (m)	Level (m)	Legend	Stratum Description	1
		Depth (m)	Type	Results					
		1.00	SPT	N=8 (3,3/2,2,2,2)	0.20 0.30	31.14 31.04		MADADAM.	
		2.00	SPT	N=4 (1,1/1,1,1,1)	0.90	30.44		MADE GROUND comprising pink and grey coarse GRAVEL of mixed lithologies. (Sub-base). MADE GROUND comprising brown and black sandy gravelly CLAY. Gravel is fine to coarse, sub-angular brick and concrete. Geotextile at 0.30mbgl. PID reading at 0.75mbgl = 0.5ppm.	
		3.00	SPT	N=1 (1,0/0,1,0,0)	3.50	27.84		MADE GROUND comprising black and grey gravelly, sandy GRAVEL. Gravel is fine to coarse, sub-angular brick, concrete, tile and rare clinker.	2
		4.00	SPT	N=2 (1,1/0,1,0,1)				PID reading at 4.50mbgl = 0.1ppm. Becoming sandy.	3
		5.00	SPT	N=1 (1,0/1,0,0,0)	5.00	26.34		End of Borehole at 5.000m	4
									5
									6

Hole Diameter		Casing Diameter		Chiselling				Inclination and Orientation					
Depth	Base	Diameter	Depth	Base	Diameter	Depth	Top	Duration	Tool	Depth	Base	Inclination	Orientation

Remarks

Percussion Drilling Log

Project Name: Abellio Bus Garage		Client: HDR			Date: 22/06/2021	
Location: Abellio Bus Garage, Hayes, UB3 4QQ		Contractor: Oakland SI Ltd			Co-ords: E510434.14 N179224.66	
Project No. : 211177		Crew Name:			Drilling Equipment:	
Borehole Number WS03		Hole Type WS		Level 31.32m AoD	Logged By CB	Scale 1:33

Well	Water Strikes	Sample and In Situ Testing			Depth (m)	Level (m)	Legend	Stratum Description		1
		Depth (m)	Type	Results						
					0.10	31.22		MACADAM. MADE GROUND comprising black and grey sandy GRAVEL. Gravel is fine to coarse, sub-angular brick and concrete. PID reading at 0.30mbgl = 0.3ppm. CONCRETE.	End of Borehole at 0.400m	2
					0.35	30.97				3
					0.40	30.92				4
										5
										6

Hole Diameter		Casing Diameter		Chiselling				Inclination and Orientation					
Depth	Base	Diameter	Depth	Base	Diameter	Depth	Top	Duration	Tool	Depth	Base	Inclination	Orientation

Remarks

Refusal on concrete at 0.40mbgl. No install.

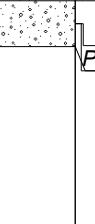
Percussion Drilling Log

Project Name: Abellio Bus Garage		Client: HDR			Date: 22/06/2021	
Location: Abellio Bus Garage, Hayes, UB3 4QQ		Contractor: Oakland SI Ltd			Co-ords: E510416.39 N179206.45	
Project No. : 211177		Crew Name:			Drilling Equipment:	
Borehole Number WS04		Hole Type WS		Level 31.74m AoD	Logged By CB	Scale 1:33

Well	Water Strikes	Sample and In Situ Testing			Depth (m)	Level (m)	Legend	Stratum Description		1
		Depth (m)	Type	Results						
					0.10	31.64		MACADAM. MADE GROUND comprising grey and brown sandy GRAVEL. Gravel is fine to coarse, sub-angular concrete with occasional cobbles of brick. <i>PID reading at 0.30mbgl = 0.6ppm.</i>		2
					0.50	31.24		MADE GROUND comprising brown clayey sandy GRAVEL. Gravel is fine to coarse, sub-angular brick and concrete. <i>PID reading at 0.80mbgl = 0.1ppm.</i>		3
					1.00	30.74		End of Borehole at 1.000m		4
										5
										6

Hole Diameter		Casing Diameter		Chiselling				Inclination and Orientation					
Depth	Base	Diameter	Depth	Base	Diameter	Depth	Top	Duration	Tool	Depth	Base	Inclination	Orientation

Remarks


Terminated at 1.00mbgl due to an anomaly detected using the magnetometer. No install.

Percussion Drilling Log

Project Name: Abellio Bus Garage				Client: HDR				Date: 22/06/2021			
Location: Abellio Bus Garage, Hayes, UB3 4QQ				Contractor: Oakland SI Ltd				Co-ords: E510413.00 N179208.00			
Project No. : 211177				Crew Name:				Drilling Equipment:			
Borehole Number WS04a		Hole Type WS		Level 31.74m AoD		Logged By CB		Scale 1:33	Page Number Sheet 1 of 1		
Well	Water Strikes	Sample and In Situ Testing			Depth (m)	Level (m)	Legend	Stratum Description			
		Depth (m)	Type	Results				Stratum Description			
				0.10	31.64		MACADAM.				
				0.30	31.44		MADE GROUND comprising grey and black sandy GRAVEL. Gravel is fine to coarse, sub-angular brick and concrete.				
							End of Borehole at 0.300m				
Hole Diameter		Casing Diameter		Chiselling				Inclination and Orientation			
Depth Base	Diameter	Depth Base	Diameter	Depth Top	Depth Base	Duration	Tool	Depth Top	Depth Base	Inclination	Orientation
Remarks Refusal on Made Ground at 0.30mbgl. No install.											

Percussion Drilling Log

Project Name: Abellio Bus Garage		Client: HDR				Date: 22/06/2021	
Location: Abellio Bus Garage, Hayes, UB3 4QQ		Contractor: Oakland SI Ltd				Co-ords: E510379.77 N179227.16	
Project No. : 211177		Crew Name:				Drilling Equipment:	
Borehole Number WS05		Hole Type WS		Level 31.78m AoD		Logged By CB	

Well	Water Strikes	Sample and In Situ Testing			Depth (m)	Level (m)	Legend	Stratum Description
		Depth (m)	Type	Results				
					0.05	31.74		MACADAM. MADE GROUND comprising black and grey clayey sandy GRAVEL. Gravel is fine to coarse, sub-angular concrete, brick, rare clinker and mixed lithologies. Occasional cobbles of brick present. <i>Slight hydrocarbon odour between 0.05mbgl and 3.50mbgl.</i>
		1.00	SPT	N=8 (3,2/2,2,2,2)				<i>PID reading at 0.80mbgl = 0.2ppm.</i>
		2.00	SPT	N=2 (1,1/1,0,1,0)				<i>PID reading at 1.50mbgl = 0.3ppm.</i>
		3.00	SPT	N=1 (1,0/0,1,0,0)				
					3.50	28.28		Soft grey gravelly CLAY. Gravel is fine to coarse, sub-angular of mixed lithology. (ALLUVIUM) <i>PID reading at 3.60mbgl = 0.5ppm.</i>
		4.00	SPT	N=27 (2,3/5,6,7,9)				
					4.80	26.98		Medium dense, orange and brown sandy GRAVEL. Gravel is fine to coarse, sub-angular flint. <i>PID reading at 4.90mbgl = 0.1ppm.</i>
					5.00	26.78		End of Borehole at 5.000m

Hole Diameter		Casing Diameter		Chiselling				Inclination and Orientation					
Depth	Base	Diameter	Depth	Base	Diameter	Depth	Top	Duration	Tool	Depth	Base	Inclination	Orientation

Remarks

Trial Pit Log

Project Name: Abellio Bus Garage		Client: HDR			Date: 22/06/2021	
Location: Abellio Bus Garage, Hayes, UB3 4QQ		Contractor: Oakland SI Ltd			Co-ords: E510479.00 N179217.00	
Project No. : 211177		Crew Name:			Equipment:	
Location Number HP101		Location Type TP		Level 30.88m AoD	Logged By CB	Scale 1:25

Well	Water Strikes	Sample and In Situ Testing			Depth (m)	Level (m)	Legend	Stratum Description	1
		Depth (m)	Type	Results					
					0.20	30.68		MADE GROUND comprising black and brown slightly gravelly sandy TOPSOIL.	
					0.50	30.38		MADE GROIND comprising brown and black sandy GRAVEL. Gravel is fine to coarse, sub-angular concrete and brick with occasional cobbles of concrete and roots.	
								End of Borehole at 0.500m	
									2
									3
									4
									5

Dimensions		Trench Support and Comment			Pumping Data		
Pit Length	Pit Width	Pit Stability	Shoring Used	Remarks	Date	Rate	Remarks

Remarks Hand excavated pit.	
--------------------------------	--

Trial Pit Log

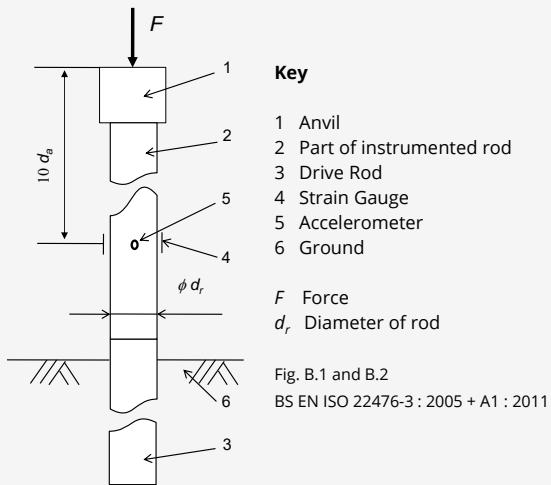
Project Name: Abellio Bus Garage		Client: HDR			Date: 22/06/2021	
Location: Abellio Bus Garage, Hayes, UB3 4QQ		Contractor: Oakland SI Ltd			Co-ords: E510462.00 N179190.00	
Project No. : 211177		Crew Name:			Equipment:	
Location Number HP102		Location Type TP		Level 31.34m AoD	Logged By CB	Scale 1:25

Well	Water Strikes	Sample and In Situ Testing			Depth (m)	Level (m)	Legend	Stratum Description	1
		Depth (m)	Type	Results					
					0.20	31.14		MADE GROUND comprising black and brown slightly gravelly sandy TOPSOIL.	
					0.50	30.84		MADE GROUND comprising brown and black sandy GRAVEL. Gravel is fine to coarse, sub-angular concrete and brick with occasional cobbles of concrete and roots.	
								End of Borehole at 0.500m	
									2
									3
									4
									5

Dimensions		Trench Support and Comment			Pumping Data		
Pit Length	Pit Width	Pit Stability	Shoring Used	Remarks	Date	Rate	Remarks

Remarks Hand excavated pit.	
--------------------------------	--

SPT Calibration Report

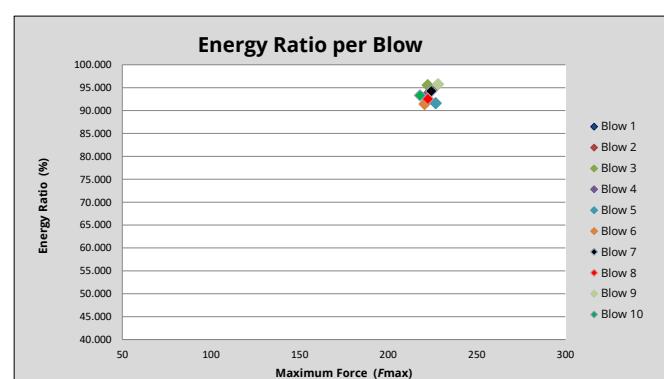
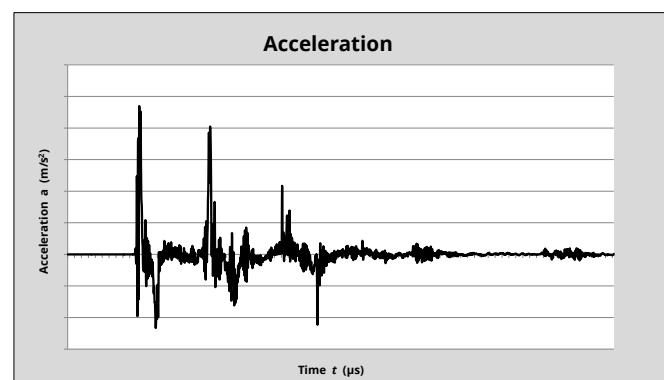
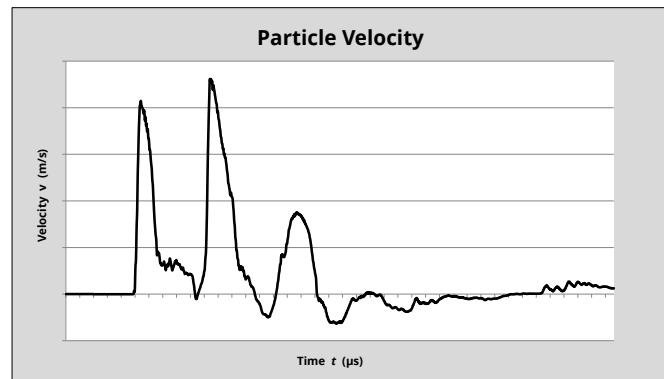
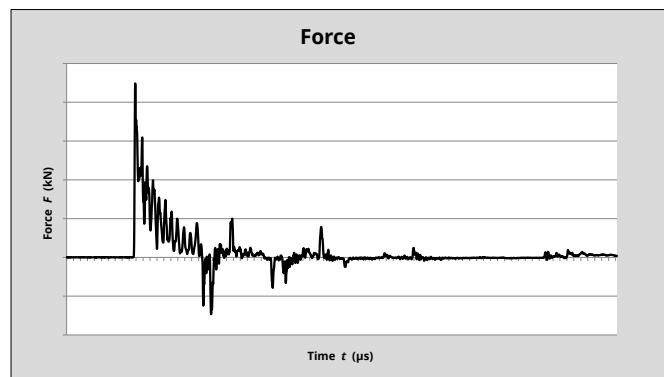

Hammer Energy Measurement Report

Type of Hammer PREMIER
 Test No EQU2826
 Client OAKLANDS

Test Depth (m) 11.10
 Mass of hammer $m = 63.5\text{kg}$
 Falling height $h = 0.76\text{m}$
 $E_{\text{theor}} = m \times g \times h = 473\text{J}$

Characteristics of the instrumented rod

Diameter $d_r = 0.052\text{ m}$
 Length of instrumented rod 0.558 m
 Area $A = 11.61\text{ cm}^2$
 Modulus $E_a = 206843\text{ MPa}$





DATE OF TEST VALID UNTIL HAMMER ID

28/05/2021 28/05/2022 110-106

$E_{\text{meas}} = 0.441\text{ kN-m}$

$E_{\text{theor}} = 0.473\text{ kN-m}$

Comments

Equipe SPT Analyzer Operator

AF

Certificate prepared by

Certificate checked by

Certificate date

02/06/2021

APPENDIX 5: ENVIRONMENTAL LABORATORY TESTING

Abellio Bus Garage Made Ground Soil Analysis

Abellio Bus Garage Made Ground Soil Analysis

Abellio Bus Garage Natural Soil Analysis

Lab Sample Number	1914368	1914369	1925631	1925532
Sample Reference	WS05	WS05	BH01	BH01
Soil Type	Natural	Natural	Natural	Natural
Depth (m)	3.6	4.9	6.50-7.00	12.00-12.50
Date Sampled	22/06/2021	22/06/2021	30/06/2021	30/06/2021
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied

Analytical Parameter	Units	Limit of Detection	Accreditation	GAC	GAC Source				
				Commercial					
				1% SOM					
GENERAL									
Stone Content	%	0.1	N/A			< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	N/A		18	6.1	14	14
Total mass of sample received	kg	0.001	NONE	N/A		1	1	1.4	1.2
Asbestos in Soil Screen / Identification Name	Type	N/A	ISO 17025	N/A		-	-	-	-
Asbestos in Soil	Type	N/A	ISO 17025	N/A		Not-detected	Not-detected	Not-detected	Not-detected
Asbestos Quantification				N/A		-	-	-	-
						-	-	-	-
GENERAL INORGANICS									
pH (Acid/Alkaline)	pH Units	N/A	MCERTS	N/A		8.4	8.4	8.2	8.5
Electrical Conductivity	µS/cm	10	ISO 17025	N/A		129	120	299	529
Total Cyanide	mg/kg	1	MCERTS	N/A		< 1.0	< 1.0	< 1.0	< 1.0
Complex Cyanide	mg/kg	1	MCERTS	N/A		< 1.0	< 1.0	< 1.0	< 1.0
Free Cyanide	mg/kg	1	MCERTS	N/A	Atkins ATRISK SSV	< 1.0	< 1.0	< 1.0	< 1.0
Total Sulphate as SO4	mg/kg	50	MCERTS	N/A		680	380	910	1300
Water Soluble SO4 10hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	N/A		0.19	0.084	0.31	0.99
Sulphide	mg/kg	1	MCERTS	N/A		31	< 1.0	210	26
Water Soluble Chloride (2:1)	mg/kg	1	MCERTS	N/A		46	36	32	66
Ammonium as NH4	mg/kg	0.5	MCERTS	N/A		7.2	2.1	1.1	3.8
Fraction Organic Carbon (FOC)	N/A	0.001	MCERTS	N/A		0.013	0.014	0.0039	0.0099
Total Organic Carbon (TOC)	%	0.1	MCERTS	N/A		1.3	1.4	0.4	1
TOTAL PHENOLS									
Total Phenols (monohydric)	mg/kg	1	MCERTS	760	SAUL	< 1.0	< 1.0	< 1.0	< 1.0
SPECIATED POLYAROMATIC HYDROCARBONS									
Naphthalene	mg/kg	0.05	MCERTS	199076(4)	SAUL	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	83000(96.1)	SAUL	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	84000(37)	SAUL	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	63000(30.9)	SAUL	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	2200	SAUL	2	< 0.05	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	520000	SAUL	0.91	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	2300	SAUL	4.4	< 0.05	< 0.05	< 0.05
Pyrene	mg/kg	0.05	MCERTS	54000	SAUL	4	< 0.05	< 0.05	< 0.05
Benz[<i>a</i>]anthracene	mg/kg	0.05	MCERTS	170	SAUL	3.9	< 0.05	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	350	SAUL	2.6	< 0.05	< 0.05	< 0.05
Benz[<i>a</i>]fluoranthene	mg/kg	0.05	MCERTS	44	SAUL	2.9	< 0.05	< 0.05	< 0.05
Benz[<i>a</i>]phenanthrene	mg/kg	0.05	MCERTS	1200	SAUL	1.8	< 0.05	< 0.05	< 0.05
Indeno[1,2,3- <i>cd</i>]phenanthrene	mg/kg	0.05	MCERTS	10	SAUL	1	< 0.05	< 0.05	< 0.05
Indeno[1,2,3- <i>cd</i>]pyrene	mg/kg	0.05	MCERTS	500	SAUL	1.1	< 0.05	< 0.05	< 0.05
Chrysene-1,4-diene	mg/kg	0.05	MCERTS	3.6	SAUL	0.51	< 0.05	< 0.05	< 0.05
Benz[<i>a</i>]phenylene	mg/kg	0.05	MCERTS	3900	SAUL	1.2	< 0.05	< 0.05	< 0.05
TOTAL POLYAROMATIC HYDROCARBONS									
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	N/A		28.3	< 0.80	< 0.80	< 0.80
HEAVY METALS / METALLOIDS									
Antimony (aque regia extractable)	mg/kg	1	ISO 17025	N/A	Atkins ATRISK SSV	6.6	4	< 1.0	< 1.0
Arsenic (aque regia extractable)	mg/kg	1	MCERTS	640	C4SL	20	22	14	18
Barium (aque regia extractable)	mg/kg	1	MCERTS	N/A	Atkins ATRISK SSV	90	51	52	55
Beryllium (aque regia extractable)	mg/kg	0.06	MCERTS	12	SAUL	1	0.98	1.2	1.3
Boron (water soluble)	mg/kg	0.2	MCERTS	240000	SAUL	4.7	6.6	4.4	5.7
Calcium (aque regia extractable)	mg/kg	0.2	MCERTS	410	C4SL	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (aque regia extractable)	mg/kg	4	MCERTS	40	C4SL	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (aque regia extractable)	mg/kg	1	MCERTS	8600	SAUL	25	39	46	42
Cobalt (aque regia extractable)	mg/kg	0.15	MCERTS	N/A		11	10	16	19
Copper (aque regia extractable)	mg/kg	1	MCERTS	68000	SAUL	39	29	21	22
Iron (aque regia extractable)	mg/kg	40	MCERTS	N/A		25000	37000	52000	51000
Lead (aque regia extractable)	mg/kg	1	MCERTS	2330	C4SL	150	43	17	16
Manganese (aque regia extractable)	mg/kg	1	MCERTS	N/A		230	280	260	270
Mercury (aque regia extractable)	mg/kg	0.3	MCERTS	1100	SAUL	3.4	< 0.3	< 0.3	< 0.3
Molybdenum (aque regia extractable)	mg/kg	0.25	MCERTS	N/A	Atkins ATRISK SSV	2.6	1.2	0.75	0.75
Nickel (aque regia extractable)	mg/kg	1	MCERTS	980	C4SL	22	29	37	36
Phosphorus (aque regia extractable)	mg/kg	20	ISO 17025	N/A		670	300	490	480
Selenium (aque regia extractable)	mg/kg	1	MCERTS	12000	SAUL	< 1.0	< 1.0	< 1.0	< 1.0
Tin (aque regia extractable)	mg/kg	1	MCERTS	N/A		220	21	2.5	2.6
Vanadum (aque regia extractable)	mg/kg	1	MCERTS	9000	SAUL	42	52	74	64
Zinc (aque regia extractable)	mg/kg	1	MCERTS	730000	SAUL	93	58	78	77
Calcium (aque regia extractable)	mg/kg	20	ISO 17025	N/A		30000	4400	24000	23000
Magnesium (aque regia extractable)	mg/kg	20	ISO 17025	N/A		2100	1800	17000	16000
Potassium (aque regia extractable)	mg/kg	20	ISO 17025	N/A		1500	1500	5000	4900
Sodium (aque regia extractable)	mg/kg	20	ISO 17025	N/A		250	190	340	450
MONOAROMATICS AND OXYGENATES									
Benzene	mg/kg		MCERTS	27	C4SL	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	mg/kg		MCERTS	56000(869)	SAUL	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	mg/kg		MCERTS	57000(18)	SAUL	< 1.0	< 1.0	< 1.0	< 1.0
<i>p</i> & <i>m</i> -xylene	mg/kg		MCERTS			< 1.0	< 1.0	< 1.0	< 1.0
<i>o</i> -xylene	mg/kg		MCERTS	6600(478)	SAUL	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	mg/kg		MCERTS		Atkins ATRISK SSV	< 1.0	< 1.0	< 1.0	< 1.0
PETROLEUM HYDROCARBONS									
Mineral Oil (C10 - C40)	mg/kg	10	NONE	N/A		< 10	350	< 10	< 10
TPH C10 - C40	mg/kg	10	MCERTS	N/A		78	350	< 10	< 10
TPH2 (C6 - C10)	mg/kg	0.1	MCERTS	N/A		< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	3200 (304)	SAUL	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	7500 (144)	SAUL	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	2000 (78)	SAUL	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	9700 (48)	SAUL	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	56000 (24)	SAUL	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	1600000	SAUL	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	N/A		< 8.0	250	< 8.0	< 8.0
TPH-CWG - Aliphatic (EC5 - EC8)	mg/kg	10	MCERTS	N/A		< 10	260	< 10	< 10
TPH-CWG - Aromatic >EC5 - EC8	mg/kg	0.001	MCERTS	26000 (1220) sol	SAUL	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	56000 (869)	SAUL	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	3500 (813)	SAUL	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	16000 (364)	SAUL	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	36000 (169)	SAUL	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	28000	SAUL	25	< 10	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	28000	SAUL	53	< 10	< 10	< 10
TPH-CWG - Aromatic (EC5 - EC8)	mg/kg	10	MCERTS	N/A		78	< 10	< 10	< 10
TPH (C10 - C25)	mg/kg	10	MCERTS	N/A		41	48	< 10	< 10

Abellio Bus Garage Natural Soil Analysis

Lab Sample Number	1914368	1914369	1925631	1925632
Sample Reference	WS05	WS05	BH01	BH01
Soil Type	Natural	Natural	Natural	Natural
Depth (m)	3.6	4.9	6.50-7.00	12.00-12.50
Date Sampled	22/06/2021	22/06/2021	30/06/2021	30/06/2021
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied

Analytical Parameter	Units	Limit of Detection	Accreditation	GAC		GAC Source	
				Commercial	1% SOM		
VOLATILE ORGANIC COMPOUNDS							
Chloroethane	mg/kg	1	ISO 17025	Atkins ATRISK SSV	<1.0	<1.0	
Chloroethane	mg/kg	1	NONE	Atkins ATRISK SSV	<1.0	<1.0	
Bromomethane	µg/kg	1	ISO 17025		<1.0	<1.0	
Vinyl Chloride	mg/kg	1	0.059	S4UL	<1.0	<1.0	
Trichlorofluoromethane	µg/kg	1	NONE		<1.0	<1.0	
1,1-Dichloroethene	mg/kg	1	NONE	Atkins ATRISK SSV	<1.0	<1.0	
1,1,2-Trichloro-1,2,2-Trifluoroethane	µg/kg	1	ISO 17025		<1.0	<1.0	
Cis-1,2-dichloroethene	mg/kg	1	MCERTS	Atkins ATRISK SSV	<1.0	<1.0	
MTBE (Methyl Tertiary Butyl Ether)	mg/kg	1	MCERTS	Atkins ATRISK SSV	<1.0	<1.0	
1,1-Dichloroethane	mg/kg	1	MCERTS	Atkins ATRISK SSV	<1.0	<1.0	
1,1-Dichloropropane	µg/kg	1	MCERTS		<1.0	<1.0	
Freon 113	mg/kg	1	MCERTS	S4UL	<1.0	<1.0	
1,1,1-Trichloroethane	mg/kg	1	MCERTS	Atkins ATRISK SSV	<1.0	<1.0	
1,2-Dichloroethane	mg/kg	1	MCERTS	Atkins ATRISK SSV	<1.0	<1.0	
1,1-Dichloropropane	µg/kg	1	MCERTS	S4UL	<1.0	<1.0	
Trans-1,2-Dichloroethene	mg/kg	1	NONE	Atkins ATRISK SSV	<1.0	<1.0	
Benzene	µg/kg	1	MCERTS		<1.0	<1.0	
Tetrachloromethane	mg/kg	1	MCERTS	S4UL	<1.0	<1.0	
1,2-Dichloropropane	mg/kg	1	MCERTS	Atkins ATRISK SSV	<1.0	<1.0	
Trichloroethene	mg/kg	1	MCERTS	1.2	S4UL	<1.0	<1.0
Dibromoethane	µg/kg	1	MCERTS		<1.0	<1.0	
Bromodichloroethene	mg/kg	1	MCERTS	Atkins ATRISK SSV	<1.0	<1.0	
Cis-1,3-Dichloropropene	µg/kg	1	ISO 17025		<1.0	<1.0	
Trans-1,3-Dichloropropene	µg/kg	1	ISO 17025		<1.0	<1.0	
Toluene	µg/kg	1	MCERTS	27900 (834 vsp)	<1.0	<1.0	
1,1,1-Trichloroethane	mg/kg	1	MCERTS	Atkins ATRISK SSV	<1.0	<1.0	
1,3-Dichloropropane	mg/kg	1	ISO 17025		<1.0	<1.0	
Dibromochloroethene	mg/kg	1	ISO 17025	Atkins ATRISK SSV	<1.0	<1.0	
Tetrachloroethene	mg/kg	1	NONE	Atkins ATRISK SSV	<1.0	<1.0	
1,2-Dibromobenzene	µg/kg	1	ISO 17025	S4UL	<1.0	<1.0	
Chlorobenzene	mg/kg	1	MCERTS	56	S4UL	<1.0	<1.0
1,1,1,2-Tetrachloroethane	mg/kg	1	MCERTS	110	S4UL	<1.0	<1.0
Ethylbenzene	µg/kg	1	MCERTS	7660 (507 vsp)	<1.0	<1.0	
p & m-Xylene	µg/kg	1	MCERTS	2720 (564 soot)	<1.0	<1.0	
Styrene	mg/kg	1	MCERTS		<1.0	<1.0	
Trifluoromethane	µg/kg	1	NONE		<1.0	<1.0	
p-Xylene	µg/kg	1	MCERTS	3030 (467 soot)	<1.0	<1.0	
1,2,2,2-Tetrachloroethane	mg/kg	1	MCERTS	270	S4UL	<1.0	<1.0
Isopropylbenzene	µg/kg	1	MCERTS	5769 (367 soot)	Atkins ATRISK SSV	<1.0	<1.0
Bromobenzene	mg/kg	1	MCERTS		Atkins ATRISK SSV	<1.0	<1.0
1,4-Dichlorobenzene	mg/kg	1	MCERTS	1000 (571)	S4UL	<1.0	<1.0
1,3-Dichlorobenzene	mg/kg	1	MCERTS	165	Atkins ATRISK SSV	<1.0	<1.0
1,2-Dichlorobenzene	mg/kg	1	MCERTS	30	S4UL	<1.0	<1.0
sec-Butylbenzene	µg/kg	1	MCERTS		<1.0	<1.0	
tert-Butylbenzene	µg/kg	1	MCERTS		<1.0	<1.0	
1,3-Dichlorobenzene	mg/kg	1	ISO 17025	Atkins ATRISK SSV	<1.0	<1.0	
p-Isopropyltoluene	µg/kg	1	ISO 17025		<1.0	<1.0	
1,2-Dichlorobenzene	mg/kg	1	MCERTS	2000 (571)	S4UL	<1.0	<1.0
1,4-Dichlorobenzene	mg/kg	1	MCERTS	4400 (224)	S4UL	<1.0	<1.0
Butylbenzene	µg/kg	1	MCERTS		<1.0	<1.0	
1,2-Dibromo-3-Chloropropane	µg/kg	1	ISO 17025		<1.0	<1.0	
1,2,4-Trichlorobenzene	mg/kg	1	MCERTS	220	S4UL	<1.0	<1.0
Hexachlorobutadiene	µg/kg	1	MCERTS		<1.0	<1.0	
1,2,3-Trichlorobenzene	mg/kg	1	ISO 17025	102	S4UL	<1.0	<1.0
SEMI-VOLATILE ORGANIC COMPOUNDS							
Aniline	mg/kg	0.1	NONE		<0.1	<0.1	
Phenol	mg/kg	0.2	ISO 17025	Atkins ATRISK SSV	<0.2	<0.2	
2-Chlorophenol	mg/kg	0.1	MCERTS		<0.1	<0.1	
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS		<0.2	<0.2	
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	30	S4UL	<0.2	<0.2
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	2000 (571)	S4UL	<0.1	<0.1
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS	4400 (224)	S4UL	<0.2	<0.2
Bis(2-chloroethyl)ether	mg/kg	0.1	MCERTS		<0.1	<0.1	
2-Methylphenol	mg/kg	0.3	MCERTS		<0.3	<0.3	
Hexachlorobenzene	mg/kg	0.05	MCERTS	Atkins ATRISK SSV	<0.05	<0.05	
4-Chlorobiphenyl	mg/kg	0.2	NONE	Atkins ATRISK SSV	<0.2	<0.2	
4-Ethylphenol	mg/kg	0.2	MCERTS		<0.2	<0.2	
4-Nitrophenol	mg/kg	0.2	MCERTS		<0.2	<0.2	
2-Nitrophenol	mg/kg	0.3	MCERTS		<0.3	<0.3	
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	Atkins ATRISK SSV	<0.3	<0.3	
Bis(2-chloroethyl)ether	mg/kg	0.3	MCERTS		<0.3	<0.3	
2,4-Trichlorobiphenyl	mg/kg	0.3	MCERTS	220	S4UL	<0.3	<0.3
Naphthalene	mg/kg	0.05	MCERTS		<0.05	<0.05	
2,4-Dichlorophenol	mg/kg	0.3	MCERTS		<0.3	<0.3	
4-Chloronaniline	mg/kg	0.1	NONE		<0.1	<0.1	
Hexachlorobutadiene	mg/kg	0.1	MCERTS		<0.1	<0.1	
4-Chloro-3-methylphenol	mg/kg	0.1	NONE		<0.1	<0.1	
2,4,6-Trichlorophenol	mg/kg	0.1	MCERTS		<0.1	<0.1	
2,4,6-Trichlorophenol	mg/kg	0.2	MCERTS		<0.2	<0.2	
2-Methylnaphthalene	mg/kg	0.1	NONE		<0.1	<0.1	
2-Chloronaphthalene	mg/kg	0.1	MCERTS	Atkins ATRISK SSV	<0.1	<0.1	
2,6-Dinitrotoluene	mg/kg	0.1	MCERTS		<0.1	<0.1	
Acenaphthene	mg/kg	0.05	MCERTS	Atkins ATRISK SSV	<0.05	<0.05	
Acenaphthene	mg/kg	0.05	MCERTS		<0.05	<0.05	
2,6-Dinitrophenol	mg/kg	0.2	MCERTS	Atkins ATRISK SSV	<0.2	<0.2	
Dibenzofuran	mg/kg	0.2	MCERTS		<0.2	<0.2	
4-Chlorophenyl phenyl ether	mg/kg	0.3	ISO 17025		<0.3	<0.3	
Diethyl phthalate	mg/kg	0.2	MCERTS	Atkins ATRISK SSV	<0.2	<0.2	
4-Nitroaniline	mg/kg	0.2	MCERTS		<0.2	<0.2	
Fluorene	mg/kg	0.05	MCERTS		<0.05	<0.05	
Azobenzene	mg/kg	0.3	MCERTS		<0.3	<0.3	
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS		<0.2	<0.2	
Hexachlorobenzene	mg/kg	0.3	ISO 17025	S4UL	<0.3	<0.3	
Phenanthrene	mg/kg	0.05	MCERTS		2	<0.05	<0.05
Anthracene	mg/kg	0.05	MCERTS		<0.05	<0.05	
Phenol	mg/kg	0.3	MCERTS		<0.3	<0.3	
2-Chlorophenol	mg/kg	0.2	MCERTS		<0.2	<0.2	
Anthracene quinone	mg/kg	0.3	MCERTS		<0.3	<0.3	
Fluoranthene	mg/kg	0.05	MCERTS		4.4	<0.05	<0.05
Pyrene	mg/kg	0.05	MCERTS		4	<0.05	<0.05
Butyl benzyl phthalate	mg/kg	0.3	ISO 17025	Atkins ATRISK SSV	<0.3	<0.3	
Benzol[anthracene]	mg/kg	0.05	MCERTS		3.9	<0.05	<0.05
Chrysene	mg/kg	0.05	MCERTS		2.6	<0.05	<0.05
Benzol[fluoranthene]	mg/kg	0.05	MCERTS		2.9	<0.05	<0.05
Benzol[fluoranthene]	mg/kg	0.05	MCERTS		1.8	<0.05	<0.05
Benzol[e]pyrene	mg/kg	0.05	MCERTS		3	<0.05	<0.05
Indeno[1,2,3-cd]pyrene	mg/kg	0.05	MCERTS		1.1	<0.05	<0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS		0.51	<0.05	<0.05
Benzol[ghi]perylene	mg/kg	0.05	MCERTS		1.2	<0.05	<0.05

Abellio Bus Garage Groundwater Analysis

Analytical Parameter (Water Analysis)	Units	Limit of Detection	Accreditation	Environmental Quality Standard	Lab Sample Number	1934680	1934681	1934682	1934683
					Sample Reference	BH01 Shallow	BH01 Deep	WS02	WS05
					Sample Number	None Supplied	None Supplied	None Supplied	None Supplied
					Depth (m)	4.50-4.50	14.00-14.00	4.00-4.00	4.00-4.00
					Date Sampled	08/07/2021	08/07/2021	08/07/2021	08/07/2021
					Time Taken	None Supplied	None Supplied	None Supplied	None Supplied
GENERAL INORGANICS									
pH	pH Units	N/A	ISO 17025	N/A		7.1	7.4	6.9	6.9
Electrical Conductivity at 20 °C	µS/cm	10	ISO 17025	N/A		1500	930	1700	1600
Total Cyanide	µg/l	10	ISO 17025	N/A		< 10	< 10	< 10	< 10
Complex Cyanide	µg/l	10	ISO 17025	N/A		< 10	< 10	< 10	< 10
Free Cyanide	µg/l	10	ISO 17025	N/A		< 10	< 10	< 10	< 10
Sulphate as SO ₄	µg/l	45	ISO 17025	N/A		194000	110000	421000	403000
Sulphide	µg/l	5	NONE	N/A		< 5.0	< 5.0	< 5.0	< 5.0
Chloride	mg/l	0.15	ISO 17025	N/A		100	73	140	190
Ammonium as NH ₄	µg/l	15	ISO 17025	N/A		6300	1300	6000	2700
Total Organic Carbon (TOC)	mg/l	0.1	ISO 17025	N/A		28	14.7	10.3	6.54
TOTAL PHENOLS									
Total Phenols (monohydric)	µg/l	10	ISO 17025	N/A		< 10	< 10	< 10	< 10
SPECIFIED PAHs									
Naphthalene	µg/l	0.01	ISO 17025	10		< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthylene	µg/l	0.01	ISO 17025	N/A		< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthene	µg/l	0.01	ISO 17025	N/A		2.12	< 0.01	< 0.01	< 0.01
Fluorene	µg/l	0.01	ISO 17025	N/A		0.38	< 0.01	< 0.01	< 0.01
Phenanthrene	µg/l	0.01	ISO 17025	N/A		< 0.01	< 0.01	< 0.01	< 0.01
Anthracene	µg/l	0.01	ISO 17025	0.1		< 0.01	< 0.01	< 0.01	< 0.01
Fluoranthene	µg/l	0.01	ISO 17025	0.1		0.26	< 0.01	< 0.01	< 0.01
Pyrene	µg/l	0.01	ISO 17025	N/A		0.16	< 0.01	< 0.01	< 0.01
Benz(a)anthracene	µg/l	0.01	ISO 17025	N/A		< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	µg/l	0.01	ISO 17025	N/A		< 0.01	< 0.01	< 0.01	< 0.01
Benz(a)bifluoranthene	µg/l	0.01	ISO 17025	0.036		< 0.01	< 0.01	< 0.01	< 0.01
Benz(a)kifluoranthene	µg/l	0.01	ISO 17025	0.036		< 0.01	< 0.01	< 0.01	< 0.01
Benz(a)ajulene	µg/l	0.01	ISO 17025	0.056		< 0.01	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-cd)pyrene	µg/l	0.01	ISO 17025	0.0026		< 0.01	< 0.01	< 0.01	< 0.01
Diben(a,h)anthracene	µg/l	0.01	ISO 17025	N/A		< 0.01	< 0.01	< 0.01	< 0.01
Benz(ghi)perylene	µg/l	0.01	ISO 17025	0.0026		< 0.01	< 0.01	< 0.01	< 0.01
TOTAL PAH						N/A			
Total EPA-16 PAHs	µg/l	0.16	ISO 17025	N/A		2.92	< 0.16	< 0.16	< 0.16
HEAVY METALS									
Antimony (dissolved)	µg/l	0.4	ISO 17025	N/A		2.7	0.9	0.6	0.6
Arsenic (dissolved)	µg/l	0.15	ISO 17025	50		3.81	1.34	8.28	21.7
Barium (dissolved)	µg/l	0.06	ISO 17025	N/A		210	93	79	68
Beryllium (dissolved)	µg/l	0.1	ISO 17025	15		< 0.1	< 0.1	< 0.1	< 0.1
Boron (dissolved)	µg/l	10	ISO 17025	N/A		920	540	740	640
Cadmium (dissolved)	µg/l	0.02	ISO 17025	0.08		0.03	< 0.02	0.02	0.04
Calcium (dissolved)	µg/l	0.012	ISO 17025	N/A		200	120	360	380
Chromium (dissolved)	µg/l	5	ISO 17025	3.4		< 5.0	< 5.0	< 5.0	< 5.0
Chromium (dissolved)	µg/l	0.2	ISO 17025	4.7		3.7	5.5	3.5	7.5
Cobalt (dissolved)	µg/l	0.2	ISO 17025	N/A		4.4	1.6	17	12
Copper (dissolved)	µg/l	0.5	ISO 17025	1		3.8	6.2	4.3	3.2
Iron (dissolved)	µg/l	0.004	ISO 17025	N/A		0.042	0.075	17	0.077
Lead (dissolved)	µg/l	0.2	ISO 17025	N/A		0.8	0.4	< 0.2	0.4
Magnesium (dissolved)	µg/l	0.005	ISO 17025	N/A		110	37	25	39
Manganese (dissolved)	µg/l	0.05	ISO 17025	N/A		410	89	6200	4000
Mercury (dissolved)	µg/l	0.05	ISO 17025	N/A		< 0.05	< 0.05	< 0.05	< 0.05
Molybdenum (dissolved)	µg/l	0.05	ISO 17025	N/A		3.9	1.3	11	18
Nickel (dissolved)	µg/l	0.5	ISO 17025	4		14	7.9	30	12
Phosphorus (dissolved)	µg/l	20	ISO 17025	N/A		49.5	30.2	< 20.0	42.9
Potassium (dissolved)	µg/l	0.025	ISO 17025	N/A		15	8.8	12	16
Selenium (dissolved)	µg/l	0.6	ISO 17025	N/A		6.9	13	1.9	1.5
Sodium (dissolved)	µg/l	0.01	ISO 17025	N/A		88	94	110	110
Tin (dissolved)	µg/l	0.2	ISO 17025	N/A		0.38	0.48	< 0.20	< 0.20
Vanadium (dissolved)	µg/l	0.2	ISO 17025	N/A		3.1	1	1.2	0.8
Zinc (dissolved)	µg/l	0.5	ISO 17025	10.9		12	8	15	48
MONOAROMATICS AND OXYGENATES									
Benzene	µg/l	1	ISO 17025	10		< 1.0	< 1.0	< 1.0	< 1.0
Toluene	µg/l	1	ISO 17025	74		< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/l	1	ISO 17025	50		< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	µg/l	1	ISO 17025	N/A		< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	µg/l	1	ISO 17025	N/A		< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/l	1	ISO 17025	N/A		< 1.0	< 1.0	< 1.0	< 1.0
PETROLEUM HYDROCARBONS									
Mineral Oil (C10 - C40)	µg/l	10	NONE	10		< 10.0	< 10.0	< 10.0	< 10.0
Diesel Range Organics (C10 - C25)	µg/l	10	NONE	10		< 10	< 10	< 10	< 10
TPH1 (C10 - C40)	µg/l	10	NONE	10		< 10	< 10	< 10	< 10
TPH2 (C6 - C10)	µg/l	10	ISO 17025	10		< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C5 - C6	µg/l	1	ISO 17025	10		< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C6 - C8	µg/l	1	ISO 17025	10		< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C8 - C10	µg/l	1	ISO 17025	10		< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C10 - C12	µg/l	10	NONE	10		< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C12 - C16	µg/l	10	NONE	10		< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C16 - C21	µg/l	10	NONE	10		< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C21 - C35	µg/l	10	NONE	10		< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C5 - C7	µg/l	1	ISO 17025	10		< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C7 - C8	µg/l	1	ISO 17025	10		< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C8 - C10	µg/l	1	ISO 17025	10		< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C10 - C12	µg/l	10	NONE	10		< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C12 - C16	µg/l	10	NONE	10		< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C16 - C21	µg/l	10	NONE	10		< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C21 - C35	µg/l	10	NONE	10		< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (C5 - C35)	µg/l	10	NONE	10		< 10	< 10	< 10	< 10

Abellio Bus Garage Groundwater Analysis

Including 5 percent quality control

Lab Sample Number	1934680	1934681	1934682	1934683
Sample Reference	BH01 Shallow	BH01 Deep	WS02	WS05
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)	4.50-4.50	14.00-14.00	4.00-4.00	4.00-4.00
Date Sampled	08/07/2021	08/07/2021	08/07/2021	08/07/2021
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied

Analytical Parameter (Water Analysis)	Units	Limit of Detection	Accreditation	Environmental Quality Standard				
VOLATILE ORGANIC COMPOUNDS								
Chloromethane	µg/l	1	ISO 17025	N/A	< 1.0	< 1.0	< 1.0	< 1.0
Chloroethane	µg/l	1	ISO 17025	N/A	< 1.0	< 1.0	< 1.0	< 1.0
Bromomethane	µg/l	1	ISO 17025	N/A	< 1.0	< 1.0	< 1.0	< 1.0
Vinyl Chloride	µg/l	1	NONE	N/A	< 1.0	< 1.0	< 1.0	< 1.0
Trichlorofluoromethane	µg/l	1	NONE	N/A	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethene	µg/l	1	ISO 17025	N/A	< 1.0	< 1.0	< 1.0	< 1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	µg/l	1	ISO 17025	N/A	< 1.0	< 1.0	< 1.0	< 1.0
Cis-1,2-dichloroethene	µg/l	1	ISO 17025	N/A	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/l	1	ISO 17025	N/A	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethane	µg/l	1	ISO 17025	N/A	< 1.0	< 1.0	< 1.0	< 1.0
2,2-Dichloropropane	µg/l	1	ISO 17025	N/A	< 1.0	< 1.0	< 1.0	< 1.0
Trichloromethane	µg/l	1	ISO 17025	N/A	< 1.0	< 1.0	< 1.0	< 1.0
1,1,1-Trichloroethane	µg/l	1	ISO 17025	N/A	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloropropene	µg/l	1	ISO 17025	N/A	< 1.0	< 1.0	< 1.0	< 1.0
Trans-1,2-dichloroethene	µg/l	1	ISO 17025	N/A	< 1.0	< 1.0	< 1.0	< 1.0
Benzene	µg/l	1	ISO 17025	N/A	< 1.0	< 1.0	< 1.0	< 1.0
Tetrachloromethane	µg/l	1	ISO 17025	N/A	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichloropropane	µg/l	1	ISO 17025	N/A	< 1.0	< 1.0	< 1.0	< 1.0
Trichloroethene	µg/l	1	ISO 17025	N/A	< 1.0	< 1.0	< 1.0	< 1.0
Dibromomethane	µg/l	1	ISO 17025	N/A	< 1.0	< 1.0	< 1.0	< 1.0
Bromodichloromethane	µg/l	1	ISO 17025	N/A	< 1.0	< 1.0	< 1.0	< 1.0
Cis-1,3-dichloropropene	µg/l	1	ISO 17025	N/A	< 1.0	< 1.0	< 1.0	< 1.0
Trans-1,3-dichloropropene	µg/l	1	ISO 17025	N/A	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	µg/l	1	ISO 17025	N/A	< 1.0	< 1.0	< 1.0	< 1.0
1,1,2-Trichloroethane	µg/l	1	ISO 17025	N/A	< 1.0	< 1.0	< 1.0	< 1.0
1,3-Dichloropropane	µg/l	1	ISO 17025	N/A	< 1.0	< 1.0	< 1.0	< 1.0
Dibromo-chloromethane	µg/l	1	ISO 17025	N/A	< 1.0	< 1.0	< 1.0	< 1.0
Tetrachloroethene	µg/l	1	ISO 17025	N/A	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dibromoethane	µg/l	1	ISO 17025	N/A	< 1.0	< 1.0	< 1.0	< 1.0
Chlorobenzene	µg/l	1	ISO 17025	N/A	< 1.0	< 1.0	< 1.0	< 1.0
1,1,2-Tetrachloroethane	µg/l	1	ISO 17025	N/A	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/l	1	ISO 17025	50	< 1.0	< 1.0	< 1.0	< 1.0
p & m-Xylene	µg/l	1	ISO 17025	N/A	< 1.0	< 1.0	< 1.0	< 1.0
Styrene	µg/l	1	ISO 17025	N/A	< 1.0	< 1.0	< 1.0	< 1.0
Trichloromethane	µg/l	1	ISO 17025	N/A	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichloroethene	µg/l	1	ISO 17025	N/A	< 1.0	< 1.0	< 1.0	< 1.0
1,1,2,2-Tetrachloroethane	µg/l	1	ISO 17025	N/A	< 1.0	< 1.0	< 1.0	< 1.0
Isopropylbenzene	µg/l	1	ISO 17025	N/A	< 1.0	< 1.0	< 1.0	< 1.0
n-Propylbenzene	µg/l	1	ISO 17025	N/A	< 1.0	< 1.0	< 1.0	< 1.0
2-Chlorotoluene	µg/l	1	ISO 17025	N/A	< 1.0	< 1.0	< 1.0	< 1.0
4-Chlorotoluene	µg/l	1	ISO 17025	N/A	< 1.0	< 1.0	< 1.0	< 1.0
1,3,5-Trimethylbenzene	µg/l	1	ISO 17025	N/A	< 1.0	< 1.0	< 1.0	< 1.0
tert-Butylbenzene	µg/l	1	ISO 17025	N/A	< 1.0	< 1.0	< 1.0	< 1.0
1,2,4-Trimethylbenzene	µg/l	1	ISO 17025	N/A	< 1.0	< 1.0	< 1.0	< 1.0
sec-Butylbenzene	µg/l	1	ISO 17025	N/A	< 1.0	< 1.0	< 1.0	< 1.0
1,3-Dichlorobenzene	µg/l	1	ISO 17025	N/A	< 1.0	< 1.0	< 1.0	< 1.0
p-Isopropyltoluene	µg/l	1	ISO 17025	N/A	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichlorobenzene	µg/l	1	ISO 17025	N/A	< 1.0	< 1.0	< 1.0	< 1.0
4-Dichlorobenzene	µg/l	1	ISO 17025	N/A	< 1.0	< 1.0	< 1.0	< 1.0
Butylbenzene	µg/l	1	ISO 17025	N/A	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dibromo-3-chloropropane	µg/l	1	ISO 17025	N/A	< 1.0	< 1.0	< 1.0	< 1.0
2,4-Dichlorobenzene	µg/l	1	ISO 17025	N/A	< 1.0	< 1.0	< 1.0	< 1.0
Hexachlorobutadiene	µg/l	1	ISO 17025	N/A	< 1.0	< 1.0	< 1.0	< 1.0
Nitrobenzene	µg/l	0.05	NONE	N/A	< 0.05	< 0.05	< 0.05	< 0.05
4-Methylphenol	µg/l	0.05	NONE	N/A	< 0.05	< 0.05	< 0.05	< 0.05
Isophorone	µg/l	0.05	NONE	N/A	< 0.05	< 0.05	< 0.05	< 0.05
2-Nitrophenol	µg/l	0.05	NONE	N/A	< 0.05	< 0.05	< 0.05	< 0.05
2,4-Dimethylphenol	µg/l	0.05	NONE	N/A	< 0.05	< 0.05	< 0.05	< 0.05
Bis(2-chloroethoxy)methane	µg/l	0.05	NONE	N/A	< 0.05	< 0.05	< 0.05	< 0.05
1,2,4-Trichlorobenzene	µg/l	0.05	NONE	N/A	< 0.05	< 0.05	< 0.05	< 0.05
Naphthalene	µg/l	0.01	ISO 17025	2	< 0.01	< 0.01	< 0.01	< 0.01
2,4-Dichlorophenol	µg/l	0.05	NONE	N/A	< 0.05	< 0.05	< 0.05	< 0.05
4-Chloroaniline	µg/l	0.05	NONE	N/A	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobutadiene	µg/l	0.05	NONE	N/A	< 0.05	< 0.05	< 0.05	< 0.05
4-Chloro-3-methylphenol	µg/l	0.05	NONE	N/A	< 0.05	< 0.05	< 0.05	< 0.05
2,4,4,5-Tetrachlorophenol	µg/l	0.05	NONE	N/A	< 0.05	< 0.05	< 0.05	< 0.05
2-Methylnaphthalene	µg/l	0.05	NONE	N/A	< 0.05	< 0.05	< 0.05	< 0.05
2-Chlorophenanthrene	µg/l	0.05	NONE	N/A	< 0.05	< 0.05	< 0.05	< 0.05
Dimethylphthalate	µg/l	0.05	NONE	N/A	< 0.05	< 0.05	< 0.05	< 0.05
2,6-Dinitrotoluene	µg/l	0.05	NONE	N/A	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	µg/l	0.01	ISO 17025	N/A	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthene	µg/l	0.01	ISO 17025	N/A	2.1	< 0.01	< 0.01	< 0.01
2,4-Dinitrotoluene	µg/l	0.05	NONE	N/A	< 0.05	< 0.05	< 0.05	< 0.05
Dibenzofuran	µg/l	0.05	NONE	N/A	< 0.05	< 0.05	< 0.05	< 0.05
4-Chlorophenyl phenyl ether	µg/l	0.05	NONE	N/A	< 0.05	< 0.05	< 0.05	< 0.05
Diethyl phthalate	µg/l	0.05	NONE	N/A	< 0.05	< 0.05	< 0.05	< 0.05
4-Nitroaniline	µg/l	0.05	NONE	N/A	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	µg/l	0.01	ISO 17025	N/A	0.38	< 0.01	< 0.01	< 0.01
Azobenzene	µg/l	0.05	NONE	N/A	< 0.05	< 0.05	< 0.05	< 0.05
Bromophenyl phenyl ether	µg/l	0.05	NONE	N/A	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	µg/l	0.05	NONE	N/A	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	µg/l	0.01	ISO 17025	N/A	< 0.01	< 0.01	< 0.01	< 0.01
Anthracene	µg/l	0.01	ISO 17025	0.1	< 0.01	< 0.01	< 0.01	< 0.01
Carbazole	µg/l	0.05	NONE	N/A	< 0.05	< 0.05	< 0.05	< 0.05
Dibutyl phthalate	µg/l	0.05	NONE	N/A	< 0.05	< 0.05	< 0.05	< 0.05
Anthraquinone	µg/l	0.01	NONE	N/A	< 0.05	< 0.05	< 0.05	< 0.05
Diphenyl	µg/l	0.01	ISO 17025	N/A	0.16	< 0.01	< 0.01	< 0.01
Butyl benzyl phthalate	µg/l	0.05	NONE	N/A	< 0.05	< 0.05	< 0.05	< 0.05
Benzol[a]anthracene	µg/l	0.01	ISO 17025	N/A	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	µg/l	0.01	ISO 17025	N/A	< 0.01	< 0.01	< 0.01	< 0.01
Benzol[b]fluoranthene	µg/l	0.01	ISO 17025	0.036	< 0.01	< 0.01	< 0.01	< 0.01
Benzol[k]fluoranthene	µg/l	0.01	ISO 17025	0.036	< 0.01	< 0.01	< 0.01	< 0.01
Benzol[a]pyrene	µg/l	0.01	ISO 17025	0.056	< 0.01	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-cd)pyrene	µg/l	0.01	ISO 17025	0.0026	< 0.01	< 0.01	< 0.01	< 0.01
Dibenzo(a,h)anthracene	µg/l	0.01	ISO 17025	N/A	< 0.01	< 0.01	< 0.01	< 0.01
Benzol(ghi)perylene	µg/l	0.01	ISO 17025	0.0026	< 0.01	< 0.01	< 0.01	< 0.01

Aleksandra Maron
Paragon New Homes Ltd
The Harlequin Building
65 Southwark Street
London
SE1 0HR

e: aleksandramaron@paragonbc.co.uk

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS
t: 01923 225404
f: 01923 237404
e: reception@i2analytical.com

Analytical Report Number : 21-82945

Replaces Analytical Report Number: 21-82945, issue no. 1
Additional analysis undertaken.

Project / Site name:	Abellio	Samples received on:	23/06/2021
Your job number:	211177	Samples instructed on / Analysis started on:	23/06/2021
Your order number:	211177 AM	Analysis completed by:	07/07/2021
Report Issue Number:	2	Report issued on:	07/07/2021
Samples Analysed:	12 soil samples		

Signed: *Karolina Marek*

Karolina Marek
PL Head of Reporting Team
For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils - 4 weeks from reporting
leachates - 2 weeks from reporting
waters - 2 weeks from reporting
asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement.
Application of uncertainty of measurement would provide a range within which the true result lies.
An estimate of measurement uncertainty can be provided on request.

4041 MCERTS

Analytical Report Number: 21-82945

Project / Site name: Abellio

Your Order No: 211177 AM

Lab Sample Number	1914360	1914361	1914362	1914363	1914364
Sample Reference	WS01	WS02	WS02	WS02	WS03
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)	0.30	0.75	1.50	4.50	0.30
Date Sampled	22/06/0221	22/06/0221	22/06/0221	22/06/0221	22/06/0221
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		
Stone Content	%	0.1	NONE	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	4.9	17
Total mass of sample received	kg	0.001	NONE	1.1	1.1
				1.0	1.5
					1.0

Asbestos in Soil Screen / Identification Name	Type	N/A	ISO 17025	-	-	-	-	-
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	-	-	-	-
Asbestos Quantification Total	%	0.001	ISO 17025	-	-	-	-	-

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	10.3	8.8	8.5	7.9	9.1
Electrical Conductivity	µS/cm	10	ISO 17025	230	310	580	150	180
Total Cyanide	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Complex Cyanide	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Free Cyanide	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Sulphate as SO4	mg/kg	50	MCERTS	1800	2200	4300	540	1100
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.32	0.39	0.83	0.26	0.24
Sulphide	mg/kg	1	MCERTS	2700	69	56	150	540
Water Soluble Chloride (2:1)	mg/kg	1	MCERTS	89	120	93	54	36
Ammoniacal Nitrogen as NH4	mg/kg	0.5	MCERTS	0.6	42	73	7.7	0.6
Fraction Organic Carbon (FOC)	N/A	0.001	MCERTS	0.036	0.015	0.033	0.013	0.050
Total Organic Carbon (TOC)	%	0.1	MCERTS	3.6	1.5	3.3	1.3	5.0

Total Phenols

Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
----------------------------	-------	---	--------	-------	-------	-------	-------	-------

Speciated PAHs

Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	0.38
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	1.0
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	0.32	< 0.05	< 0.05	1.6
Fluorene	mg/kg	0.05	MCERTS	< 0.05	0.45	< 0.05	< 0.05	2.2
Phenanthrene	mg/kg	0.05	MCERTS	1.3	2.5	0.74	0.96	12
Anthracene	mg/kg	0.05	MCERTS	0.33	0.57	0.20	1.3	4.4
Fluoranthene	mg/kg	0.05	MCERTS	2.2	4.3	1.9	2.9	22
Pyrene	mg/kg	0.05	MCERTS	2.3	3.7	1.7	2.3	20
Benzo(a)anthracene	mg/kg	0.05	MCERTS	1.1	2.6	1.3	2.2	11
Chrysene	mg/kg	0.05	MCERTS	1.0	1.6	0.99	2.0	9.9
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	1.3	1.9	1.1	2.5	11
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	0.63	0.85	0.48	0.68	3.6
Benzo(a)pyrene	mg/kg	0.05	MCERTS	0.94	1.7	0.94	2.2	9.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	1.0	1.2	0.65	2.0	5.1
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	0.28	0.37	< 0.05	0.45	1.6
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	1.2	1.3	0.71	2.6	5.7

Total PAH

Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	13.7	23.4	10.7	22.1	121
-----------------------------	-------	-----	--------	------	------	------	------	-----

4041 MCERTS

Analytical Report Number: 21-82945

Project / Site name: Abellio

Your Order No: 211177 AM

Lab Sample Number	1914360	1914361	1914362	1914363	1914364
Sample Reference	WS01	WS02	WS02	WS02	WS03
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)	0.30	0.75	1.50	4.50	0.30
Date Sampled	22/06/0221	22/06/0221	22/06/0221	22/06/0221	22/06/0221
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		

Heavy Metals / Metalloids

Antimony (aqua regia extractable)	mg/kg	1	ISO 17025	3.6	6.2	15	3.0	3.4
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	9.0	15	62	12	12
Barium (aqua regia extractable)	mg/kg	1	MCERTS	230	130	560	46	160
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	3.1	1.2	3.2	0.68	1.8
Boron (water soluble)	mg/kg	0.2	MCERTS	2.7	1.8	7.6	4.0	2.5
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	0.5	< 0.2	< 0.2	< 0.2	0.5
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	31	38	37	20	26
Cobalt (aqua regia extractable)	mg/kg	0.15	MCERTS	5.3	14	15	6.3	6.0
Copper (aqua regia extractable)	mg/kg	1	MCERTS	13	44	560	19	21
Iron (aqua regia extractable)	mg/kg	40	MCERTS	11000	27000	47000	17000	14000
Lead (aqua regia extractable)	mg/kg	1	MCERTS	93	140	2000	69	65
Manganese (aqua regia extractable)	mg/kg	1	MCERTS	1800	420	530	140	1200
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	5.7	0.5	< 0.3
Molybdenum (aqua regia extractable)	mg/kg	0.25	MCERTS	0.75	0.89	6.3	0.77	0.95
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	11	31	40	17	12
Phosphorus (aqua regia extractable)	mg/kg	20	ISO 17025	270	450	2400	320	290
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	1.6
Tin (aqua regia extractable)	mg/kg	1	MCERTS	2.9	6.8	280	5.2	2.5
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	59	64	65	33	55
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	68	120	810	45	72

Calcium (aqua regia extractable)	mg/kg	20	ISO 17025	76000	30000	46000	9400	70000
Magnesium (aqua regia extractable)	mg/kg	20	ISO 17025	7200	6300	2300	1500	7800
Potassium (aqua regia extractable)	mg/kg	20	ISO 17025	2400	3400	1900	1000	1500
Sodium (aqua regia extractable)	mg/kg	20	ISO 17025	710	410	960	150	500

Monaromatics & Oxygenates

Benzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

4041

Analytical Report Number: 21-82945

Project / Site name: Abellio

Your Order No: 211177 AM

Lab Sample Number	1914360	1914361	1914362	1914363	1914364
Sample Reference	WS01	WS02	WS02	WS02	WS03
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)	0.30	0.75	1.50	4.50	0.30
Date Sampled	22/06/0221	22/06/0221	22/06/0221	22/06/0221	22/06/0221
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		

Petroleum Hydrocarbons

Diesel Range Organics (C10 - C28)	mg/kg	50	NONE	240	< 50	< 50	< 50	950
Mineral Oil (C10 - C40)	mg/kg	10	NONE	530	< 10	< 10	< 10	1200

TPH C10 - C40	mg/kg	10	MCERTS	950	41	46	65	2700
---------------	-------	----	--------	-----	----	----	----	------

TPH2 (C6 - C10)	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
-----------------	-------	-----	--------	-------	-------	-------	-------	-------

TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	3.8	< 2.0	< 2.0	< 2.0	14
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	21	< 8.0	< 8.0	< 8.0	72
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	200	< 8.0	< 8.0	< 8.0	430
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	230	< 10	< 10	< 10	520

TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	3.8	< 2.0	< 2.0	< 2.0	31
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	8	MCERTS	21	< 8.0	< 8.0	< 8.0	72
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	8	MCERTS	200	< 8.0	< 8.0	< 8.0	430
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	230	< 10	< 10	< 10	520

TPH (C10 - C25)	mg/kg	10	MCERTS	71	25	24	20	460
-----------------	-------	----	--------	----	----	----	----	-----

VOCs

Chloromethane	µg/kg	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Chloroethane	µg/kg	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromomethane	µg/kg	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vinyl Chloride	µg/kg	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trichlorofluoromethane	µg/kg	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethene	µg/kg	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,2-Trichloro 1,2,2-Trifluoroethane	µg/kg	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Cis-1,2-dichloroethene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethane	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2,2-Dichloropropane	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trichloromethane	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,1-Trichloroethane	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichloroethane	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloropropene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trans-1,2-dichloroethene	µg/kg	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Benzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tetrachloromethane	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichloropropane	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trichloroethene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Dibromomethane	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromodichloromethane	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Cis-1,3-dichloropropene	µg/kg	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trans-1,3-dichloropropene	µg/kg	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

4041

Analytical Report Number: 21-82945

Project / Site name: Abellio

Your Order No: 211177 AM

Lab Sample Number		1914360	1914361	1914362	1914363	1914364
Sample Reference		WS01	WS02	WS02	WS02	WS03
Sample Number		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)		0.30	0.75	1.50	4.50	0.30
Date Sampled		22/06/0221	22/06/0221	22/06/0221	22/06/0221	22/06/0221
Time Taken		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)		Units	Limit of detection	Accreditation Status		
Toluene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
1,1,2-Trichloroethane	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
1,3-Dichloropropane	µg/kg	1	ISO 17025	< 1.0	< 1.0	< 1.0
Dibromochloromethane	µg/kg	1	ISO 17025	< 1.0	< 1.0	< 1.0
Tetrachloroethene	µg/kg	1	NONE	< 1.0	< 1.0	< 1.0
1,2-Dibromoethane	µg/kg	1	ISO 17025	< 1.0	< 1.0	< 1.0
Chlorobenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
1,1,2-Tetrachloroethane	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
p & m-Xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Styrene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Tribromomethane	µg/kg	1	NONE	< 1.0	< 1.0	< 1.0
o-Xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
1,1,2,2-Tetrachloroethane	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Isopropylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Bromobenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
n-Propylbenzene	µg/kg	1	ISO 17025	< 1.0	< 1.0	< 1.0
2-Chlorotoluene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
4-Chlorotoluene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
1,3,5-Trimethylbenzene	µg/kg	1	ISO 17025	< 1.0	< 1.0	< 1.0
tert-Butylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
1,2,4-Trimethylbenzene	µg/kg	1	ISO 17025	< 1.0	< 1.0	< 1.0
sec-Butylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
1,3-Dichlorobenzene	µg/kg	1	ISO 17025	< 1.0	< 1.0	< 1.0
p-Isopropyltoluene	µg/kg	1	ISO 17025	< 1.0	< 1.0	< 1.0
1,2-Dichlorobenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
1,4-Dichlorobenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Butylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
1,2-Dibromo-3-chloropropane	µg/kg	1	ISO 17025	< 1.0	< 1.0	< 1.0
1,2,4-Trichlorobenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Hexachlorobutadiene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
1,2,3-Trichlorobenzene	µg/kg	1	ISO 17025	< 1.0	< 1.0	< 1.0

SVOCs

Aniline	mg/kg	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Phenol	mg/kg	0.2	ISO 17025	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
2-Chlorophenol	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Bis(2-chloroisopropyl)ether	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2-Methylphenol	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Hexachloroethane	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Nitrobenzene	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
4-Methylphenol	mg/kg	0.2	NONE	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Ispophorone	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
2-Nitrophenol	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	0.38
2,4-Dichlorophenol	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3

4041 MCERTS

Analytical Report Number: 21-82945

Project / Site name: Abellio

Your Order No: 211177 AM

Lab Sample Number		1914360	1914361	1914362	1914363	1914364
Sample Reference		WS01	WS02	WS02	WS02	WS03
Sample Number		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)		0.30	0.75	1.50	4.50	0.30
Date Sampled		22/06/0221	22/06/0221	22/06/0221	22/06/0221	22/06/0221
Time Taken		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)		Units	Limit of detection	Accreditation Status		
4-Chloroaniline	mg/kg	0.1	NONE	< 0.1	< 0.1	< 0.1
Hexachlorobutadiene	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	< 0.1	< 0.1	< 0.1
2,4,6-Trichlorophenol	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1
2,4,5-Trichlorophenol	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2
2-Methylnaphthalene	mg/kg	0.1	NONE	< 0.1	< 0.1	< 0.1
2-Chloronaphthalene	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1
Dimethylphthalate	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1
2,6-Dinitrotoluene	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	0.32	< 0.05
2,4-Dinitrotoluene	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2
Dibenzofuran	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2
4-Chlorophenyl phenyl ether	mg/kg	0.3	ISO 17025	< 0.3	< 0.3	< 0.3
Diethyl phthalate	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2
4-Nitroaniline	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2
Fluorene	mg/kg	0.05	MCERTS	< 0.05	0.45	< 0.05
Azobenzene	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2
Hexachlorobenzene	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3
Phenanthrene	mg/kg	0.05	MCERTS	1.3	2.5	0.96
Anthracene	mg/kg	0.05	MCERTS	0.33	0.57	0.20
Carbazole	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3
Dibutyl phthalate	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2
Anthraquinone	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3
Fluoranthene	mg/kg	0.05	MCERTS	2.2	4.3	1.9
Pyrene	mg/kg	0.05	MCERTS	2.3	3.7	1.7
Butyl benzyl phthalate	mg/kg	0.3	ISO 17025	< 0.3	< 0.3	< 0.3
Benzo(a)anthracene	mg/kg	0.05	MCERTS	1.1	2.6	1.3
Chrysene	mg/kg	0.05	MCERTS	1.0	1.6	0.99
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	1.3	1.9	1.1
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	0.63	0.85	0.48
Benzo(a)pyrene	mg/kg	0.05	MCERTS	0.94	1.7	0.94
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	1.0	1.2	0.65
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	0.28	0.37	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	1.2	1.3	0.71

U/S = Unsuitable Sample I/S = Insufficient Sample

4041

Analytical Report Number: 21-82945

Project / Site name: Abellio

Your Order No: 211177 AM

Lab Sample Number	1914365	1914366	1914367	1914368	1914369
Sample Reference	WS04	WS05	WS05	WS05	WS05
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)	0.80	0.80	1.50	3.60	4.90
Date Sampled	22/06/0221	22/06/0221	22/06/0221	22/06/0221	22/06/0221
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		
Stone Content	%	0.1	NONE	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	16	7.7
Total mass of sample received	kg	0.001	NONE	1.0	1.0

Asbestos in Soil Screen / Identification Name	Type	N/A	ISO 17025	Chrysotile	-	-	-	-
Asbestos in Soil	Type	N/A	ISO 17025	Detected	Not-detected	Not-detected	Not-detected	Not-detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	< 0.001	-	-	-	-
Asbestos Quantification Total	%	0.001	ISO 17025	< 0.001	-	-	-	-

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	9.3	8.7	7.9	8.4	8.4
Electrical Conductivity	µS/cm	10	ISO 17025	350	210	190	130	120
Total Cyanide	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Complex Cyanide	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Free Cyanide	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Sulphate as SO4	mg/kg	50	MCERTS	1900	1200	1100	680	380
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.38	0.34	0.18	0.19	0.084
Sulphide	mg/kg	1	MCERTS	17	570	72	31	< 1.0
Water Soluble Chloride (2:1)	mg/kg	1	MCERTS	87	68	48	46	36
Ammoniacal Nitrogen as NH4	mg/kg	0.5	MCERTS	< 0.5	24	110	7.2	2.1
Fraction Organic Carbon (FOC)	N/A	0.001	MCERTS	0.0042	0.022	0.039	0.013	0.014
Total Organic Carbon (TOC)	%	0.1	MCERTS	0.4	2.2	3.9	1.3	1.4

Total Phenols

Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
----------------------------	-------	---	--------	-------	-------	-------	-------	-------

Speciated PAHs

Naphthalene	mg/kg	0.05	MCERTS	< 0.05	0.33	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	0.24	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	0.28	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	0.42	1.3	0.43	2.0	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	0.45	< 0.05	0.91	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	0.83	2.0	0.69	4.4	< 0.05
Pyrene	mg/kg	0.05	MCERTS	0.72	1.9	0.63	4.0	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	0.52	1.2	0.53	3.9	< 0.05
Chrysene	mg/kg	0.05	MCERTS	0.45	1.1	0.47	2.6	< 0.05
Benz(b)fluoranthene	mg/kg	0.05	MCERTS	0.48	1.3	0.59	2.9	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	0.19	0.60	0.16	1.8	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	0.36	0.85	0.40	3.0	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	0.26	0.71	0.28	1.1	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	0.51	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	0.27	0.82	0.31	1.2	< 0.05

Total PAH

Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	4.50	13.2	4.49	28.3	< 0.80
-----------------------------	-------	-----	--------	------	------	------	------	--------

4041 MCERTS

Analytical Report Number: 21-82945

Project / Site name: Abellio

Your Order No: 211177 AM

Lab Sample Number		1914365	1914366	1914367	1914368	1914369
Sample Reference		WS04	WS05	WS05	WS05	WS05
Sample Number		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)		0.80	0.80	1.50	3.60	4.90
Date Sampled		22/06/0221	22/06/0221	22/06/0221	22/06/0221	22/06/0221
Time Taken		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Heavy Metals / Metalloids						
Antimony (aqua regia extractable)	mg/kg	1	ISO 17025	3.3	4.2	6.3
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	13	14	23
Barium (aqua regia extractable)	mg/kg	1	MCERTS	85	220	200
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.2	1.8	1.7
Boron (water soluble)	mg/kg	0.2	MCERTS	3.4	3.8	13
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	0.6	0.9
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	34	30	33
Cobalt (aqua regia extractable)	mg/kg	0.15	MCERTS	12	9.2	13
Copper (aqua regia extractable)	mg/kg	1	MCERTS	38	54	110
Iron (aqua regia extractable)	mg/kg	40	MCERTS	26000	20000	28000
Lead (aqua regia extractable)	mg/kg	1	MCERTS	43	150	500
Manganese (aqua regia extractable)	mg/kg	1	MCERTS	330	960	350
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	1.7
Molybdenum (aqua regia extractable)	mg/kg	0.25	MCERTS	0.80	1.8	2.5
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	31	23	34
Phosphorus (aqua regia extractable)	mg/kg	20	ISO 17025	450	450	1100
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	1.5	< 1.0
Tin (aqua regia extractable)	mg/kg	1	MCERTS	6.0	16	46
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	54	52	61
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	82	160	340
Calcium (aqua regia extractable)	mg/kg	20	ISO 17025	22000	72000	16000
Magnesium (aqua regia extractable)	mg/kg	20	ISO 17025	5300	8400	4100
Potassium (aqua regia extractable)	mg/kg	20	ISO 17025	3700	2100	3000
Sodium (aqua regia extractable)	mg/kg	20	ISO 17025	470	390	310
Monaromatics & Oxygenates						
Benzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Toluene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
p & m-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
o-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0

4041

Analytical Report Number: 21-82945

Project / Site name: Abellio

Your Order No: 211177 AM

Lab Sample Number		1914365	1914366	1914367	1914368	1914369
Sample Reference		WS04	WS05	WS05	WS05	WS05
Sample Number		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)		0.80	0.80	1.50	3.60	4.90
Date Sampled		22/06/0221	22/06/0221	22/06/0221	22/06/0221	22/06/0221
Time Taken		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Petroleum Hydrocarbons						
Diesel Range Organics (C10 - C28)	mg/kg	50	NONE	< 50	140	< 50
Mineral Oil (C10 - C40)	mg/kg	10	NONE	< 10	280	< 10
TPH C10 - C40	mg/kg	10	MCERTS	< 10	400	25
TPH2 (C6 - C10)	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	13	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	110	< 8.0
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	120	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	20	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	100	21
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	120	25
TPH (C10 - C25)	mg/kg	10	MCERTS	< 10	55	< 10
VOCs						
Chloromethane	µg/kg	1	ISO 17025	< 1.0	< 1.0	< 1.0
Chloroethane	µg/kg	1	NONE	< 1.0	< 1.0	< 1.0
Bromomethane	µg/kg	1	ISO 17025	< 1.0	< 1.0	< 1.0
Vinyl Chloride	µg/kg	1	NONE	< 1.0	< 1.0	< 1.0
Trichlorofluoromethane	µg/kg	1	NONE	< 1.0	< 1.0	< 1.0
1,1-Dichloroethene	µg/kg	1	NONE	< 1.0	< 1.0	< 1.0
1,1,2-Trichloro 1,2,2-Trifluoroethane	µg/kg	1	ISO 17025	< 1.0	< 1.0	< 1.0
Cis-1,2-dichloroethene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
1,1-Dichloroethane	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
2,2-Dichloropropane	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Trichloromethane	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
1,1,1-Trichloroethane	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
1,2-Dichloroethane	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
1,1-Dichloropropene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Trans-1,2-dichloroethene	µg/kg	1	NONE	< 1.0	< 1.0	< 1.0
Benzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Tetrachloromethane	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
1,2-Dichloropropane	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Trichloroethene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Dibromomethane	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Bromodichloromethane	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Cis-1,3-dichloropropene	µg/kg	1	ISO 17025	< 1.0	< 1.0	< 1.0
Trans-1,3-dichloropropene	µg/kg	1	ISO 17025	< 1.0	< 1.0	< 1.0

4041 MCERTS

Analytical Report Number: 21-82945

Project / Site name: Abellio

Your Order No: 211177 AM

Lab Sample Number		1914365	1914366	1914367	1914368	1914369
Sample Reference		WS04	WS05	WS05	WS05	WS05
Sample Number		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)		0.80	0.80	1.50	3.60	4.90
Date Sampled		22/06/0221	22/06/0221	22/06/0221	22/06/0221	22/06/0221
Time Taken		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)		Units	Limit of detection	Accreditation Status		
Toluene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
1,1,2-Trichloroethane	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
1,3-Dichloropropane	µg/kg	1	ISO 17025	< 1.0	< 1.0	< 1.0
Dibromochloromethane	µg/kg	1	ISO 17025	< 1.0	< 1.0	< 1.0
Tetrachloroethene	µg/kg	1	NONE	< 1.0	< 1.0	< 1.0
1,2-Dibromoethane	µg/kg	1	ISO 17025	< 1.0	< 1.0	< 1.0
Chlorobenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
1,1,2-Tetrachloroethane	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
p & m-Xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Styrene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Tribromomethane	µg/kg	1	NONE	< 1.0	< 1.0	< 1.0
o-Xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
1,1,2,2-Tetrachloroethane	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Isopropylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Bromobenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
n-Propylbenzene	µg/kg	1	ISO 17025	< 1.0	< 1.0	< 1.0
2-Chlorotoluene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
4-Chlorotoluene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
1,3,5-Trimethylbenzene	µg/kg	1	ISO 17025	< 1.0	< 1.0	< 1.0
tert-Butylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
1,2,4-Trimethylbenzene	µg/kg	1	ISO 17025	< 1.0	< 1.0	< 1.0
sec-Butylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
1,3-Dichlorobenzene	µg/kg	1	ISO 17025	< 1.0	< 1.0	< 1.0
p-Isopropyltoluene	µg/kg	1	ISO 17025	< 1.0	< 1.0	< 1.0
1,2-Dichlorobenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
1,4-Dichlorobenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Butylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
1,2-Dibromo-3-chloropropane	µg/kg	1	ISO 17025	< 1.0	< 1.0	< 1.0
1,2,4-Trichlorobenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Hexachlorobutadiene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
1,2,3-Trichlorobenzene	µg/kg	1	ISO 17025	< 1.0	< 1.0	< 1.0

SVOCs

Aniline	mg/kg	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Phenol	mg/kg	0.2	ISO 17025	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
2-Chlorophenol	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Bis(2-chloroisopropyl)ether	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2-Methylphenol	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Hexachloroethane	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Nitrobenzene	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
4-Methylphenol	mg/kg	0.2	NONE	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Ispophorone	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
2-Nitrophenol	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	0.33	< 0.05	< 0.05	< 0.05
2,4-Dichlorophenol	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3

4041 MCERTS

Analytical Report Number: 21-82945

Project / Site name: Abellio

Your Order No: 211177 AM

Lab Sample Number		1914365	1914366	1914367	1914368	1914369
Sample Reference		WS04	WS05	WS05	WS05	WS05
Sample Number		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)		0.80	0.80	1.50	3.60	4.90
Date Sampled		22/06/0221	22/06/0221	22/06/0221	22/06/0221	22/06/0221
Time Taken		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)		Units	Limit of detection	Accreditation Status		
4-Chloroaniline	mg/kg	0.1	NONE	< 0.1	< 0.1	< 0.1
Hexachlorobutadiene	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	< 0.1	< 0.1	< 0.1
2,4,6-Trichlorophenol	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1
2,4,5-Trichlorophenol	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2
2-Methylnaphthalene	mg/kg	0.1	NONE	< 0.1	< 0.1	< 0.1
2-Chloronaphthalene	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1
Dimethylphthalate	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1
2,6-Dinitrotoluene	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	0.24	< 0.05
2,4-Dinitrotoluene	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2
Dibenzofuran	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2
4-Chlorophenyl phenyl ether	mg/kg	0.3	ISO 17025	< 0.3	< 0.3	< 0.3
Diethyl phthalate	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2
4-Nitroaniline	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2
Fluorene	mg/kg	0.05	MCERTS	< 0.05	0.28	< 0.05
Azobenzene	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2
Hexachlorobenzene	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3
Phenanthrene	mg/kg	0.05	MCERTS	0.42	1.3	0.43
Anthracene	mg/kg	0.05	MCERTS	< 0.05	0.45	< 0.05
Carbazole	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3
Dibutyl phthalate	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2
Anthraquinone	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3
Fluoranthene	mg/kg	0.05	MCERTS	0.83	2.0	0.69
Pyrene	mg/kg	0.05	MCERTS	0.72	1.9	0.63
Butyl benzyl phthalate	mg/kg	0.3	ISO 17025	< 0.3	< 0.3	< 0.3
Benzo(a)anthracene	mg/kg	0.05	MCERTS	0.52	1.2	0.53
Chrysene	mg/kg	0.05	MCERTS	0.45	1.1	0.47
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	0.48	1.3	0.59
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	0.19	0.60	0.16
Benzo(a)pyrene	mg/kg	0.05	MCERTS	0.36	0.85	0.40
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	0.26	0.71	0.28
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.51
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	0.27	0.82	0.31

U/S = Unsuitable Sample I/S = Insufficient Sample

Analytical Report Number: 21-82945
Project / Site name: Abellio
Your Order No: 211177 AM

Lab Sample Number		1914370	1914371		
Sample Reference		HP101	HP102		
Sample Number		None Supplied	None Supplied		
Depth (m)		0.10	0.10		
Date Sampled		22/06/0221	22/06/0221		
Time Taken		None Supplied	None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		
Stone Content	%	0.1	NONE	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	9.7	14
Total mass of sample received	kg	0.001	NONE	1.0	1.0

Asbestos in Soil Screen / Identification Name	Type	N/A	ISO 17025	-	-
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Not-detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	-
Asbestos Quantification Total	%	0.001	ISO 17025	-	-

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	8.8	8.1
Electrical Conductivity	µS/cm	10	ISO 17025	200	97
Total Cyanide	mg/kg	1	MCERTS	< 1.0	< 1.0
Complex Cyanide	mg/kg	1	MCERTS	< 1.0	< 1.0
Free Cyanide	mg/kg	1	MCERTS	< 1.0	< 1.0
Total Sulphate as SO4	mg/kg	50	MCERTS	1200	870
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.075	0.034
Sulphide	mg/kg	1	MCERTS	30	6.8
Water Soluble Chloride (2:1)	mg/kg	1	MCERTS	44	10
Ammoniacal Nitrogen as NH4	mg/kg	0.5	MCERTS	1.7	0.7
Fraction Organic Carbon (FOC)	N/A	0.001	MCERTS	0.052	0.041
Total Organic Carbon (TOC)	%	0.1	MCERTS	5.2	4.0

Total Phenols

Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0
----------------------------	-------	---	--------	-------	-------

Speciated PAHs

Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	1.1
Anthracene	mg/kg	0.05	MCERTS	< 0.05	0.32
Fluoranthene	mg/kg	0.05	MCERTS	1.2	2.5
Pyrene	mg/kg	0.05	MCERTS	1.5	2.2
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	1.4
Chrysene	mg/kg	0.05	MCERTS	< 0.05	1.1
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	1.6
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	0.52
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	1.3
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	0.58
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	0.72

Total PAH

Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	2.67	13.2
-----------------------------	-------	-----	--------	------	------

Analytical Report Number: 21-82945

Project / Site name: Abellio

Your Order No: 211177 AM

Lab Sample Number		1914370	1914371
Sample Reference		HP101	HP102
Sample Number		None Supplied	None Supplied
Depth (m)		0.10	0.10
Date Sampled		22/06/0221	22/06/0221
Time Taken		None Supplied	None Supplied

Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status	
Heavy Metals / Metalloids				

Antimony (aqua regia extractable)	mg/kg	1	ISO 17025	11	4.4
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	12	13
Barium (aqua regia extractable)	mg/kg	1	MCERTS	140	110
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	0.53	0.60
Boron (water soluble)	mg/kg	0.2	MCERTS	4.9	4.9
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	0.6	0.7
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	33	19
Cobalt (aqua regia extractable)	mg/kg	0.15	MCERTS	6.4	7.0
Copper (aqua regia extractable)	mg/kg	1	MCERTS	110	37
Iron (aqua regia extractable)	mg/kg	40	MCERTS	18000	17000
Lead (aqua regia extractable)	mg/kg	1	MCERTS	84	110
Manganese (aqua regia extractable)	mg/kg	1	MCERTS	330	300
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	0.6	0.5
Molybdenum (aqua regia extractable)	mg/kg	0.25	MCERTS	3.7	1.0
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	19	15
Phosphorus (aqua regia extractable)	mg/kg	20	ISO 17025	910	1200
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0
Tin (aqua regia extractable)	mg/kg	1	MCERTS	9.2	8.3
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	38	33
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	270	200

Calcium (aqua regia extractable)	mg/kg	20	ISO 17025	30000	16000
Magnesium (aqua regia extractable)	mg/kg	20	ISO 17025	6000	1700
Potassium (aqua regia extractable)	mg/kg	20	ISO 17025	1300	1300
Sodium (aqua regia extractable)	mg/kg	20	ISO 17025	220	150

Monoaromatics & Oxygenates	µg/kg	1	MCERTS	< 1.0	< 1.0
Benzene	µg/kg	1	MCERTS	< 1.0	< 1.0
Toluene	µg/kg	1	MCERTS	< 1.0	< 1.0
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0
p & m-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0
o-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	< 1.0

Analytical Report Number: 21-82945

Project / Site name: Abellio

Your Order No: 211177 AM

Lab Sample Number		1914370	1914371	
Sample Reference		HP101	HP102	
Sample Number		None Supplied	None Supplied	
Depth (m)		0.10	0.10	
Date Sampled		22/06/0221	22/06/0221	
Time Taken		None Supplied	None Supplied	
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status	
Petroleum Hydrocarbons				
Diesel Range Organics (C10 - C28)	mg/kg	50	NONE	10000 < 50
Mineral Oil (C10 - C40)	mg/kg	10	NONE	12000 < 10
TPH C10 - C40	mg/kg	10	MCERTS	12000 66
TPH2 (C6 - C10)	mg/kg	0.1	MCERTS	< 0.1 < 0.1
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001 < 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001 < 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001 < 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0 < 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	90 < 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	1100 < 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	8000 < 8.0
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	9200 < 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001 < 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001 < 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001 < 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0 < 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0 < 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10 14
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10 34
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10 49
TPH (C10 - C25)	mg/kg	10	MCERTS	9500 29
VOCs				
Chloromethane	µg/kg	1	ISO 17025	< 1.0 < 1.0
Chloroethane	µg/kg	1	NONE	< 1.0 < 1.0
Bromomethane	µg/kg	1	ISO 17025	< 1.0 < 1.0
Vinyl Chloride	µg/kg	1	NONE	< 1.0 < 1.0
Trichlorofluoromethane	µg/kg	1	NONE	< 1.0 < 1.0
1,1-Dichloroethene	µg/kg	1	NONE	< 1.0 < 1.0
1,1,2-Trichloro 1,2,2-Trifluoroethane	µg/kg	1	ISO 17025	< 1.0 < 1.0
Cis-1,2-dichloroethene	µg/kg	1	MCERTS	< 1.0 < 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0 < 1.0
1,1-Dichloroethane	µg/kg	1	MCERTS	< 1.0 < 1.0
2,2-Dichloropropane	µg/kg	1	MCERTS	< 1.0 < 1.0
Trichloromethane	µg/kg	1	MCERTS	< 1.0 < 1.0
1,1,1-Trichloroethane	µg/kg	1	MCERTS	< 1.0 < 1.0
1,2-Dichloroethane	µg/kg	1	MCERTS	< 1.0 < 1.0
1,1-Dichloropropene	µg/kg	1	MCERTS	< 1.0 < 1.0
Trans-1,2-dichloroethene	µg/kg	1	NONE	< 1.0 < 1.0
Benzene	µg/kg	1	MCERTS	< 1.0 < 1.0
Tetrachloromethane	µg/kg	1	MCERTS	< 1.0 < 1.0
1,2-Dichloropropane	µg/kg	1	MCERTS	< 1.0 < 1.0
Trichloroethene	µg/kg	1	MCERTS	< 1.0 < 1.0
Dibromomethane	µg/kg	1	MCERTS	< 1.0 < 1.0
Bromodichloromethane	µg/kg	1	MCERTS	< 1.0 < 1.0
Cis-1,3-dichloropropene	µg/kg	1	ISO 17025	< 1.0 < 1.0
Trans-1,3-dichloropropene	µg/kg	1	ISO 17025	< 1.0 < 1.0

Analytical Report Number: 21-82945

Project / Site name: Abellio

Your Order No: 211177 AM

Lab Sample Number		1914370	1914371
Sample Reference		HP101	HP102
Sample Number		None Supplied	None Supplied
Depth (m)		0.10	0.10
Date Sampled		22/06/0221	22/06/0221
Time Taken		None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status
Toluene	µg/kg	1	MCERTS
1,1,2-Trichloroethane	µg/kg	1	MCERTS
1,3-Dichloropropane	µg/kg	1	ISO 17025
Dibromochloromethane	µg/kg	1	ISO 17025
Tetrachloroethene	µg/kg	1	NONE
1,2-Dibromoethane	µg/kg	1	ISO 17025
Chlorobenzene	µg/kg	1	MCERTS
1,1,1,2-Tetrachloroethane	µg/kg	1	MCERTS
Ethylbenzene	µg/kg	1	MCERTS
p & m-Xylene	µg/kg	1	MCERTS
Styrene	µg/kg	1	MCERTS
Tribromomethane	µg/kg	1	NONE
o-Xylene	µg/kg	1	MCERTS
1,1,2,2-Tetrachloroethane	µg/kg	1	MCERTS
Isopropylbenzene	µg/kg	1	MCERTS
Bromobenzene	µg/kg	1	MCERTS
n-Propylbenzene	µg/kg	1	ISO 17025
2-Chlorotoluene	µg/kg	1	MCERTS
4-Chlorotoluene	µg/kg	1	MCERTS
1,3,5-Trimethylbenzene	µg/kg	1	ISO 17025
tert-Butylbenzene	µg/kg	1	MCERTS
1,2,4-Trimethylbenzene	µg/kg	1	ISO 17025
sec-Butylbenzene	µg/kg	1	MCERTS
1,3-Dichlorobenzene	µg/kg	1	ISO 17025
p-Isopropyltoluene	µg/kg	1	ISO 17025
1,2-Dichlorobenzene	µg/kg	1	MCERTS
1,4-Dichlorobenzene	µg/kg	1	MCERTS
Butylbenzene	µg/kg	1	MCERTS
1,2-Dibromo-3-chloropropane	µg/kg	1	ISO 17025
1,2,4-Trichlorobenzene	µg/kg	1	MCERTS
Hexachlorobutadiene	µg/kg	1	MCERTS
1,2,3-Trichlorobenzene	µg/kg	1	ISO 17025

SVOCs

Aniline	mg/kg	0.1	NONE	< 0.1	< 0.1
Phenol	mg/kg	0.2	ISO 17025	< 0.2	< 0.2
2-Chlorophenol	mg/kg	0.1	MCERTS	< 0.1	< 0.1
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	< 0.2	< 0.2
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	< 0.2	< 0.2
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	< 0.1	< 0.1
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS	< 0.2	< 0.2
Bis(2-chloroisopropyl)ether	mg/kg	0.1	MCERTS	< 0.1	< 0.1
2-Methylphenol	mg/kg	0.3	MCERTS	< 0.3	< 0.3
Hexachloroethane	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Nitrobenzene	mg/kg	0.3	MCERTS	< 0.3	< 0.3
4-Methylphenol	mg/kg	0.2	NONE	< 0.2	< 0.2
Isophorone	mg/kg	0.2	MCERTS	< 0.2	< 0.2
2-Nitrophenol	mg/kg	0.3	MCERTS	< 0.3	< 0.3
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	< 0.3	< 0.3
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	< 0.3	< 0.3
1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS	< 0.3	< 0.3
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
2,4-Dichlorophenol	mg/kg	0.3	MCERTS	< 0.3	< 0.3

Analytical Report Number: 21-82945

Project / Site name: Abellio

Your Order No: 211177 AM

Lab Sample Number		1914370	1914371
Sample Reference		HP101	HP102
Sample Number		None Supplied	None Supplied
Depth (m)		0.10	0.10
Date Sampled		22/06/0221	22/06/0221
Time Taken		None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status
4-Chloroaniline	mg/kg	0.1	NONE
Hexachlorobutadiene	mg/kg	0.1	MCERTS
4-Chloro-3-methylphenol	mg/kg	0.1	NONE
2,4,6-Trichlorophenol	mg/kg	0.1	MCERTS
2,4,5-Trichlorophenol	mg/kg	0.2	MCERTS
2-Methylnaphthalene	mg/kg	0.1	NONE
2-Chloronaphthalene	mg/kg	0.1	MCERTS
Dimethylphthalate	mg/kg	0.1	MCERTS
2,6-Dinitrotoluene	mg/kg	0.1	MCERTS
Acenaphthylene	mg/kg	0.05	MCERTS
Acenaphthene	mg/kg	0.05	MCERTS
2,4-Dinitrotoluene	mg/kg	0.2	MCERTS
Dibenzofuran	mg/kg	0.2	MCERTS
4-Chlorophenyl phenyl ether	mg/kg	0.3	ISO 17025
Diethyl phthalate	mg/kg	0.2	MCERTS
4-Nitroaniline	mg/kg	0.2	MCERTS
Fluorene	mg/kg	0.05	MCERTS
Azobenzene	mg/kg	0.3	MCERTS
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS
Hexachlorobenzene	mg/kg	0.3	MCERTS
Phenanthrene	mg/kg	0.05	MCERTS
Anthracene	mg/kg	0.05	MCERTS
Carbazole	mg/kg	0.3	MCERTS
Dibutyl phthalate	mg/kg	0.2	MCERTS
Anthraquinone	mg/kg	0.3	MCERTS
Fluoranthene	mg/kg	0.05	MCERTS
Pyrene	mg/kg	0.05	MCERTS
Butyl benzyl phthalate	mg/kg	0.3	ISO 17025
Benzo(a)anthracene	mg/kg	0.05	MCERTS
Chrysene	mg/kg	0.05	MCERTS
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS
Benzo(a)pyrene	mg/kg	0.05	MCERTS
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS
Benzo(ghi)perylene	mg/kg	0.05	MCERTS

U/S = Unsuitable Sample I/S = Insufficient Sample

Analytical Report Number: 21-82945

Project / Site name: Abellio

Your Order No: 211177 AM

Certificate of Analysis - Asbestos Quantification

Methods:

Qualitative Analysis

The samples were analysed qualitatively for asbestos by polarising light and dispersion staining as described by the Health and Safety Executive in HSG 248.

Quantitative Analysis

The analysis was carried out using our documented in-house method A006-PL based on HSE Contract Research Report No: 83/1996: Development and Validation of an analytical method to determine the amount of asbestos in soils and loose aggregates (Davies et al, 1996) and HSG 248. Our method includes initial examination of the entire representative sample, then fractionation and detailed analysis of each fraction, with quantification by hand picking and weighing.

The limit of detection (reporting limit) of this method is 0.001 %.

The method has been validated using samples of at least 100 g, results for samples smaller than this should be interpreted with caution.

Both Qualitative and Quantitative Analyses are UKAS accredited.

Sample Number	Sample ID	Sample Depth (m)	Sample Weight (g)	Asbestos Containing Material Types Detected (ACM)	PLM Results	Asbestos by hand picking/weighing (%)	Total % Asbestos in Sample
1914365	WS04	0.80	155	Loose Fibres	Chrysotile	< 0.001	< 0.001

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

Analytical Report Number : 21-82945

Project / Site name: Abellio

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1914360	WS01	None Supplied	0.3	Brown loam with gravel.
1914361	WS02	None Supplied	0.75	Brown clay and loam with vegetation.
1914362	WS02	None Supplied	1.5	Brown loam with gravel.
1914363	WS02	None Supplied	4.5	Brown clay and loam with gravel.
1914364	WS03	None Supplied	0.3	Brown loam with gravel.
1914365	WS04	None Supplied	0.8	Brown clay and loam with gravel.
1914366	WS05	None Supplied	0.8	Brown loam and clay with gravel.
1914367	WS05	None Supplied	1.5	Brown clay and loam with gravel and vegetation.
1914368	WS05	None Supplied	3.6	Brown clay and loam with gravel and vegetation.
1914369	WS05	None Supplied	4.9	Brown clay and loam with gravel.
1914370	HP101	None Supplied	0.1	Brown loam with vegetation and gravel
1914371	HP102	None Supplied	0.1	Brown loam with gravel and vegetation.

Analytical Report Number : 21-82945

Project / Site name: Abellio

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
Cations in soil by ICP-OES	Determination of cations in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	ISO 17025
Complex Cyanide in soil	Determination of complex cyanide by calculation.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Chloride, water soluble, in soil	Determination of Chloride colorimetrically by discrete analyser.	In house method.	L082-PL	D	MCERTS
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
DRO C10-28 (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method with silica gel split/clean up.	L076-PL	D	NONE
Electrical conductivity of soil	Determination of electrical conductivity in soil by electrometric measurement.	In-house method	L031-PL	D	ISO 17025
Free cyanide in soil	Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Fraction of Organic Carbon in soil	Determination of fraction of organic carbon in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
Mineral Oil (Soil) C10 - C40	Determination of mineral oil fraction extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L076-PL	D	NONE
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS

Analytical Report Number : 21-82945

Project / Site name: Abellio

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Sulphide in soil	Determination of sulphide in soil by acidification and heating to liberate hydrogen sulphide, trapped in an alkaline solution then assayed by ion selective electrode.	In-house method	L010-PL	D	MCERTS
Total sulphate (as SO ₄ in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Semi-volatile organic compounds in soil	Determination of semi-volatile organic compounds in soil by extraction in dichloromethane and hexane followed by GC-MS.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
TPH2 (Soil)	Determination of hydrocarbons C6-C10 by headspace GC-MS.	In-house method based on USEPA8260	L088-PL	W	MCERTS
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
Volatile organic compounds in soil	Determination of volatile organic compounds in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Ammonium as NH ₄ in soil	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the colorimetric salicylate/nitroprusside method, 10:1 water extraction.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	MCERTS
DRO (Soil)	Determination of extractable hydrocarbons in soil by GC-MS/FID.	In-house method with silica gel split/clean up.	L076-PL	D	MCERTS
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS
TPH Banding in Soil by FID	Determination of hexane extractable hydrocarbons in soil by GC-FID.	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	W	MCERTS
Asbestos Quantification - Gravimetric	Asbestos quantification by gravimetric method - in house method based on references.	HSE Report No: 83/1996, HSG 248, HSG 264 & SCA Blue Book (draft).	A006-PL	D	ISO 17025

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Sample Deviation Report

Analytical Report Number : 21-82945

Project / Site name: Abellio

Sample ID	Other ID	Sample Type	Lab Sample Number	Sample Deviation	Test Name	Test Ref	Test Deviation
HP101	None Supplied	S	1914370	c	Free cyanide in soil	L080-PL	c
HP101	None Supplied	S	1914370	c	Hexavalent chromium in soil	L080-PL	c
HP101	None Supplied	S	1914370	c	Ammoniacal Nitrogen as N in soil	L082-PL	c
HP101	None Supplied	S	1914370	c	Ammonium as NH4 in soil	L082-PL	c
HP101	None Supplied	S	1914370	c	BTEX and MTBE in soil (Monoaromatics)	L073B-PL	c
HP101	None Supplied	S	1914370	c	Chloride, water soluble, in soil	L082-PL	c
HP101	None Supplied	S	1914370	c	Complex Cyanide in soil	L080-PL	c
HP101	None Supplied	S	1914370	c	DRO (Soil)	L076-PL	c
HP101	None Supplied	S	1914370	c	DRO C10-28 (Soil)	L076-PL	c
HP101	None Supplied	S	1914370	c	Electrical conductivity of soil	L031-PL	c
HP101	None Supplied	S	1914370	c	Fraction of Organic Carbon in soil	L009-PL	c
HP101	None Supplied	S	1914370	c	Mineral Oil (Soil) C10 - C40	L076-PL	c
HP101	None Supplied	S	1914370	c	Monohydric phenols in soil	L080-PL	c
HP101	None Supplied	S	1914370	c	Organic matter (Automated) in soil	L009-PL	c
HP101	None Supplied	S	1914370	c	Semi-volatile organic compounds in soil	L064-PL	c
HP101	None Supplied	S	1914370	c	Speciated EPA-16 PAHs in soil	L064-PL	c
HP101	None Supplied	S	1914370	c	Sulphide in soil	L010-PL	c
HP101	None Supplied	S	1914370	c	TPH Banding in Soil by FID	L076-PL	c
HP101	None Supplied	S	1914370	c	TPH2 (Soil)	L088-PL	c
HP101	None Supplied	S	1914370	c	TPHCWG (Soil)	L088/76-PL	c
HP101	None Supplied	S	1914370	c	Total cyanide in soil	L080-PL	c
HP101	None Supplied	S	1914370	c	Total organic carbon (Automated) in soil	L009-PL	c
HP101	None Supplied	S	1914370	c	Volatile organic compounds in soil	L073B-PL	c
HP101	None Supplied	S	1914370	c	pH in soil (automated)	L099-PL	c
HP102	None Supplied	S	1914371	c	Free cyanide in soil	L080-PL	c
HP102	None Supplied	S	1914371	c	Hexavalent chromium in soil	L080-PL	c
HP102	None Supplied	S	1914371	c	Ammoniacal Nitrogen as N in soil	L082-PL	c
HP102	None Supplied	S	1914371	c	Ammonium as NH4 in soil	L082-PL	c
HP102	None Supplied	S	1914371	c	BTEX and MTBE in soil (Monoaromatics)	L073B-PL	c
HP102	None Supplied	S	1914371	c	Chloride, water soluble, in soil	L082-PL	c
HP102	None Supplied	S	1914371	c	Complex Cyanide in soil	L080-PL	c
HP102	None Supplied	S	1914371	c	DRO (Soil)	L076-PL	c
HP102	None Supplied	S	1914371	c	DRO C10-28 (Soil)	L076-PL	c
HP102	None Supplied	S	1914371	c	Electrical conductivity of soil	L031-PL	c
HP102	None Supplied	S	1914371	c	Fraction of Organic Carbon in soil	L009-PL	c
HP102	None Supplied	S	1914371	c	Mineral Oil (Soil) C10 - C40	L076-PL	c
HP102	None Supplied	S	1914371	c	Monohydric phenols in soil	L080-PL	c
HP102	None Supplied	S	1914371	c	Organic matter (Automated) in soil	L009-PL	c
HP102	None Supplied	S	1914371	c	Semi-volatile organic compounds in soil	L064-PL	c
HP102	None Supplied	S	1914371	c	Speciated EPA-16 PAHs in soil	L064-PL	c
HP102	None Supplied	S	1914371	c	Sulphide in soil	L010-PL	c
HP102	None Supplied	S	1914371	c	TPH Banding in Soil by FID	L076-PL	c
HP102	None Supplied	S	1914371	c	TPH2 (Soil)	L088-PL	c
HP102	None Supplied	S	1914371	c	TPHCWG (Soil)	L088/76-PL	c
HP102	None Supplied	S	1914371	c	Total cyanide in soil	L080-PL	c
HP102	None Supplied	S	1914371	c	Total organic carbon (Automated) in soil	L009-PL	c
HP102	None Supplied	S	1914371	c	Volatile organic compounds in soil	L073B-PL	c
HP102	None Supplied	S	1914371	c	pH in soil (automated)	L099-PL	c
WS01	None Supplied	S	1914360	c	Free cyanide in soil	L080-PL	c
WS01	None Supplied	S	1914360	c	Hexavalent chromium in soil	L080-PL	c
WS01	None Supplied	S	1914360	c	Ammoniacal Nitrogen as N in soil	L082-PL	c
WS01	None Supplied	S	1914360	c	Ammonium as NH4 in soil	L082-PL	c
WS01	None Supplied	S	1914360	c	BTEX and MTBE in soil (Monoaromatics)	L073B-PL	c
WS01	None Supplied	S	1914360	c	Chloride, water soluble, in soil	L082-PL	c
WS01	None Supplied	S	1914360	c	Complex Cyanide in soil	L080-PL	c
WS01	None Supplied	S	1914360	c	DRO (Soil)	L076-PL	c
WS01	None Supplied	S	1914360	c	DRO C10-28 (Soil)	L076-PL	c
WS01	None Supplied	S	1914360	c	Electrical conductivity of soil	L031-PL	c
WS01	None Supplied	S	1914360	c	Fraction of Organic Carbon in soil	L009-PL	c
WS01	None Supplied	S	1914360	c	Mineral Oil (Soil) C10 - C40	L076-PL	c

Sample Deviation Report

Analytical Report Number : 21-82945

Project / Site name: Abellio

Sample ID	Other ID	Sample Type	Lab Sample Number	Sample Deviation	Test Name	Test Ref	Test Deviation
HP101	None Supplied	S	1914370	c	Free cyanide in soil	L080-PL	c
WS01	None Supplied	S	1914360	c	Monohydric phenols in soil	L080-PL	c
WS01	None Supplied	S	1914360	c	Organic matter (Automated) in soil	L009-PL	c
WS01	None Supplied	S	1914360	c	Semi-volatile organic compounds in soil	L064-PL	c
WS01	None Supplied	S	1914360	c	Speciated EPA-16 PAHs in soil	L064-PL	c
WS01	None Supplied	S	1914360	c	Sulphide in soil	L010-PL	c
WS01	None Supplied	S	1914360	c	TPH Banding in Soil by FID	L076-PL	c
WS01	None Supplied	S	1914360	c	TPH2 (Soil)	L088-PL	c
WS01	None Supplied	S	1914360	c	TPHCWG (Soil)	L088/76-PL	c
WS01	None Supplied	S	1914360	c	Total cyanide in soil	L080-PL	c
WS01	None Supplied	S	1914360	c	Total organic carbon (Automated) in soil	L009-PL	c
WS01	None Supplied	S	1914360	c	Volatile organic compounds in soil	L073B-PL	c
WS01	None Supplied	S	1914360	c	pH in soil (automated)	L099-PL	c
WS02	None Supplied	S	1914361	c	Free cyanide in soil	L080-PL	c
WS02	None Supplied	S	1914361	c	Hexavalent chromium in soil	L080-PL	c
WS02	None Supplied	S	1914361	c	Ammoniacal Nitrogen as N in soil	L082-PL	c
WS02	None Supplied	S	1914361	c	Ammonium as NH4 in soil	L082-PL	c
WS02	None Supplied	S	1914361	c	BTEx and MTBE in soil (Monoaromatics)	L073B-PL	c
WS02	None Supplied	S	1914361	c	Chloride, water soluble, in soil	L082-PL	c
WS02	None Supplied	S	1914361	c	Complex Cyanide in soil	L080-PL	c
WS02	None Supplied	S	1914361	c	DRO (Soil)	L076-PL	c
WS02	None Supplied	S	1914361	c	DRO C10-28 (Soil)	L076-PL	c
WS02	None Supplied	S	1914361	c	Electrical conductivity of soil	L031-PL	c
WS02	None Supplied	S	1914361	c	Fraction of Organic Carbon in soil	L009-PL	c
WS02	None Supplied	S	1914361	c	Mineral Oil (Soil) C10 - C40	L076-PL	c
WS02	None Supplied	S	1914361	c	Monohydric phenols in soil	L080-PL	c
WS02	None Supplied	S	1914361	c	Organic matter (Automated) in soil	L009-PL	c
WS02	None Supplied	S	1914361	c	Semi-volatile organic compounds in soil	L064-PL	c
WS02	None Supplied	S	1914361	c	Speciated EPA-16 PAHs in soil	L064-PL	c
WS02	None Supplied	S	1914361	c	Sulphide in soil	L010-PL	c
WS02	None Supplied	S	1914361	c	TPH Banding in Soil by FID	L076-PL	c
WS02	None Supplied	S	1914361	c	TPH2 (Soil)	L088-PL	c
WS02	None Supplied	S	1914361	c	TPHCWG (Soil)	L088/76-PL	c
WS02	None Supplied	S	1914361	c	Total cyanide in soil	L080-PL	c
WS02	None Supplied	S	1914361	c	Total organic carbon (Automated) in soil	L009-PL	c
WS02	None Supplied	S	1914361	c	Volatile organic compounds in soil	L073B-PL	c
WS02	None Supplied	S	1914361	c	pH in soil (automated)	L099-PL	c
WS02	None Supplied	S	1914362	c	Free cyanide in soil	L080-PL	c
WS02	None Supplied	S	1914362	c	Hexavalent chromium in soil	L080-PL	c
WS02	None Supplied	S	1914362	c	Ammoniacal Nitrogen as N in soil	L082-PL	c
WS02	None Supplied	S	1914362	c	Ammonium as NH4 in soil	L082-PL	c
WS02	None Supplied	S	1914362	c	BTEx and MTBE in soil (Monoaromatics)	L073B-PL	c
WS02	None Supplied	S	1914362	c	Chloride, water soluble, in soil	L082-PL	c
WS02	None Supplied	S	1914362	c	Complex Cyanide in soil	L080-PL	c
WS02	None Supplied	S	1914362	c	DRO (Soil)	L076-PL	c
WS02	None Supplied	S	1914362	c	DRO C10-28 (Soil)	L076-PL	c
WS02	None Supplied	S	1914362	c	Electrical conductivity of soil	L031-PL	c
WS02	None Supplied	S	1914362	c	Fraction of Organic Carbon in soil	L009-PL	c
WS02	None Supplied	S	1914362	c	Mineral Oil (Soil) C10 - C40	L076-PL	c
WS02	None Supplied	S	1914362	c	Monohydric phenols in soil	L080-PL	c
WS02	None Supplied	S	1914362	c	Organic matter (Automated) in soil	L009-PL	c
WS02	None Supplied	S	1914362	c	Semi-volatile organic compounds in soil	L064-PL	c
WS02	None Supplied	S	1914362	c	Speciated EPA-16 PAHs in soil	L064-PL	c
WS02	None Supplied	S	1914362	c	Sulphide in soil	L010-PL	c
WS02	None Supplied	S	1914362	c	TPH Banding in Soil by FID	L076-PL	c
WS02	None Supplied	S	1914362	c	TPH2 (Soil)	L088-PL	c
WS02	None Supplied	S	1914362	c	TPHCWG (Soil)	L088/76-PL	c
WS02	None Supplied	S	1914362	c	Total cyanide in soil	L080-PL	c
WS02	None Supplied	S	1914362	c	Total organic carbon (Automated) in soil	L009-PL	c

Sample Deviation Report

Analytical Report Number : 21-82945

Project / Site name: Abellio

Sample ID	Other ID	Sample Type	Lab Sample Number	Sample Deviation	Test Name	Test Ref	Test Deviation
HP101	None Supplied	S	1914370	c	Free cyanide in soil	L080-PL	c
WS02	None Supplied	S	1914362	c	Volatile organic compounds in soil	L073B-PL	c
WS02	None Supplied	S	1914362	c	pH in soil (automated)	L099-PL	c
WS02	None Supplied	S	1914363	c	Free cyanide in soil	L080-PL	c
WS02	None Supplied	S	1914363	c	Hexavalent chromium in soil	L080-PL	c
WS02	None Supplied	S	1914363	c	Ammoniacal Nitrogen as N in soil	L082-PL	c
WS02	None Supplied	S	1914363	c	Ammonium as NH4 in soil	L082-PL	c
WS02	None Supplied	S	1914363	c	BTEX and MTBE in soil (Monoaromatics)	L073B-PL	c
WS02	None Supplied	S	1914363	c	Chloride, water soluble, in soil	L082-PL	c
WS02	None Supplied	S	1914363	c	Complex Cyanide in soil	L080-PL	c
WS02	None Supplied	S	1914363	c	DRO (Soil)	L076-PL	c
WS02	None Supplied	S	1914363	c	DRO C10-28 (Soil)	L076-PL	c
WS02	None Supplied	S	1914363	c	Electrical conductivity of soil	L031-PL	c
WS02	None Supplied	S	1914363	c	Fraction of Organic Carbon in soil	L009-PL	c
WS02	None Supplied	S	1914363	c	Mineral Oil (Soil) C10 - C40	L076-PL	c
WS02	None Supplied	S	1914363	c	Monohydric phenols in soil	L080-PL	c
WS02	None Supplied	S	1914363	c	Organic matter (Automated) in soil	L009-PL	c
WS02	None Supplied	S	1914363	c	Semi-volatile organic compounds in soil	L064-PL	c
WS02	None Supplied	S	1914363	c	Speciated EPA-16 PAHs in soil	L064-PL	c
WS02	None Supplied	S	1914363	c	Sulphide in soil	L010-PL	c
WS02	None Supplied	S	1914363	c	TPH Banding in Soil by FID	L076-PL	c
WS02	None Supplied	S	1914363	c	TPH2 (Soil)	L088-PL	c
WS02	None Supplied	S	1914363	c	TPHCWG (Soil)	L088/76-PL	c
WS02	None Supplied	S	1914363	c	Total cyanide in soil	L080-PL	c
WS02	None Supplied	S	1914363	c	Total organic carbon (Automated) in soil	L009-PL	c
WS02	None Supplied	S	1914363	c	Volatile organic compounds in soil	L073B-PL	c
WS02	None Supplied	S	1914363	c	pH in soil (automated)	L099-PL	c
WS03	None Supplied	S	1914364	c	Free cyanide in soil	L080-PL	c
WS03	None Supplied	S	1914364	c	Hexavalent chromium in soil	L080-PL	c
WS03	None Supplied	S	1914364	c	Ammoniacal Nitrogen as N in soil	L082-PL	c
WS03	None Supplied	S	1914364	c	Ammonium as NH4 in soil	L082-PL	c
WS03	None Supplied	S	1914364	c	BTEX and MTBE in soil (Monoaromatics)	L073B-PL	c
WS03	None Supplied	S	1914364	c	Chloride, water soluble, in soil	L082-PL	c
WS03	None Supplied	S	1914364	c	Complex Cyanide in soil	L080-PL	c
WS03	None Supplied	S	1914364	c	DRO (Soil)	L076-PL	c
WS03	None Supplied	S	1914364	c	DRO C10-28 (Soil)	L076-PL	c
WS03	None Supplied	S	1914364	c	Electrical conductivity of soil	L031-PL	c
WS03	None Supplied	S	1914364	c	Fraction of Organic Carbon in soil	L009-PL	c
WS03	None Supplied	S	1914364	c	Mineral Oil (Soil) C10 - C40	L076-PL	c
WS03	None Supplied	S	1914364	c	Monohydric phenols in soil	L080-PL	c
WS03	None Supplied	S	1914364	c	Organic matter (Automated) in soil	L009-PL	c
WS03	None Supplied	S	1914364	c	Semi-volatile organic compounds in soil	L064-PL	c
WS03	None Supplied	S	1914364	c	Speciated EPA-16 PAHs in soil	L064-PL	c
WS03	None Supplied	S	1914364	c	Sulphide in soil	L010-PL	c
WS03	None Supplied	S	1914364	c	TPH Banding in Soil by FID	L076-PL	c
WS03	None Supplied	S	1914364	c	TPH2 (Soil)	L088-PL	c
WS03	None Supplied	S	1914364	c	TPHCWG (Soil)	L088/76-PL	c
WS03	None Supplied	S	1914364	c	Total cyanide in soil	L080-PL	c
WS03	None Supplied	S	1914364	c	Total organic carbon (Automated) in soil	L009-PL	c
WS03	None Supplied	S	1914364	c	Volatile organic compounds in soil	L073B-PL	c
WS03	None Supplied	S	1914364	c	pH in soil (automated)	L099-PL	c
WS04	None Supplied	S	1914365	c	Free cyanide in soil	L080-PL	c
WS04	None Supplied	S	1914365	c	Hexavalent chromium in soil	L080-PL	c
WS04	None Supplied	S	1914365	c	Ammoniacal Nitrogen as N in soil	L082-PL	c
WS04	None Supplied	S	1914365	c	Ammonium as NH4 in soil	L082-PL	c
WS04	None Supplied	S	1914365	c	BTEX and MTBE in soil (Monoaromatics)	L073B-PL	c
WS04	None Supplied	S	1914365	c	Chloride, water soluble, in soil	L082-PL	c
WS04	None Supplied	S	1914365	c	Complex Cyanide in soil	L080-PL	c
WS04	None Supplied	S	1914365	c	DRO (Soil)	L076-PL	c

Key: **a** - No sampling date **b** - Incorrect container
c - Holding time **d** - Headspace **e** - Temperature

Iss No 21-82945-2 Abellio 211177
Page 23 of 25

Sample Deviation Report

Analytical Report Number : 21-82945

Project / Site name: Abellio

Sample ID	Other ID	Sample Type	Lab Sample Number	Sample Deviation	Test Name	Test Ref	Test Deviation
HP101	None Supplied	S	1914370	c	Free cyanide in soil	L080-PL	c
WS04	None Supplied	S	1914365	c	DRO C10-28 (Soil)	L076-PL	c
WS04	None Supplied	S	1914365	c	Electrical conductivity of soil	L031-PL	c
WS04	None Supplied	S	1914365	c	Fraction of Organic Carbon in soil	L009-PL	c
WS04	None Supplied	S	1914365	c	Mineral Oil (Soil) C10 - C40	L076-PL	c
WS04	None Supplied	S	1914365	c	Monohydric phenols in soil	L080-PL	c
WS04	None Supplied	S	1914365	c	Organic matter (Automated) in soil	L009-PL	c
WS04	None Supplied	S	1914365	c	Semi-volatile organic compounds in soil	L064-PL	c
WS04	None Supplied	S	1914365	c	Speciated EPA-16 PAHs in soil	L064-PL	c
WS04	None Supplied	S	1914365	c	Sulphide in soil	L010-PL	c
WS04	None Supplied	S	1914365	c	TPH Banding in Soil by FID	L076-PL	c
WS04	None Supplied	S	1914365	c	TPH2 (Soil)	L088-PL	c
WS04	None Supplied	S	1914365	c	TPHCWG (Soil)	L088/76-PL	c
WS04	None Supplied	S	1914365	c	Total cyanide in soil	L080-PL	c
WS04	None Supplied	S	1914365	c	Total organic carbon (Automated) in soil	L009-PL	c
WS04	None Supplied	S	1914365	c	Volatile organic compounds in soil	L073B-PL	c
WS04	None Supplied	S	1914365	c	pH in soil (automated)	L099-PL	c
WS05	None Supplied	S	1914366	c	Free cyanide in soil	L080-PL	c
WS05	None Supplied	S	1914366	c	Hexavalent chromium in soil	L080-PL	c
WS05	None Supplied	S	1914366	c	Ammoniacal Nitrogen as N in soil	L082-PL	c
WS05	None Supplied	S	1914366	c	Ammonium as NH4 in soil	L082-PL	c
WS05	None Supplied	S	1914366	c	BTEx and MTBE in soil (Monoaromatics)	L073B-PL	c
WS05	None Supplied	S	1914366	c	Chloride, water soluble, in soil	L082-PL	c
WS05	None Supplied	S	1914366	c	Complex Cyanide in soil	L080-PL	c
WS05	None Supplied	S	1914366	c	DRO (Soil)	L076-PL	c
WS05	None Supplied	S	1914366	c	DRO C10-28 (Soil)	L076-PL	c
WS05	None Supplied	S	1914366	c	Electrical conductivity of soil	L031-PL	c
WS05	None Supplied	S	1914366	c	Fraction of Organic Carbon in soil	L009-PL	c
WS05	None Supplied	S	1914366	c	Mineral Oil (Soil) C10 - C40	L076-PL	c
WS05	None Supplied	S	1914366	c	Monohydric phenols in soil	L080-PL	c
WS05	None Supplied	S	1914366	c	Organic matter (Automated) in soil	L009-PL	c
WS05	None Supplied	S	1914366	c	Semi-volatile organic compounds in soil	L064-PL	c
WS05	None Supplied	S	1914366	c	Speciated EPA-16 PAHs in soil	L064-PL	c
WS05	None Supplied	S	1914366	c	Sulphide in soil	L010-PL	c
WS05	None Supplied	S	1914366	c	TPH Banding in Soil by FID	L076-PL	c
WS05	None Supplied	S	1914366	c	TPH2 (Soil)	L088-PL	c
WS05	None Supplied	S	1914366	c	TPHCWG (Soil)	L088/76-PL	c
WS05	None Supplied	S	1914366	c	Total cyanide in soil	L080-PL	c
WS05	None Supplied	S	1914366	c	Total organic carbon (Automated) in soil	L009-PL	c
WS05	None Supplied	S	1914366	c	Volatile organic compounds in soil	L073B-PL	c
WS05	None Supplied	S	1914366	c	pH in soil (automated)	L099-PL	c
WS05	None Supplied	S	1914367	c	Free cyanide in soil	L080-PL	c
WS05	None Supplied	S	1914367	c	Hexavalent chromium in soil	L080-PL	c
WS05	None Supplied	S	1914367	c	Ammoniacal Nitrogen as N in soil	L082-PL	c
WS05	None Supplied	S	1914367	c	Ammonium as NH4 in soil	L082-PL	c
WS05	None Supplied	S	1914367	c	BTEx and MTBE in soil (Monoaromatics)	L073B-PL	c
WS05	None Supplied	S	1914367	c	Chloride, water soluble, in soil	L082-PL	c
WS05	None Supplied	S	1914367	c	Complex Cyanide in soil	L080-PL	c
WS05	None Supplied	S	1914367	c	DRO (Soil)	L076-PL	c
WS05	None Supplied	S	1914367	c	DRO C10-28 (Soil)	L076-PL	c
WS05	None Supplied	S	1914367	c	Electrical conductivity of soil	L031-PL	c
WS05	None Supplied	S	1914367	c	Fraction of Organic Carbon in soil	L009-PL	c
WS05	None Supplied	S	1914367	c	Mineral Oil (Soil) C10 - C40	L076-PL	c
WS05	None Supplied	S	1914367	c	Monohydric phenols in soil	L080-PL	c
WS05	None Supplied	S	1914367	c	Organic matter (Automated) in soil	L009-PL	c
WS05	None Supplied	S	1914367	c	Semi-volatile organic compounds in soil	L064-PL	c
WS05	None Supplied	S	1914367	c	Speciated EPA-16 PAHs in soil	L064-PL	c
WS05	None Supplied	S	1914367	c	Sulphide in soil	L010-PL	c
WS05	None Supplied	S	1914367	c	TPH Banding in Soil by FID	L076-PL	c

Sample Deviation Report

Analytical Report Number : 21-82945

Project / Site name: Abellio

Sample ID	Other ID	Sample Type	Lab Sample Number	Sample Deviation	Test Name	Test Ref	Test Deviation
HP101	None Supplied	S	1914370	c	Free cyanide in soil	L080-PL	c
WS05	None Supplied	S	1914367	c	TPH2 (Soil)	L088-PL	c
WS05	None Supplied	S	1914367	c	TPHCWG (Soil)	L088/76-PL	c
WS05	None Supplied	S	1914367	c	Total cyanide in soil	L080-PL	c
WS05	None Supplied	S	1914367	c	Total organic carbon (Automated) in soil	L009-PL	c
WS05	None Supplied	S	1914367	c	Volatile organic compounds in soil	L073B-PL	c
WS05	None Supplied	S	1914367	c	pH in soil (automated)	L099-PL	c
WS05	None Supplied	S	1914368	c	Free cyanide in soil	L080-PL	c
WS05	None Supplied	S	1914368	c	Hexavalent chromium in soil	L080-PL	c
WS05	None Supplied	S	1914368	c	Ammoniacal Nitrogen as N in soil	L082-PL	c
WS05	None Supplied	S	1914368	c	Ammonium as NH4 in soil	L082-PL	c
WS05	None Supplied	S	1914368	c	BTEX and MTBE in soil (Monoaromatics)	L073B-PL	c
WS05	None Supplied	S	1914368	c	Chloride, water soluble, in soil	L082-PL	c
WS05	None Supplied	S	1914368	c	Complex Cyanide in soil	L080-PL	c
WS05	None Supplied	S	1914368	c	DRO (Soil)	L076-PL	c
WS05	None Supplied	S	1914368	c	DRO C10-28 (Soil)	L076-PL	c
WS05	None Supplied	S	1914368	c	Electrical conductivity of soil	L031-PL	c
WS05	None Supplied	S	1914368	c	Fraction of Organic Carbon in soil	L009-PL	c
WS05	None Supplied	S	1914368	c	Mineral Oil (Soil) C10 - C40	L076-PL	c
WS05	None Supplied	S	1914368	c	Monohydric phenols in soil	L080-PL	c
WS05	None Supplied	S	1914368	c	Organic matter (Automated) in soil	L009-PL	c
WS05	None Supplied	S	1914368	c	Semi-volatile organic compounds in soil	L064-PL	c
WS05	None Supplied	S	1914368	c	Speciated EPA-16 PAHs in soil	L064-PL	c
WS05	None Supplied	S	1914368	c	Sulphide in soil	L010-PL	c
WS05	None Supplied	S	1914368	c	TPH Banding in Soil by FID	L076-PL	c
WS05	None Supplied	S	1914368	c	TPH2 (Soil)	L088-PL	c
WS05	None Supplied	S	1914368	c	TPHCWG (Soil)	L088/76-PL	c
WS05	None Supplied	S	1914368	c	Total cyanide in soil	L080-PL	c
WS05	None Supplied	S	1914368	c	Total organic carbon (Automated) in soil	L009-PL	c
WS05	None Supplied	S	1914368	c	Volatile organic compounds in soil	L073B-PL	c
WS05	None Supplied	S	1914368	c	pH in soil (automated)	L099-PL	c
WS05	None Supplied	S	1914369	c	Free cyanide in soil	L080-PL	c
WS05	None Supplied	S	1914369	c	Hexavalent chromium in soil	L080-PL	c
WS05	None Supplied	S	1914369	c	Ammoniacal Nitrogen as N in soil	L082-PL	c
WS05	None Supplied	S	1914369	c	Ammonium as NH4 in soil	L082-PL	c
WS05	None Supplied	S	1914369	c	BTEX and MTBE in soil (Monoaromatics)	L073B-PL	c
WS05	None Supplied	S	1914369	c	Chloride, water soluble, in soil	L082-PL	c
WS05	None Supplied	S	1914369	c	Complex Cyanide in soil	L080-PL	c
WS05	None Supplied	S	1914369	c	DRO (Soil)	L076-PL	c
WS05	None Supplied	S	1914369	c	DRO C10-28 (Soil)	L076-PL	c
WS05	None Supplied	S	1914369	c	Electrical conductivity of soil	L031-PL	c
WS05	None Supplied	S	1914369	c	Fraction of Organic Carbon in soil	L009-PL	c
WS05	None Supplied	S	1914369	c	Mineral Oil (Soil) C10 - C40	L076-PL	c
WS05	None Supplied	S	1914369	c	Monohydric phenols in soil	L080-PL	c
WS05	None Supplied	S	1914369	c	Organic matter (Automated) in soil	L009-PL	c
WS05	None Supplied	S	1914369	c	Semi-volatile organic compounds in soil	L064-PL	c
WS05	None Supplied	S	1914369	c	Speciated EPA-16 PAHs in soil	L064-PL	c
WS05	None Supplied	S	1914369	c	Sulphide in soil	L010-PL	c
WS05	None Supplied	S	1914369	c	TPH Banding in Soil by FID	L076-PL	c
WS05	None Supplied	S	1914369	c	TPH2 (Soil)	L088-PL	c
WS05	None Supplied	S	1914369	c	TPHCWG (Soil)	L088/76-PL	c
WS05	None Supplied	S	1914369	c	Total cyanide in soil	L080-PL	c
WS05	None Supplied	S	1914369	c	Total organic carbon (Automated) in soil	L009-PL	c
WS05	None Supplied	S	1914369	c	Volatile organic compounds in soil	L073B-PL	c
WS05	None Supplied	S	1914369	c	pH in soil (automated)	L099-PL	c

Aleksandra Maron
Paragon New Homes Ltd
The Harlequin Building
65 Southwark Street
London
SE1 0HR

e: aleksandramaron@paragonbc.co.uk

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS
t: 01923 225404
f: 01923 237404
e: reception@i2analytical.com

Analytical Report Number : 21-82950

Project / Site name:	Abellio	Samples received on:	23/06/2021
Your job number:	211177	Samples instructed on / Analysis started on:	23/06/2021
Your order number:	211177 AM	Analysis completed by:	05/07/2021
Report Issue Number:	1	Report issued on:	05/07/2021
Samples Analysed:		2 10:1 WAC samples	

Signed: *Agnieszka Czerwińska*

Agnieszka Czerwińska
Technical Reviewer (Reporting Team)
For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils - 4 weeks from reporting
leachates - 2 weeks from reporting
waters - 2 weeks from reporting
asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement.
Application of uncertainty of measurement would provide a range within which the true result lies.
An estimate of measurement uncertainty can be provided on request.

i2 Analytical

7 Woodshots Meadow
Croxley Green Business Park
Watford, WD18 8YS

Telephone: 01923 225404
Fax: 01923 237404
email: reception@i2analytical.com

Waste Acceptance Criteria Analytical Results						
Report No:	21-82950					
				Client: PARAGONBC		
Location	Abellio					
Lab Reference (Sample Number)	1914390 / 1914391			Landfill Waste Acceptance Criteria		
Sampling Date	22/06/2021			Limits		
Sample ID	WS02			Inert Waste Landfill	Stable Non-reactive HAZARDOUS waste in non-hazardous Landfill	Hazardous Waste Landfill
Depth (m)	0.75					
Solid Waste Analysis						
TOC (%)**	0.7				3%	5%
Loss on Ignition (%) **	3.3				--	--
BTEX (µg/kg) **	< 10				6000	--
Sum of PCBs (mg/kg) **	< 0.007				1	--
Mineral Oil (mg/kg)	130				500	--
Total PAH (WAC-17) (mg/kg)	23.0				100	--
pH (units)**	8.3				--	>6
Acid Neutralisation Capacity (mol / kg)	7.2				--	To be evaluated
Eluate Analysis (BS EN 12457 - 2 preparation utilising end over end leaching procedure)	10:1		10:1		Limit values for compliance leaching test using BS EN 12457-2 at L/S 10 l/kg (mg/kg)	
	mg/l		mg/kg			
	0.0021		0.0164		0.5	2
Arsenic *					264	300
Barium *	0.0332				20	100
Cadmium *	< 0.0001		< 0.0008		0.04	1
Chromium *	0.0011		0.0086		0.5	10
Copper *	0.012		0.093		2	50
Mercury *	< 0.0005		< 0.0050		0.01	0.2
Molybdenum *	0.0133		0.106		0.5	10
Nickel *	0.0062		0.049		0.4	10
Lead *	0.0037		0.030		0.5	10
Antimony *	< 0.0017		< 0.017		0.06	0.7
Selenium *	< 0.0040		< 0.040		0.1	0.5
Zinc *	0.0073		0.058		4	50
Chloride *	21		170		800	15000
Fluoride	1.3		11		10	150
Sulphate *	73		580		1000	20000
TDS*	160		1200		4000	60000
Phenol Index (Monohydric Phenols) *	< 0.010		< 0.10		1	-
DOC	17.2		137		500	800
Leach Test Information						
Stone Content (%)	< 0.1					
Sample Mass (kg)	1.1					
Dry Matter (%)	83					
Moisture (%)	17					
Results are expressed on a dry weight basis, after correction for moisture content where applicable.						
* = UKAS accredited (liquid eluate analysis only)						
Stated limits are for guidance only and i2 cannot be held responsible for any discrepancies with current legislation						
** = MCERTS accredited						

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.
This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be hazardous or non-hazardous.

i2 Analytical

7 Woodshots Meadow
Croxley Green Business Park
Watford, WD18 8YS

Telephone: 01923 225404
Fax: 01923 237404
email: reception@i2analytical.com

Waste Acceptance Criteria Analytical Results						
Report No:	21-82950					
				Client: PARAGONBC		
Location	Abellio					
Lab Reference (Sample Number)	1914392 / 1914393			Landfill Waste Acceptance Criteria		
Sampling Date	22/06/2021			Limits		
Sample ID	WS05			Inert Waste Landfill	Stable Non-reactive HAZARDOUS waste in non-hazardous Landfill	Hazardous Waste Landfill
Depth (m)	0.80					
Solid Waste Analysis						
TOC (%)**	2.8				3%	5%
Loss on Ignition (%) **	5.5				--	--
BTEX (µg/kg) **	< 10				6000	--
Sum of PCBs (mg/kg) **	< 0.007				1	--
Mineral Oil (mg/kg)	< 10				500	--
Total PAH (WAC-17) (mg/kg)	14.4				100	--
pH (units)**	8.4				--	>6
Acid Neutralisation Capacity (mol / kg)	7.2				--	To be evaluated
Eluate Analysis	10:1			10:1	Limit values for compliance leaching test	
(BS EN 12457 - 2 preparation utilising end over end leaching procedure)	mg/l			mg/kg	using BS EN 12457-2 at L/S 10 l/kg (mg/kg)	
Arsenic *	< 0.0010			< 0.0100	0.5	2
Barium *	0.0763			0.713	20	100
Cadmium *	< 0.0001			< 0.0008	0.04	1
Chromium *	0.0011			0.010	0.5	10
Copper *	0.014			0.13	2	50
Mercury *	< 0.0005			< 0.0050	0.01	0.2
Molybdenum *	0.0384			0.359	0.5	10
Nickel *	0.0043			0.040	0.4	10
Lead *	0.0012			0.011	0.5	10
Antimony *	0.020			0.19	0.06	0.7
Selenium *	< 0.0040			< 0.040	0.1	0.5
Zinc *	0.0058			0.054	4	50
Chloride *	8.4			78	800	15000
Fluoride	0.62			5.8	10	150
Sulphate *	62			570	1000	20000
TDS*	140			1300	4000	60000
Phenol Index (Monohydric Phenols) *	< 0.010			< 0.10	1	-
DOC	11.2			104	500	800
Leach Test Information						
Stone Content (%)	< 0.1					
Sample Mass (kg)	1.0					
Dry Matter (%)	92					
Moisture (%)	7.7					
Results are expressed on a dry weight basis, after correction for moisture content where applicable.	*= UKAS accredited (liquid eluate analysis only)					
Stated limits are for guidance only and i2 cannot be held responsible for any discrepancies with current legislation	** = MCERTS accredited					

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.
This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Analytical Report Number : 21-82950
Project / Site name: Abellio

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1914390	WS02	None Supplied	0.75	Brown clay and loam with vegetation.
1914392	WS05	None Supplied	0.8	Brown loam and clay with gravel.

4041

MCERTS

Analytical Report Number : 21-82950**Project / Site name: Abellio****Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)**

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
BS EN 12457-2 (10:1) Leachate Prep	10:1 (as received, moisture adjusted) end over end extraction with water for 24 hours. Eluate filtered prior to analysis.	In-house method based on BSEN12457-2.	L043-PL	W	NONE
Acid neutralisation capacity of soil	Determination of acid neutralisation capacity by addition of acid or alkali followed by electronic probe.	In-house method based on Guidance on Sampling and Testing of Wastes to Meet Landfill Waste Acceptance***	L046-PL	W	NONE
Loss on ignition of soil @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace.	In house method.	L047-PL	D	MCERTS
Mineral Oil (Soil) C10 - C40	Determination of mineral oil fraction extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L076-PL	D	NONE
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Speciated WAC-17 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270. MCERTS accredited except Coronene.	L064-PL	D	NONE
PCB's By GC-MS in soil	Determination of PCB by extraction with acetone and hexane followed by GC-MS.	In-house method based on USEPA 8082	L027-PL	D	MCERTS
pH at 20oC in soil	Determination of pH in soil by addition of water followed by electrometric measurement.	In house method.	L005-PL	W	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
BTEX in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Total BTEX in soil (Poland)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073-PL	W	MCERTS
Metals in leachate by ICP-OES	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil***	L039-PL	W	ISO 17025
Chloride 10:1 WAC	Determination of Chloride colorimetrically by discrete analyser.	In house based on MEWAM Method ISBN 0117516260.	L082-PL	W	ISO 17025
Fluoride 10:1 WAC	Determination of fluoride in leachate by 1:1ratio with a buffer solution followed by Ion Selective Electrode.	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination"	L033B-PL	W	ISO 17025
Sulphate 10:1 WAC	Determination of sulphate in leachate by ICP-OES	In-house method based on MEWAM 1986 Methods for the Determination of Metals in Soil***	L039-PL	W	ISO 17025
Total dissolved solids 10:1 WAC	Determination of total dissolved solids in water by EC probe using a factor of 0.6.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L004-PL	W	ISO 17025

4041 MCERTS

Analytical Report Number : 21-82950

Project / Site name: Abellio

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Monohydric phenols 10:1 WAC	Determination of phenols in leachate by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080-PL	W	ISO 17025
Dissolved organic carbon 10:1 WAC	Determination of dissolved inorganic carbon in leachate by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Charlie Bruinvels
Paragon New Homes Ltd
7 Swallow Place
London
W1B 2AG

e: charliebruinvels@paragonbc.co.uk

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS
t: 01923 225404
f: 01923 237404
e: reception@i2analytical.com

Analytical Report Number : 21-84763

Replaces Analytical Report Number: 21-84763, issue no. 1
Additional analysis undertaken.

Project / Site name:	Abellio	Samples received on:	02/07/2021
Your job number:		Samples instructed on / Analysis started on:	02/07/2021
Your order number:	211177CB	Analysis completed by:	20/07/2021
Report Issue Number:	2	Report issued on:	20/07/2021
Samples Analysed:	5 soil samples		

Signed:

Joanna Wawrzeczk
Technical Reviewer (Reporting Team)
For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils - 4 weeks from reporting
leachates - 2 weeks from reporting
waters - 2 weeks from reporting
asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement.
Application of uncertainty of measurement would provide a range within which the true result lies.
An estimate of measurement uncertainty can be provided on request.

Analytical Report Number: 21-84763
Project / Site name: Abellio
Your Order No: 211177CB

Lab Sample Number		1925628	1925629	1925630	1925631	1925632
Sample Reference		BH01	BH01	BH01	BH01	BH01
Sample Number		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)		0.50-1.00	2.00-2.50	4.50-5.00	6.50-7.00	12.00-12.50
Date Sampled		30/06/2021	30/06/2021	30/06/2021	30/06/2021	30/06/2021
Time Taken		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	15	15	14
Total mass of sample received	kg	0.001	NONE	1.2	1.4	1.4

Asbestos in Soil Screen / Identification Name	Type	N/A	ISO 17025	-	Chrysotile	-	-	-
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Detected	Not-detected	Not-detected	Not-detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	< 0.001	-	-	-
Asbestos Quantification Total	%	0.001	ISO 17025	-	< 0.001	-	-	-

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	10.5	10.0	7.7	8.2	8.5
Electrical Conductivity	µS/cm	10	ISO 17025	890	580	770	290	500
Total Cyanide	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Complex Cyanide	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Free Cyanide	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Sulphate as SO4	mg/kg	50	MCERTS	5700	3100	4300	910	1300
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.61	0.59	2.7	0.31	0.99
Sulphide	mg/kg	1	MCERTS	75	120	200	210	26
Water Soluble Chloride (2:1)	mg/kg	1	MCERTS	95	70	230	32	66
Ammoniacal Nitrogen as NH4	mg/kg	0.5	MCERTS	5.2	8.2	75	1.1	3.8
Fraction Organic Carbon (FOC)	N/A	0.001	MCERTS	0.017	0.023	0.041	0.0039	0.0099
Total Organic Carbon (TOC)	%	0.1	MCERTS	1.7	2.3	4.1	0.4	1.0

Total Phenols

Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
----------------------------	-------	---	--------	-------	-------	-------	-------	-------

Speciated PAHs

Naphthalene	mg/kg	0.05	MCERTS	0.42	1.2	0.39	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	0.82	0.12	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	0.58	9.9	2.5	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	0.57	11	1.2	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	3.5	43	3.8	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	1.1	32	2.0	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	4.9	39	5.8	< 0.05	< 0.05
Pyrene	mg/kg	0.05	MCERTS	4.5	28	4.7	< 0.05	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	1.7	7.5	1.7	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	1.6	6.4	1.5	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	1.7	4.4	1.6	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	0.99	2.7	0.66	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	1.5	3.9	1.3	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	0.72	1.9	0.55	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	0.23	0.57	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	0.87	2.2	0.62	< 0.05	< 0.05

Total PAH

Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	24.9	194	28.5	< 0.80	< 0.80
-----------------------------	-------	-----	--------	------	-----	------	--------	--------

4041

Analytical Report Number: 21-84763

Project / Site name: Abellio

Your Order No: 211177CB

Lab Sample Number	1925628	1925629	1925630	1925631	1925632
Sample Reference	BH01	BH01	BH01	BH01	BH01
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)	0.50-1.00	2.00-2.50	4.50-5.00	6.50-7.00	12.00-12.50
Date Sampled	30/06/2021	30/06/2021	30/06/2021	30/06/2021	30/06/2021
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		

Heavy Metals / Metalloids

Antimony (aqua regia extractable)	mg/kg	1	ISO 17025	< 1.0	4.9	< 1.0	< 1.0	< 1.0
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	13	18	31	14	18
Barium (aqua regia extractable)	mg/kg	1	MCERTS	140	250	160	52	55
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	0.90	1.2	1.3	1.2	1.3
Boron (water soluble)	mg/kg	0.2	MCERTS	2.4	4.6	12	4.4	5.7
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	32	36	44	46	42
Cobalt (aqua regia extractable)	mg/kg	0.15	MCERTS	8.3	13	15	16	19
Copper (aqua regia extractable)	mg/kg	1	MCERTS	56	100	72	21	22
Iron (aqua regia extractable)	mg/kg	40	MCERTS	30000	39000	48000	52000	51000
Lead (aqua regia extractable)	mg/kg	1	MCERTS	95	170	200	17	16
Manganese (aqua regia extractable)	mg/kg	1	MCERTS	390	370	2600	260	270
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	1.1	< 0.3	< 0.3
Molybdenum (aqua regia extractable)	mg/kg	0.25	MCERTS	1.7	2.2	2.2	0.75	0.75
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	22	32	32	37	36
Phosphorus (aqua regia extractable)	mg/kg	20	ISO 17025	490	680	880	490	480
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tin (aqua regia extractable)	mg/kg	1	MCERTS	8.0	17	15	2.5	2.6
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	46	55	59	74	64
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	120	190	190	78	77

Calcium (aqua regia extractable)	mg/kg	20	ISO 17025	85000	50000	44000	24000	23000
Magnesium (aqua regia extractable)	mg/kg	20	ISO 17025	3300	4700	5500	17000	16000
Potassium (aqua regia extractable)	mg/kg	20	ISO 17025	2400	2700	2900	5000	4800
Sodium (aqua regia extractable)	mg/kg	20	ISO 17025	440	350	420	340	450

Monoaromatics & Oxygenates

Benzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Analytical Report Number: 21-84763
Project / Site name: Abellio
Your Order No: 211177CB

Lab Sample Number	1925628	1925629	1925630	1925631	1925632
Sample Reference	BH01	BH01	BH01	BH01	BH01
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)	0.50-1.00	2.00-2.50	4.50-5.00	6.50-7.00	12.00-12.50
Date Sampled	30/06/2021	30/06/2021	30/06/2021	30/06/2021	30/06/2021
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		

Petroleum Hydrocarbons

Diesel Range Organics (C10 - C28)	mg/kg	50	NONE	130	490	400	< 50	< 50
Mineral Oil (C10 - C40)	mg/kg	10	NONE	140	200	170	< 10	< 10

TPH C10 - C40	mg/kg	10	MCERTS	320	650	500	< 10	< 10
---------------	-------	----	--------	-----	-----	-----	------	------

TPH2 (C6 - C10)	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
-----------------	-------	-----	--------	-------	-------	-------	-------	-------

TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	5.7	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	8.4	13	11	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	23	43	32	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	61	97	99	< 8.0	< 8.0
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	94	150	150	< 10	< 10

TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	12	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	6.3	79	37	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	27	230	100	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	76	100	150	< 10	< 10
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	110	410	300	< 10	< 10

TPH (C10 - C25)	mg/kg	10	MCERTS	89	430	340	< 10	< 10
-----------------	-------	----	--------	----	-----	-----	------	------

VOCs

Chloromethane	µg/kg	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Chloroethane	µg/kg	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromomethane	µg/kg	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vinyl Chloride	µg/kg	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trichlorofluoromethane	µg/kg	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethene	µg/kg	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,2-Trichloro 1,2,2-Trifluoroethane	µg/kg	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Cis-1,2-dichloroethene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethane	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2,2-Dichloropropane	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trichloromethane	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,1-Trichloroethane	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichloroethane	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloropropene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trans-1,2-dichloroethene	µg/kg	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Benzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tetrachloromethane	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichloropropane	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trichloroethene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Dibromomethane	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromodichloromethane	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Cis-1,3-dichloropropene	µg/kg	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trans-1,3-dichloropropene	µg/kg	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

4041 MCERTS

Analytical Report Number: 21-84763

Project / Site name: Abellio

Your Order No: 211177CB

Lab Sample Number		1925628	1925629	1925630	1925631	1925632
Sample Reference		BH01	BH01	BH01	BH01	BH01
Sample Number		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)		0.50-1.00	2.00-2.50	4.50-5.00	6.50-7.00	12.00-12.50
Date Sampled		30/06/2021	30/06/2021	30/06/2021	30/06/2021	30/06/2021
Time Taken		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Toluene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
1,1,2-Trichloroethane	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
1,3-Dichloropropane	µg/kg	1	ISO 17025	< 1.0	< 1.0	< 1.0
Dibromochloromethane	µg/kg	1	ISO 17025	< 1.0	< 1.0	< 1.0
Tetrachloroethene	µg/kg	1	NONE	< 1.0	< 1.0	< 1.0
1,2-Dibromoethane	µg/kg	1	ISO 17025	< 1.0	< 1.0	< 1.0
Chlorobenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
1,1,2-Tetrachloroethane	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
p & m-Xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Styrene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Tribromomethane	µg/kg	1	NONE	< 1.0	< 1.0	< 1.0
o-Xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
1,1,2,2-Tetrachloroethane	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Isopropylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Bromobenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
n-Propylbenzene	µg/kg	1	ISO 17025	< 1.0	< 1.0	< 1.0
2-Chlorotoluene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
4-Chlorotoluene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
1,3,5-Trimethylbenzene	µg/kg	1	ISO 17025	< 1.0	< 1.0	< 1.0
tert-Butylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
1,2,4-Trimethylbenzene	µg/kg	1	ISO 17025	< 1.0	< 1.0	< 1.0
sec-Butylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
1,3-Dichlorobenzene	µg/kg	1	ISO 17025	< 1.0	< 1.0	< 1.0
p-Isopropyltoluene	µg/kg	1	ISO 17025	< 1.0	< 1.0	< 1.0
1,2-Dichlorobenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
1,4-Dichlorobenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Butylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
1,2-Dibromo-3-chloropropane	µg/kg	1	ISO 17025	< 1.0	< 1.0	< 1.0
1,2,4-Trichlorobenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Hexachlorobutadiene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
1,2,3-Trichlorobenzene	µg/kg	1	ISO 17025	< 1.0	< 1.0	< 1.0

SVOCs

Aniline	mg/kg	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Phenol	mg/kg	0.2	ISO 17025	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
2-Chlorophenol	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Bis(2-chloroisopropyl)ether	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2-Methylphenol	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Hexachloroethane	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Nitrobenzene	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
4-Methylphenol	mg/kg	0.2	NONE	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Isophorone	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
2-Nitrophenol	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Naphthalene	mg/kg	0.05	MCERTS	0.42	1.2	0.39	< 0.05	< 0.05
2,4-Dichlorophenol	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3

Analytical Report Number: 21-84763

Project / Site name: Abellio

Your Order No: 211177CB

Lab Sample Number	1925628	1925629	1925630	1925631	1925632
Sample Reference	BH01	BH01	BH01	BH01	BH01
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)	0.50-1.00	2.00-2.50	4.50-5.00	6.50-7.00	12.00-12.50
Date Sampled	30/06/2021	30/06/2021	30/06/2021	30/06/2021	30/06/2021
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		
4-Chloroaniline	mg/kg	0.1	NONE	< 0.1	< 0.1
Hexachlorobutadiene	mg/kg	0.1	MCERTS	< 0.1	< 0.1
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	< 0.1	< 0.1
2,4,6-Trichlorophenol	mg/kg	0.1	MCERTS	< 0.1	< 0.1
2,4,5-Trichlorophenol	mg/kg	0.2	MCERTS	< 0.2	< 0.2
2-Methylnaphthalene	mg/kg	0.1	NONE	< 0.1	1.0
2-Chloronaphthalene	mg/kg	0.1	MCERTS	< 0.1	< 0.1
Dimethylphthalate	mg/kg	0.1	MCERTS	< 0.1	< 0.1
2,6-Dinitrotoluene	mg/kg	0.1	MCERTS	< 0.1	< 0.1
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	0.82
Acenaphthene	mg/kg	0.05	MCERTS	0.58	9.9
2,4-Dinitrotoluene	mg/kg	0.2	MCERTS	< 0.2	< 0.2
Dibenzofuran	mg/kg	0.2	MCERTS	< 0.2	5.5
4-Chlorophenyl phenyl ether	mg/kg	0.3	ISO 17025	< 0.3	< 0.3
Diethyl phthalate	mg/kg	0.2	MCERTS	< 0.2	< 0.2
4-Nitroaniline	mg/kg	0.2	MCERTS	< 0.2	< 0.2
Fluorene	mg/kg	0.05	MCERTS	0.57	11
Azobenzene	mg/kg	0.3	MCERTS	< 0.3	< 0.3
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS	< 0.2	< 0.2
Hexachlorobenzene	mg/kg	0.3	MCERTS	< 0.3	< 0.3
Phenanthrene	mg/kg	0.05	MCERTS	3.5	43
Anthracene	mg/kg	0.05	MCERTS	1.1	32
Carbazole	mg/kg	0.3	MCERTS	< 0.3	3.6
Dibutyl phthalate	mg/kg	0.2	MCERTS	< 0.2	< 0.2
Anthraquinone	mg/kg	0.3	MCERTS	< 0.3	< 0.3
Fluoranthene	mg/kg	0.05	MCERTS	4.9	39
Pyrene	mg/kg	0.05	MCERTS	4.5	28
Butyl benzyl phthalate	mg/kg	0.3	ISO 17025	< 0.3	< 0.3
Benzo(a)anthracene	mg/kg	0.05	MCERTS	1.7	7.5
Chrysene	mg/kg	0.05	MCERTS	1.6	6.4
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	1.7	4.4
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	0.99	2.7
Benzo(a)pyrene	mg/kg	0.05	MCERTS	1.5	3.9
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	0.72	1.9
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	0.23	0.57
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	0.87	2.2

U/S = Unsuitable Sample I/S = Insufficient Sample

Analytical Report Number: 21-84763

Project / Site name: Abellio

Your Order No: 211177CB

Certificate of Analysis - Asbestos Quantification

Methods:

Qualitative Analysis

The samples were analysed qualitatively for asbestos by polarising light and dispersion staining as described by the Health and Safety Executive in HSG 248.

Quantitative Analysis

The analysis was carried out using our documented in-house method A006-PL based on HSE Contract Research Report No: 83/1996: Development and Validation of an analytical method to determine the amount of asbestos in soils and loose aggregates (Davies et al, 1996) and HSG 248. Our method includes initial examination of the entire representative sample, then fractionation and detailed analysis of each fraction, with quantification by hand picking and weighing.

The limit of detection (reporting limit) of this method is 0.001 %.

The method has been validated using samples of at least 100 g, results for samples smaller than this should be interpreted with caution.

Both Qualitative and Quantitative Analyses are UKAS accredited.

Sample Number	Sample ID	Sample Depth (m)	Sample Weight (g)	Asbestos Containing Material Types Detected (ACM)	PLM Results	Asbestos by hand picking/weighing (%)	Total % Asbestos in Sample
1925629	BH01	2.00-2.50	156	Loose Fibres	Chrysotile	< 0.001	< 0.001

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

4041

Analytical Report Number : 21-84763**Project / Site name: Abellio**

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1925628	BH01	None Supplied	0.50-1.00	Brown loam and clay with gravel and brick.
1925629	BH01	None Supplied	2.00-2.50	Brown clay and loam with gravel.
1925630	BH01	None Supplied	4.50-5.00	Brown clay.
1925631	BH01	None Supplied	6.50-7.00	Brown clay.
1925632	BH01	None Supplied	12.00-12.50	Brown clay.

Analytical Report Number : 21-84763

Project / Site name: Abellio

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
Cations in soil by ICP-OES	Determination of cations in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	ISO 17025
Complex Cyanide in soil	Determination of complex cyanide by calculation.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Chloride, water soluble, in soil	Determination of Chloride colorimetrically by discrete analyser.	In house method.	L082-PL	D	MCERTS
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
DRO C10-28 (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method with silica gel split/clean up.	L076-PL	D	NONE
Electrical conductivity of soil	Determination of electrical conductivity in soil by electrometric measurement.	In-house method	L031-PL	D	ISO 17025
Free cyanide in soil	Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Fraction of Organic Carbon in soil	Determination of fraction of organic carbon in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
Mineral Oil (Soil) C10 - C40	Determination of mineral oil fraction extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L076-PL	D	NONE
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS

Analytical Report Number : 21-84763

Project / Site name: Abellio

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Sulphide in soil	Determination of sulphide in soil by acidification and heating to liberate hydrogen sulphide, trapped in an alkaline solution then assayed by ion selective electrode.	In-house method	L010-PL	D	MCERTS
Total sulphate (as SO ₄ in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Semi-volatile organic compounds in soil	Determination of semi-volatile organic compounds in soil by extraction in dichloromethane and hexane followed by GC-MS.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
TPH2 (Soil)	Determination of hydrocarbons C6-C10 by headspace GC-MS.	In-house method based on USEPA8260	L088-PL	W	MCERTS
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
Volatile organic compounds in soil	Determination of volatile organic compounds in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Ammonium as NH ₄ in soil	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the colorimetric salicylate/nitroprusside method, 10:1 water extraction.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	MCERTS
DRO (Soil)	Determination of extractable hydrocarbons in soil by GC-MS/FID.	In-house method with silica gel split/clean up.	L076-PL	D	MCERTS
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS
TPH Banding in Soil by FID	Determination of hexane extractable hydrocarbons in soil by GC-FID.	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	W	MCERTS
Asbestos Quantification - Gravimetric	Asbestos quantification by gravimetric method - in house method based on references.	HSE Report No: 83/1996, HSG 248, HSG 264 & SCA Blue Book (draft).	A006-PL	D	ISO 17025

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Charlie Bruinvels
Paragon New Homes Ltd
7 Swallow Place
London
W1B 2AG

e: charliebruinvels@paragonbc.co.uk

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404
f: 01923 237404
e: reception@i2analytical.com

Analytical Report Number : 21-86317

Project / Site name:	Abello Bus Gasage	Samples received on:	09/07/2021
Your job number:		Samples instructed on/ Analysis started on:	12/07/2021
Your order number:	211177_CB	Analysis completed by:	21/07/2021
Report Issue Number:	1	Report issued on:	21/07/2021
Samples Analysed:	4 water samples		

Signed:

Joanna Wawrzeczk
Technical Reviewer (Reporting Team)
For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils - 4 weeks from reporting
leachates - 2 weeks from reporting
waters - 2 weeks from reporting
asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement.
Application of uncertainty of measurement would provide a range within which the true result lies.
An estimate of measurement uncertainty can be provided on request.

Analytical Report Number: 21-86317
Project / Site name: Abello Bus Gasage

Your Order No: 211177_CB

Lab Sample Number		1934680	1934681	1934682	1934683
Sample Reference		BH01_Shallow	BH01_Deci	WS02	WS05
Sample Number		None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)		4.50-4.50	14.00-14.00	4.00-4.00	4.00-4.00
Date Sampled		08/07/2021	08/07/2021	08/07/2021	08/07/2021
Time Taken		None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Water Analysis)	Units	Limit of detection	Status	Accreditation	

General Inorganics

pH	pH Units	N/A	ISO 17025	7.1	7.4	6.9	6.9
Electrical Conductivity at 20 °C	µS/cm	10	ISO 17025	1500	930	1700	1600
Total Cyanide	µg/l	10	ISO 17025	< 10	< 10	< 10	< 10
Complex Cyanide	µg/l	10	ISO 17025	< 10	< 10	< 10	< 10
Free Cyanide	µg/l	10	ISO 17025	< 10	< 10	< 10	< 10
Sulphate as SO4	µg/l	45	ISO 17025	194000	110000	421000	403000
Sulphide	µg/l	5	NONE	< 5.0	< 5.0	< 5.0	< 5.0
Chloride	mg/l	0.15	ISO 17025	100	73	140	190
Ammoniacal Nitrogen as NH4	µg/l	15	ISO 17025	6300	1300	6000	2700
Total Organic Carbon (TOC)	mg/l	0.1	ISO 17025	28.0	14.7	10.3	6.54

Total Phenols

Total Phenols (monohydric)	µg/l	10	ISO 17025	< 10	< 10	< 10	< 10
----------------------------	------	----	-----------	------	------	------	------

Speciated PAHs

Naphthalene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthylene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthene	µg/l	0.01	ISO 17025	2.12	< 0.01	< 0.01	< 0.01
Fluorene	µg/l	0.01	ISO 17025	0.38	< 0.01	< 0.01	< 0.01
Phenanthrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Fluoranthene	µg/l	0.01	ISO 17025	0.26	< 0.01	< 0.01	< 0.01
Pyrene	µg/l	0.01	ISO 17025	0.16	< 0.01	< 0.01	< 0.01
Benzo(a)anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-cd)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Dibenz(a,h)anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(ghi)perylene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01

Total PAH

Total EPA-16 PAHs	µg/l	0.16	ISO 17025	2.92	< 0.16	< 0.16	< 0.16
-------------------	------	------	-----------	------	--------	--------	--------

Analytical Report Number: 21-86317
Project / Site name: Abello Bus Gasage

Your Order No: 211177_CB

Lab Sample Number		1934680	1934681	1934682	1934683
Sample Reference		BH01_Shallow	BH01_Deci	WS02	WS05
Sample Number		None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)		4.50-4.50	14.00-14.00	4.00-4.00	4.00-4.00
Date Sampled		08/07/2021	08/07/2021	08/07/2021	08/07/2021
Time Taken		None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Water Analysis)	Units	Limit of detection	Status	Accreditation	

Heavy Metals / Metalloids

Boron (dissolved)	µg/l	10	ISO 17025	920	540	740	640
Calcium (dissolved)	mg/l	0.012	ISO 17025	240	120	360	380
Chromium (hexavalent)	µg/l	5	ISO 17025	< 5.0	< 5.0	< 5.0	< 5.0
Iron (dissolved)	mg/l	0.004	ISO 17025	0.042	0.075	17	0.077
Magnesium (dissolved)	mg/l	0.005	ISO 17025	110	37	25	39
Phosphorus (dissolved)	µg/l	20	ISO 17025	49.5	30.2	< 20.0	42.9
Potassium (dissolved)	mg/l	0.025	ISO 17025	15	8.8	12	16
Sodium (dissolved)	mg/l	0.01	ISO 17025	88	94	110	110

Antimony (dissolved)	µg/l	0.4	ISO 17025	2.7	0.9	0.6	0.6
Arsenic (dissolved)	µg/l	0.15	ISO 17025	3.81	1.34	8.28	21.7
Barium (dissolved)	µg/l	0.06	ISO 17025	210	93	79	68
Beryllium (dissolved)	µg/l	0.1	ISO 17025	< 0.1	< 0.1	< 0.1	< 0.1
Cadmium (dissolved)	µg/l	0.02	ISO 17025	0.03	< 0.02	0.02	0.04
Chromium (dissolved)	µg/l	0.2	ISO 17025	9.7	5.5	8.8	7.5
Cobalt (dissolved)	µg/l	0.2	ISO 17025	4.4	1.6	17	12
Copper (dissolved)	µg/l	0.5	ISO 17025	3.8	6.2	4.3	3.2
Lead (dissolved)	µg/l	0.2	ISO 17025	0.8	0.4	< 0.2	0.4
Manganese (dissolved)	µg/l	0.05	ISO 17025	410	89	6200	4000
Mercury (dissolved)	µg/l	0.05	ISO 17025	< 0.05	< 0.05	< 0.05	< 0.05
Molybdenum (dissolved)	µg/l	0.05	ISO 17025	3.9	1.3	11	18
Nickel (dissolved)	µg/l	0.5	ISO 17025	14	7.9	30	12
Selenium (dissolved)	µg/l	0.6	ISO 17025	6.9	13	1.9	1.5
Tin (dissolved)	µg/l	0.2	ISO 17025	0.38	0.48	< 0.20	< 0.20
Vanadium (dissolved)	µg/l	0.2	ISO 17025	3.1	1.0	1.2	0.8
Zinc (dissolved)	µg/l	0.5	ISO 17025	12	8.0	15	48

Monoaromatics & Oxygenates

Benzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0

Analytical Report Number: 21-86317
Project / Site name: Abello Bus Gasage

Your Order No: 211177_CB

Lab Sample Number		1934680	1934681	1934682	1934683
Sample Reference		BH01_Shallow	BH01_Deci	WS02	WS05
Sample Number		None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)		4.50-4.50	14.00-14.00	4.00-4.00	4.00-4.00
Date Sampled		08/07/2021	08/07/2021	08/07/2021	08/07/2021
Time Taken		None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation		

Petroleum Hydrocarbons

Mineral Oil (C10 - C40)	µg/l	10	NONE	< 10.0	< 10.0	< 10.0	< 10.0
Diesel Range Organics (C10 - C25)	µg/l	10	NONE	< 10	< 10	< 10	< 10
TPH1 (C10 - C40)	µg/l	10	NONE	< 10	< 10	< 10	< 10

TPH2 (C6 - C10)	µg/l	10	ISO 17025	< 10	< 10	< 10	< 10
-----------------	------	----	-----------	------	------	------	------

TPH-CWG - Aliphatic >C5 - C6	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C6 - C8	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C8 - C10	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C10 - C12	µg/l	10	NONE	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C12 - C16	µg/l	10	NONE	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C16 - C21	µg/l	10	NONE	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C21 - C35	µg/l	10	NONE	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (C5 - C35)	µg/l	10	NONE	< 10	< 10	< 10	< 10

TPH-CWG - Aromatic >C5 - C7	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C7 - C8	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C8 - C10	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C10 - C12	µg/l	10	NONE	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C12 - C16	µg/l	10	NONE	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C16 - C21	µg/l	10	NONE	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C21 - C35	µg/l	10	NONE	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (C5 - C35)	µg/l	10	NONE	< 10	< 10	< 10	< 10

VOCs

Chloromethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Chloroethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Bromomethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Vinyl Chloride	µg/l	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0
Trichlorofluoromethane	µg/l	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Cis-1,2-dichloroethene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
2,2-Dichloropropane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Trichloromethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
1,1,1-Trichloroethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichloroethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloropropene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Trans-1,2-dichloroethene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Benzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Tetrachloromethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichloropropane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Trichloroethene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Dibromomethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Bromodichloromethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Cis-1,3-dichloropropene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Trans-1,3-dichloropropene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0
1,1,2-Trichloroethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0

Analytical Report Number: 21-86317
 Project / Site name: Abello Bus Gasage

Your Order No: 211177_CB

Lab Sample Number			1934680	1934681	1934682	1934683
Sample Reference			BH01_Shallow	BH01_Deci	WS02	WS05
Sample Number			None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)			4.50-4.50	14.00-14.00	4.00-4.00	4.00-4.00
Date Sampled			08/07/2021	08/07/2021	08/07/2021	08/07/2021
Time Taken			None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Water Analysis)	Units	Limit of detection				
1,3-Dichloropropane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
Dibromochloromethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
Tetrachloroethene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
1,2-Dibromoethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
Chlorobenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
1,1,1,2-Tetrachloroethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
p & m-Xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
Styrene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
Tribromomethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
o-Xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
1,1,2,2-Tetrachloroethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
Isopropylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
Bromobenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
n-Propylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
2-Chlorotoluene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
4-Chlorotoluene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
1,3,5-Trimethylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
tert-Butylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
1,2,4-Trimethylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
sec-Butylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
1,3-Dichlorobenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
p-Isopropyltoluene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
1,2-Dichlorobenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
1,4-Dichlorobenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
Butylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
1,2-Dibromo-3-chloropropane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
1,2,4-Trichlorobenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
Hexachlorobutadiene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
1,2,3-Trichlorobenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0

SVOCs

Aniline	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
Phenol	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
2-Chlorophenol	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
Bis(2-chloroethyl)ether	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
1,3-Dichlorobenzene	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
1,2-Dichlorobenzene	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
1,4-Dichlorobenzene	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
Bis(2-chloroisopropyl)ether	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
2-Methylphenol	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
Hexachloroethane	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
Nitrobenzene	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
4-Methylphenol	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
Isophorone	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
2-Nitrophenol	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
2,4-Dimethylphenol	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
Bis(2-chloroethoxy)methane	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
1,2,4-Trichlorobenzene	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
Naphthalene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
2,4-Dichlorophenol	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
4-Chloroaniline	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobutadiene	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05

Analytical Report Number: 21-86317
Project / Site name: Abello Bus Gasage

Your Order No: 211177_CB

Lab Sample Number		1934680	1934681	1934682	1934683	
Sample Reference		BH01_Shallow	BH01_Deci	WS02	WS05	
Sample Number		None Supplied	None Supplied	None Supplied	None Supplied	
Depth (m)		4.50-4.50	14.00-14.00	4.00-4.00	4.00-4.00	
Date Sampled		08/07/2021	08/07/2021	08/07/2021	08/07/2021	
Time Taken		None Supplied	None Supplied	None Supplied	None Supplied	
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation			
4-Chloro-3-methylphenol	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05
2,4,6-Trichlorophenol	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05
2,4,5-Trichlorophenol	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05
2-Methylnaphthalene	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05
2-Chloronaphthalene	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05
Dimethylphthalate	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05
2,6-Dinitrotoluene	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05
Acenaphthylene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01
Acenaphthene	µg/l	0.01	ISO 17025	2.1	< 0.01	< 0.01
2,4-Dinitrotoluene	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05
Dibenzofuran	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05
4-Chlorophenyl phenyl ether	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05
Diethyl phthalate	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05
4-Nitroaniline	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05
Fluorene	µg/l	0.01	ISO 17025	0.38	< 0.01	< 0.01
Azobenzene	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05
Bromophenyl phenyl ether	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05
Phenanthrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01
Anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01
Carbazole	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05
Dibutyl phthalate	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05
Anthraquinone	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05
Fluoranthene	µg/l	0.01	ISO 17025	0.26	< 0.01	< 0.01
Pyrene	µg/l	0.01	ISO 17025	0.16	< 0.01	< 0.01
Butyl benzyl phthalate	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05
Benzo(a)anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01
Chrysene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-cd)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01
Dibenz(a,h)anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01
Benzo(ghi)perylene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01
3&4-Methylphenol	µg/l	0.1	NONE	< 0.10	< 0.10	< 0.10

U/S = Unsuitable Sample I/S = Insufficient Sample

Analytical Report Number : 21-86317
Project / Site name: Abello Bus Gasage

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Metals in water by ICP-MS (dissolved)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW.	In-house method based on USEPA Method 6020 & 200.8 for the determination of trace elements in water by ICP-MS.	L012-PL	W	ISO 17025
Metals in water by ICP-OES (dissolved)	Determination of metals in water by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW, PrW.(Al, Cu,Fe,Zn).	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Boron in water	Determination of boron in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW	In-house method based on MEWAM	L039-PL	W	ISO 17025
Complex cyanide in water	Determination of complex cyanide by calculation. Accredited matrices SW, PW, GW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	ISO 17025
Hexavalent chromium in water	Determination of hexavalent chromium in water by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method by continuous flow analyser. Accredited Matrices SW, GW, PW.	L080-PL	W	ISO 17025
Electrical conductivity at 20oC of water	Determination of electrical conductivity in water by electrometric measurement. Accredited Matrices SW, GW, PW	In-house method	L031-PL	W	ISO 17025
Free cyanide in water	Determination of free cyanide by distillation followed by colorimetry. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	ISO 17025
Mineral Oil (Waters) C10 - C40	Determination of dichloromethane extractable hydrocarbons in water by GC-MS.	In-house method	L070-PL	W	NONE
Monohydric phenols in water	Determination of phenols in water by continuous flow analyser. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	ISO 17025
Speciated EPA-16 PAHs in water	Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards. Accredited matrices: SW PW GW	In-house method based on USEPA 8270	L102B-PL	W	ISO 17025
Sulphide in water	Determination of sulphide in water by ion selective electrode.	In-house method	L029-PL	W	NONE
Sulphate in water	Determination of sulphate in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW, PrW.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Semi-volatile organic compounds in water	Determination of semi-volatile organic compounds in leachate by extraction in dichloromethane followed by GC-MS.	In-house method based on USEPA 8270	L102B-PL	W	NONE
TPH1 (Waters)	Determination of dichloromethane extractable hydrocarbons in water by GC-MS.	In-house method	L070-PL	W	NONE
TPH2 (Waters)	Determination of hydrocarbons C6-C10 by headspace GC-MS. Accredited Matrices SW, PW, GW.	In-house method based on USEPA8260	L088-PL	W	ISO 17025
TPHCWG (Waters)	Determination of dichloromethane extractable hydrocarbons in water by GC-MS, speciation by interpretation.	In-house method	L070-PL	W	NONE
Total cyanide in water	Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	ISO 17025

Analytical Report Number : 21-86317
Project / Site name: Abello Bus Gasage

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Total organic carbon in water	Determination of dissolved organic carbon in water by TOC/DOC NDIR analyser. Accredited matrices: SW PW GW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	ISO 17025
Volatile organic compounds in water	Determination of volatile organic compounds in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	W	ISO 17025
BTEX and MTBE in water (Monoaromatics)	Determination of BTEX and MTBE in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	W	ISO 17025
Ammonium as NH4 in water	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the colorimetric salicylate/nitroprusside method. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	ISO 17025
DRO (Waters)	Determination of dichloromethane extractable hydrocarbons in water by GC-MS.	In-house method	L070-PL	W	NONE
pH at 20oC in water (automated)	Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW	In house method.	L099-PL	W	ISO 17025
Chloride in water	Determination of Chloride colorimetrically by discrete analyser.	In house based on MEWAM Method ISBN 0117516260. Accredited matrices: SW, PW, GW.	L082-PL	W	ISO 17025

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Sample Deviation Report

Analytical Report Number : 21-86317
 Project / Site name: Abello Bus Gasage

Sample ID	Other ID	Sample Type	Lab Sample Number	Sample Deviation	Test Name	Test Ref	Test Deviation
BH01_Deci	None Supplied	W	1934681	c	Ammoniacal Nitrogen as N in water	L082-PL	c
BH01_Deci	None Supplied	W	1934681	c	Ammonium as NH4 in water	L082-PL	c
BH01_Deci	None Supplied	W	1934681	c	Electrical conductivity at 20oC of water	L031-PL	c
BH01_Deci	None Supplied	W	1934681	c	pH at 20oC in water (automated)	L099-PL	c
BH01_Shallow	None Supplied	W	1934680	c	Ammoniacal Nitrogen as N in water	L082-PL	c
BH01_Shallow	None Supplied	W	1934680	c	Ammonium as NH4 in water	L082-PL	c
BH01_Shallow	None Supplied	W	1934680	c	Electrical conductivity at 20oC of water	L031-PL	c
BH01_Shallow	None Supplied	W	1934680	c	pH at 20oC in water (automated)	L099-PL	c
WS02	None Supplied	W	1934682	c	Ammoniacal Nitrogen as N in water	L082-PL	c
WS02	None Supplied	W	1934682	c	Ammonium as NH4 in water	L082-PL	c
WS02	None Supplied	W	1934682	c	Electrical conductivity at 20oC of water	L031-PL	c
WS02	None Supplied	W	1934682	c	pH at 20oC in water (automated)	L099-PL	c
WS05	None Supplied	W	1934683	c	Ammoniacal Nitrogen as N in water	L082-PL	c
WS05	None Supplied	W	1934683	c	Ammonium as NH4 in water	L082-PL	c
WS05	None Supplied	W	1934683	c	Electrical conductivity at 20oC of water	L031-PL	c
WS05	None Supplied	W	1934683	c	pH at 20oC in water (automated)	L099-PL	c

APPENDIX 6: MONITORING RESULTS

Ground Gas and Groundwater Monitoring Record Sheet

JOB DETAILS: Abellio Bus Garage, Hayes
Client: Paragon
Site: Abellio Bus Garage, Hayes
Date: 08/07/2021

Quote No: Q2021.389
Visit No: 1 of 3
Operator: Toby McCusker
Project Manager: Dan Stodgell

Monitoring Point	GAS CONCENTRATIONS												VOLATILES		FLOW DATA			WELL AND WATER DATA		Comments	
	Methane (%v/v)		%LEL		Carbon dioxide (%v/v)		Carbon monoxide (ppmv)		Hydrogen sulphide (ppmv)		Oxygen (%v/v)		PID Peak (ppm)	Product thickness (mm)	Flow rate (l/hr)		Differential borehole Pressure (Pa)	Time for flow to equalise (secs)	Water level (mbgl)	Depth of well (m)	
	Peak	Steady	Peak	Steady	Peak	Steady	Peak	Steady	Peak	Steady	Min.	Steady			Peak	Steady					
BH01 deep	7.2	6.7	>>>>	>>>>	2.9	2.9	3	2	1	1	10.7	10.7	ND	ND	0.0	0.0	-0.25	30	2.62	14.32	BH in good condition, Soft muddy base
BH01 shallow	14.2	14.2	>>>>	>>>>	0.4	0.4	1	1	ND	ND	7.9	7.9	ND	ND	0.0	0.0	-0.11	30	2.52	5.00	BH in good condition
WS02	0.5	0.4	10.0	8.0	10.3	10.3	1	1	ND	ND	1.1	1.1	ND	ND	0.0	0.0	-0.44	30	2.97	4.44	BH in good condition
WS05	0.6	0.6	12.0	12.0	13.2	13.2	1	1	ND	ND	13.2	13.2	ND	ND	0.0	0.0	0.07	30	2.27	4.25	BH in good condition
Max	14.2	14.2	12.0	12.0	13.2	13.2	3	2	1	1	13.2	13.2	NR	ND	0.0	0.0	0	30	2.97	14.32	
Min	0.5	0.4	10.0	8.0	0.4	0.4	1	1	ND	ND	1.1	1.1	NR	ND	0.0	0.0	-0.4	30	2.27	4.25	

ND - Not detected

NR - Not recorded

NA - Non applicable

METEOROLOGICAL AND SITE INFORMATION:

State of ground:

Dry

Calm

None

None

(Select correct box with X or enter data, as applicable)

Moist

Wet

Snow

Light

Moderate

Strong

Slight

Cloudy

Overcast

Slight

Moderate

Heavy

11:15

Start

1017

Start

Falling

Steady

Snow

Strong

Overcast

Heavy

13:10

End

1017

End

Rising

Frozen

Source:

Air Temperature (Deg. C):

20

Before

20

After

INSTRUMENTATION TECHNICAL SPECIFICATIONS:

Ground gas meter: GA5000; G500671

Gas Range: CH₄ 0 - 100% CO₂ 0 - 100% O₂ 0 - 25%

Gas Flow range: +100/-50 l/hour

Differential Pressure: (+/-) 1000 Pa

Date of last calibration: 25/01/2021

Date of next calibration: 25/07/2021

Ambient air check: CH₄ 0.0 CO₂ 0.1 O₂ 20.9

Ground Gas and Groundwater Monitoring Record Sheet

JOB DETAILS:

Client: Paragon
 Site: Abellio Bus Garage
 Date: 15/07/2021

Quote No: Q2021.389
 Visit No: 2 of 3
 Operator: Hugh Leekam
 Project Manager: Dan Stodgell

Monitoring Point	GAS CONCENTRATIONS										VOLATILES		FLOW DATA			WELL AND WATER DATA		Comments		
	Methane (%v/v)		%LEL		Carbon dioxide (%v/v)		Carbon monoxide (ppmv)		Hydrogen sulphide (ppmv)		Oxygen (%v/v)		PID Peak (ppm)	Product thickness (mm)	Flow rate (l/hr)	Differential borehole Pressure (Pa)	Time for flow to equalise (secs)	Water level (mbgl)	Depth of well (m)	
	Peak	Steady	Peak	Steady	Peak	Steady	Peak	Steady	Peak	Steady	Min.	Steady			Peak	Steady				
BH01 Deep	1.7	1.7	34.0	34.0	0.9	0.9	2	2	ND	ND	10.6	10.6	1.1	NA	0.1	0.1	-0.14	30	2.51	14.30
BH01 Shallow	0.5	0.5	10.0	10.0	1.4	1.4	1	1	ND	ND	6.0	6.0	1.6	NA	0.2	0.1	-0.16	30	2.51	4.98
WS02	0.1	0.1	2.0	2.0	11.8	11.8	ND	ND	1	1	1.6	1.6	4.9	NA	0.2	0.2	-0.28	30	2.98	4.49
WS05	ND	ND	ND	ND	2.8	2.8	1	1	ND	ND	18.5	18.5	0.3	NA	0.2	0.1	-0.26	30	2.30	4.21
Max	1.7	1.7	34.0	34.0	11.8	11.8	2	2	1	1	18.5	18.5	NR	ND	0.2	0.2	0	30	2.98	14.30
Min	ND	ND	ND	ND	0.9	0.9	ND	ND	ND	ND	1.6	1.6	NR	0.0	0.1	0.1	-0.3	30	2.30	4.21

ND - Not detected

NR - Not recorded

NA - Non applicable

METEOROLOGICAL AND SITE INFORMATION:

State of ground:

Dry

Calm

None

None

(Select correct box with X or enter data, as applicable)

Moist

Wet

Moderate

Cloudy

Slight

Moderate

Snow

Strong

Overcast

Heavy

Rising

Steady

Frozen

Wind:

Cloud cover:

Precipitation:

Time monitoring performed:

Barometric pressure (mbar):

Pressure trend (Daily):

Source:

Air Temperature (Deg. C):

10:30

Start

1021

Start

Falling

21

Before

12:30

End

1021

End

Rising

21

After

INSTRUMENTATION TECHNICAL SPECIFICATIONS:

Ground gas meter: GA5000; G501842

Gas Range: CH₄ 0 - 100% CO₂ 0 - 100% O₂ 0 - 25%

Gas Flow range: +100/-50 l/hour

Differential Pressure: (+/-) 1000 Pa

Date of last calibration: 05/07/2021

Date of next calibration: 05/01/2022

Ambient air check: CH₄ 0.0 CO₂ 0.1 O₂ 20.8

Ground Gas and Groundwater Monitoring Record Sheet

JOB DETAILS:

Client: Paragon
 Site: Abellio Bus Garage
 Date: 23/07/2021

Quote No: Q2021.389
 Visit No: 3 of 3
 Operator: Richard Ward

Project Manager: Dan Stodgell

Monitoring Point	GAS CONCENTRATIONS								VOLATILES		FLOW DATA			WELL AND WATER DATA		Comments				
	Methane (%v/v)		%LEL		Carbon dioxide (%v/v)		Carbon monoxide (ppmv)		Hydrogen sulphide (ppmv)		Oxygen (%v/v)		PID Peak (ppm)	Product thickness (mm)	Flow rate (l/hr)	Differential borehole Pressure (Pa)	Time for flow to equalise (secs)	Water level (mbgl)	Depth of well (m)	
	Peak	Steady	Peak	Steady	Peak	Steady	Peak	Steady	Peak	Steady	Min.	Steady	Peak	Steady	Peak	Steady	Peak	Steady		
BH01 Deep	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Unable to locate BH, suspected under parked vehicles but could not be seen under the vehicles in question.	
BH01 Shallow	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Unable to locate BH, suspected under parked vehicles but could not be seen under the vehicles in question.	
WS02	0.6	0.6	12.0	12.0	11.3	11.3	2	2	ND	ND	0.4	0.4	ND	ND	0.0	0.0	0.28	30	2.99	4.34
WS05	ND	ND	ND	ND	13.0	13.0	1	1	ND	ND	0.8	0.8	ND	ND	0.0	0.0	0.21	30	2.35	4.08
Max	0.6	0.6	12.0	12.0	13.0	13.0	2	2	ND	ND	0.8	0.8	NR	ND	0.0	0.0	0	30	2.99	4.34
Min	ND	ND	ND	ND	11.3	11.3	1	1	ND	ND	0.4	0.4	NR	ND	0.0	0.0	0.2	30	2.35	4.08

ND - Not detected

NR - Not recorded

NA - Non applicable

METEOROLOGICAL AND SITE INFORMATION:

State of ground:

Dry
 Calm
 None
 None

(Select correct box with X or enter data, as applicable)

<input type="checkbox"/> Moist	<input type="checkbox"/> Wet	<input type="checkbox"/> Snow
<input type="checkbox"/> Light	<input type="checkbox"/> Moderate	<input type="checkbox"/> Strong
<input checked="" type="checkbox"/> Slight	<input type="checkbox"/> Cloudy	<input type="checkbox"/> Overcast
<input type="checkbox"/> Slight	<input type="checkbox"/> Moderate	<input type="checkbox"/> Heavy
<input type="checkbox"/> Falling	<input checked="" type="checkbox"/> Steady	<input type="checkbox"/> Rising

Frozen

Wind:

Cloud cover:

Precipitation:

Time monitoring performed:

Barometric pressure (mbar):

Pressure trend (Daily):

Source:

Air Temperature (Deg. C):

timeanddate.com

23 Before

25 After

INSTRUMENTATION TECHNICAL SPECIFICATIONS:

Ground gas meter: GA5000; G505315

Gas Range: CH₄ 0 - 100% CO₂ 0 - 100% O₂ 0 - 25%

Gas Flow range: +100/-50 l/hour

Differential Pressure: (+/-) 1000 Pa

Date of last calibration: 28/01/2021

Date of next calibration: 28/07/2021

Ambient air check: CH₄ CO₂ O₂

APPENDIX 7: GEOTECHNICAL LABORATORY TESTING

Summary of Natural Moisture Content, Liquid Limit and Plastic Limit Results

Job No.	Project Name	Programme	
		Samples received	06/07/2021
30412	Abellio Bus Garage	Schedule received	14/07/2021
Project No.	Client	Project started	15/07/2021
		Testing Started	05/08/2021
211177	Paragon		

Test Methods: BS1377: Part 2: 1990:
Natural Moisture Content : clause 3.2
Atterberg Limits: clause 4.3, 4.4 and 5.0

Test Report by K4 SOILS LABORATORY
Unit 8 Olds Close Olds Approach
Watford Herts WD18 9RU

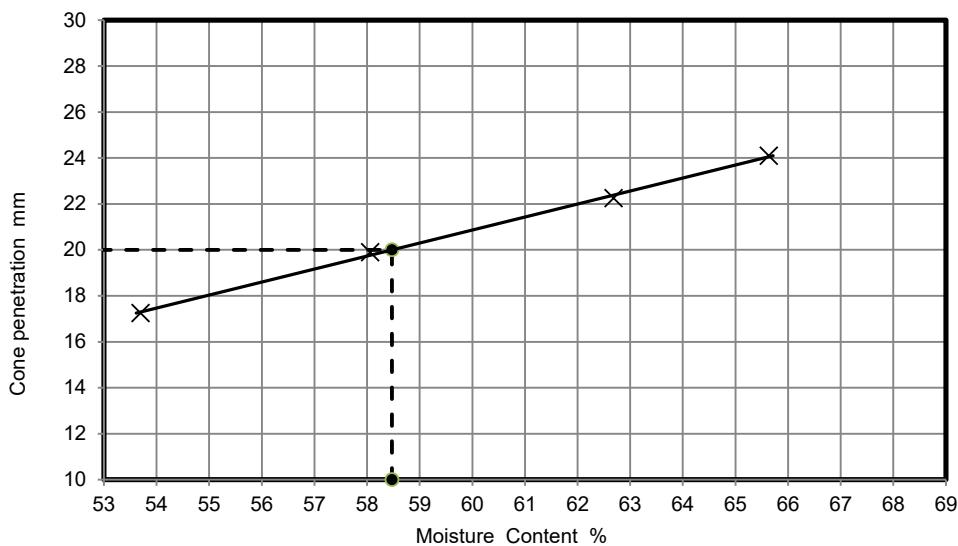
Tel: 01923 711 288
Email: James@k4soils.com

**Checked and
Approved**

Initials J.P

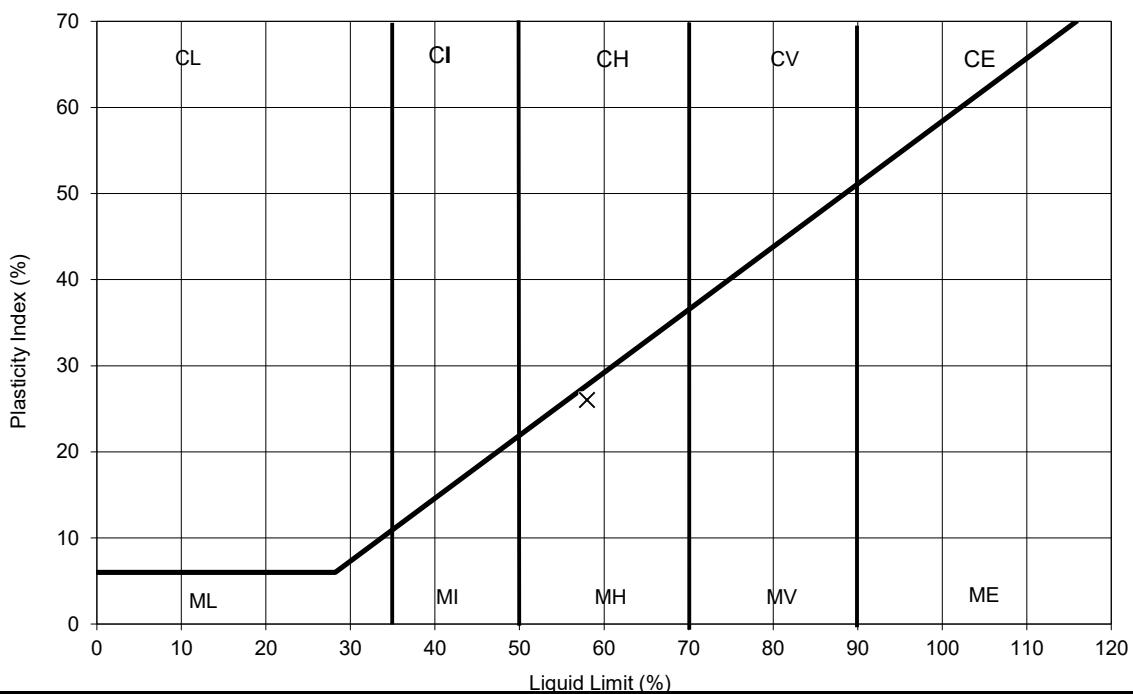
Date: 09/08/2021

TESTING


Approved Signatories: K.Phaure (Tech.Mqr) J.Phaure (Lab.Mqr)

MSF-5-R1

LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX


		Job No.	30412
		Borehole/Pit No.	BH01
Site Name	Abellio Bus Garage	Sample No.	-
Project No.	211177	Client	Paragon
		Depth Top	6.50 m
		Depth Base	7.00 m
Soil Description	Brown slightly mottled dark grey and occasional light grey silty CLAY	Sample Type	B
		Samples received	06/07/2021
		Schedules received	14/07/2021
		Project Started	15/07/2021
		Date Tested	05/08/2021

NATURAL MOISTURE CONTENT	30	%
% PASSING 425µm SIEVE	100	%
LIQUID LIMIT	58	%
PLASTIC LIMIT	32	%
PLASTICITY INDEX	26	%

Remarks

PLASTICITY INDEX

TEST METHOD

BS1377: Part 2 :Clause 4.3 : 1990 Determination of the liquid limit by the cone penetrometer method

BS1377: Part 2 :Clause 5.0 : 1990: Determination of the plastic limit and plasticity index

BS1377: Part 2 :Clause 3.2 : 1990:Determination of the moisture content by the oven drying method

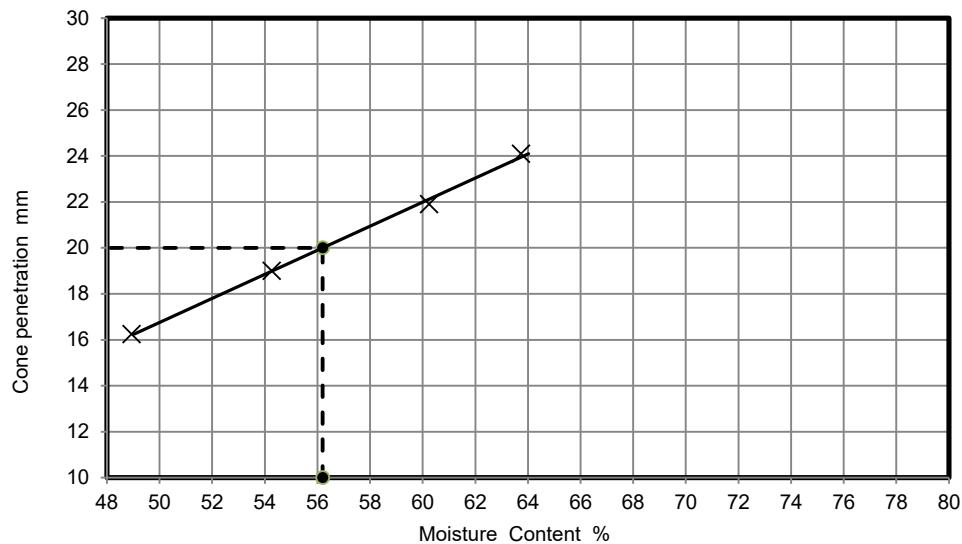
Checked and Approved

Initials: J.P
Date: 09/08/2021

Test Report by K4 SOILS LABORATORY Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU

Tel: 01923 711 288 Email: James@k4soils.com

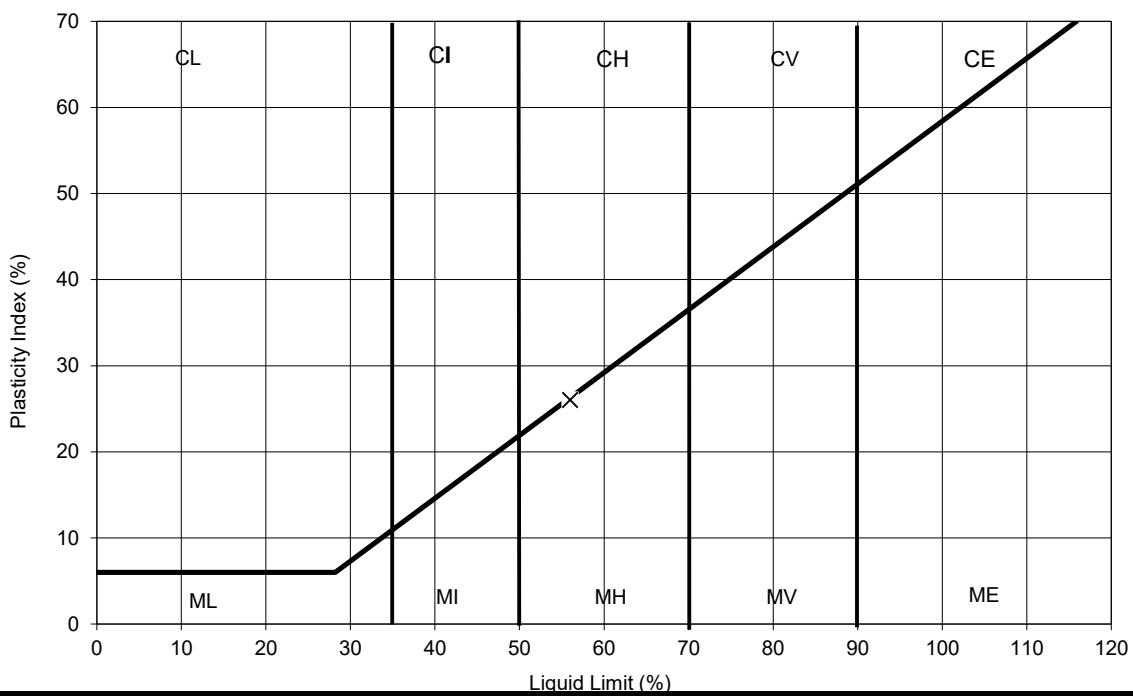
2519


Approved Signatories: K.Phare (Tech.Mgr) J.Phare (Lab.Mgr)

MSF-5 R2

LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX

		Job No.	30412
		Borehole/Pit No.	BH01
Site Name	Abellio Bus Garage	Sample No.	-
Project No.	211177	Client	Paragon
		Depth Top	12.00 m
Soil Description	Dark grey silty CLAY	Depth Base	12.50 m
		Sample Type	B
		Samples received	06/07/2021
		Schedules received	14/07/2021
		Project Started	15/07/2021
		Date Tested	05/08/2021



NATURAL MOISTURE CONTENT	27	%
% PASSING 425µm SIEVE	100	%
LIQUID LIMIT	56	%
PLASTIC LIMIT	30	%
PLASTICITY INDEX	26	%

Remarks

--

PLASTICITY INDEX

TEST METHOD

BS1377: Part 2 :Clause 4.3 : 1990 Determination of the liquid limit by the cone penetrometer method

BS1377: Part 2 :Clause 5.0 : 1990: Determination of the plastic limit and plasticity index

BS1377: Part 2 :Clause 3.2 : 1990:Determination of the moisture content by the oven drying method

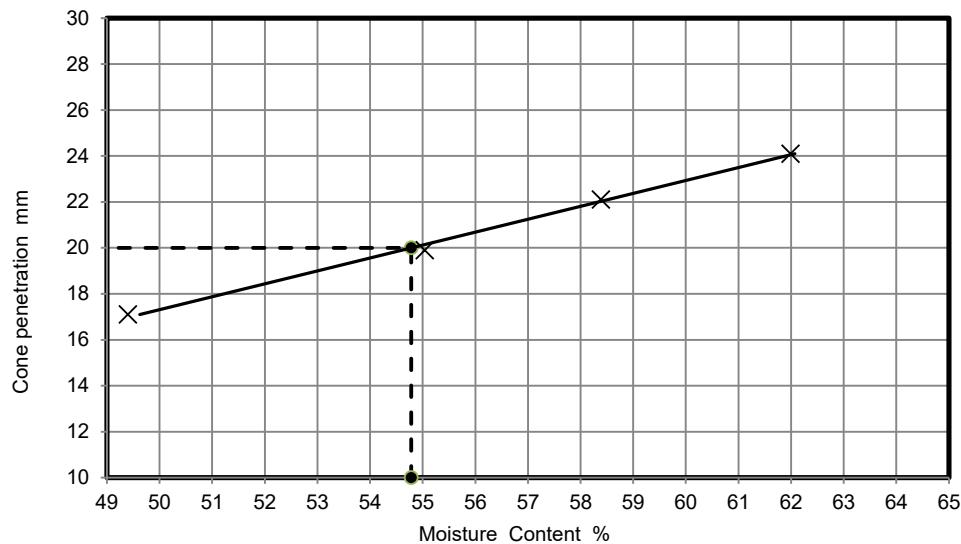
Checked and Approved

Initials: J.P
Date: 09/08/2021

2519

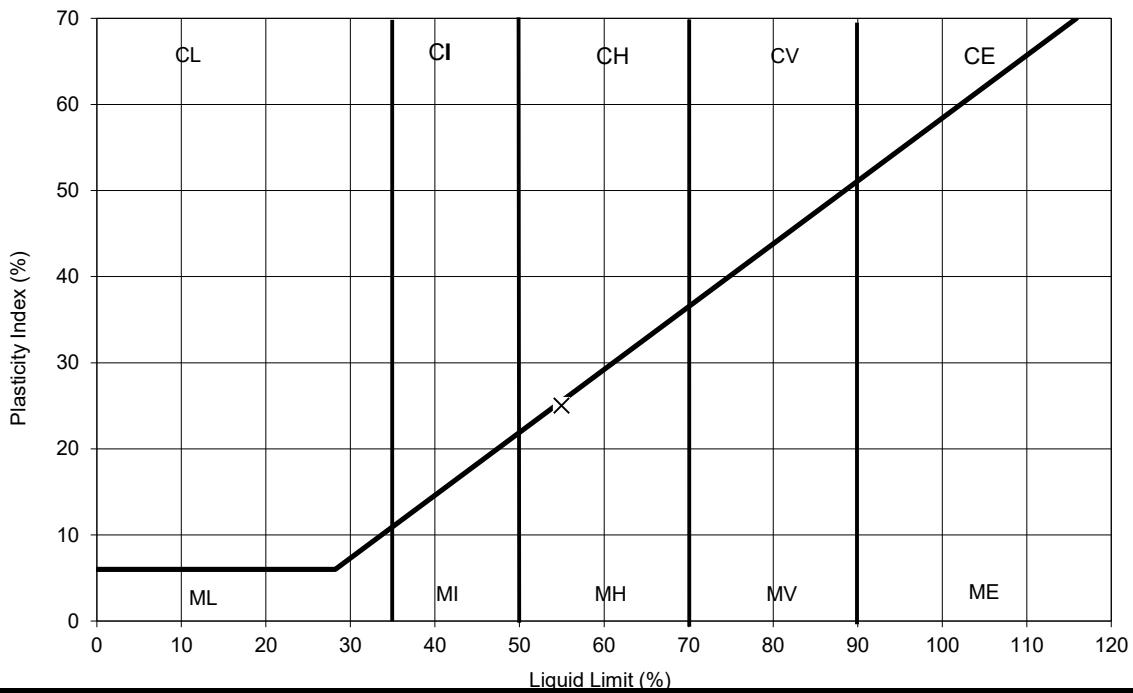
Test Report by K4 SOILS LABORATORY Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU

Tel: 01923 711 288 Email: James@k4soils.com


Approved Signatories: K.Phare (Tech.Mgr) J.Phare (Lab.Mgr)

MSF-5 R2

LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX


Site Name	Abellio Bus Garage			Job No.	30412	
Project No.	211177	Client	Paragon	Borehole/Pit No.	BH01	
Soil Description	Dark grey silty CLAY			Sample No.	-	
				Depth Top	18.00	m
				Depth Base	-	m
				Sample Type	D	
				Samples received	06/07/2021	
				Schedules received	14/07/2021	
				Project Started	15/07/2021	
				Date Tested	05/08/2021	

NATURAL MOISTURE CONTENT	28	%
% PASSING 425µm SIEVE	100	%
LIQUID LIMIT	55	%
PLASTIC LIMIT	30	%
PLASTICITY INDEX	25	%

Remarks

PLASTICITY INDEX

TEST METHOD

BS1377: Part 2 :Clause 4.3 : 1990 Determination of the liquid limit by the cone penetrometer method

BS1377: Part 2 :Clause 5.0 : 1990: Determination of the plastic limit and plasticity index

BS1377: Part 2 :Clause 3.2 : 1990:Determination of the moisture content by the oven drying method

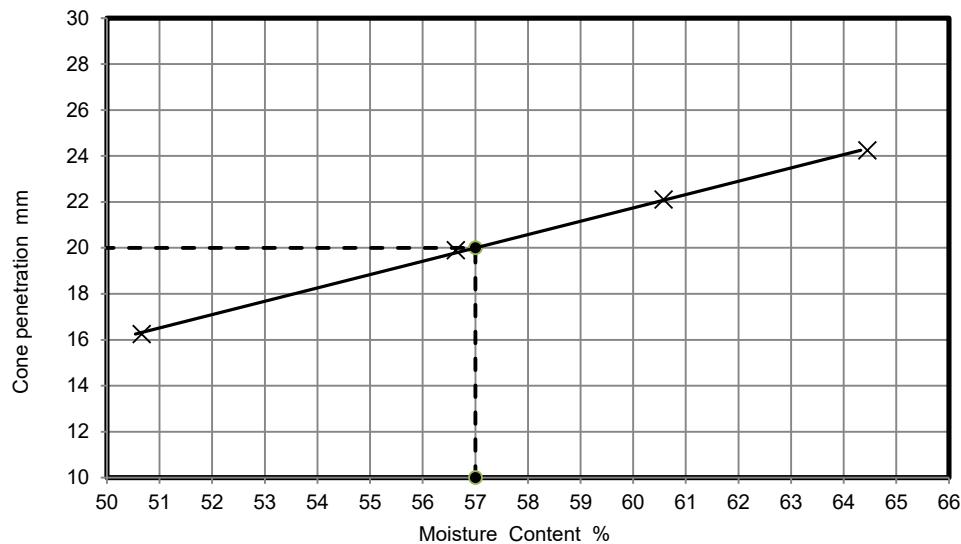
Checked and Approved

Initials: J.P
Date: 09/08/2021

2519

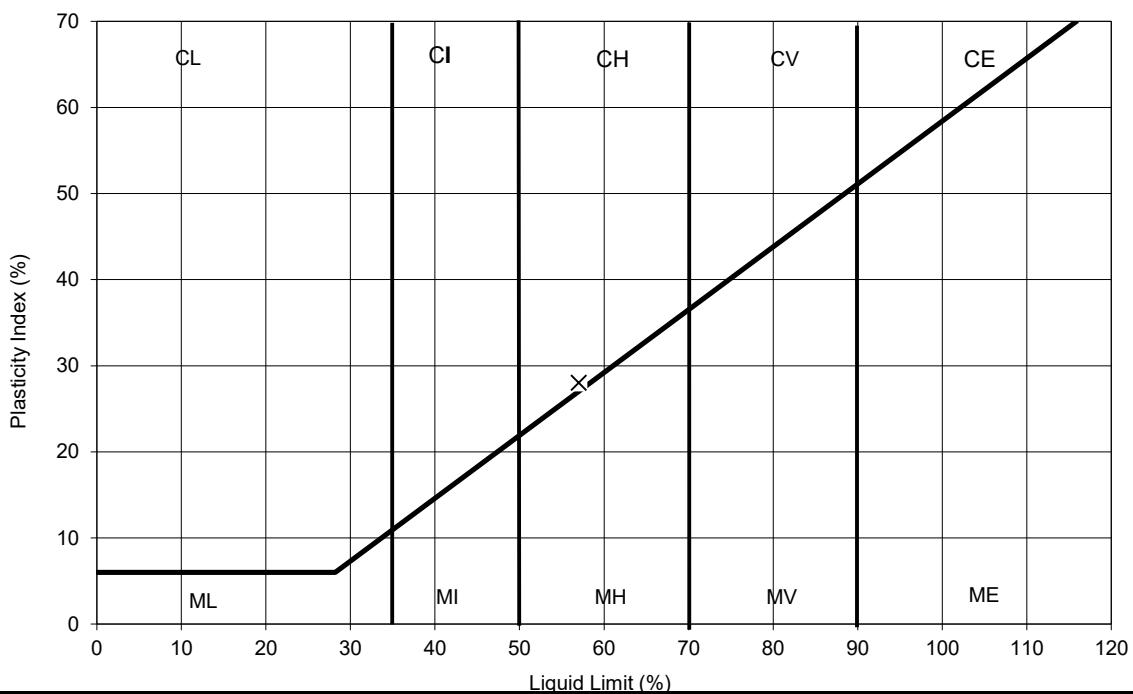
Test Report by K4 SOILS LABORATORY Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU

Tel: 01923 711 288 Email: James@k4soils.com


Approved Signatories: K.Phaur (Tech.Mgr) J.Phaur (Lab.Mgr)

MSF-5 R2

LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX


		Job No.	30412
		Borehole/Pit No.	BH01
Site Name	Abellio Bus Garage	Sample No.	-
Project No.	211177	Client	Paragon
		Depth Top	23.45 m
Soil Description	Brown silty CLAY	Depth Base	- m
		Sample Type	D
		Samples received	06/07/2021
		Schedules received	14/07/2021
		Project Started	15/07/2021
		Date Tested	05/08/2021

NATURAL MOISTURE CONTENT	26	%
% PASSING 425µm SIEVE	100	%
LIQUID LIMIT	57	%
PLASTIC LIMIT	29	%
PLASTICITY INDEX	28	%

Remarks

PLASTICITY INDEX

TEST METHOD

BS1377: Part 2 :Clause 4.3 : 1990 Determination of the liquid limit by the cone penetrometer method

BS1377: Part 2 :Clause 5.0 : 1990: Determination of the plastic limit and plasticity index

BS1377: Part 2 :Clause 3.2 : 1990:Determination of the moisture content by the oven drying method

Checked and Approved

Initials: J.P
Date: 09/08/2021

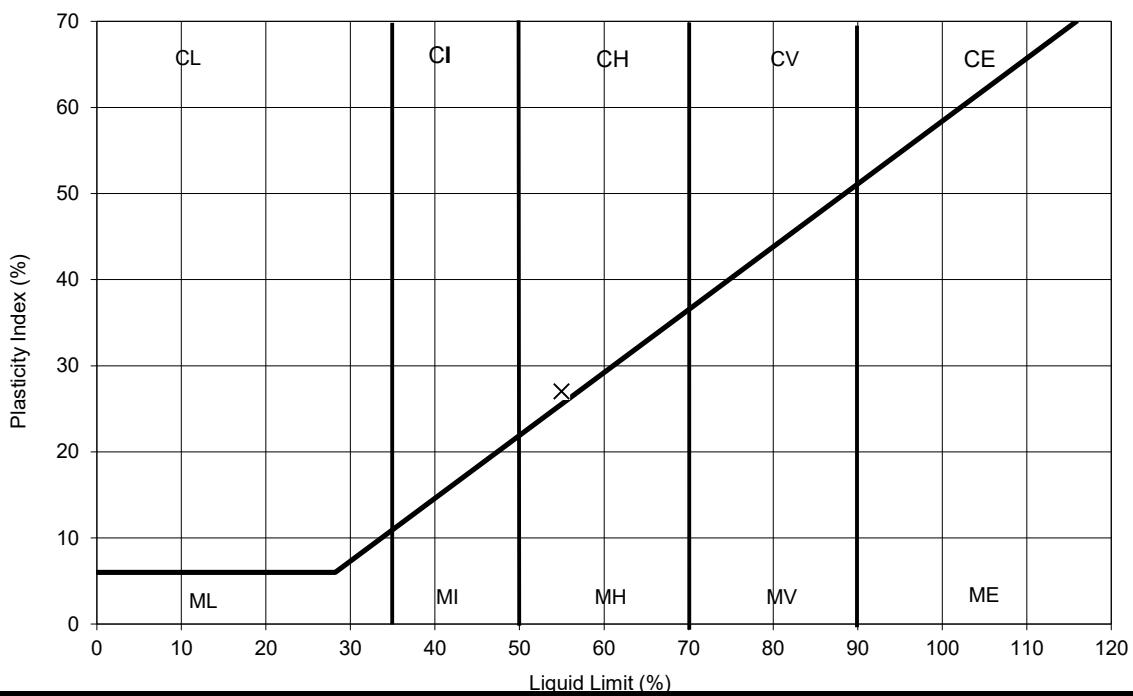
2519

Test Report by K4 SOILS LABORATORY Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU
Tel: 01923 711 288 Email: James@k4soils.com


Approved Signatories: K.Phaur (Tech.Mgr) J.Phaur (Lab.Mgr)

MSF-5 R2

LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX


		Job No.	30412	
		Borehole/Pit No.	BH01	
Site Name	Abellio Bus Garage		Sample No.	-
Project No.	211177	Client	Paragon	Depth Top
				30.00 m
Soil Description	Brownish grey silty CLAY		Depth Base	- m
			Sample Type	D
			Samples received	06/07/2021
			Schedules received	14/07/2021
			Project Started	15/07/2021
			Date Tested	06/08/2021

NATURAL MOISTURE CONTENT	27	%
% PASSING 425µm SIEVE	100	%
LIQUID LIMIT	55	%
PLASTIC LIMIT	28	%
PLASTICITY INDEX	27	%

Remarks

PLASTICITY INDEX

TEST METHOD

BS1377: Part 2 :Clause 4.3 : 1990 Determination of the liquid limit by the cone penetrometer method

BS1377: Part 2 :Clause 5.0 : 1990: Determination of the plastic limit and plasticity index

BS1377: Part 2 :Clause 3.2 : 1990:Determination of the moisture content by the oven drying method

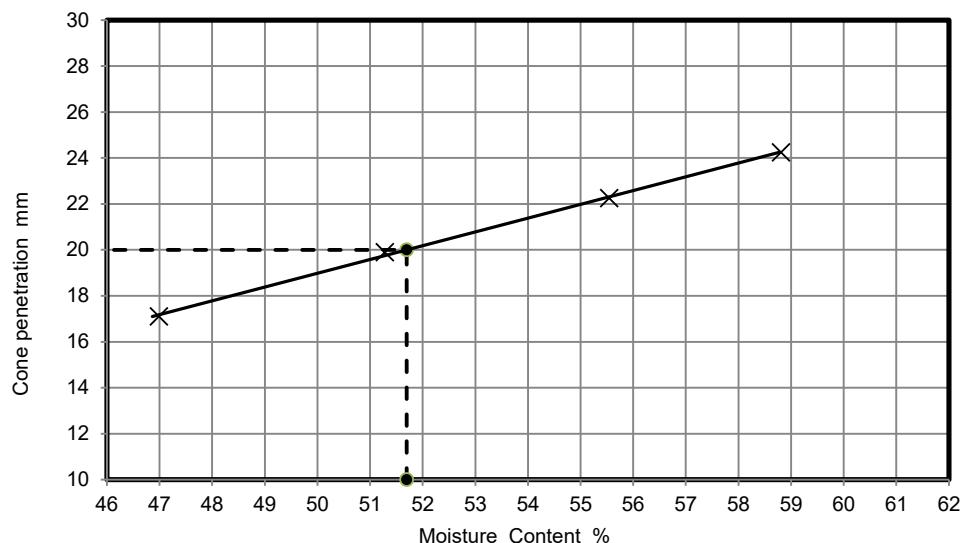
Checked and Approved

Initials: J.P
Date: 09/08/2021

2519

Test Report by K4 SOILS LABORATORY Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU

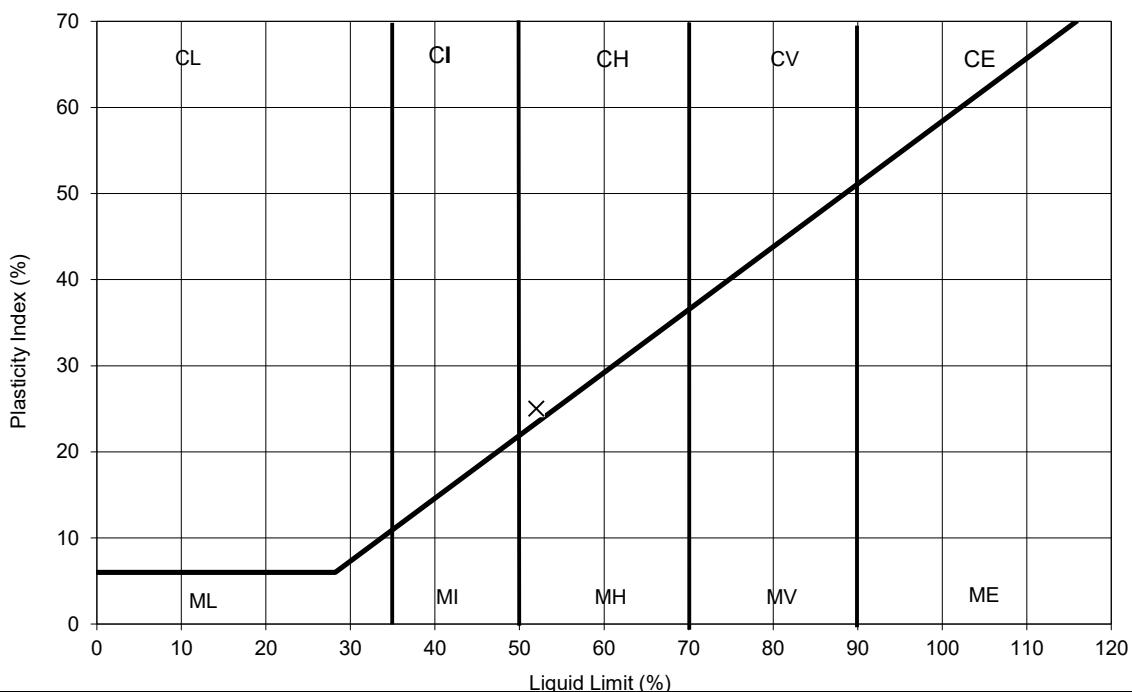
Tel: 01923 711 288 Email: James@k4soils.com


Approved Signatories: K.Phaur (Tech.Mgr) J.Phaur (Lab.Mgr)

MSF-5 R2

LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX

		Job No.	30412
		Borehole/Pit No.	BH01
Site Name	Abellio Bus Garage	Sample No.	-
Project No.	211177	Client	Paragon
		Depth Top	34.50 m
		Depth Base	- m
Soil Description	Brown and occasional dark grey silty CLAY	Sample Type	D
		Samples received	06/07/2021
		Schedules received	14/07/2021
		Project Started	15/07/2021
		Date Tested	06/08/2021



NATURAL MOISTURE CONTENT	23	%
% PASSING 425µm SIEVE	100	%
LIQUID LIMIT	52	%
PLASTIC LIMIT	27	%
PLASTICITY INDEX	25	%

Remarks

--

PLASTICITY INDEX

TEST METHOD

BS1377: Part 2 :Clause 4.3 : 1990 Determination of the liquid limit by the cone penetrometer method

BS1377: Part 2 :Clause 5.0 : 1990: Determination of the plastic limit and plasticity index

BS1377: Part 2 :Clause 3.2 : 1990:Determination of the moisture content by the oven drying method

Checked and Approved

Initials: J.P
Date: 09/08/2021

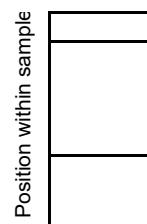
2519

Test Report by K4 SOILS LABORATORY Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU

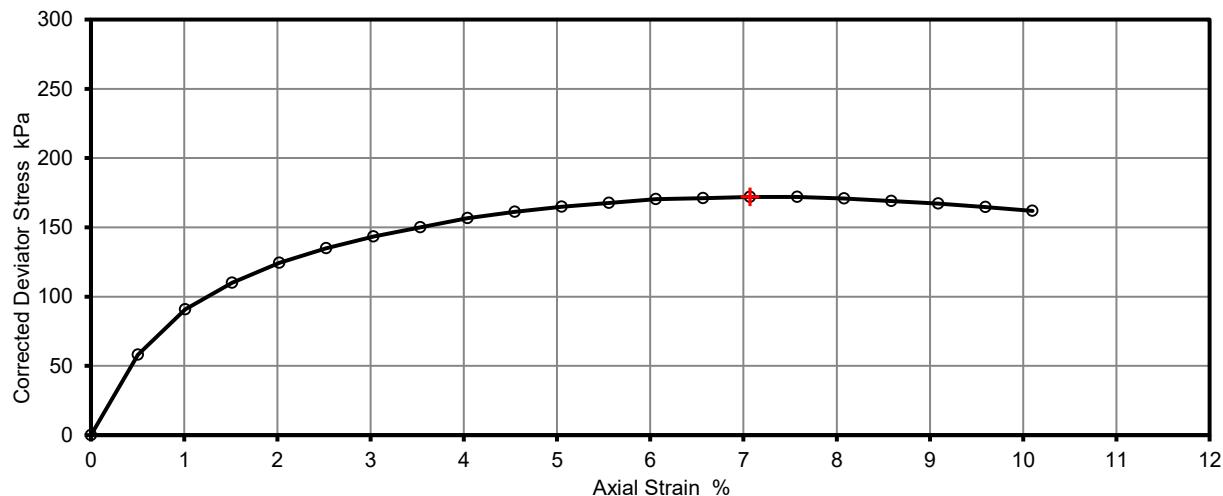
Tel: 01923 711 288 Email: James@k4soils.com

Approved Signatories: K.Phaur (Tech.Mgr) J.Phaur (Lab.Mgr)

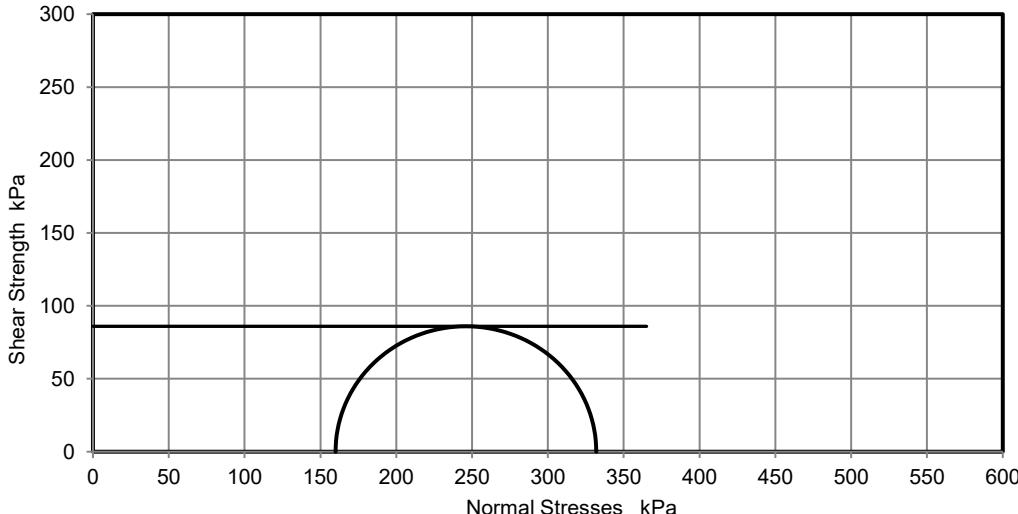
MSF-5 R2



**Unconsolidated Undrained Triaxial
Compression Test without measurement of
pore pressure - single specimen**


Job Ref	30412		
Borehole/Pit No.	BH01		
Site Name	Abellio Bus Garage	Sample No.	19
Project No.	211177	Client	Paragon
		Depth Top	8.00 m
Soil Description	High strength dark grey silty CLAY with rare fm claystone fragments	Depth Base	8.45 m
		Sample Type	U
		Samples received	06/07/2021
		Schedules received	14/07/2021
Test Method	BS1377 : Part 7 : 1990, clause 8, single specimen	Date of test	28/07/2021

Remarks


Test Number	1
Length	198.0 mm
Diameter	102.0 mm
Bulk Density	2.01 Mg/m ³
Moisture Content	32 %
Dry Density	1.53 Mg/m ³
Rate of Strain	2.0 %/min
Cell Pressure	160 kPa
Axial Strain	7.1 %
Deviator Stress, ($\sigma_1 - \sigma_3$) _f	172 kPa
Undrained Shear Strength, cu	86 kPa
Mode of Failure	Compound

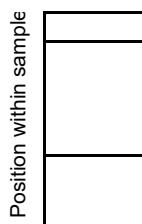
Deviator Stress v Axial Strain

Mohr Circles

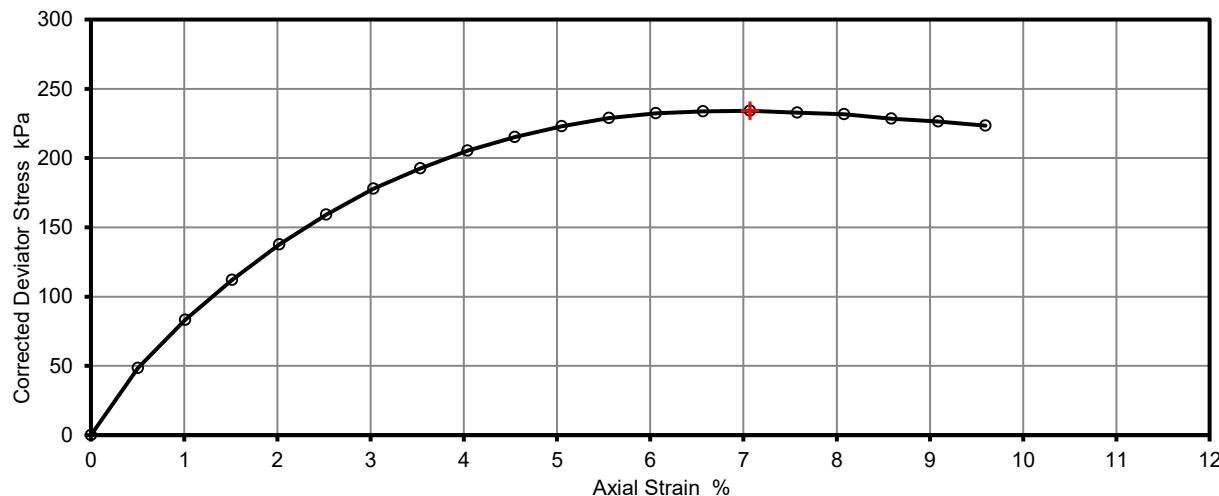
Test Report by K4 SOILS LABORATORY
Unit 8 Olds Close Olds Approach
Watford Herts WD18 9RU
Tel: 01923 711 288
Email: James@k4soils.com

Checked and Approved
Initials: J.P

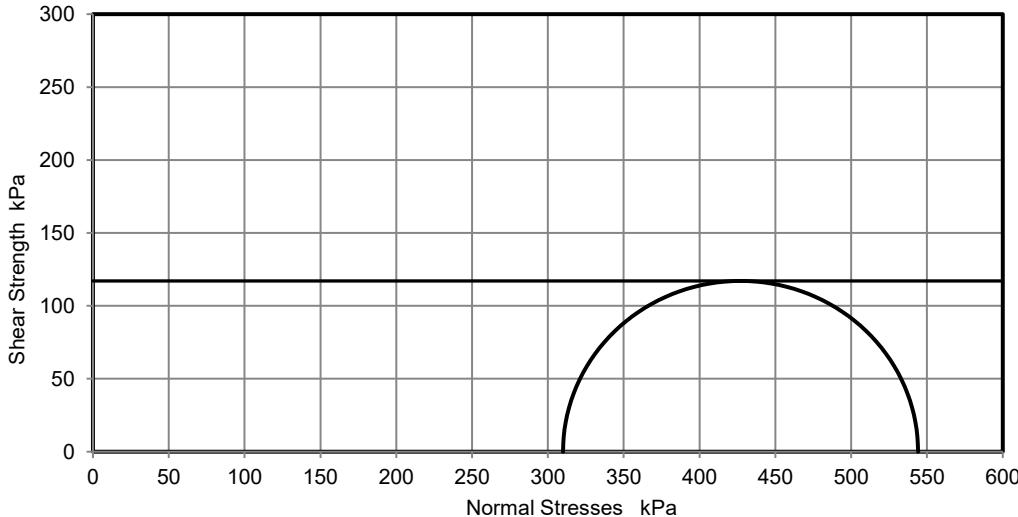
Date 09/08/2021



**Unconsolidated Undrained Triaxial
Compression Test without measurement of
pore pressure - single specimen**


Job Ref	30412			
Borehole/Pit No.	BH01			
Site Name	Abellio Bus Garage		Sample No.	30
Project No.	211177		Client	Paragon
Soil Description	High strength dark grey slightly sandy silty CLAY with occasional fm pyrite nodules		Depth Top	15.50 m
			Depth Base	15.95 m
			Sample Type	U
			Samples received	06/07/2021
			Schedules received	14/07/2021
Test Method	BS1377 : Part 7 : 1990, clause 8, single specimen		Date of test	28/07/2021

Remarks


Test Number	1
Length	198.0 mm
Diameter	102.0 mm
Bulk Density	2.08 Mg/m ³
Moisture Content	24 %
Dry Density	1.69 Mg/m ³
Rate of Strain	2.0 %/min
Cell Pressure	310 kPa
Axial Strain	7.1 %
Deviator Stress, ($\sigma_1 - \sigma_3$)f	234 kPa
Undrained Shear Strength, cu	117 kPa
Mode of Failure	Compound

Deviator Stress v Axial Strain

Mohr Circles

Deviator stress corrected
for area change and
membrane effects

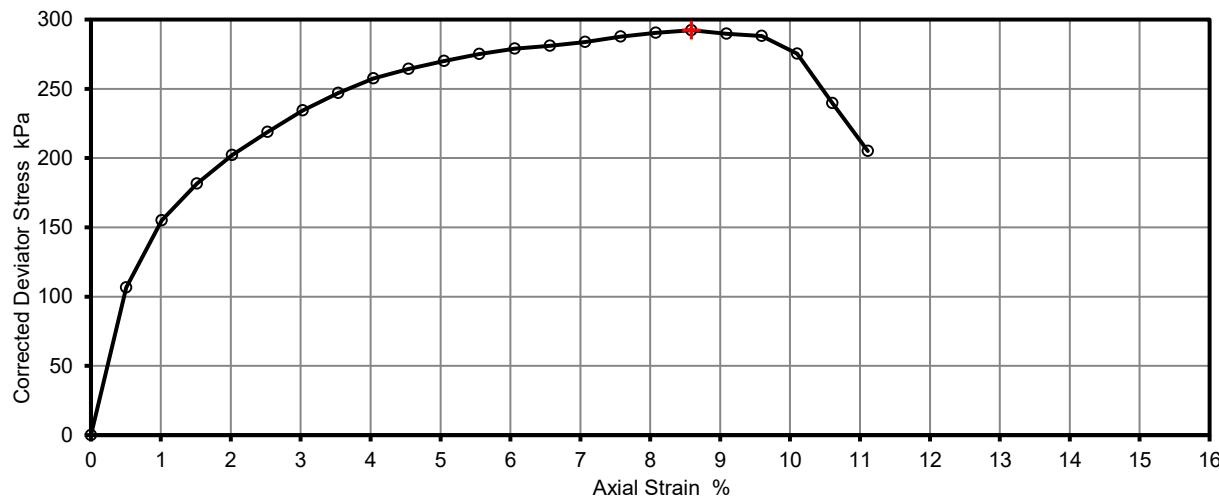
Mohr circles and their
interpretation is not
covered by BS1377.
This is provided for
information only.

Test Report by K4 SOILS LABORATORY
Unit 8 Olds Close Olds Approach
Watford Herts WD18 9RU
Tel: 01923 711 288
Email: James@k4soils.com

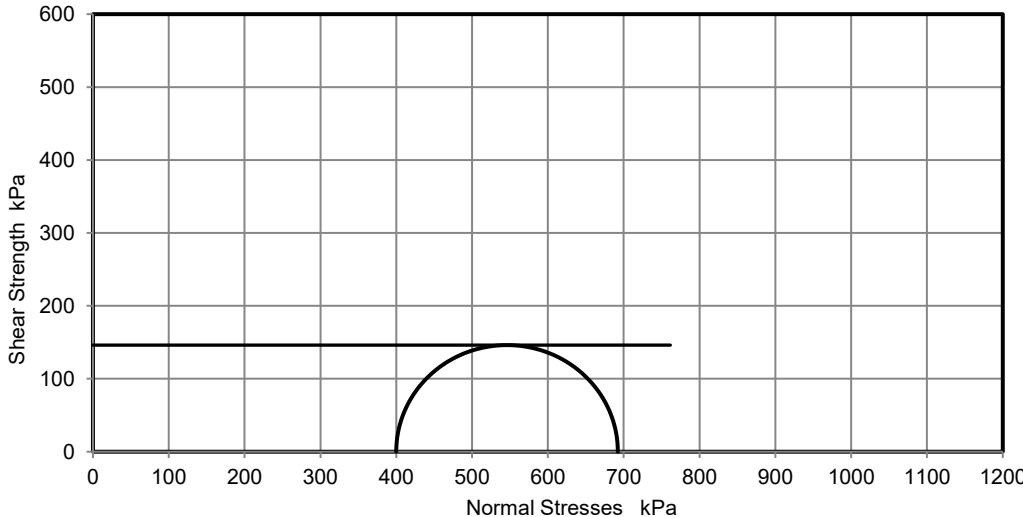
Checked and
Approved
Initials: J.P

Date 09/08/2021

**Unconsolidated Undrained Triaxial
Compression Test without measurement of
pore pressure - single specimen**


Job Ref	30412		
Borehole/Pit No.	BH01		
Site Name	Abellio Bus Garage	Sample No.	36
Project No.	211177	Client	Paragon
		Depth Top	20.00 m
Soil Description	High strength dark grey silty CLAY	Depth Base	20.45 m
		Sample Type	U
		Samples received	06/07/2021
		Schedules received	14/07/2021
Test Method	BS1377 : Part 7 : 1990, clause 8, single specimen	Date of test	28/07/2021

Remarks


Test Number	1
Length	198.0 mm
Diameter	102.0 mm
Bulk Density	2.03 Mg/m ³
Moisture Content	31 %
Dry Density	1.55 Mg/m ³
Rate of Strain	2.0 %/min
Cell Pressure	400 kPa
Axial Strain	8.6 %
Deviator Stress, ($\sigma_1 - \sigma_3$) _f	292 kPa
Undrained Shear Strength, cu	146 kPa
Mode of Failure	$\frac{1}{2}(\sigma_1 - \sigma_3)f$

Deviator Stress v Axial Strain

Mohr Circles

Deviator stress corrected
for area change and
membrane effects

Mohr circles and their
interpretation is not
covered by BS1377.
This is provided for
information only.

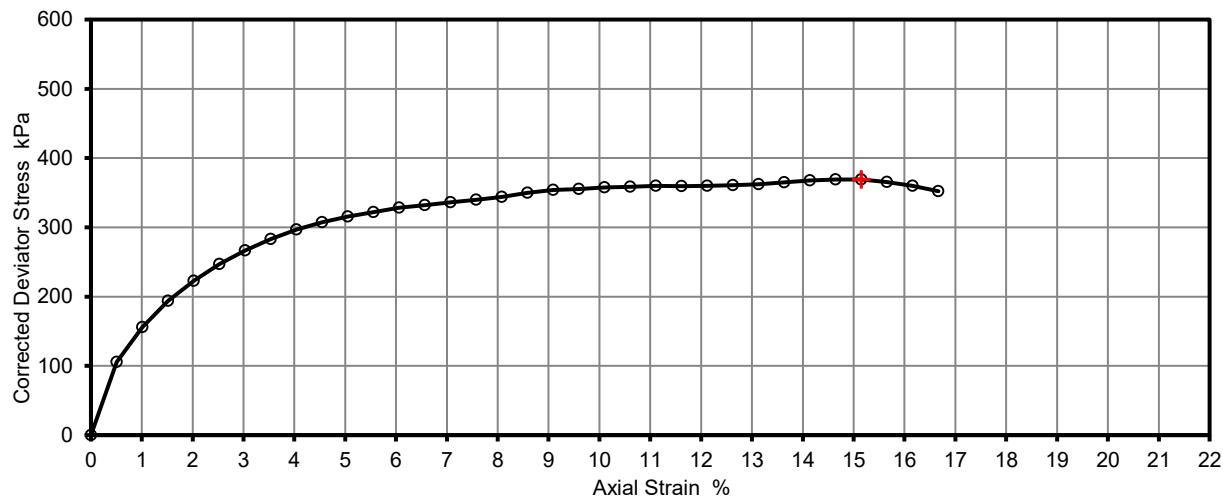
Test Report by K4 SOILS LABORATORY
Unit 8 Olds Close Olds Approach
Watford Herts WD18 9RU
Tel: 01923 711 288
Email: James@k4soils.com

Checked and
Approved
Initials: J.P

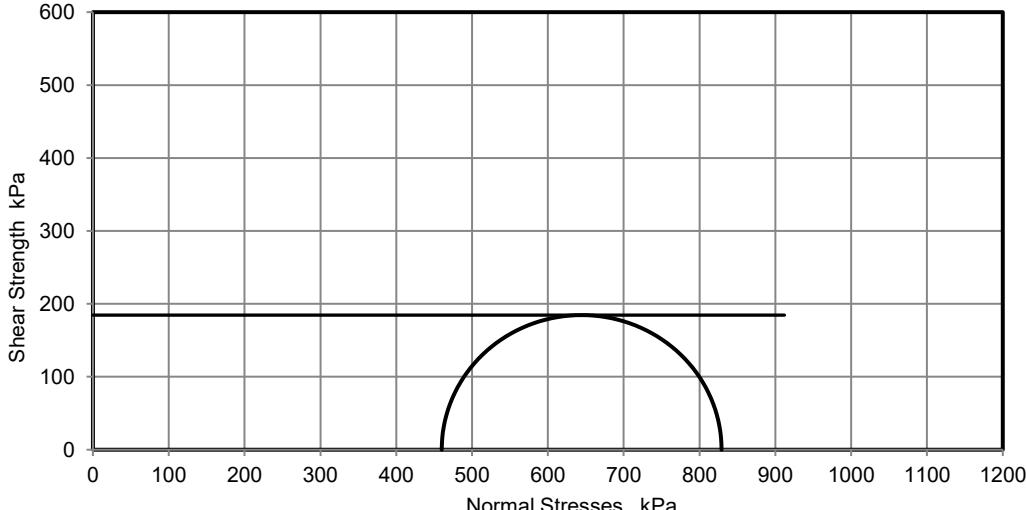
Date 09/08/2021

**Unconsolidated Undrained Triaxial
Compression Test without measurement of
pore pressure - single specimen**

Job Ref	30412			
Borehole/Pit No.	BH01			
Site Name	Abellio Bus Garage		Sample No.	40
Project No.	211177		Client	Paragon
Soil Description	Very high strength dark grey silty CLAY		Depth Top	23.00 m
			Depth Base	23.45 m
			Sample Type	U
			Samples received	06/07/2021
			Schedules received	14/07/2021
Test Method	BS1377 : Part 7 : 1990, clause 8, single specimen		Date of test	28/07/2021


Remarks

Sample slightly disturbed, partially remoulded on top


Position within sample

Test Number	1
Length	198.0 mm
Diameter	102.0 mm
Bulk Density	1.99 Mg/m ³
Moisture Content	27 %
Dry Density	1.57 Mg/m ³
Rate of Strain	2.0 %/min
Cell Pressure	460 kPa
Axial Strain	15 %
Deviator Stress, ($\sigma_1 - \sigma_3$)f	369 kPa
Undrained Shear Strength, cu	185 kPa
Mode of Failure	Compound

Deviator Stress v Axial Strain

Mohr Circles

Deviator stress corrected
for area change and
membrane effects

Mohr circles and their
interpretation is not
covered by BS1377.
This is provided for
information only.

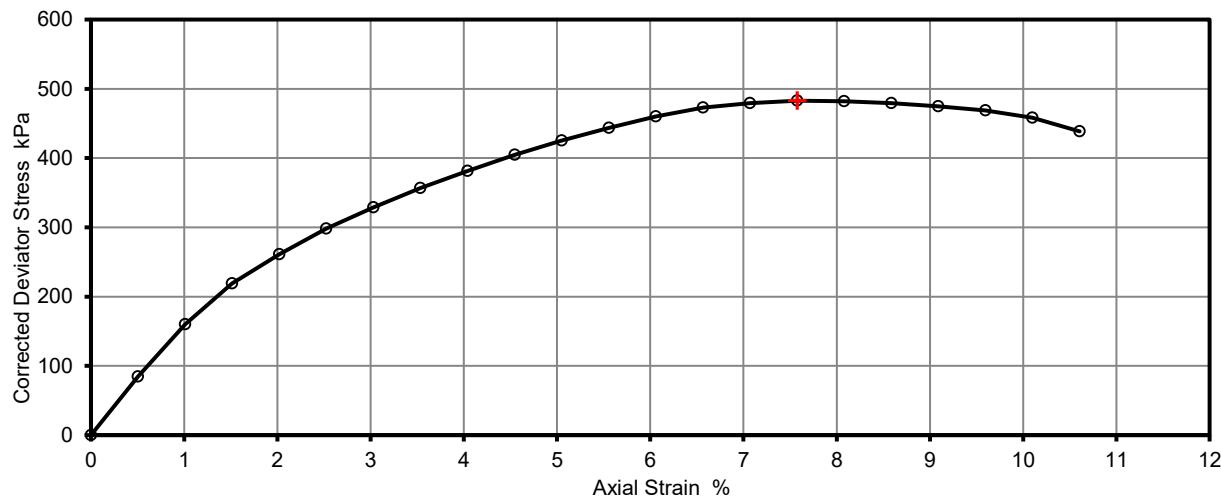
Test Report by K4 SOILS LABORATORY
Unit 8 Olds Close Olds Approach
Watford Herts WD18 9RU
Tel: 01923 711 288
Email: James@k4soils.com

Checked and
Approved
Initials: J.P

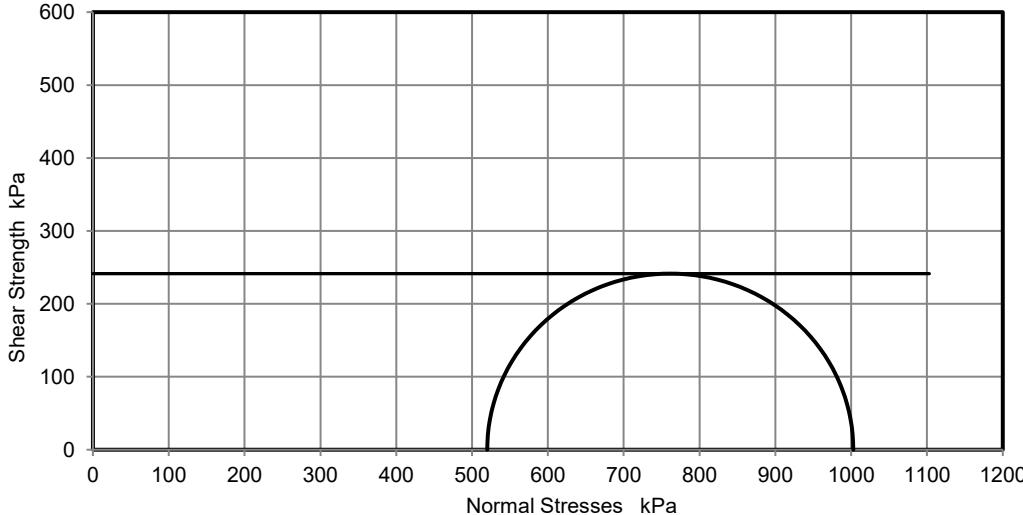
Date 09/08/2021

**Unconsolidated Undrained Triaxial
Compression Test without measurement of
pore pressure - single specimen**

Job Ref	30412		
Borehole/Pit No.	BH01		
Site Name	Abellio Bus Garage	Sample No.	44
Project No.	211177	Client	Paragon
		Depth Top	26.00 m
Soil Description	Very high strength dark grey silty CLAY	Depth Base	26.45 m
		Sample Type	U
		Samples received	06/07/2021
		Schedules received	14/07/2021
Test Method	BS1377 : Part 7 : 1990, clause 8, single specimen	Date of test	28/07/2021


Remarks

Sample slightly disturbed, partially remoulded on top


Position within sample

Test Number	1
Length	198.0 mm
Diameter	102.0 mm
Bulk Density	2.00 Mg/m ³
Moisture Content	27 %
Dry Density	1.58 Mg/m ³
Rate of Strain	2.0 %/min
Cell Pressure	520 kPa
Axial Strain	7.6 %
Deviator Stress, ($\sigma_1 - \sigma_3$)f	483 kPa
Undrained Shear Strength, cu	241 kPa
Mode of Failure	Compound

Deviator Stress v Axial Strain

Mohr Circles

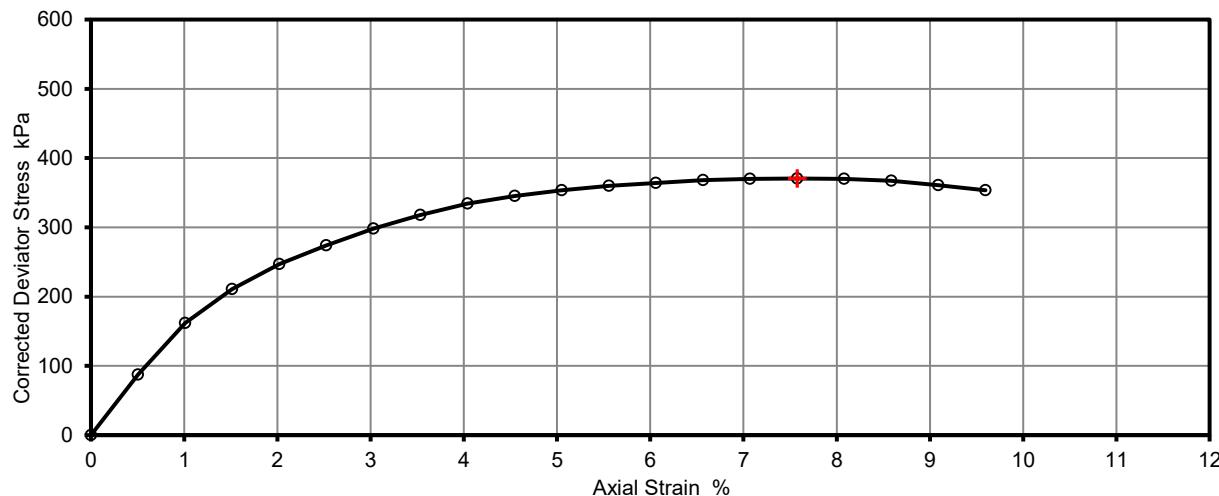
Test Report by K4 SOILS LABORATORY
Unit 8 Olds Close Olds Approach
Watford Herts WD18 9RU
Tel: 01923 711 288
Email: James@k4soils.com

Checked and Approved
Initials: J.P

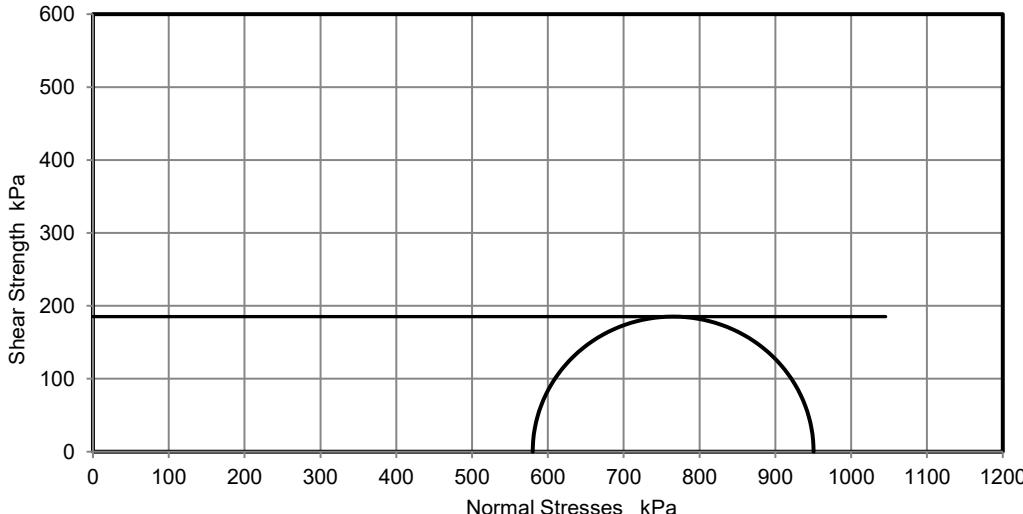
Date 09/08/2021

**Unconsolidated Undrained Triaxial
Compression Test without measurement of
pore pressure - single specimen**

Job Ref	30412		
Borehole/Pit No.	BH01		
Site Name	Abellio Bus Garage	Sample No.	48
Project No.	211177	Client	Paragon
		Depth Top	29.00 m
Soil Description	Very high strength dark grey silty CLAY	Depth Base	29.45 m
		Sample Type	U
		Samples received	06/07/2021
		Schedules received	14/07/2021
Test Method	BS1377 : Part 7 : 1990, clause 8, single specimen	Date of test	28/07/2021


Remarks

Sample slightly disturbed, partially remoulded on top


Position within sample

Test Number	1
Length	198.0 mm
Diameter	102.0 mm
Bulk Density	1.98 Mg/m ³
Moisture Content	26 %
Dry Density	1.57 Mg/m ³
Rate of Strain	2.0 %/min
Cell Pressure	580 kPa
Axial Strain	7.6 %
Deviator Stress, ($\sigma_1 - \sigma_3$) _f	370 kPa
Undrained Shear Strength, cu	185 kPa
Mode of Failure	Compound

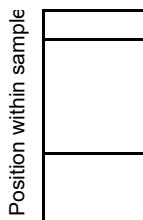
Deviator Stress v Axial Strain

Mohr Circles

Test Report by K4 SOILS LABORATORY
Unit 8 Olds Close Olds Approach
Watford Herts WD18 9RU
Tel: 01923 711 288
Email: James@k4soils.com

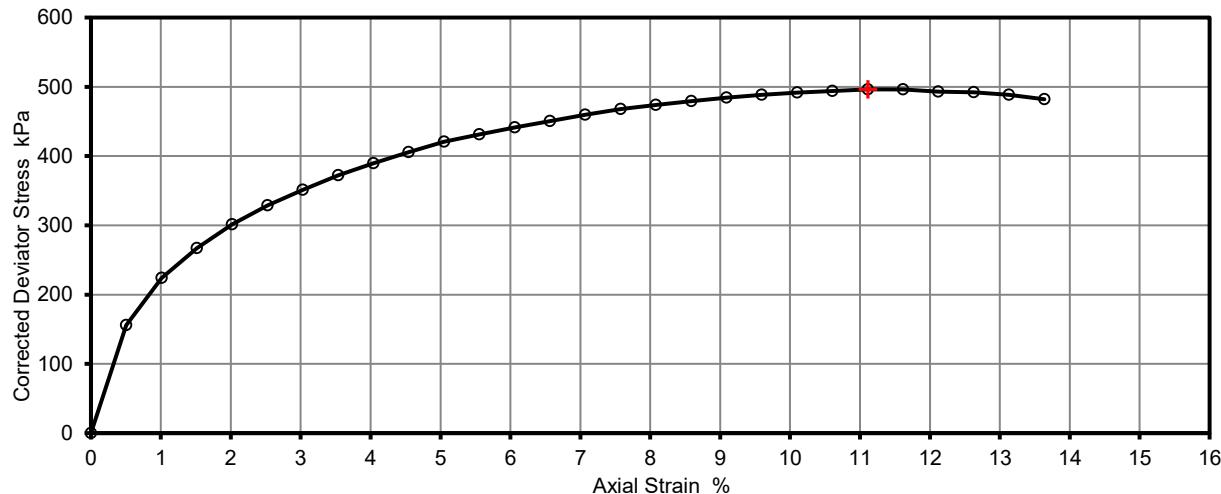
Checked and Approved
Initials: J.P

Date 09/08/2021

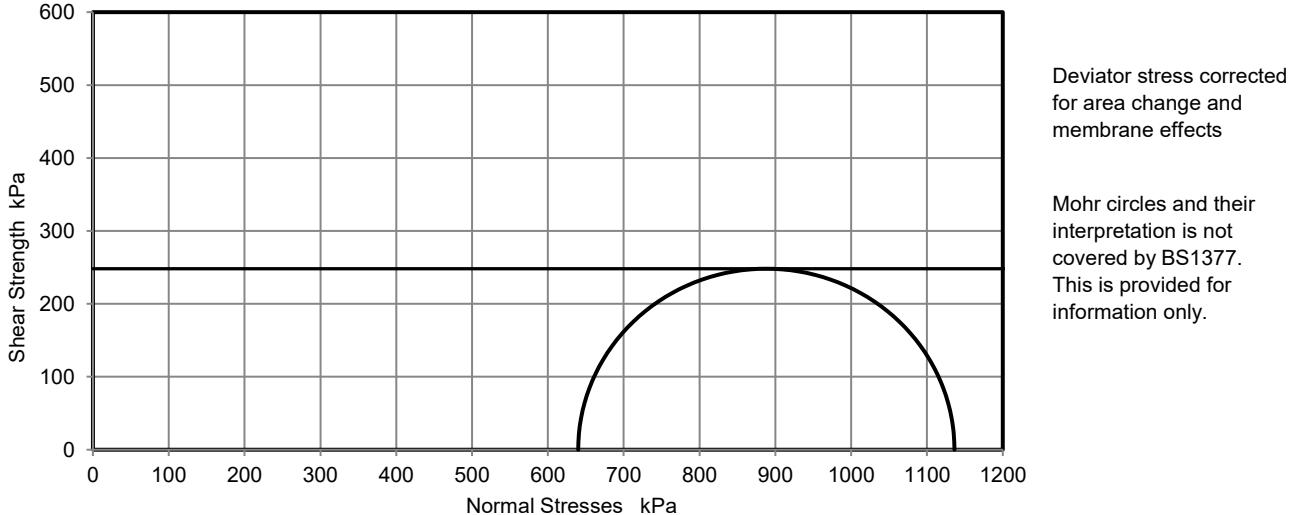


**Unconsolidated Undrained Triaxial
Compression Test without measurement of
pore pressure - single specimen**

Job Ref	30412		
Borehole/Pit No.	BH01		
Site Name	Abellio Bus Garage	Sample No.	52
Project No.	211177	Client	Paragon
		Depth Top	32.00 m
Soil Description	Very high strength dark grey silty CLAY	Depth Base	32.45 m
		Sample Type	U
		Samples received	06/07/2021
		Schedules received	14/07/2021
Test Method	BS1377 : Part 7 : 1990, clause 8, single specimen	Date of test	28/07/2021


Remarks

Sample very disturbed, partially remoulded on top



Test Number	1
Length	198.0 mm
Diameter	102.0 mm
Bulk Density	1.96 Mg/m ³
Moisture Content	25 %
Dry Density	1.56 Mg/m ³
Rate of Strain	2.0 %/min
Cell Pressure	640 kPa
Axial Strain	11 %
Deviator Stress, ($\sigma_1 - \sigma_3$)f	496 kPa
Undrained Shear Strength, cu	248 kPa
Mode of Failure	Compound

Deviator Stress v Axial Strain

Mohr Circles

Test Report by K4 SOILS LABORATORY
Unit 8 Olds Close Olds Approach
Watford Herts WD18 9RU
Tel: 01923 711 288
Email: James@k4soils.com

Checked and Approved
Initials: J.P

Date 09/08/2021

Unconsolidated Undrained Triaxial Compression tests without measurement of pore pressure
Summary of Results

Tests carried out in accordance with BS1377:Part 7 : 1990 clause 8 or 9 as appropriate to test type.

Job No.		Project Name											Programme			
		Abellio Bus Garage														
Project No.		Client											Project started			
		Paragon											Testing Started			
Hole No.	Sample				Soil Description	Test Type	Density		w	Length	Diameter	σ_3	At failure			Remarks
	Ref	Top m	Base m	Type			bulk Mg/m ³	dry					Axial strain %	$\sigma_1 - \sigma_3$ kPa	cu kPa	
BH01	19	8.00	8.45	U	High strength dark grey silty CLAY with rare fm claystone fragments											C
BH01	30	15.50	15.95	U	High strength dark grey slightly sandy silty CLAY with occasional fm pyrite nodules											C
BH01	36	20.00	20.45	U	High strength dark grey silty CLAY											C
BH01	40	23.00	23.45	U	Very high strength dark grey silty CLAY											Sample slightly disturbed, partially remoulded on top
BH01	44	26.00	26.45	U	Very high strength dark grey silty CLAY											Sample slightly disturbed, partially remoulded on top
BH01	48	29.00	29.45	U	Very high strength dark grey silty CLAY											Sample slightly disturbed, partially remoulded on top
BH01	52	32.00	32.45	U	Very high strength dark grey silty CLAY											Sample very disturbed, partially remoulded on top
Legend	UU - single stage test (single and multiple specimens)											σ_3	Cell pressure	Mode of failure ;		B - Brittle
	UUM - Multistage test on a single specimen											$\sigma_1 - \sigma_3$	Maximum corrected deviator stress	P - Plastic		
	suffix R - remoulded or recompacted											cu	Undrained shear strength, $\frac{1}{2}(\sigma_1 - \sigma_3)$	C - Compound		

Test Report by K4 SOILS LABORATORY

Unit 8 Olds Close Olds Approach

Watford Herts WD18 9RU

Tel: 01923 711 288

Email: james@k4soils.com

Checked and Approved

Initials: J.P

Date: 09/08/2021

2519

Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr)

MSF-5-R7b

Unit A2
Windmill Road
Ponswood Industrial Estate
St Leonards on Sea
East Sussex
TN38 9BY

Telephone: (01424) 718618

cs@elab-uk.co.uk
info@elab-uk.co.uk

THE ENVIRONMENTAL LABORATORY LTD

Analytical Report Number: 21-35087

Issue: 1

Date of Issue: 02/08/2021

Contact: James Phaure

Customer Details:
K4 Soils Laboratory Ltd
Unit 8
Watford
Hertfordshire WD18 9RU

Quotation No: Q16-00568

Order No: Not Supplied

Customer Reference: 30412

Date Received: 27/07/2021

Date Approved: 02/08/2021

Details: Abellio Bus Garage

Approved by:

Tim Reeve, Quality Officer

Any comments, opinions or interpretations expressed herein are outside the scope of UKAS accreditation (Accreditation Number 2683)

This report may only be reproduced in full

Sample Summary

Report No.: 21-35087, issue number 1

Elab No.	Client's Ref.	Date Sampled	Date Scheduled	Description	Deviations
246027	BH01 6.50	Not Provided	27/07/2021	Clayey loam	a
246028	BH01 19 12.00	Not Provided	27/07/2021	Clay	a
246029	BH01 36 20.45	Not Provided	27/07/2021	Clay	a
246030	BH01 48 30.00	Not Provided	27/07/2021	Clay	a
246031	BH01 52 34.50	Not Provided	27/07/2021	Clay	a

Results Summary

Report No.: 21-35087, issue number 1

ELAB Reference	246027	246028	246029	246030	246031
Customer Reference		19	36	48	52
Sample ID					
Sample Type	BULK	BULK	DISTURBED	DISTURBED	DISTURBED
Sample Location	BH01	BH01	BH01	BH01	BH01
Sample Depth (m)	6.50	12.00	20.45	30.00	34.50
Sampling Date	Not Provided				
Determinand	Codes	Units	LOD		
Soil sample preparation parameters					
Material removed	N	%	0.1	< 0.1	< 0.1
Description of Inert material removed	N		0	none	none
Metals					
Magnesium	U	mg/kg	25	10700	13100
Anions					
Water Soluble Chloride	M	mg/kg	40	< 40	< 40
Water Soluble Nitrate	M	mg/kg	40	80	124
Water Soluble Sulphate	M	mg/l	20	57	188
Miscellaneous					
pH	M	pH units	0.1	8.3	8.4
				8.9	8.5
				9.1	

Method Summary

Report No.: 21-35087, issue number 1

Parameter	Codes	Analysis Undertaken On	Date Tested	Method Number	Technique
Soil					
pH	M	Air dried sample	29/07/2021	113	Electromeric
Water soluble anions	M	Air dried sample	29/07/2021	172	Ion Chromatography
Aqua regia extractable metals	U	Air dried sample	29/07/2021	300	ICPMS

Report Information

Report No.: 21-35087, issue number 1

Key

U	hold UKAS accreditation
M	hold MCERTS and UKAS accreditation
N	do not currently hold UKAS accreditation
^	MCERTS accreditation not applicable for sample matrix
*	UKAS accreditation not applicable for sample matrix
S	Subcontracted to approved laboratory UKAS Accredited for the test
SM	Subcontracted to approved laboratory MCERTS/UKAS Accredited for the test
NS	Subcontracted to approved laboratory. UKAS accreditation is not applicable.
I/S	Insufficient Sample
U/S	Unsuitable sample
n/t	Not tested
<	means "less than"
>	means "greater than"

LOD LOD refers to limit of detection, except in the case of pH soils and pH waters where it means limit of discrimination.

Soil sample results are expressed on an air dried basis (dried at < 30°C), and are uncorrected for inert material removed.

ELAB are unable to provide an interpretation or opinion on the content of this report.

The results relate only to the sample received.

PCB congener results may include any coeluting PCBs

Uncertainty of measurement for the determinands tested are available upon request
Unless otherwise stated, sample information has been provided by the client. This may affect the validity of the results.

Deviation Codes

- a No date of sampling supplied
- b No time of sampling supplied (Waters Only)
- c Sample not received in appropriate containers
- d Sample not received in cooled condition
- e The container has been incorrectly filled
- f Sample age exceeds stability time (sampling to receipt)
- g Sample age exceeds stability time (sampling to analysis)

Where a sample has a deviation code, the applicable test result may be invalid.

Sample Retention and Disposal

All soil samples will be retained for a period of one month

All water samples will be retained for 7 days following the date of the test report

Charges may apply to extended sample storage

APPENDIX 8: GENERIC ENVIRONMENTAL ASSESSMENT

GENERIC ENVIRONMENTAL ASSESSMENT

8.1	Introduction
8.1.1	This appendix provides additional background information on certain approaches and methods used by Paragon in the preparation of this report.
8.1.2	This report uses the term 'geoenvironmental' to describe aspect relating to ground related environmental issues, such as contamination. The term 'geotechnical' is used to describe aspects relating to the physical nature of the site, such as foundation requirements.
8.1.3	A two-staged approach is used to classify land: <ul style="list-style-type: none"> • The first stage is referred to as a Phase 1 Investigation which includes a desk study and site walkover. Following this a preliminary conceptual site model (CSM) is developed to identify geotechnical and geoenvironmental risks. • The second stage is referred to as Phase 2 Site Investigation, which comprises the intrusive ground investigation, laboratory testing and provision of a risk assessment whereby the CSM identified in the CSM is updated based on the site conditions.
8.1.4	The Geoenvironmental Phase 1 and Phase 2 Investigations have been completed in general accordance with BS10175:2011+A1:2017.
8.1.5	The Geotechnical aspects of the report have been broadly written in general accordance with Eurocode 7 (BS EN 1997-2:2007) and are written with the intention of fulfilling the general requirements of a Ground Investigation Report (GIR) outlined in Section 6.
8.2	Phase 1 Investigation
8.2.1	The preliminary risk assessment is made of both geotechnical and geoenvironmental hazards identified at the desk study stage. This is then updated based on the findings of the Phase 2 Investigation. The risk associated with hazards uses a matrix of probability of occurrence vs the consequence. Geotechnical risks are assessed using a ground model.
8.2.2	In the context of geoenvironmental risks, in order for there to be a risk there must be a viable pollutant linkage, which means there must be a source of contaminations, a potential receptor and a pathway linking the two. The purpose of the Preliminary Conceptual Site Model is to identify all of the potential contaminant linkages and qualitatively assess the potential risks associated with these linkages. Contaminant linkages are potentially unacceptable risks in terms of current contaminated land regime legal framework and require either further assessment through the ground investigation. Should one of the three linkages be absent then there is no linkage and no further action is required.
8.2.3	Geoenvironmental risks are also outlined within Environmental Protection Act 1990, Part 2A which uses the term 'significant harm or significant possibility of significant harm (SPOSH)', where the term 'harm' is significant.

8.2.4

Paragon has adopted a classification level based on definitions within CIRIA Report C552 and professional judgement. Paragon's Rationale for Risk Ratings is presented in Table A. The classification for the probability of harm is presented in Table B. This information feeds into a matrix in Table C, which is used to assign a risk rating.

8.2.5

Table A. Rationale for Risk Ratings

Risk Rating	Risk Rating	Rationale	Examples
High	H	<p>Contaminants very likely or known to represent an unacceptable risk, SPOSH.</p> <p>Equivalent to EA Category 1 pollution incident including persistent and/or extensive detrimental effects on water quality, closure of a potable abstraction point.</p> <p>Site not suitable for proposed use.</p> <p>Enforcement action possible.</p> <p>Urgent action required.</p>	<p>Significant short-term effects to humans is defined as serious injury, defects or death.</p> <p>Die-back of plants in landscaped areas.</p> <p>Short term pollution of controlled waters, major fish kill. Elevated contaminants close to potable abstraction.</p> <p>Major damage to buildings i.e. explosion.</p>
Medium to High	M H	<p>Contaminants likely or known to represent an unacceptable risk.</p> <p>Action required.</p>	<p>Possible short-term effects and likely long-term effects to humans is defined as serious injury, defects or death.</p> <p>Buildings unsafe to occupy. Ingress of contaminants through plastic pipes.</p> <p>Stress or dead plants in landscaped areas.</p> <p>Pollution of sensitive water resources.</p>
Medium	M	<p>Contaminants likely to exceed assessment criteria and may to represent an unacceptable risk.</p> <p>Some damage to property (crops, buildings etc.).</p> <p>Some action required.</p>	<p>Significant long-term effects to humans is defined as serious injury, defects or death.</p> <p>Buildings unsafe to occupy. Potential ingress of contaminants through plastic pipes.</p> <p>Stress or dead plants in landscaped areas.</p> <p>Pollution of sensitive water resources.</p>
Low to Medium	L M	<p>Contaminants may exceed assessment criteria but no harm as no unacceptable intake or contact.</p> <p>Minor or short-lived damage to property, ecosystems.</p> <p>Site likely to be suitable for proposed use.</p> <p>Action unlikely whilst in current use.</p>	<p>Harm not significant, pollutant linkage broken.</p> <p>Minor damage to plants in landscaped areas.</p> <p>Minor damage to buildings.</p>
Low	L	<p>Contaminants likely or known to have no risk of harm.</p> <p>Site likely to be suitable for proposed use.</p> <p>Repairable effects to damage to property etc.</p> <p>No further action required.</p>	<p>No measurable effects.</p> <p>No significant impact to property, plants, ecosystems.</p>

8.2.6	<p>Table B. Classification of Probability of Geoenvironmental Risks</p> <table border="1" data-bbox="235 300 1480 680"> <thead> <tr> <th>Classification</th><th>Risk Rating</th></tr> </thead> <tbody> <tr> <td>High Likelihood</td><td>There is a contaminant linkage and an event that either appears very likely in the short term and almost inevitable over the long term, or there is evidence at the receptor of harm or pollution.</td></tr> <tr> <td>Likely</td><td>There is a contaminant linkage and all the elements are present, which means that it is probable that an event will occur.</td></tr> <tr> <td>Low Likelihood</td><td>There is a contaminant linkage and circumstances are possible under which an event could occur. However, it is no means certain that even over a longer period such event could take place and is less likely in the shorter term.</td></tr> <tr> <td>Unlikely</td><td>There is a contaminant linkage, but circumstances are such that it is improbable that an event would occur even in the very long term.</td></tr> </tbody> </table>	Classification	Risk Rating	High Likelihood	There is a contaminant linkage and an event that either appears very likely in the short term and almost inevitable over the long term, or there is evidence at the receptor of harm or pollution.	Likely	There is a contaminant linkage and all the elements are present, which means that it is probable that an event will occur.	Low Likelihood	There is a contaminant linkage and circumstances are possible under which an event could occur. However, it is no means certain that even over a longer period such event could take place and is less likely in the shorter term.	Unlikely	There is a contaminant linkage, but circumstances are such that it is improbable that an event would occur even in the very long term.																																	
Classification	Risk Rating																																											
High Likelihood	There is a contaminant linkage and an event that either appears very likely in the short term and almost inevitable over the long term, or there is evidence at the receptor of harm or pollution.																																											
Likely	There is a contaminant linkage and all the elements are present, which means that it is probable that an event will occur.																																											
Low Likelihood	There is a contaminant linkage and circumstances are possible under which an event could occur. However, it is no means certain that even over a longer period such event could take place and is less likely in the shorter term.																																											
Unlikely	There is a contaminant linkage, but circumstances are such that it is improbable that an event would occur even in the very long term.																																											
8.2.7	<p>Table C. Probability / Consequence Graphic</p> <table border="1" data-bbox="235 758 1480 1263"> <thead> <tr> <th colspan="2" rowspan="2"></th> <th colspan="5">Consequence</th> </tr> <tr> <th>High</th> <th>Moderate to High</th> <th>Moderate</th> <th>Low to Moderate</th> <th>Low</th> </tr> </thead> <tbody> <tr> <td rowspan="5" style="writing-mode: vertical-rl; transform: rotate(180deg);">Probability</td> <td>High Likelihood</td> <td>Very High Risk</td> <td>High Risk</td> <td>Moderate Risk</td> <td>Low / Moderate Risk</td> <td>Low Risk</td> </tr> <tr> <td>Likely</td> <td>High Risk</td> <td>Moderate Risk</td> <td>Low / Moderate Risk</td> <td>Low Risk</td> <td>Low Risk</td> </tr> <tr> <td>Low Likelihood</td> <td>Moderate Risk</td> <td>Low / Moderate Risk</td> <td>Low Risk</td> <td>Low Risk</td> <td>Very Low Risk</td> </tr> <tr> <td>Unlikely</td> <td>Low / Moderate Risk</td> <td>Low Risk</td> <td>Very Low Risk</td> <td>Very Low Risk</td> <td>Very Low Risk</td> </tr> <tr> <td>No Linkage</td> <td>No Risk</td> <td></td> <td></td> <td></td> <td></td> </tr> </tbody> </table>			Consequence					High	Moderate to High	Moderate	Low to Moderate	Low	Probability	High Likelihood	Very High Risk	High Risk	Moderate Risk	Low / Moderate Risk	Low Risk	Likely	High Risk	Moderate Risk	Low / Moderate Risk	Low Risk	Low Risk	Low Likelihood	Moderate Risk	Low / Moderate Risk	Low Risk	Low Risk	Very Low Risk	Unlikely	Low / Moderate Risk	Low Risk	Very Low Risk	Very Low Risk	Very Low Risk	No Linkage	No Risk				
				Consequence																																								
		High	Moderate to High	Moderate	Low to Moderate	Low																																						
Probability	High Likelihood	Very High Risk	High Risk	Moderate Risk	Low / Moderate Risk	Low Risk																																						
	Likely	High Risk	Moderate Risk	Low / Moderate Risk	Low Risk	Low Risk																																						
	Low Likelihood	Moderate Risk	Low / Moderate Risk	Low Risk	Low Risk	Very Low Risk																																						
	Unlikely	Low / Moderate Risk	Low Risk	Very Low Risk	Very Low Risk	Very Low Risk																																						
	No Linkage	No Risk																																										
8.3	<p>Contaminant Analysis</p> <p>8.3.1 The procedures set out in DEFRA/Environmental Agency Report: Land Contamination: Risk Management (LCRM) 2020, ISO 10381-5:2005 Soil Quality – Sampling and the DoE Industry Profiles provide good summaries of priority pollutants for UK sites. These have been used during the Phase 1 assessment to scope the analysis of chemicals of concern.</p>																																											

8.4	Generic Tier 1 Human Health Risk Assessment
8.4.1	<p>Generic Assessment Criteria (GAC) are used as the limit at which exceedances would cause harm. GAC are developed based on assumptions of characteristics and behaviours or sources, pathways and receptors. These are largely conservative and are calculated using the Contaminated Land Exposure Assessment (CLEA) model, which uses exposure to the receptor and toxicology data of the contaminant in the assessment. Published and industry recognised GACs have been produced for a range of environments:</p>
	<ul style="list-style-type: none"> • Residential with homegrown produce • Residential without homegrown produce • Commercial • Allotments • Public Open Space – Park (POS_{park}) • Public Open Space – Residential (POS_{Resi}).
8.4.2	<p>The results of the chemical laboratory testing were screened using GACs based on two sources:</p>
	<ul style="list-style-type: none"> • Category 4 Screening Levels (C4SLs) including cadmium, Benzo(a)pyrene, benzene, arsenic, lead and chromium VI, produced by LQM CIEH. • Suitable 4 Use Levels (S4UL) produced by LQM CIEH (2015).
8.4.3	<p>In general accordance with Health Protection Agency (HPA) guidance for the risk assessment approaches for Polycyclic Aromatic Hydrocarbons (PAH), 2010, benzo(a)pyrene has been used as a surrogate marker for carcinogenic PAHs. The threshold PAHs have been assessed individually.</p>
8.4.4	<p>Statistical analysis has been carried out on populations of greater than six results. Where the population is less than six, statistical analysis has been deemed inappropriate. Therefore, the maximum concentration of each contaminant has been recorded. The Upper Confidence Level or U₉₅ has been calculated to present the level at which we would be 95% confident that the true mean is less than the GAC. All non-detect values have been treated as being equal to half the limit of detection.</p>
8.4.5	<p>These results have been used to carry out a Level 1: Quantitative Human Health Assessment for the ground contamination present against standards for the proposed commercial land use. These results can also be used for a preliminary assessment for off-site disposal classification.</p>
8.4.6	<p>In general accordance with Health Protection Agency (HPA) guidance for the risk assessment approaches for Polycyclic Aromatic Hydrocarbons (PAH), 2010, benzo(a)pyrene has been used as a surrogate marker for carcinogenic PAHs. The threshold PAHs have been assessed individually.</p>
8.5	Controlled Waters Risk Assessment
8.5.1	<p>The Environment Agency Groundwater Protection Policy (GP3) outlines the legal framework, detailed policies, technical background and the tools to be used in the protection of groundwater. The Water Framework Directive (2000/60/EC) set out the protocol for controlling water quality of the whole water environment. During Groundwater Risk Assessments the impact on controlled waters is outlined. Controlled waters include groundwater, surface water, coastal waters, inland waters and reservoirs.</p>

8.5.2	<p>Aquifers are classified based on their sensitivity. The following aquifer definitions are adopted.</p> <ul style="list-style-type: none"> • Principal Aquifers - These are layers of rock or drift deposits that have high intergranular and/or fracture permeability - meaning they usually provide a high level of water storage. They may support water supply and/or river base flow on a strategic scale. In most cases, principal aquifers are aquifers previously designated as major aquifer. • Secondary Aquifers - These include a wide range of rock layers or drift deposits with an equally wide range of water permeability and storage. Secondary aquifers are subdivided into two types: <ul style="list-style-type: none"> ○ Secondary A - permeable layers capable of supporting water supplies at a local rather than strategic scale, and in some cases forming an important source of base flow to rivers. These are generally aquifers formerly classified as minor aquifers; and ○ Secondary B - predominantly lower permeability layers which may store and yield limited amounts of groundwater due to localised features such as fissures, thin permeable horizons and weathering. These are generally the water-bearing parts of the former non-aquifers. • Secondary Undifferentiated - has been assigned in cases where it has not been possible to attribute either category A or B to a rock type. In most cases, this means that the layer in question has previously been designated as both minor and non-aquifer in different locations due to the variable characteristics of the rock type. • Unproductive Strata - These are rock layers or drift deposits with low permeability that have negligible significance for water supply or river base flow.
8.5.3	To determine the impact of contaminants on groundwater and surface water Environmental Quality Standards (EQS) have been used as screening criteria.
8.6	Gas Risk Assessment
8.6.1	The pragmatic approach to ground gas risk assessment by Card et al 2012 has been followed to determine the gas risk of the site. This method compares the Total Organic Content (TOC) of the Made Ground, and the age and depth of the fill to provide a basis to determine the Characteristic Situation of the site.
8.6.2	The risks associated with methane and carbon dioxide are assessed using BS8485:2015 and guidelines from CIRIA (Wilson et al 2007), the NHBC (Boyle and Witherington 2007) and CL:AIRE RB17 (Card et al 2012).
8.6.3	These methods use the gas monitoring results to produce a Gas Screening Value, which is compared to Tables set out within the guidance. Information on the proposed development is then used to determine the level of gas protection required via a scoring system. Each gas protection measure is assigned a score and combinations of the measures are used to meet the score required. The following tables are used to assess the gas risk.

8.6.4

Table D. BS8485:2015 CS Classification

CS	Hazard Potential	Site Characteristic GSV (l/hr)	Additional Factors
CS1	Very Low	<0.07	Typically <1% methane concentration and <5% carbon dioxide concentration (otherwise consider and increase to CS2)
CS2	Low	0.07 to <0.7	Typical measured flow rate <70l/hr (otherwise consider an increase to CS3)
CS3	Moderate	0.7 to <3.5	
CS4	Moderate to High	3.5 to <15	
CS5	High	15 to <70	
CS6	Very High	>70	

8.6.5

Table E. BS8485:2015 Building Type

Building Types				
	Type A	Type B	Type C	Type D
Ownership	Private	Private or commercial/public, possible multiple	Commercial / public	Commercial / industrial
Control (change of use, structural alterations, ventilation)	None	Some but not all	Full	Full
Room sizes	Small	Small/medium	Small to large	Large industrial / retail park style

8.6.6

Table F. BS8485:2015 Gas Protection Score by CS and Type of Building

CS	Minimum Gas Protection Score			
	High Risk		Medium Risk	Low Risk
	Type A Building	Type B Building	Type C Building	Type D Building
1	0	0	0	0
2	3.5	3.5	2.5	1.5
3	4.5	4	3	2.5
4	6.5 ^A	5.5	4.5	6.5
5	^B	6.5 ^A	5.5	4.5
6	^B	^B	7.5	6.5

Notes:

- A. Residential buildings should not be built on CS4 or higher sites unless the type of construction or site circumstances allow additional levels of protection to be incorporated, e.g. high-performance ventilation or pathway intervention measures, and an associated sustainable system of management of maintenance of the gas control system, e.g. in institutional and/or fully serviced contractual situations.
- B. The gas hazard is too high for this empirical method to be used to define the gas protection measure.

8.7	Property – Water Supply Pipes																																																																																																																					
8.7.1	Standard Water Supply Pipe Assessment has been undertaken in general accordance with UK Water Industry Research (UKWIR) Guidance for the Selection of Water Supply Pipes to be used in Brownfield Sites. Ref 10/WM/03/21, published 2010. The results of soil testing have been used to identify which pipes should be used, from options including, ductile iron, steel, polyethylene (PE), PE barrier, PVC and copper.																																																																																																																					
8.7.2	<table border="1"> <thead> <tr> <th>Test Group</th><th>Testing Required</th><th>PE (mg/kg)</th><th>PVC (mg/kg)</th><th>Barrier Pipe (PE-Al-PE) (mg/kg)</th><th>Wrapped Steel</th><th>Wrapped Ductile Iron</th><th>Copper</th></tr> </thead> <tbody> <tr> <td>Total VOCs</td><td rowspan="8">Where Preliminary Risk ssessment (PRA) has identified land potentially affected by contamination</td><td>0.5</td><td>0.125</td><td>Pass</td><td>Pass</td><td>Pass</td><td>Pass</td></tr> <tr> <td>Total BTEX & MTBE</td><td>0.1</td><td>0.03</td><td>Pass</td><td>Pass</td><td>Pass</td><td>Pass</td></tr> <tr> <td>Total SVOCs</td><td>2</td><td>1.4</td><td>Pass</td><td>Pass</td><td>Pass</td><td>Pass</td></tr> <tr> <td>EC5–EC10 aliphatic and aromatic hydrocarbons</td><td>2</td><td>1.4</td><td>Pass</td><td>Pass</td><td>Pass</td><td>Pass</td></tr> <tr> <td>EC10–EC16 aliphatic and aromatic hydrocarbons</td><td>10</td><td>Pass</td><td>Pass</td><td>Pass</td><td>Pass</td><td>Pass</td></tr> <tr> <td>EC16–EC40 aliphatic and aromatic hydrocarbons</td><td>500</td><td>Pass</td><td>Pass</td><td>Pass</td><td>Pass</td><td>Pass</td></tr> <tr> <td>Phenols</td><td>2</td><td>0.4</td><td>Pass</td><td>Pass</td><td>Pass</td><td>Pass</td></tr> <tr> <td>Creosols and chlorinated phenols</td><td>2</td><td>0.04</td><td></td><td></td><td></td><td></td></tr> <tr> <td>Ethers</td><td rowspan="5">Only where identified</td><td>0.5</td><td>1</td><td>Pass</td><td>Pass</td><td>Pass</td><td>Pass</td></tr> <tr> <td>Nitrobenzene</td><td>0.5</td><td>0.4</td><td>Pass</td><td>Pass</td><td>Pass</td><td>Pass</td></tr> <tr> <td>Ketones</td><td>0.5</td><td>0.02</td><td>Pass</td><td>Pass</td><td>Pass</td><td>Pass</td></tr> <tr> <td>Aldehydes</td><td>0.5</td><td>0.02</td><td>Pass</td><td>Pass</td><td>Pass</td><td>Pass</td></tr> <tr> <td>Amines</td><td>Fail</td><td>Pass</td><td>Pass</td><td>Pass</td><td>Pass</td><td>Pass</td></tr> <tr> <td>Corrosive</td><td>Conductivity Redox pH</td><td>Pass</td><td>Pass</td><td>Pass</td><td>Corrosive if pH <7 and conductivity >400us/cm</td><td>Corrosive if pH <5, Eh not neutral and conductivity >400us/cm</td><td>Corrosive if pH <5 or >8 and Eh positive</td></tr> </tbody> </table>	Test Group	Testing Required	PE (mg/kg)	PVC (mg/kg)	Barrier Pipe (PE-Al-PE) (mg/kg)	Wrapped Steel	Wrapped Ductile Iron	Copper	Total VOCs	Where Preliminary Risk ssessment (PRA) has identified land potentially affected by contamination	0.5	0.125	Pass	Pass	Pass	Pass	Total BTEX & MTBE	0.1	0.03	Pass	Pass	Pass	Pass	Total SVOCs	2	1.4	Pass	Pass	Pass	Pass	EC5–EC10 aliphatic and aromatic hydrocarbons	2	1.4	Pass	Pass	Pass	Pass	EC10–EC16 aliphatic and aromatic hydrocarbons	10	Pass	Pass	Pass	Pass	Pass	EC16–EC40 aliphatic and aromatic hydrocarbons	500	Pass	Pass	Pass	Pass	Pass	Phenols	2	0.4	Pass	Pass	Pass	Pass	Creosols and chlorinated phenols	2	0.04					Ethers	Only where identified	0.5	1	Pass	Pass	Pass	Pass	Nitrobenzene	0.5	0.4	Pass	Pass	Pass	Pass	Ketones	0.5	0.02	Pass	Pass	Pass	Pass	Aldehydes	0.5	0.02	Pass	Pass	Pass	Pass	Amines	Fail	Pass	Pass	Pass	Pass	Pass	Corrosive	Conductivity Redox pH	Pass	Pass	Pass	Corrosive if pH <7 and conductivity >400us/cm	Corrosive if pH <5, Eh not neutral and conductivity >400us/cm	Corrosive if pH <5 or >8 and Eh positive								
Test Group	Testing Required	PE (mg/kg)	PVC (mg/kg)	Barrier Pipe (PE-Al-PE) (mg/kg)	Wrapped Steel	Wrapped Ductile Iron	Copper																																																																																																															
Total VOCs	Where Preliminary Risk ssessment (PRA) has identified land potentially affected by contamination	0.5	0.125	Pass	Pass	Pass	Pass																																																																																																															
Total BTEX & MTBE		0.1	0.03	Pass	Pass	Pass	Pass																																																																																																															
Total SVOCs		2	1.4	Pass	Pass	Pass	Pass																																																																																																															
EC5–EC10 aliphatic and aromatic hydrocarbons		2	1.4	Pass	Pass	Pass	Pass																																																																																																															
EC10–EC16 aliphatic and aromatic hydrocarbons		10	Pass	Pass	Pass	Pass	Pass																																																																																																															
EC16–EC40 aliphatic and aromatic hydrocarbons		500	Pass	Pass	Pass	Pass	Pass																																																																																																															
Phenols		2	0.4	Pass	Pass	Pass	Pass																																																																																																															
Creosols and chlorinated phenols		2	0.04																																																																																																																			
Ethers	Only where identified	0.5	1	Pass	Pass	Pass	Pass																																																																																																															
Nitrobenzene		0.5	0.4	Pass	Pass	Pass	Pass																																																																																																															
Ketones		0.5	0.02	Pass	Pass	Pass	Pass																																																																																																															
Aldehydes		0.5	0.02	Pass	Pass	Pass	Pass																																																																																																															
Amines		Fail	Pass	Pass	Pass	Pass	Pass																																																																																																															
Corrosive	Conductivity Redox pH	Pass	Pass	Pass	Corrosive if pH <7 and conductivity >400us/cm	Corrosive if pH <5, Eh not neutral and conductivity >400us/cm	Corrosive if pH <5 or >8 and Eh positive																																																																																																															

APPENDIX 9: EXTENT OF SURVEY AND LIMITATIONS

EXTENT OF SURVEY AND LIMITATIONS

This report is for your sole use, and consequently no responsibility whatsoever is undertaken or accepted to any third party for the whole or any part of its contents. Paragon accept no responsibility or liability for the consequences of this document being used for any purpose or project other than for which it was commissioned or a third party with whom an agreement has not been executed. Should any third party which to use or rely upon the contents of the report, written approval must be sought from Paragon, a charge may be levied against such approval.

The report has been designed to address potential source, pathway and receptor pollutant linkages associated with the proposed development, by means of intrusive investigation. The content and findings of the report are based on data obtained by employing site assessment methods and techniques, considered appropriate to the site as far as can be interpreted from desk-based materials and a visual walkover of the site. Such techniques and methods are subject to limitations and constraints set out in the report. The findings and opinions are relevant at the time of writing, and should not be relied upon at a substantially later date as site conditions can change. For example, seasonal groundwater levels, natural degradation of contaminants etc.

No liability can be accepted for the conditions that have not been revealed by the exploratory hole locations, or those which occur between each location. Whilst every effort will be made to interpolate the conditions between exploratory locations, such information is only indicative and liability cannot be accepted for its accuracy. By their nature, exploratory holes provide a relatively small and localised snapshot of the ground conditions relative to the size of the site.

Specific comment is made regarding the site's status under Part 2A of the Environmental Protection Act (EPA) 1990, which provides a statutory definition of Contaminated Land and as revised under The Contaminated Land (England) (Amendment) Regulations 2012. Unless specifically stated as relating to this definition, references to 'contamination' and 'contaminants' relate in general terms to the presence of potentially hazardous substances in, on or under the site.

The opinions given within this report have been dictated by the finite data on which they are based and are relevant only to the purpose for which the report was commissioned. If additional information or data becomes available which may affect the opinions expressed in this report, Paragon reserves the right to review such information and, if warranted, to modify the opinions accordingly. Paragon reserves the right to charge additional fees for; un-anticipated second opinion reviewing of previous reports.

Paragon has prepared this report with reasonable skill, care and diligence. The recommendations contained in this report represent our professional opinions. These opinions were arrived at in accordance with currently accepted industry practices at this time. The work undertaken to provide the basis of this report comprised a study of available documented information from a variety of sources. We cannot provide guarantees or warranties for the accuracy of third-party data, which is reviewed in good faith and assumed to be representative and accurate.

It should be noted that any risks identified in this report are perceived risks based on the information reviewed. No liability can be accepted for the effects of any future changes to such guidelines and legislation. In the event that guidance / legislation changes it may be necessary for Paragon to update or modify reports. The risk assessment is completed in line with the relevant land use agreed for the site and the time of completing the works. Changes to site conditions or land use may require a reassessment.

DEFINITIONS

For the avoidance of doubt, Paragon Building Consultancy Limited (Paragon) has prepared the following alphabetical list of definitions and reservations to aid the client in understanding the content of our advice and or written reports(s):

Accuracy	Level of agreement between true value and observed value.
ACM's	Asbestos Containing Materials
Conceptual Site Model	Textual and or schematic hypothesis of the nature and sources of contamination, potential migration pathways (including description of the ground and groundwater) and potential receptors, developed on the base of the information from the preliminary investigation and refined during subsequent phases of investigation and which is an essential part of the risk assessment process.
	Note 1: The conceptual exposure model is initially derived from the information obtained by the preliminary investigation. This conceptual model is used to focus subsequent investigations, where these are considered to be necessary, in order to meet the objectives of the investigations and the risk assessment. The results of the field investigation can provide additional data that can be used to further refine the conceptual model.
Contamination	Presence of a substance which is in, on or under land, and which has <u>the potential</u> to cause significant harm or to cause significant pollution of controlled water.
	Note 1: There is no assumption in this definition that harm results from the presence of the contamination.
	Note 2: Naturally enhanced concentrations of harmful substances can fall within this definition of contamination.
	Note 3: Contamination may relate to soils, groundwater or ground gas.
Controlled Water	Inland freshwater (any lake, pond or watercourse above the freshwater limit), water contained in underground strata and any coastal water between the limit of highest tide or the freshwater line to the three-mile limit of territorial waters.
	Note 1: See Section 104 of The Water Resources Act 1991.
Enquiries	Any enquiries undertaken by Paragon of local authorities and statutory undertakers are made verbally in respect of environmental issues. Local searches are not undertaken and no responsibility is accepted for any inaccurate information provided. It is further assumed unless otherwise stated that all necessary licences, permits etc. either run with the property or are transferable to a new occupier as appropriate.
Harm	Adverse effect on the health of living organisms, or other interference with ecological systems of which they form part, and, in the case humans, including property.
Hazard	Inherently dangerous quality of a substance, procedure or event.
Pathway	Mechanism or route by which a contaminant comes into contact with, or otherwise affects, a receptor.
Precision	Level of agreement within a series of measurements of a parameter.
Receptor	Persons, living organisms, ecological systems, controlled water, atmosphere, structures and utilities that could be adversely affected by the contaminant(s).

Risk	Probability of the occurrence, magnitude and consequences of an unwanted adverse effect on a receptor.
Risk Assessment	Process of establishing, to the extent possible, the existence, nature and significance of risk.
Sampling	Methods and techniques used to obtain a representative sample of the material under investigation.
Soil	Upper layer of the earth's crust composed of mineral parts, organic substance, water, air and living matter. Note 1: In general accordance with BS 10175:2001 the term soil has the meaning ascribed to it through general use in civil engineering and includes topsoil and subsoil; deposits such as clays, silt, sand, gravel, cobbles, boulders and organic deposits such as peat; and material of natural or human origin (e.g. fills and deposited wastes). The term embraces all components of soil, including mineral matter, organic matter, soil gas and moisture, and living organisms.
Source	Location from which contamination is, or was, derived. Note 1: This could be the location of the highest soil or groundwater concentration of the contaminant(s).
Uncertainty	Parameter, associated with the result of a measurement that characterises the dispersion of the values that could reasonably be attributed to the measurement.

London

The Harlequin Building
65 Southwark Street
London SE1 0HR
T: +44 (0)20 7125 0112

Manchester

Freetrade Exchange
37 Peter Street
Manchester M2 5GB
T: +44 (0)161 260 0500

Esher

Warwick House
1 Claremont Lane
Esher, Surrey KT10 9DP
T: +44 (0)1372 469 985

Edinburgh

9 Alva Street
Edinburgh
EH2 4PH
T: +44 (0)131 300 0070

Bristol

Unit 1 Temple Studios
Temple Gate
Bristol BS1 6QA
T: +44 (0)117 301 7800

Paragon is a trading name of Paragon Building Consultancy Limited.
Paragon Building Consultancy Limited is a limited company.
Registered in England and Wales No. 08482471. Registered Office:
The Harlequin Building, 65 Southwark Street, London, SE1 0HR

paragon