

**32 MANOR ROAD
HAYES
HILLINGDON
UB3 2DG**

**Residential
Development**

Drainage Strategy

Project No. 453

May 2025

Mechanical, Electrical and Public Health Consulting
Engineers
Wessex Court, Clarence Street, Swindon
SN1 2DN.
Telephone: 020 8898 9504
Email: info@zbsa.co.uk
Web: www.zbsa.co.uk

ZBSA

Drainage Strategy Report

Quality Control

Issue	Date	Prepared	Checked	Approved	Comments
P1	07.05.25	Rafi Zaidi	Sam Beckett	Rafi Zaidi	Issued to assist Planning Application

This report is based on the information that's been gathered or provided to ZBSA through a range of searches and consultations carried out as part of the Drainage Strategy Report. In some cases, where formal records weren't available, we've had to rely on anecdotal information.

We believe the conclusions in this report are accurate based on what we know right now. That said, if new information comes to light, those conclusions may need to be updated.

The work we've done here is grounded in our current professional knowledge, and in line with the latest UK standards, codes, technologies, and legislation available at the time of writing. Of course, these things can change, and if they do, some parts of this report might no longer apply or may need reviewing.

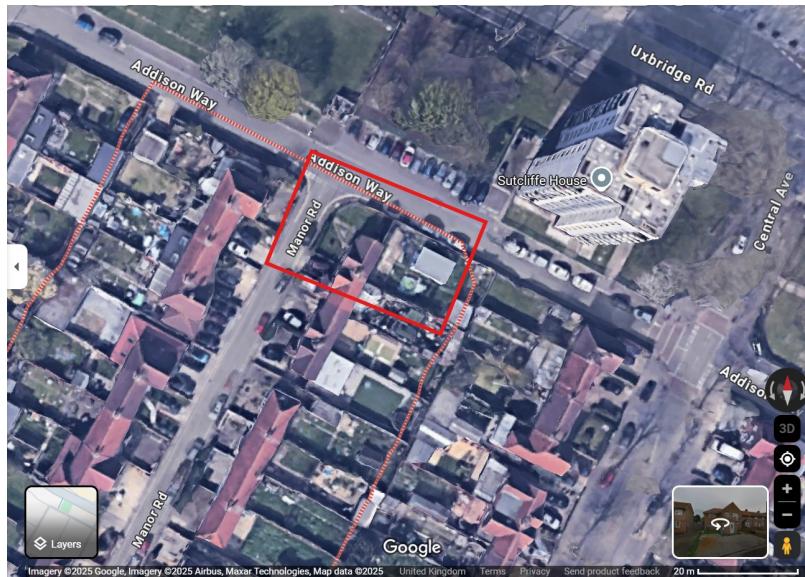
Finally, some of the information we've used comes from maps and documents created by others. While we've used these in good faith, we can't guarantee their accuracy or be held responsible for any errors they might contain.

Contents

Introduction	4
Sustainable Urban Design (SUDS)	5
The London Plan	6
SUDS Management & Maintenance Plan	7
Flood Risk Assessment	9
Existing and Proposed Surface and Foul Drainage Strategy Urban Design (SUDS)	10
Appendix A - Flood Risk Assessment Map	11
Appendix B – The British Geological Survey results	12
Appendix C – Greenfield Runoff Rate Estimates	13
Appendix D – Surface Water Butts Details	14
Appendix E – Propose Layout	Error! Bookmark not defined.

Zaidi Building Services Associates

Wessex Court, Clarence Street, Swindon, SN1 2DJ
0208 8989504 / info@zbsa.co.uk / www.zbsa.co.uk


Introduction

ZBSA Building Services Consultants has been appointed by the Client and instructed to provide a Drainage Strategy Report to assist with a planning application at 32 Manor Road, Hayes, Hillingdon, UB3 2DG.


The proposed development is for the construction of two-Storey semi-dwelling with provision of cycle parking, refuse storage and amenity space.

The proposed works would occur over an area of approximately 240 m² (0.023 ha), currently occupied by outbuilding and nearby hardstanding and vegetation.

Site Location

Proposed dwelling

Sustainable Urban Design (SuDS)

What are SuDS?

SuDS aim to regulate water quantity, water quality, amenity and biodiversity. This is known as the “four pillars of SuDS”. SuDS are a new way of managing surface water in a natural and controlled manner. They slow runoff and provide storage of surface water which mimics pre-development conditions, and minimise the risk of flooding compared to traditional underground piped systems which often provide no improvements to water quality, biodiversity or amenity.

SuDS can discharge to groundwater via infiltration, to a watercourse, surface water sewers or combined sewers.

In accordance with SuDS hierarchy when considering surface water drainage then consideration to each of the below discharge options should be considered in Sequence.

Examples of SuDS

Detention Basins/ Infiltration Basins

Normally dry outside of storm events. They are designed to store runoff and reduce the volume of surface water.

Attenuation Ponds

As well as storing water from storm events they support native vegetation and provide habitat and amenity places for local wildlife and communities.

Permeable Paving

Pavement made of permeable material that allows water to infiltrate into the ground or be discharged into sewers without overland flow while removing pollutants.

Swales

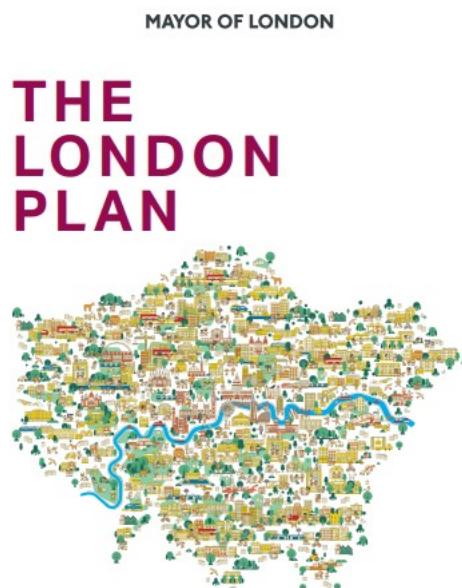
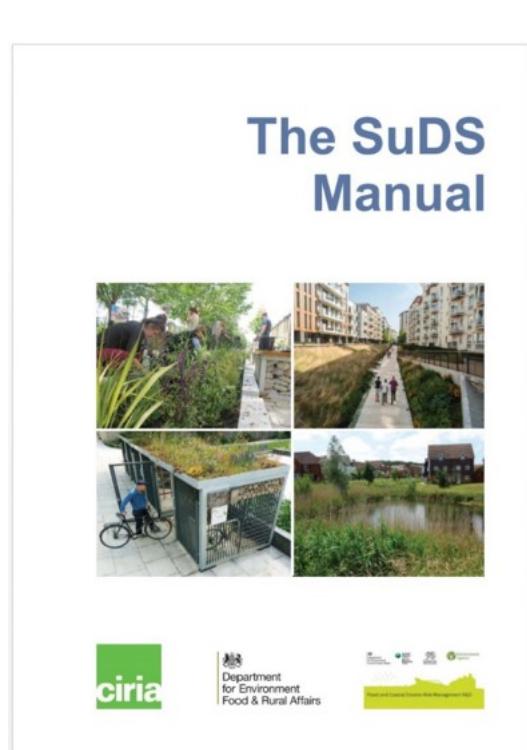
Shallow, open channels designed to convey, treat and store surface water runoff from rainfall events.

Green Roofs

Multi-layered system that can store water which can be reused for non-potable uses. They also insulate buildings, reduce energy and water costs and have biodiversity benefits.

Soakaways

Excavations that are backfilled with permeable material that allow water to attenuate and infiltrate into the ground.



The London Plan

LONDON'S RESPONSE TO Policy 5.13 Sustainable drainage

A Development should utilise sustainable urban drainage systems (SuDS) unless there are practical reasons for not doing so, and should aim to achieve greenfield run-off rates and ensure that surface water run-off is managed as close to its source as possible in line with the following drainage hierarchy:

- 1 store rainwater for later use
- 2 use infiltration techniques, such as porous surfaces in non-clay areas
- 3 attenuate rainwater in ponds or open water features for gradual release
- 4 attenuate rainwater by storing in tanks or sealed water features for gradual release
- 5 discharge rainwater direct to a watercourse
- 6 discharge rainwater to a surface water sewer/drain
- 7 discharge rainwater to the combined sewer.

Drainage should be designed and implemented in ways that deliver other policy objectives of this Plan, including water use efficiency and quality, biodiversity, amenity and recreation.

SUDS Management & Maintenance Plan

There are three categories of maintenance activities referred to in this report:

- **Regular maintenance** (including inspections and monitoring).

Consists of basic tasks done on a frequent and predictable schedule, including vegetation management, litter and debris removal, and inspections.

- **Occasional maintenance**

Comprises tasks that are likely to be required periodically, but on a much less frequent and predictable basis than the routine tasks (sediment removal is an example). 3 Welbeck Colliery, Nottinghamshire SUDS Management & Maintenance Plan

- **Remedial maintenance**

Comprises intermittent tasks that may be required to rectify faults associated with the system, although the likelihood of faults can be minimised by good design. Where remedial work is found to be necessary, it is likely to be due to site-specific characteristics or unforeseen events, and as such timings are difficult to predict.

Maintenance schedule	Required action	Typical frequency
Regular maintenance	Remove litter and debris	Monthly
	Cut grass – for spillways and access routes	Monthly (during growing season), or as required
	Cut grass – meadow grass in and around basin	Half yearly (spring – before nesting season, and autumn)
	Manage other vegetation and remove nuisance plants	Monthly (at start, then as required)
	Inspect inlets, outlets and overflows for blockages, and clear if required.	Monthly
	Inspect banksides, structures, pipework etc for evidence of physical damage	Monthly
	Inspect inlets and facility surface for silt accumulation. Establish appropriate silt removal frequencies.	Monthly (for first year), then annually or as required
	Check any penstocks and other mechanical devices	Annually
	Tidy all dead growth before start of growing season	Annually
	Remove sediment from inlets, outlet and forebay	Annually (or as required)
Occasional maintenance	Manage wetland plants in outlet pool – where provided	Annually (as set out in Chapter 23)
	Reseed areas of poor vegetation growth	As required
	Prune and trim any trees and remove cuttings	Every 2 years, or as required
Remedial actions	Remove sediment from inlets, outlets, forebay and main basin when required	Every 5 years, or as required (likely to be minimal requirements where effective upstream source control is provided)
	Repair erosion or other damage by reseeding or re-turfing	As required
	Realignment of rip-rap	As required
	Repair/rehabilitation of inlets, outlets and overflows	As required
	Relevel uneven surfaces and reinstate design levels	As required

Zaidi Building Services Associates

Wessex Court, Clarence Street, Swindon, SN1 2DJ
0208 8989504 / info@zbsa.co.uk / www.zbsa.co.uk

Maintenance schedule	Required action	Typical frequency
Regular maintenance	Remove litter and debris	Monthly
	Cut grass – for spillways and access routes	Monthly (during growing season), or as required
	Cut grass – meadow grass in and around basin	Half yearly (spring – before nesting season, and autumn)
	Manage other vegetation and remove nuisance plants	Monthly (at start, then as required)
	Inspect inlets, outlets and overflows for blockages, and clear if required.	Monthly
	Inspect banksides, structures, pipework etc for evidence of physical damage	Monthly
	Inspect inlets and facility surface for silt accumulation. Establish appropriate silt removal frequencies.	Monthly (for first year), then annually or as required
	Check any penstocks and other mechanical devices	Annually
	Tidy all dead growth before start of growing season	Annually
	Remove sediment from inlets, outlet and forebay	Annually (or as required)
Occasional maintenance	Manage wetland plants in outlet pool – where provided	Annually (as set out in Chapter 23)
	Reseed areas of poor vegetation growth	As required
	Prune and trim any trees and remove cuttings	Every 2 years, or as required
Remedial actions	Remove sediment from inlets, outlets, forebay and main basin when required	Every 5 years, or as required (likely to be minimal requirements where effective upstream source control is provided)
	Repair erosion or other damage by reseeding or re-turfing	As required
	Realignment of rip-rap	As required
	Repair/rehabilitation of inlets, outlets and overflows	As required
	Relevel uneven surfaces and reinstate design levels	As required

Flood Risk Assessment

The Environment Agency (EA) mapping for Flood Risk, shows the site located within Flood Zone 1 (low risk of fluvial or tidal flooding). Flood zone 1 is described as land having a less than 1 in 1,000 annual probability of river or sea flooding. The EA Long Term Flood risk online service shows that the area of the proposed works is at a 'Very Low' risk of surface water flooding, indicating that it would not experience any significant flooding during a 1 in 1000 year storm event.

Surface water	More about your surface water flood risk	Rivers and the sea	More about your rivers and sea flood risk
Yearly chance of flooding Very low Low Medium High		Yearly chance of flooding Very low Low Medium High	
Yearly chance of flooding between 2040 and 2060 Very low Low Medium High		Yearly chance of flooding between 2036 and 2069 Very low Low Medium High	
What surface water is Surface water flooding is sometimes known as flash flooding. It happens when rainwater cannot drain away through normal drainage systems. ► Why surface water flooding is a problem		What makes rivers and sea flooding more likely Low-lying areas that are close to rivers or the sea are more likely to flood when water levels rise. This information takes into account any flood defences. ► Why flood defences cannot completely prevent flooding	

Other flood risks	More about groundwater and reservoirs
Groundwater Flooding from groundwater is unlikely in this area.	
Reservoirs Flooding from reservoirs is unlikely in this area.	

Existing and Proposed Surface and Foul Drainage Strategy Urban Design (SUDS)

Foul Water Drainage Strategy

The existing property at 32 Manor Road, Hayes, UB3 2DG has existing drainage connection to the public sewer.

The proposal foul drainage from the new dwelling shall discharge directly into the public sewer via existing connections located on site.

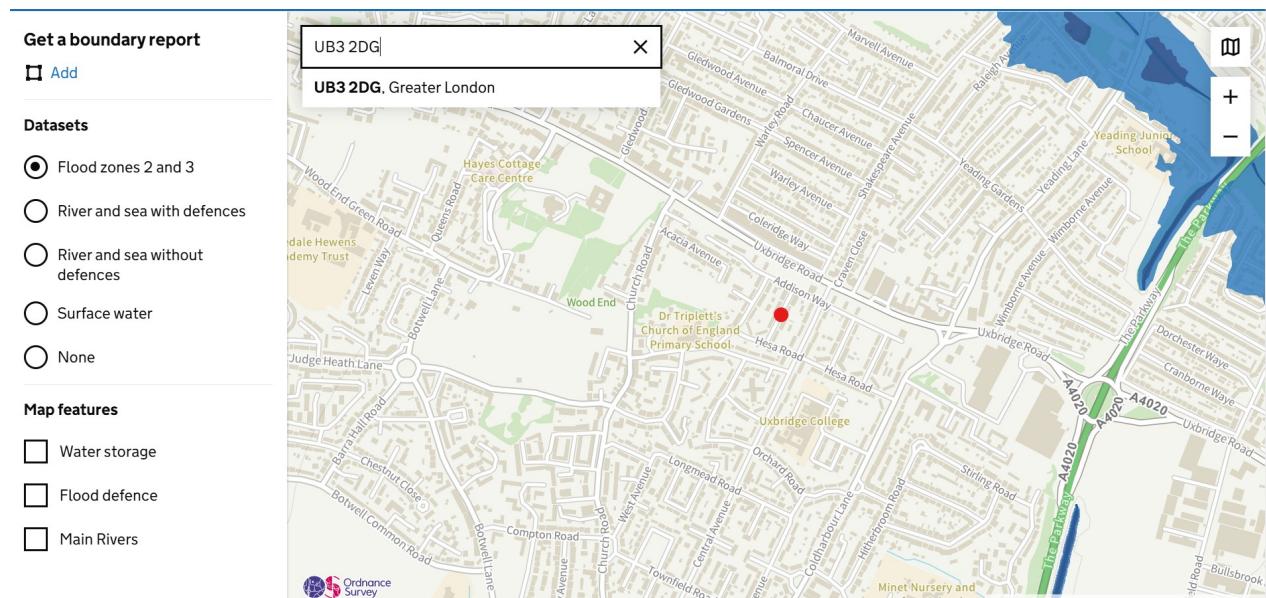
Surface Water Drainage Strategy

In accordance with London Plan SUDS guidelines, developments are required to use SUDS to reduce both the volume and runoff rates to the drainage system.

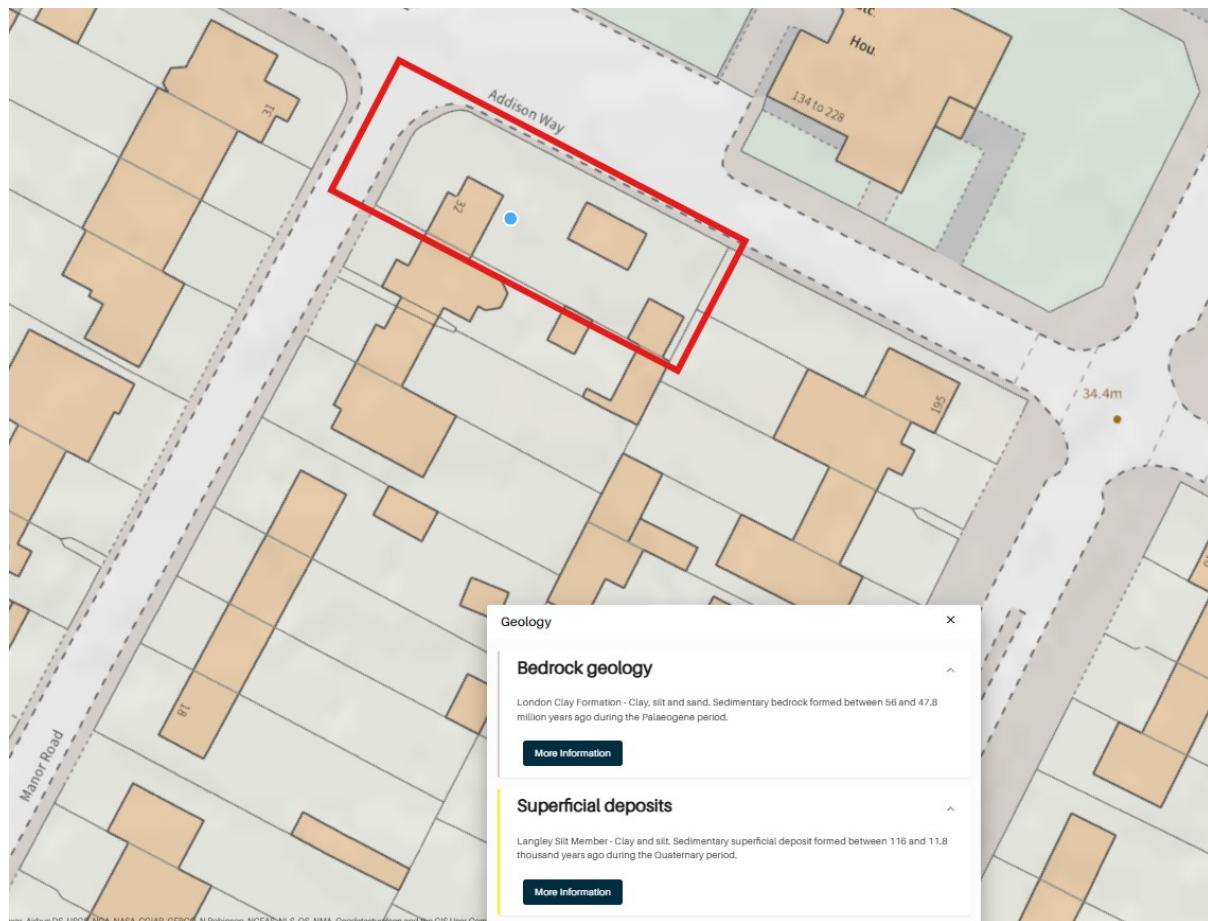
Results from The British Geological Survey website states that the site is located on London clay, which do not have a great permeability factor, therefore it is expected that soaks will not work on this site. (see Appendix B for The British Geological Survey results).

Due to the fact that there are no watercourse in the surrounding area we would not be able to discharge into a watercourse to meet SUDS hierarchy.

Therefore, it is proposed to connect into the public sewer via existing connections located on site.


ZBSA recommends the use of permeable paving as indicated in the architect's drawings. This natural drainage minimises the risk of puddling, waterlogging, and flooding in areas with permeable paving.

By reducing runoff, permeable pavements alleviate the pressure on traditional drainage systems, which can become overwhelmed during heavy rainfall.


In addition to reducing the runoff from the rain that falls on them, permeable pavements can help filter out pollutants that contribute to water pollution.

In addition to permeable paving ZBSA recommend that a water butt of 210L capacity with means of overflow to be installed.

Appendix A - Flood Risk Assessment Map

Appendix B – The British Geological Survey results

Appendix C – Greenfield Runoff Rate Estimates

This is an estimation of the storage volume requirements that are needed to meet normal best practice criteria in line with Environment Agency guidance “Rainfall runoff management for developments”, SC030219 (2013), the SuDS Manual C753 (CIRIA, 2015) and the non-statutory standards for SuDS (Defra, 2015). It is recommended that the total storage volume for the site is distributed across the site using multiple SuDS and that hydraulic modelling software is used to undertake and finalise the detailed design of the drainage system.

Project details

Date	26/04/2025
Calculated by	Rafi Zaidi
Reference	32 Manor Road Hayes UB3 2DG
Model version	2.0.0

Location

Site name	
Site location	

Site easting

510184

Site northing

181123

Site areas

Total site area (ha)

0.024

ha

Roof area

Total roof area (ha)

0.004

ha

Contributing roof area (ha)

ha

Non-contributing roof area (ha)

0.004

ha

Paved area

Total paved area (ha)

0.003

ha

Contributing paved area (ha)

ha

Non-contributing paved area (ha)

0.003

ha

Grass / vegetated area

Total grass / vegetated area (ha)

0.017

ha

Contributing grass / vegetated area (ha)

0.017

ha

Non-contributing grass / vegetated area (ha)

0

ha

Total area

Total contributing area (ha)

0.017

ha

Contributing areas with urban creep allowance

Urban creep allowance factor

+0% (no creep)

Storage design parameters

Storage base shape

Circular

Storage design depth (mm)

2000

mm

Storage side slope (1 in x)

Vertical sided

Storage voids ratio (%)

100% (all voids)

Storage volume design return period (years)

1:200 years

Please select a return period in the rainfall file.

Discharge flow rate from the site

Method

Type of site	Greenfield
Specify the method	IH124

IH124

	<u>My value</u>	<u>Map/default value</u>
SAAR (mm)	619	mm
How should SPR be derived?	WRAP soil type	
WRAP soil type	4	4
SPR	0.47	
Total area for greenfield runoff calculation (ha)	0.024	ha
QBar (l/s)	0.1	l/s
Hydrological region	6	6
Return period (years)	1:100 years	
Growth curve factor	3.19	
Flow rate (IH124) (l/s)	0.32	l/s

Final discharge rate

Runoff calculation method	IH124	
Design flow rate (l/s)	0.32	l/s

Blockage risk

Specify the method	Flow rate	
Minimum discharge flow rate to prevent blockage	1l/s	
Design orifice diameter (mm)	<u>My value</u> 100 mm	<u>Calculated value</u> 18
Flow rate of orifice (l/s)	29.2 l/s	

Rainfall and runoff

Rainfall input type	Generic rainfall CSV file	
	Invalid rainfall file.	
	<ul style="list-style-type: none">• There should be at least 5 storm durations in the file.• The file contain at least 5 unique rainfall depth values.	
Climate change allowance factor	120%	
Specify the runoff method from grass / vegetated areas	Fixed percentage - based on rainfall event depth and SPR	
How should SPR be derived?	<u>My value</u> WRAP soil type	<u>Map value</u>

Model results

The model has not yet been run.

Disclaimer

This report was produced using the surface water storage volume design tool (2.0.0) developed by HR Wallingford and available at [uksuds.com](http://www.eksuds.com) (<https://www.eksuds.com/>). The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at [uksuds.com/terms-conditions](http://www.eksuds.com/terms-conditions) (<https://www.eksuds.com/terms-conditions>). The outputs from this tool have been used to estimate surface water storage volumes for the whole site based on a limiting discharge rate from the site. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, Centre for Ecology and Hydrology, Wallingford Hydrosolutions or any other organisation for the use of these data in the design or operational characteristics of any drainage scheme.

HR Wallingford are not responsible for any rainfall data shared that is subject to licensing terms imposed by UK Centre for Ecology & Hydrology's Flood Estimation Handbook web service ([https://fehweb.ceh.ac.uk/Home/Terms](http://fehweb.ceh.ac.uk/Home/Terms) (<https://fehweb.ceh.ac.uk/Home/Terms>)).

Appendix D – Surface Water Butts Details

Surface water butts, also known as water butts, are containers used to collect and store rainwater, typically from rooftops, for later use, such as watering plants. They are often connected to drainpipes and can hold significant amounts of water, like 200 liters, which can reduce reliance on tap water for gardening.

Water butts help conserve water by capturing rainwater that would otherwise flow into drains and sewers. They provide a readily available source of water for gardening and other outdoor uses, reducing the need to tap into municipal water supplies

Water Butts & Rainwater Diverters

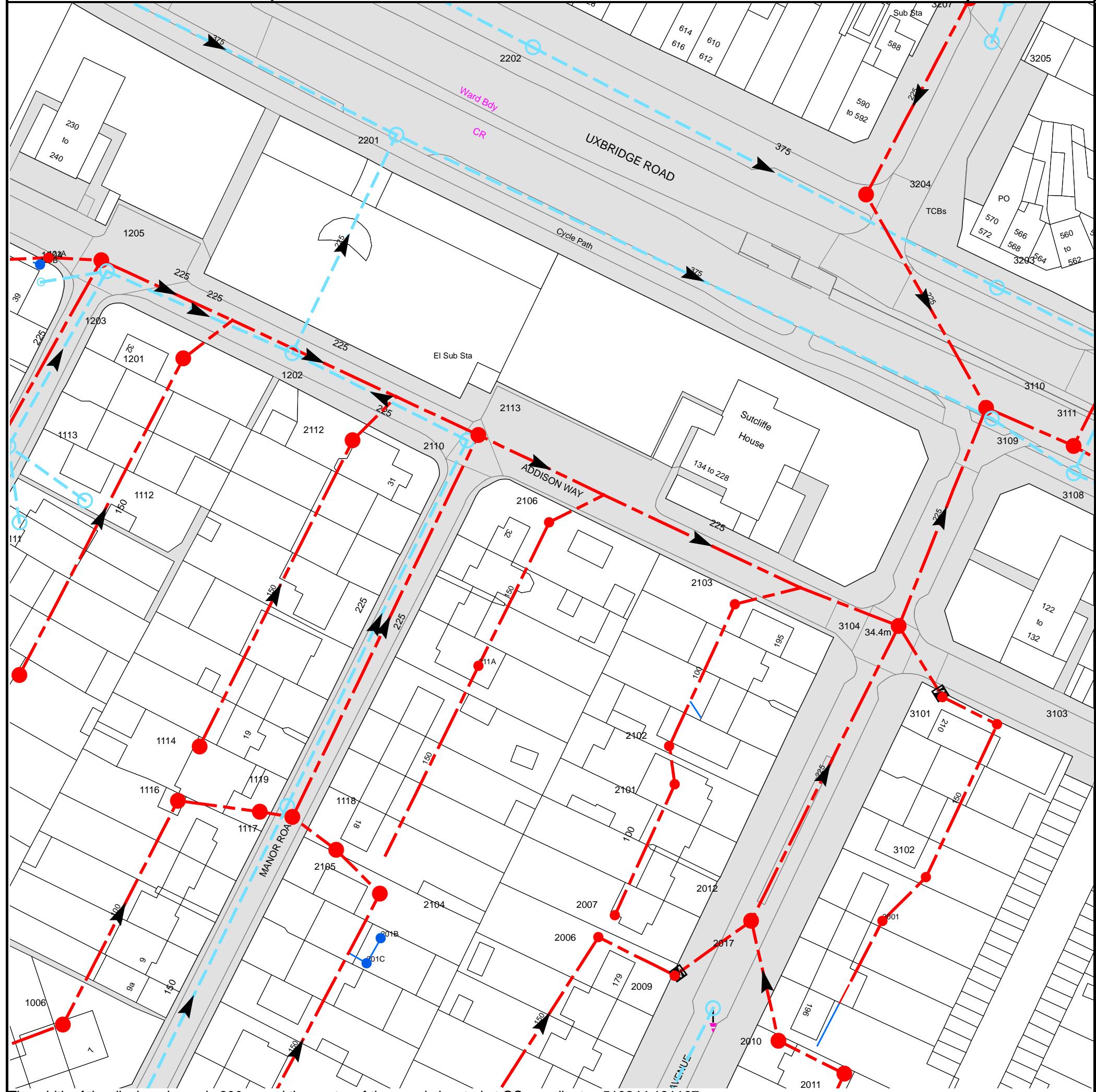
EcoFlu, solely dedicated to ecologically responsible products.

100L Slim Water Butt CODE: WB100

- 100L capacity.
- Space saving water butt ideal where space is at a premium.
- Complete with tap and lid.
- Manufactured in the UK from recycled materials.

Dimensions: 32 cm (12½") Length
36 cm (14") Width
95.2cm (37½") Height

210L Standard Water Butt CODE: WB200


- 210L capacity.
- Traditional shape water butt with a large capacity.
- Factory fitted tap and childproof lid.
- Manufactured in the UK from recycled materials.

Dimensions: 57cm (22½") Diameter
97cm (38") Height

Appendix E – Thames Water Asset Search

Asset Location Search Sewer Map - ALS/ALS Standard/2025_5159757

The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified and established on site before any works are undertaken.

Based on the Ordnance Survey Map (2024) with the Sanction of the controller of H.M. Stationery Office, License no. AC0000849556 Crown Copyright Reserved.

NB. Levels quoted in metres Ordnance Newlyn Datum. The value -9999.00 indicates that no survey information is available

Manhole Reference	Manhole Cover Level	Manhole Invert Level
121B	n/a	n/a
1204	n/a	n/a
121A	n/a	n/a
1205	36.23	33.57
1203	35.98	34.03
201C	n/a	n/a
201B	n/a	n/a
2012	34.8	32.97
2010	n/a	n/a
3111	n/a	n/a
3207	33.65	32.31
3206	33.71	32.52
1111	n/a	n/a
2106	n/a	n/a
1112	n/a	n/a
1113	36.08	34.44
2110	35.22	33.9
2112	n/a	n/a
2113	35.23	32.98
1201	n/a	n/a
1202	35.54	33.73
2201	n/a	n/a
2202	n/a	n/a
2011	n/a	n/a
3001	n/a	n/a
3102	n/a	n/a
3103	n/a	n/a
3101	n/a	n/a
3104	34.49	32.59
2103	n/a	n/a
3108	n/a	n/a
3109	34.34	32.81
3110	34.27	32.08
3203	34.09	31.9
3204	34.42	32.25
3205	33.79	32.86
1109	n/a	n/a
1006	n/a	n/a
1116	n/a	n/a
1114	n/a	n/a
1117	n/a	n/a
1119	n/a	n/a
1118	n/a	n/a
2105	n/a	n/a
2104	n/a	n/a
211A	n/a	n/a
2006	n/a	n/a
2007	n/a	n/a
2102	n/a	n/a
2009	n/a	n/a
2101	n/a	n/a
2017	n/a	n/a

The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified and established on site before any works are undertaken.

Asset Location Search - Sewer Key

Public Sewer Types (Operated and maintained by Thames Water)

	Foul Sewer: A sewer designed to convey waste water from domestic and industrial sources to a treatment works.
	Surface Water Sewer: A sewer designed to convey surface water (e.g. rain water from roofs, yards and car parks) to rivers or watercourses.
	Combined Sewer: A sewer designed to convey both waste water and surface water from domestic and industrial sources to a treatment works.
	Storm Sewer
	Sludge Sewer
	Foul Trunk Sewer
	Surface Trunk Sewer
	Combined Trunk Sewer
	Foul Rising Main
	Surface Water Rising Main
	Combined Rising Main
	Vacuum
	Thames Water Proposed
	Vent Pipe
	Gallery

Other Sewer Types (Not operated and maintained by Thames Water)

	Sewer		Culverted Watercourse
	Proposed		Decommissioned Sewer
	Content of this drainage network is currently unknown		Ownership of this drainage network is currently unknown

Notes:

- 1) All levels associated with the plans are to Ordnance Datum Newlyn.
- 2) All measurements on the plan are metric.
- 3) Arrows (on gravity fed sewers) or flecks (on rising mains) indicate the direction of flow.
- 4) Most private pipes are not shown on our plans, as in the past, this information has not been recorded.

Sewer Fittings

A feature in a sewer that does not affect the flow in the pipe. Example: a vent is a fitting as the function of a vent is to release excess gas.

	Air Valve		Meter
	Dam Chase		Vent
Fitting			

Operational Controls

A feature in a sewer that changes or diverts the flow in the sewer. Example: A hydrobrake limits the flow passing downstream.

	Ancillary		Drop Pipe
	Control Valve		Weir

End Items

End symbols appear at the start or end of a sewer pipe. Examples: an Undefined End at the start of a sewer indicates that Thames Water has no knowledge of the position of the sewer upstream of that symbol. Outfall on a surface water sewer indicates that the pipe discharges into a stream or river.

	Inlet		Outfall
	Undefined End		

Other Symbols

Symbols used on maps which do not fall under other general categories.

	Change of Characteristic Indicator		Public / Private Pumping Station
	Invert Level		Summit

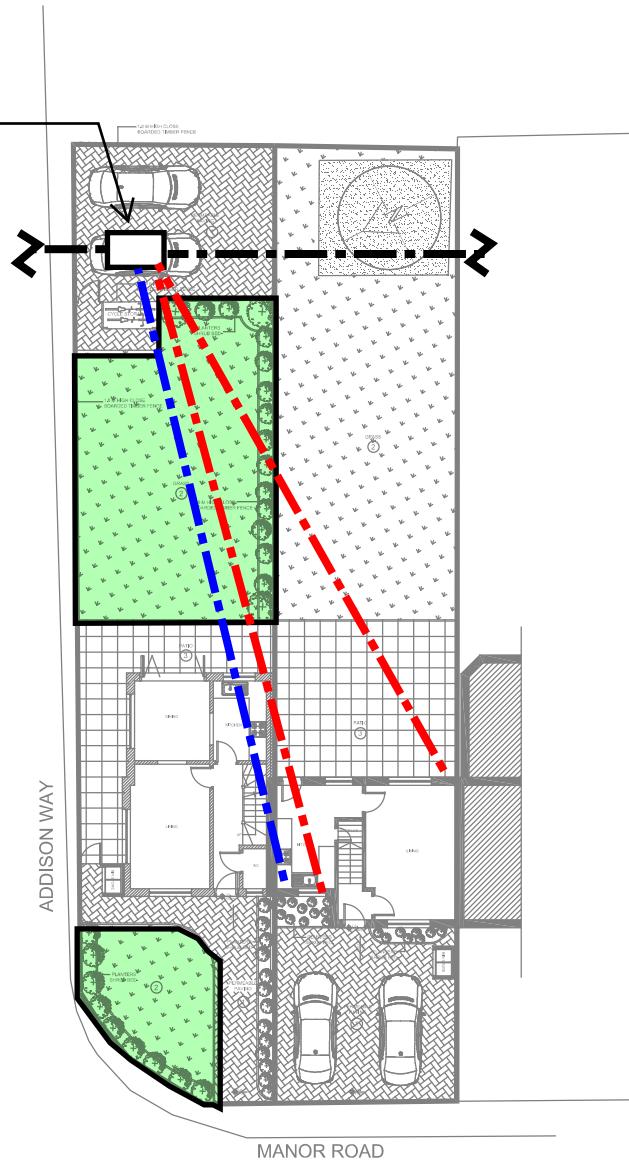
Areas

Lines denoting areas of underground surveys, etc.

	Agreement
	Chamber
	Operational Site

Ducts or Crossings

	Casement	Ducts may contain high voltage cables. Please check with Thames Water.
	Conduit Bridge	
	Subway	
	Tunnel	


Appendix F – Proposed Site Landscaping

Appendix G – Existing and Proposed Layout

KEY

Existing combined manhole to remain

A	05.05.25	SP	RZ	ISSUED FOR COMMENTS
Rev	Date	CAD	Chkd	Description
Project				
94 Wellington Road TW4 7AA				
Client				
Architect				
DE ARCHITECTURAL CONSULT.LTD M: 07927753785 0792907714 E: design.engineeruk@gmail.com				
ZBSA				
www.zbsa.co.uk info@zbsa.co.uk 0208 898 9504				
Drawing GROUND FLOOR, DRAINAGE STRATEGY DRAWING				
Scale	1:100	Size	A1	Engineer
			RZ	Date
				MAY'25
Drawing No.				Rev
4053/M/1000				A

KEY

Existing combined manhole to remain

150Ø Combined surface and foul water drain to connect into main sewer.

New combined chamber

ADDISON WAY

MANOR ROAD

----- Existing Combined Water Sewer

----- Surface Water Sewer

----- Foul Water Sewer

Natural Grass

Existing

A	05.05.25	SP	RZ	ISSUED FOR COMMENTS
Rev	Date	CAD	Chkd	Description
Project				
94 Wellington Road TW4 7AA				
Client				
Architect				
DE ARCHITECTURAL CONSULT.LTD M: 07827753785 02089507711 E: design.engineeruk@gmail.com				

ZBSA

www.zbsa.co.uk info@zbsa.co.uk 0208 898 9504

Drawing
GROUND FLOOR,
DRAINAGE STRATEGY
DRAWING

Scale 1:100 Size A1 Engineer RZ Date MAY'25

Drawing No. 4053/M/1000 Rev A

Cover and inverts of existing sewers
should be checked on site prior to
construction