

Land at Status Park, Noble Drive Heathrow

Environmental Noise Survey and Acoustic Design Statement Report

25776/ADS2

9 February 2023

For:
Savills,
33 Margaret Street,
London,
W1G 0JD

Hann Tucker Associates
Consultants in Acoustics Noise & Vibration

Head Office: Duke House, 1-2 Duke Street, Woking, Surrey, GU21 5BA [\(t\)](tel:+441483770595) +44 (0) 1483 770 595
Manchester Office: First Floor, 346 Deansgate, Manchester, M3 4LY [\(t\)](tel:+441618327041) +44 (0) 161 832 7041
[\(w\)](http://hanntucker.co.uk) hanntucker.co.uk [\(e\)](mailto:enquiries@hanntucker.co.uk) enquiries@hanntucker.co.uk

Environmental Noise Survey and Acoustic Design Statement Report 25776/ADS2

Document Control

Rev	Date	Comment	Prepared by	Authorised by
0	09/02/2023	-		
			Gregory Moore Assistant Consultant BA (Hons)	Giovanni De Rienzo Principal Consultant BSc(Hons), MIOA

**Environmental Noise Survey and Acoustic Design Statement
Report
25776/ADS2**

Contents	Page
1.0 Introduction	1
2.0 Objectives	1
3.0 Site Description	1
4.0 Acoustic Terminology	3
5.0 Methodology	3
6.0 Results	5
7.0 Discussion of Noise Climate	5
8.0 Relevant Planning Policies and Guidance	6
9.0 Proposed Design Target Internal Noise Levels	18
10.0 Achievable Internal Noise Levels	19
11.0 External Amenity Areas	25
12.0 Conclusions	25

Attachments

Appendix A – Acoustic Terminology

1.0 Introduction

Redevelopment of the existing site to provide a 6-storey residential building to provide 67no. residential units, together with associated landscaping and car parking. Reconfiguration of car parks at Nobel Drive and provision of additional landscaping.

Hann Tucker Associates have therefore been commissioned to undertake an environmental noise survey and noise impact assessment in order to assess the suitability of the site for residential use.

This report presents the methodology and findings of our noise survey and assessment in the context of national planning policies and the policy of the Local Authority.

2.0 Objectives

To undertake an environmental noise survey to establish the existing L_{Amax} , L_{Aeq} and L_{A90} environmental road, rail and air traffic noise levels at selected accessible positions.

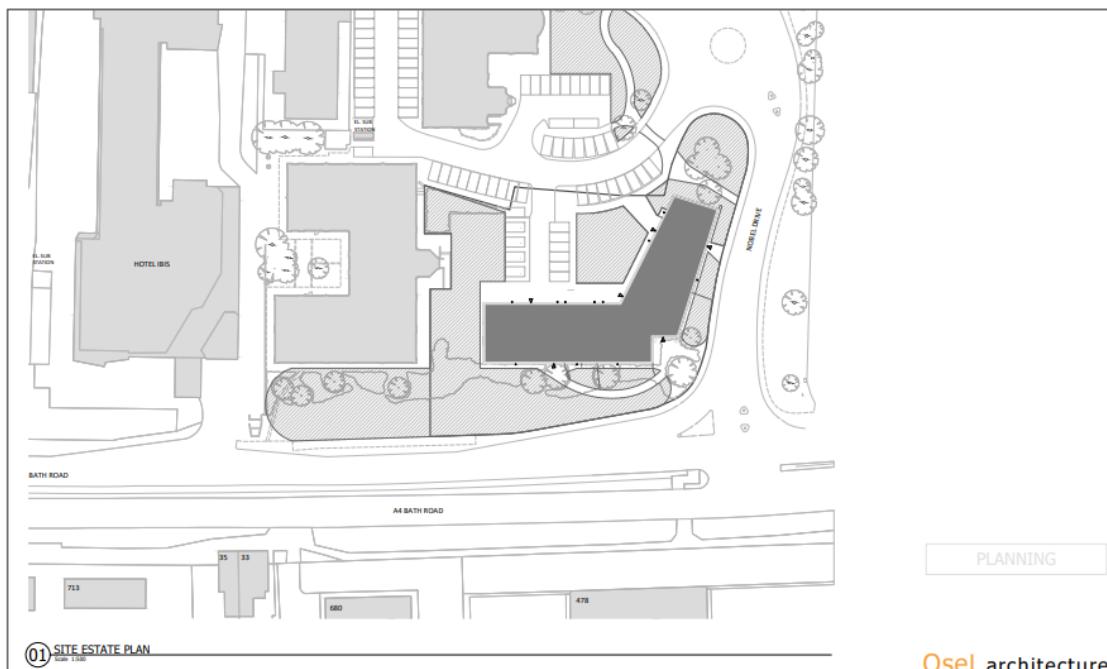
Based on the results of the survey, to undertake a noise assessment to assess the suitability of the site for residential use in accordance with the Noise Policy Statement for England (NPSE), National Planning Policy Framework (NPPF), Planning Practice Guidance (ProPG), British Standard BS8233:2014 and Local Authority requirements.

3.0 Site Description

3.1 Location

The site is located at the junction of Bath Road and Nobel Drive north of Heathrow Airport and falls within of London Borough of Hillingdon jurisdiction.

See Location Map below.


Location Map (Map Data © 2018 Google)

3.2 Description

The site is currently a carpark. It is proposed to build a new block for residential use.

The site is located at the junction of Bath Road and Nobel Drive. To the north of the site is a three storey office building. Immediately to the east is a hotel. To the west and across Nobel Drive is open farm land. Nearby to the south and across Bath Road are industrial units. Heathrow North Runway is approximately 300m south. Subjectively the dominant noise sources were noted to be from road traffic on Bath Road and aircrafts taking off and landing on Heathrow's North Runway.

The site is shown in the Site Plan below.

Site Plan (Drawing provided by Osel Architecture)

4.0 Acoustic Terminology

For an explanation of the acoustic terminology used in this report please refer to Appendix A enclosed.

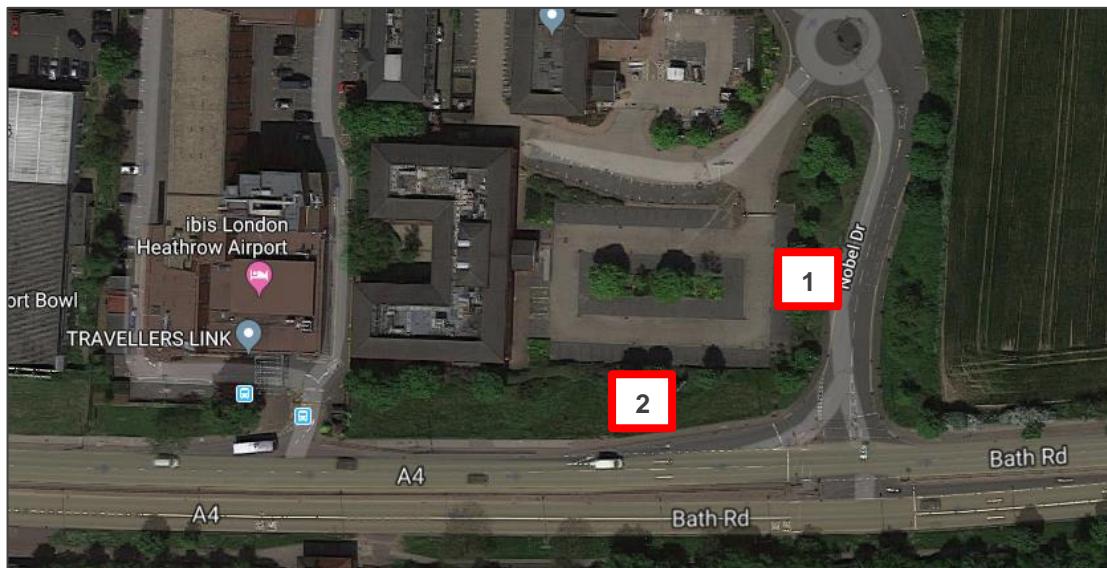
5.0 Methodology

The survey was undertaken by Greg Moore BA (Hons) Unmanned Survey.

5.1.1 Procedure

Fully automated environmental noise monitoring was undertaken from approximately 11.00 hours on Friday 30 September 2022 to 13.00 hours on Monday 3 October 2022.

During the periods we were on site the wind conditions were calm and from approximately a easterly direction. The sky was generally clear. We understand that generally throughout the survey period the weather conditions were similar. These conditions are considered suitable for obtaining representative measurement results.


Measurements were taken continuously of the A-weighted (dBA) L_{90} , L_{eq} and L_{max} sound pressure levels over 15 minute periods.

5.1.2 Measurement Positions

The noise level measurements were undertaken at 2No. positions as described in the table below.

Position No	Description
1	The sound level meter was located east of the site. The microphone was attached to a lamppost approximately 2m above ground level, away from any reflecting surfaces overlooking Nobel Drive.
2	The sound level meter was located south of the site. The microphone was attached to a lamppost approximately 2m above ground level, away from any reflecting surfaces overlooking Bath Road.

The positions are shown on the plan below.

Plan Showing Measurement Positions (Imagery © 2018 Google, Map Data © 2018 Google)

5.1.3 Instrumentation

The instrumentation used during the survey is presented in the table below:

Description	Manufacturer	Type	Serial Number	Calibration
Position 1 Type 1 Data Logging Sound Level Meter	Larson Davis	824	3838	Calibration on 05/09/2022
Position 1 Type 1 ½" Condenser Microphone	PCB	377B02	132146	Calibration on 05/09/2022
Position 2 Type 1 Data Logging Sound Level Meter	Larson Davis	824	3443	Calibration on 05/09/2022
Position 2 Type 1 ½" Condenser Microphone	PCB	377B02	139312	Calibration on 05/09/2022
Type 1 Calibrator	Brüel & Kjaer	4230	1511010	Calibration on 26/07/2022

Each sound level meter, including the extension cable, was calibrated prior to and on completion of the surveys. No significant changes were found to have occurred (no more than 0.1 dB).

Each sound level meter was located in an environmental case with the microphone connected to the sound level meter via an extension cable. Each microphone was fitted with a windshield.

6.0 Results

6.1 Results of Unmanned Survey

The results have been plotted on Time History Graphs 25576/TH1 to 25576/TH2 enclosed presenting the 15 minute A-weighted (dBA) L_{90} , L_{eq} and L_{max} levels at each measurement position throughout the duration of the survey.

6.1.1 L_{eq} Noise Levels

In order to compare the results of our survey with the relevant guidelines it is necessary to convert the measured $L_{Aeq(15\text{ minute})}$ noise levels into single figure daytime $L_{Aeq(16\text{-hour})}$ (07:00-23:00 hours) and night-time $L_{Aeq(8\text{-hour})}$ (23:00-07:00 hours) levels.

The daytime $L_{Aeq(16\text{-hour})}$ and night-time $L_{Aeq(8\text{-hour})}$ noise levels for each position are presented in the table below.

Position	Daytime $L_{Aeq(16\text{-hour})}$	Night-Time $L_{Aeq(8\text{-hour})}$
1	64 dB	59 dB
2	67 dB	63 dB

6.1.2 L_{max} Noise Levels

The night-time (23:00 – 07:00) typical highest L_{AFmax} noise level for each position is presented in the table below.

Position	Night-Time typical Highest L_{AFmax}
1	74 dB
2	81 dB

7.0 Discussion of Noise Climate

During the periods we were on site the dominant noise sources was noted to be planes landing and departing the airport nearby, along with road traffic noise.

8.0 Relevant Planning Policies and Guidance

8.1 Noise Policy Statement for England

The Noise Policy Statement for England (NPSE) was published in March 2010 (i.e. before the NPPF). The NPSE is the overarching statement of noise policy for England and applies to all forms of noise other than occupational noise, setting out the long term vision of Government noise policy which is to:

“Promote good health and a good quality of life through the effective management of noise within the context of Government policy on sustainable development.”

That vision is supported by the following NPSE noise policy aims which are reflected in three of the four aims of planning policies and decisions in paragraph 123 of the NPPF (see paragraph 8.2 (b) below):

“Through the effective management and control of environmental, neighbour and neighbourhood noise within the context of Government policy on sustainable development:

- *avoid significant adverse impacts on health and quality of life;*
- *mitigate and minimise adverse impacts on health and quality of life; and*
- *where possible, contribute to the improvement of health and quality of life.”*

The Explanatory Note to the NPSE has three concepts for the assessment of noise in this country:

NOEL – No Observed Effect Level

This is the level below which no effect can be detected and below which there is no detectable effect on health and quality of life due to noise.

LOAEL – Lowest Observable Adverse Effect Level

This is the level above which adverse effects on health and quality of life can be detected.

SOAEL – Significant Observed Adverse Effect Level

This is the level above which significant adverse effects on health and quality of life occur.

None of these three levels are defined numerically and for the SOAEL the NPSE makes it clear that the noise level is likely to vary depending upon the noise source, the receptor and the time of day/day of the week, etc. The need for more research to investigate what may represent an SOAEL for noise is acknowledged in the NPSE and the NPSE asserts that not stating specific

SOAEL levels provides policy flexibility in the period until there is further evidence and guidance.

The NPSE concludes by explaining in a little more detail how the LOAEL and SOAEL relate to the three NPSE noise policy aims listed above. It starts with the aim of avoiding significant adverse effects on health and quality of life, then addresses the situation where the noise impact falls between the LOAEL and the SOAEL when *“all reasonable steps should be taken to mitigate and minimise adverse effects on health and quality of life while also taking into account the guiding principles of sustainable development.”* The final aim envisages pro-active management of noise to improve health and quality of life, again taking into account the guiding principles of sustainable development which include the need to minimise travel distance between housing and employment uses in an area.

8.2 National Planning Policy Framework (NPPF)

The National Planning Policy Framework (NPPF) was first published in March 2012. This document replaced the existing Planning Policy Guidance Note 24 (PPG24) “Planning and Noise”. A new edition of NPPF was published in July 2018 and revised in February 2019.

The following paragraphs are from the NPPF (published July 2021):

185. Planning policies and decisions should also ensure that new development is appropriate for its location taking into account the likely effects (including cumulative effects) of pollution on health, living conditions and the natural environment, as well as the potential sensitivity of the site or the wider area to impacts that could arise from the development. In doing so they should:

- a) mitigate and reduce to a minimum potential adverse impacts resulting from noise from new development – and avoid noise giving rise to significant adverse impacts on health and the quality of life;
- b) identify and protect tranquil areas which have remained relatively undisturbed by noise and are prized for their recreational and amenity value for this reason.

187. Planning policies and decisions should ensure that new development can be integrated effectively with existing businesses and community facilities (such as places of worship, pubs, music venues and sports clubs). Existing businesses and facilities should not have unreasonable restrictions placed on them as a result of development permitted after they were established. Where the operation of an existing business or community facility could have a significant adverse effect on new development (including changes of use) in its vicinity, the applicant (or ‘agent of change’) should be required to provide suitable mitigation before the

development has been completed.”

Paragraph 185 also references the Noise Policy Statement for England (NPSE). This document does not refer to specific noise levels but instead sets out three aims:

- “Avoid significant adverse impacts on health and quality of life from environmental, neighbour and neighbourhood noise within the context of Government policy on sustainable development.
- Mitigate and minimise adverse impacts on health and quality of life from environmental, neighbour and neighbourhood noise within the context of Government policy on sustainable development.
- Where possible, contribute to the improvement of health and quality of life through the effective management and control of environmental, neighbour and neighbourhood noise within the context of Government policy on sustainable development.”

The NPPF document does not refer to any other documents or British Standards regarding noise other than the NPSE.

Paragraph 2 of the NPPF states that “planning law required that applications for planning permission must be determined in accordance with the development plan unless material considerations indicate otherwise.”

Paragraph 12 of the NPPF states that “The presumption in favour of sustainable development does not change the statutory status of the development plan as the starting point for decision making. Where a planning application conflicts with an up-to-date development plan (including any neighbourhood plans that form part of the development plan), permission should not usually be granted. Local planning authorities may take decisions that depart from an up-to-date development plan, but only if material considerations in a particular case indicate that the plan should not be followed.”

8.3 Planning Practice Guidance on Noise

Planning Practice Guidance (PPG) under the NPPF has been published by the Government as a web based resource at <http://planningguidance.planningportal.gov.uk/blog/guidance/>. This includes specific guidance on Noise although, like the NPPF and NPSE the PPG does not provide any quantitative advice. It seeks to illustrate a range of effect levels in terms of examples of outcomes as set out in the following table:

Perception	Examples of Outcomes	Increasing effect level	Action
Not noticeable	No effect	No Observed Effect	No specific measures required
Noticeable and not intrusive	Noise can be heard, but does not cause any change in behaviour or attitude. Can slightly affect the acoustic character of the area but not such that there is a perceived change in the quality of life.	No Observed Adverse Effect	No specific measures required
		Lowest Observed Adverse Effect Level	
Noticeable and intrusive	Noise can be heard and causes small changes in behaviour and/or attitude, e.g. turning up volume of television; speaking more loudly; where there is no alternative ventilation, having to close windows for some of the time because of the noise. Potential for some reported sleep disturbance.	Observed Adverse Effect	Mitigate and reduce to a minimum
		Significant Observed Adverse Effect Level	
Noticeable and disruptive	The noise causes a material change in behaviour and/or attitude, e.g. avoiding certain activities during periods of intrusion; where there is no alternative ventilation, having to keep windows closed most of the time because of the noise. Potential for sleep disturbance resulting in difficulty in getting to sleep, premature awakening and difficulty in getting back to sleep. Quality of life diminished due to change in acoustic character of the area.	Significant Observed Adverse Effect	Avoid
Noticeable and very disruptive	Extensive and regular changes in behaviour and/or an inability to mitigate effect of noise leading to psychological stress or physiological effects, e.g. regular sleep deprivation/awakening; loss of appetite, significant, medically definable hard, e.g. auditory and non-auditory.	Unacceptable Adverse Effect	Prevent

8.4 The London Plan

The London Plan was published March 2021.

Policy D14 Noise states:

- A. *"In order to reduce, manage and mitigate noise to improve health and quality of life, residential and other non-aviation development proposals should manage noise by:*

 - 1) *avoiding significant adverse noise impacts on health and quality of life*
 - 2) *reflecting the Agent of Change principle as set out in Policy D13*
 - 3) *mitigating and minimising the existing and potential adverse impacts of noise on, from, within, as a result of, or in the vicinity of new development without placing unreasonable restrictions on existing noise-generating uses*

- 4) *improving and enhancing the acoustic environment and promoting appropriate soundscapes (including Quiet Areas and spaces of relative tranquillity)*
- 5) *separating new noise-sensitive development from major noise sources (such as road, rail, air transport and some types of industrial use) through the use of distance, screening, layout, orientation, uses and materials – in preference to sole reliance on sound insulation*
- 6) *where it is not possible to achieve separation of noise-sensitive development and noise sources without undue impact on other sustainable development objectives, then any potential adverse effects should be controlled and mitigated through applying good acoustic design principles*
- 7) *promoting new technologies and improved practices to reduce noise at source, and on the transmission path from source to receiver.*

B. *Boroughs, and others with relevant responsibilities, should identify and nominate new Quiet Areas and protect existing Quiet Areas in line with the procedure in Defra's Noise Action Plan for Agglomerations.*

3.14.1 *The management of noise is about encouraging the right acoustic environment, both internal and external, in the right place at the right time. This is important to promote good health and a good quality of life within the wider context of achieving sustainable development. The management of noise should be an integral part of development proposals and considered as early as possible. Managing noise includes improving and enhancing the acoustic environment and promoting appropriate soundscapes. This can mean allowing some places or certain times to become noisier within reason, whilst others become quieter. Consideration of existing noise sensitivity within an area is important to minimise potential conflicts of uses or activities, for example in relation to internationally important nature conservation sites which contain noise sensitive wildlife species, or parks and green spaces affected by traffic noise and pollution. Boroughs, developers, businesses and other stakeholders should work collaboratively to identify the existing noise climate and other noise issues to ensure effective management and mitigation measures are achieved in new development proposals.*

3.14.2 *The Agent of Change Principle places the responsibility for mitigating impacts from existing noise-generating activities or uses on the new development. Through the application of this principle existing land uses should not be unduly affected by the introduction of new noise sensitive uses. Regard should be given to noise-generating uses to avoid prejudicing their potential for intensification or expansion.*

3.14.3 *The management of noise also includes promoting good acoustic design of the inside of buildings. Section 5 of BS 8223:2014 provides guidance on how best to achieve this. The Institute of Acoustics has produced advice Pro:PG Planning and Noise (May 2017) that may assist with the implementation of residential developments. BS4214 provides guidance on*

monitoring noise issues in mixed residential/industrial areas.

3.14.4 *Deliberately introducing sounds can help mitigate the adverse impact of existing sources of noise, enhance the enjoyment of the public realm, and help protect the relative tranquillity and quietness of places where such features are valued. For example, playing low-level music outside the entrance to nightclubs has been found to reduce noise from queueing patrons, leading to an overall reduction in noise levels. Water features can be used to reduce the traffic noise, replacing it with the sound of falling water, generally found to be more pleasant by most people.*

3.14.5 *Heathrow and London City Airport Operators have responsibility for noise action plans for airports. Policy T8 Aviation sets out the Mayor's approach to aviation-related development.*

3.14.6 *The definition of **Tranquil Areas, Quiet Areas and spaces of relative tranquillity** are matters for London boroughs. These are likely to reflect the specific context of individual boroughs, such that Quiet Areas in central London boroughs may reasonably be expected not to be as quiet as Quiet Areas in more residential boroughs. Defra has identified parts of Metropolitan Open Land and local green spaces as potential Quiet Areas that boroughs may wish to designate."*

8.5 London Plan Sustainable Design and Construction SPG

The London Plan Sustainable Design and Construction SPG provides additional information in the following key areas:

- The sources of noise;
- Ways to mitigate noise emitted by developments;
- Ways to mitigate the impact of noise on developments; and
- Some detailed design considerations.

This document has now been revoked.

8.6 Local Planning Policy

London Borough of Hillingdon's Supplementary Planning Document, Planning Obligations, dated July 2014, advises that *"5.15 As stated in Hillingdon's SPD on Noise, the Council exercises its land use planning controls to seek the physical separation of noise and noise sensitive development. Planning obligations may be applied if separation or planning conditions cannot be used to control or reduce noise levels or to mitigate the impact of noise. The Mayor's Ambient Noise Strategy and Hillingdon's Noise SPD provide guidance on noise issues and assessments as part of planning applications."*

London Borough of Hillingdon advise the following within their Noise Supplementary Planning Document, dated April 2006.

The following approach to assessing sites according to various categories is derived from the approach set out in Annex 1 of PPG 24 "Planning and Noise" (September 1994). The guidance below takes account of PPG 24 and local circumstances.

When assessing a proposal for residential development subject to transport related noise, the Local Planning Authority will use Table 1 to determine which of the four Noise Exposure Categories (NECs) A to D the proposed development site falls, taking account of both day and night-time noise levels. Values in Table 1 refer to average noise levels determined for an open site at the position of the proposed dwellings, well away from any existing buildings. Noise levels should be determined at a height of 1.2m to 1.5m above ground at the position of the proposed dwellings, and also at upper or lower floor levels if significant differences in noise exposure are found at the various proposed floor levels. Where the average falls on the boundary between NECs B and C, it will be for the local planning authority to determine the more appropriate NEC for the proposal. Where sites are affected by existing buildings, bunds or screens, specific advice should be sought from the Council's Environmental Protection Unit.

Noise Exposure Categories	Times (hrs)	$L_{Aeq,T} dB$ Road	$L_{Aeq,T} dB$ Rail	$L_{Aeq,T} dB$ Aircraft	Mixed Sources $L_{Aeq,T} dB$	Advice
A	07:00 – 23:00	< 55	< 55	< 57	< 55	Noise need not be considered as a determining factor in granting planning permission, although the noise level at the high end of the category should not be regarded as a desirable level.
	23:00 – 07:00	< 45	< 45	< 48	< 45	
B	07:00 – 23:00	55 – 63	55 – 66	57 – 66	55 – 63	Noise should be taken into account when determining planning applications and, where appropriate, conditions imposed to ensure an adequate level of protection against noise to meet the Council's recommended outdoor and indoor noise levels.
	23:00 – 07:00	45 – 57	45 – 59	48 – 57	45 – 57	

C	07:00 – 23:00	63 – 72	66 – 74	66 – 72	63 – 72	<i>Planning permission should not normally be granted. Where it is considered that permission should be given, for example because there are no alternative quieter sites available, conditions should be imposed to ensure a commensurate level of protection against noise to meet the Council's recommended outdoor and indoor noise levels.</i>
	23:00 – 07:00	57 – 66	59 – 66	57 – 66	57 – 66	
D	07:00 – 23:00	> 72	> 74	> 72	> 72	<i>Planning permission should normally be refused.</i>
	23:00 – 07:00	> 66	> 66	> 66	> 66	

8.7 World Health Organisation

The current Environmental Noise Guidelines 2018 for the European Region (ENG) supersede the Guidelines for Community Noise from 1999 (CNG). Nevertheless, the ENG recommends that all CNG indoor guideline values and any values not covered by the current guidelines (such as industrial noise and shopping areas) remain valid.

A summary of the guidance from the ENG and CNG is shown in the table below.

Source	CNG guideline indoors all sources	ENG guideline outdoors noise from specific source only
Road traffic noise	35 L _{Aeq, 16h}	53 dB L _{den}
	30 L _{Aeq, 8h}	45 dB L _{night}
Railway noise	35 L _{Aeq, 16h}	54 dB L _{den}
	30 L _{Aeq, 8h}	44 dB L _{night}
Aircraft noise	35 L _{Aeq, 16h}	45 dB L _{den}
	30 L _{Aeq, 8h}	40 dB L _{night}

With regard to single-event noise indicators, Section 2.2.2 of the WHO Environmental Noise Guidelines 2018 state:

"In many situations, average noise levels like the L_{den} or L_{night} indicators may not be the best to explain a particular noise effect. Single-event noise indicators – such as the maximum sound

pressure level ($L_{A,max}$) and its frequency distribution – are warranted in specific situations, such as in the context of night-time railway or aircraft noise events that can clearly elicit awakenings and other physiological reactions that are mostly determined by $L_{A,max}$. Nevertheless, the assessment of the relationship between different types of single-event noise indicators and long-term health outcomes at the population level remains tentative. The guidelines therefore make no recommendations for single-event noise indicators.”

8.8 British Standard BS8233: 2014

British Standard 8233: 2014 “Guidance on sound insulation and noise reduction for buildings” provides guidance for the control of noise in and around buildings.

8.8.1 Internal Areas

BS8233:2014 Section 7.7.2 titled “Internal ambient noise levels for dwellings” states:

“In general for steady external noise sources, it is desirable that internal ambient noise levels do not exceed the following guideline values:

Activity	Location	Desirable Internal Ambient Criteria	
		07:00 – 23:00	23:00 to 07:00
Resting	Living Rooms	35 dB $L_{Aeq,16hour}$	-
Dining	Dining Room/Area	40 dB $L_{Aeq,16hour}$	-
Sleeping (Daytime Resting)	Bedroom	35 dB $L_{Aeq,16hour}$	30 dB $L_{Aeq,8hour}$

Note 1 The above table provides recommended levels for overall noise in the design of a building. These are the sum total of structure-borne and airborne noise sources. Groundborne noise is assessed separately and is not included as part of these targets, as human response to groundborne noise varies with many factors such as level, character, timing, occupant expectation and sensitivity.

Note 2 The levels shown in the above table are based on the existing guidelines issued by the WHO and assume normal diurnal fluctuations in external noise. In cases where local conditions do not follow a typical diurnal pattern, for example on a road serving a port with high levels of traffic at certain times of the night, an appropriate alternative period, e.g. 1 hour, may be used, but the level should be selected to ensure consistency with the levels recommended in the above table.

Note 3 These levels are based on annual average data and do not have to be achieved in all circumstances. For example, it is normal to exclude occasional events, such as fireworks night or New Year's Eve.

Note 4 Regular individual noise events (for example, scheduled aircraft or passing trains) can cause sleep

disturbance. A guideline value may be set in terms of SEL or $L_{Amax,F}$ depending on the character and number of events per night. Sporadic noise events could require separate values.

Note 5 If relying on closed windows to meet the guide values, there needs to be an appropriate alternative ventilation that does not compromise the façade insulation or the resulting noise level.

If applicable, any room should have adequate ventilation (e.g. trickle ventilators should be open) during assessment.

Note 6 Attention is drawn to the Building Regulations.

Note 7 Where development is considered necessary or desirable, despite external noise levels above WHO guidelines, the internal target levels may be relaxed by up to 5 dB and reasonable internal conditions still achieved.”

8.9 ProPG : Planning & Noise : 2017

8.9.1 The primary goal of the ProPG is to assist the delivery of sustainable development by promoting good health and well-being through the effective management of noise. It seeks to do that through encouraging a good acoustic design process in and around proposed new residential development having regard to national policy on planning and noise. It is applicable to noise from existing transport sources (noting that good professional practice should have regard to any reasonably foreseeable changes in existing and/or new sources of noise). The recommended approach is also considered suitable where some industrial or commercial noise contributes to the acoustic environment provided that is “not dominant”.

8.9.2 This ProPG advocates a systematic, proportionate, risk based, 2-stage, approach. The approach encourages early consideration of noise issues, facilitates straightforward accelerated decision making for lower risk sites, and assists proper consideration of noise issues where the acoustic environment is challenging.

8.9.3 The two sequential stages of the overall approach are:

- Stage 1 – an initial noise risk assessment of the proposed development site; and
- Stage 2 – a systematic consideration of four key elements.

8.9.4 The four key elements to be undertaken in parallel during Stage 2 of the recommended approach are:

- Element 1 – demonstrating a “Good Acoustic Design Process”;
- Element 2 – observing internal “Noise Level Guidelines”;
- Element 3 – undertaking an “External Amenity Area Noise Assessment”; and

- Element 4 – consideration of “Other Relevant Issues”.

8.9.5 The ProPG considers suitable guidance on internal noise levels found in “BS8233:2014: Guidance on sound insulation and noise reduction for buildings”. Table 4 in Section 7.7.2 of the standard suggests that “in general, for steady external noise sources, it is desirable that the internal ambient noise level does not exceed the guideline values”. The standard states (Section 7.7.1) that “occupants are usually more tolerant of noise without a specific character” and only noise without such character is considered in Table 4 of the standard.

Activity	Location	07:00 – 23:00 Hours	23:00 – 07:00 Hours
Resting	Living Room	35dB $L_{Aeq,16hr}$	-
Dining	Dining Room / Area	40dB $L_{Aeq,16hr}$	-
Sleeping (daytime resting)	Bedroom	35dB $L_{Aeq,16hr}$	30dB $L_{Aeq,16hr}$ 45dB L_{AFmax}

NOTE 1 the Table provides recommended internal L_{Aeq} target levels for overall noise in the design of a building. These are the sum total of structure-borne and airborne noise sources. Ground-borne noise is assessed separately and is not included as part of these targets, as human response to ground-borne noise varies with many factors such as level, character, timing, occupant expectation and sensitivity.

NOTE 2 The internal L_{Aeq} target levels shown in the Table are based on the existing guidelines issued by the WHO and assume normal diurnal fluctuations in external noise. In cases where local conditions do not follow a typical diurnal pattern, for example on a road serving a port with high levels of traffic at certain times of the night, an appropriate alternative period, e.g. 1 hour, may be used, but the level should be selected to ensure consistency with the L_{Aeq} target levels recommended in the Table.

NOTE 3 These internal L_{Aeq} target levels are based on annual average data and do not have to be achieved in all circumstances. For example, it is normal to exclude occasional events, such as fireworks night or New Year's Eve.

NOTE 4 Regular individual noise events (for example, scheduled aircraft or passing trains) can cause sleep disturbance. A guideline value may be set in terms of SEL or $L_{Amax,F}$, depending on the character and number of events per night. Sporadic noise events could require separate values. In most circumstances in noise-sensitive rooms at night (e.g. bedrooms) good acoustic design can be used so that individual noise events do not normally exceed 45dB $L_{Amax,F}$ more than 10 times a night. However, where it is not reasonably practicable to achieve this guideline then the judgement of acceptability will depend not only on the maximum noise levels but also

on factors such as the source, number, distribution, predictability and regularity of noise events (see Appendix A).

NOTE 5 Designing the site layout and the dwellings so that the internal target levels can be achieved with open windows in as many properties as possible demonstrates good acoustic design. Where it is not possible to meet internal target levels with windows open, internal noise levels can be assessed with windows closed, however any façade openings used to provide whole dwelling ventilation (e.g. trickle ventilators) should be assessed in the “open” position and, in this scenario, the internal L_{Aeq} target levels should not normally be exceeded, subject to the further advice in Note 7.

NOTE 6 Attention is drawn to the requirements of the Building Regulations.

NOTE 7 Where development is considered necessary or desirable, despite external noise levels above WHO guidelines, the internal L_{Aeq} target levels may be relaxed by up to 5dB and reasonable internal conditions still achieved. The more often internal L_{Aeq} levels start to exceed the internal L_{Aeq} target levels by more than 5dB, the more that most people are likely to regard them as “unreasonable”. Where such exceedances are predicted, applicants should be required to show how the relevant number of rooms affected has been kept to a minimum. Once internal L_{Aeq} levels exceed the target levels by more than 10dB, they are likely to be regarded as “unacceptable” by most people, particularly if such levels occur more than occasionally. Every effort should be made to avoid relevant rooms experiencing “unacceptable” noise levels at all and where such levels are likely to occur frequently, the development should be prevented in its proposed form (See Section 3.D).

Figure 2. ProPG Internal Noise Level Guidelines (additions to BS8233:2014 shown in blue).

8.10 Building Regulations Approved Document O

Building Regulations Approved Document O relates to setting standards for overheating in new residential buildings. It aims to protect the health and welfare of occupants of the building by reducing the occurrence of high indoor temperatures.

Requirement O1 of Approved Document O is met by designing and constructing the building to achieve both of the following:

- a. Limiting unwanted solar gains in summer.
- b. Providing an adequate means of removing excess heat from the indoor environment.

Sections 3.2 to 3.4 of this document relate to noise and state the following:

"In locations where external noise may be an issue (for example, where the local planning authority considered external noise to be an issue at the planning stage), the overheating mitigation strategy should take account of the likelihood that windows will be closed during sleeping hours (11pm to 7am).

Windows are likely to be closed during sleeping hours if noise within bedrooms exceeds the following limits.

a. 40dB $L_{Aeq,T}$, averaged over 8 hours (between 11pm and 7am).

b. 55dB L_{AFmax} , more than 10 times a night (between 11pm and 7am).

Where in-situ noise measurements are used as evidence that these limits are not exceeded, measurements should be taken in accordance with the Association of Noise Consultants' Measurement of Sound Levels in Buildings with the overheating mitigation strategy in use.

NOTE: Guidance on reducing the passage of external noise into buildings can be found in the National Model Design Code: Part 2 – Guidance Notes (MHCLG, 2021) and the Association of Noise Consultants' Acoustics, Ventilation and Overheating: Residential Design Guide (2020).

9.0 Proposed Design Target Internal Noise Levels

On the basis of BS8233:2014 we propose the following internal noise levels be adopted as design targets in the proposed habitable rooms:

Activity	Location	Desirable Internal Ambient Criteria	
		07:00 – 23:00	23:00 to 07:00
Resting	Living Rooms	35 dB $L_{Aeq,16hour}$	-
Dining	Dining Room/Area	40 dB $L_{Aeq,16hour}$	-
Sleeping (Daytime Resting)	Bedroom	35 dB $L_{Aeq,16hour}$	30dB $L_{Aeq,16hr}$ 45dB L_{AFmax}

Note: For this site a 45dB L_{AFmax} criterion is appropriate in accordance with ProPG which advises,

"NOTE 4 Regular individual noise events (for example, scheduled aircraft or passing trains) can cause sleep disturbance. A guideline value may be set in terms of SEL or $L_{Amax,F}$, depending on the character and number of events per night. Sporadic noise events could require separate

values. In most circumstances in noise-sensitive rooms at night (e.g. bedrooms) good acoustic design can be used so that individual noise events do not normally exceed 45dB $L_{Amax,F}$ more than 10 times a night. However, where it is not reasonably practicable to achieve this guideline then the judgement of acceptability will depend not only on the maximum noise levels but also on factors such as the source, number, distribution, predictability and regularity of noise events (see Appendix A)."

Where development is considered necessary or desirable, despite external noise levels above WHO guidelines, the internal target noise levels may be relaxed (subject to the requirements of any planning conditions) by up to 5 dB and reasonable internal conditions still achieved.

10.0 Achievable Internal Noise Levels

We have predicted the levels that would be achievable in the worst-case dwellings with windows partially opened and also with windows closed.

10.1 Windows Partially Open

It is generally accepted that the typical noise reduction achieved with partially opened windows is around 15dBA (ref. BS 8233:2014 Annex G.1). This value is the difference between dBA levels measured outside and inside typical dwellings, therefore 3dBA should be added to free field noise levels to determine outside levels.

A simple assessment thus indicates the following noise levels may be expected within the proposed worst case habitable rooms with partially opened windows.

Description	Predicted Worst Case Internal Noise Levels with Windows Partially Open					
	Position 1			Position 2		
	Daytime $L_{Aeq(16-hour)}$	Night-time $L_{Aeq(8-hour)}$	Night-time L_{AFmax}	Daytime $L_{Aeq(16-hour)}$	Night-time $L_{Aeq(8-hour)}$	Night-time L_{AFmax}
External free field level	64 dBA	59 dBA	74 dBA	67 dBA	63 dBA	81 dBA
Façade correction	+3 dBA	+3 dBA	+3 dBA	+3 dBA	+3 dBA	+3 dBA
Façade noise level	67 dBA	62 dBA	77 dBA	70 dBA	66 dBA	84 dBA
Noise reduction for conventional thermal double glazing	-15 dBA	-15 dBA	-15 dBA	-15 dBA	-15 dBA	-15 dBA
Predicted internal noise levels	52 dBA	47 dBA	62 dBA	55 dBA	51 dBA	69 dBA

The predicted worst case internal noise levels with windows partially open exceed the proposed target levels (as is often the case). The minimum mitigation available to future occupants would be to close their window. Ventilation (incorporating suitable acoustic attenuation) will be provided to comply with the requirements of the Building Regulations Approved Document F whole dwelling ventilation, Building Regulations Approved Document O and appropriate thermal design should be undertaken to avoid the need to rely on openable windows to deal with overheating. The occupants will thus have the option of keeping windows closed for most of the time and opening windows for purge ventilation.

This form of mitigation is supported within the Pro:PG which advises the following:

- 2.34 Where the LPA accepts that there is a justification that the internal target noise levels can only be practically achieved with windows closed, which may be the case in urban areas and at sites adjacent to transportation noise sources, special care must be taken to design the accommodation so that it provides good standards of acoustics, ventilation and thermal comfort without unduly compromising other aspects of the living environment. In such circumstances, internal noise levels can be assessed with windows closed but with façade openings used to provide "*whole dwelling ventilation*" in accordance with Building Regulations Approved Document F (e.g. trickle ventilators) in the open position (see Supplementary Document 2). Furthermore, in this scenario the internal L_{Aeq} target noise levels should not generally be exceeded.
- 2.35 It should also be noted that the internal noise level guidelines are generally not applicable under "*purge ventilation*" conditions as defined by Building Regulations Approved Document F, as this should only occur occasionally (e.g. to remove odour from painting and decorating or from burnt food).

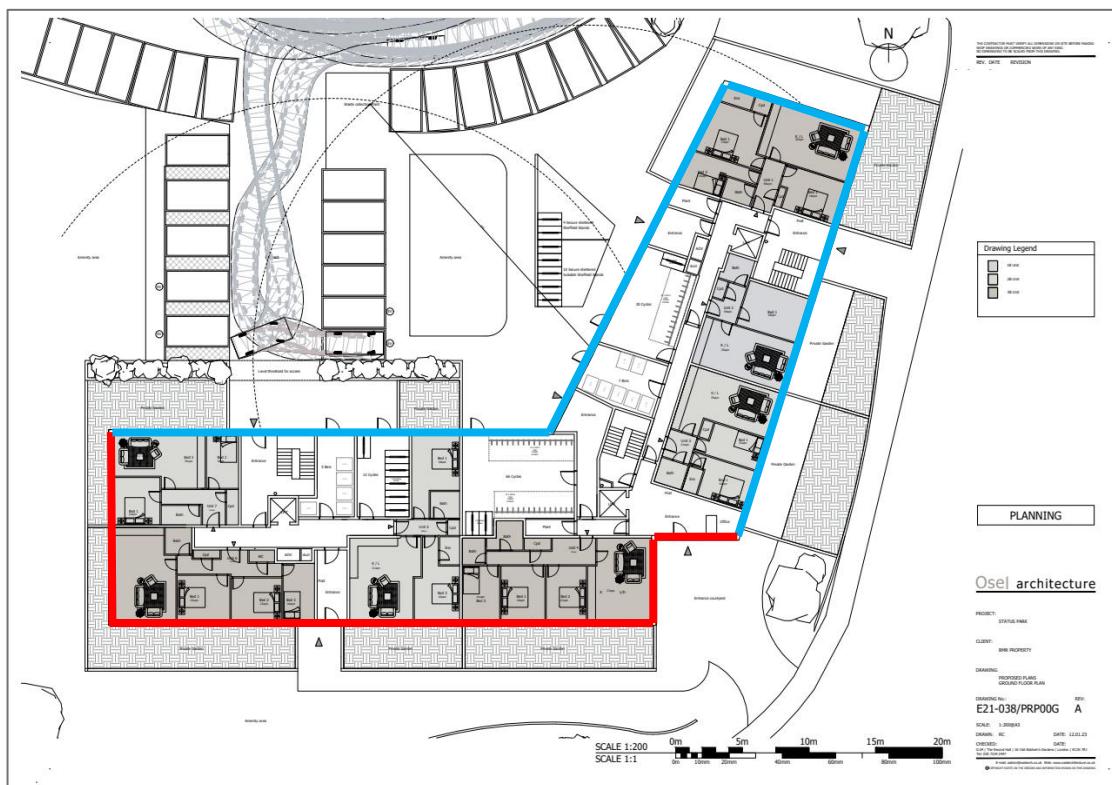
At this stage of the design scheme the precise details of window to be used are not known, nor are the precise details of the ventilation.

The external envelope of the proposed residences will incorporate suitably specified glazing so as to achieve the proposed design target internal noise levels presented above.

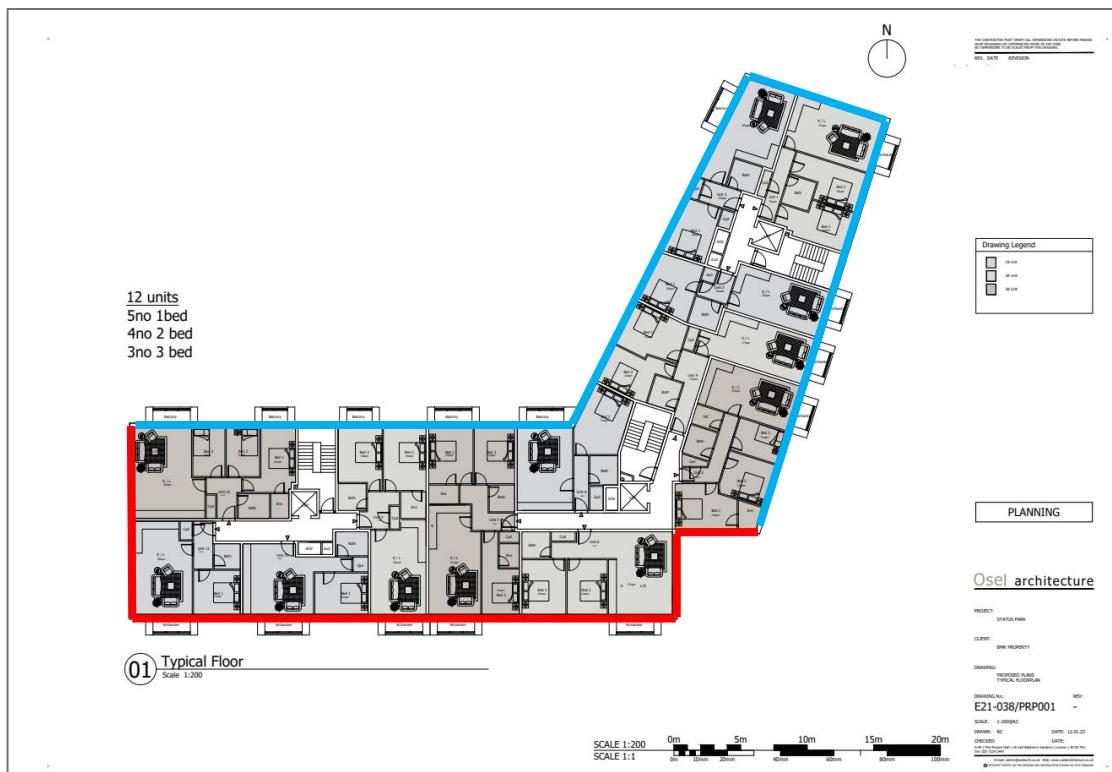
Where ventilation is provided through the façade it shall be suitably acoustically attenuated to ensure the achievement of the proposed target internal noise levels is not compromised.

10.2 Windows Closed

Provision exists to provide appropriate sound insulation solutions as required including, where necessary, suitably specified glazing and attenuated ventilators. We have carried out preliminary calculations to determine the likely façade sound insulation performance requirements for each façade. Our calculation methods follow those outlined in BS 8233:2014.


Our calculations are based on the following assumptions:

- Conventional brick/block cavity external wall or equivalent
- 75m³ approximate room volume
- 1.6m² approximate window area
- Typical furnishings including beds, sofas, chairs etc.


Façade Zone		Façade Element	Preliminary Minimum Sound Reduction Specification
A	Red	Window	37 dB R _w + C _{tr}
		Ventilator	42 D _{new} + C _{tr}
B	Blue	Window	30 dB R _w + C _{tr}
		Ventilator	35 D _{new} + C _{tr}

Note: At detailed design stage octave band acoustic specifications will need to be developed, and it will be essential that the prospective glazing/cladding system suppliers can demonstrate compliance with these specifications, rather than simply offering generic glazing configurations as described above.

The plans on the following page show the location of each façade zone noted in the table above.

Ground Floor Façade Zone (Drawing Provided by Osel Architecture)

Typical Floor Façade Zone (Drawing Provided by Osel Architecture)

10.3 Example Glazing Configurations

Example glazing configurations commensurate with achieving the sound insulation performances are given below.

Glazing Specification, $R_w + C_{tr}$ (dB)	Example Configuration
37	Acoustic double glazed system e.g. 10/16/8.8 mm
30	double glazed system e.g 10/16/4 mm.

10.4 Example Ventilation Solutions

Example ventilation solutions commensurate with achieving the sound insulation performances are discussed below.

Ventilator Specification, $D_{new} + C_{tr}$ (dB)	Example Configuration
42	High performance in-wall acoustic ventilator, or a mechanically assisted supply & extract solution (e.g. local MVHR).
35	1 x 2,500mm ² acoustic trickle vent per habitable room, or a mechanically assisted supply & extract solution (e.g. local MVHR).

The preliminary performance specifications included above are based on the provision of either full MVHR for rooms or 1no. ventilator only per habitable room as required. If additional numbers of ventilators are required to achieve the ventilation rates, the performance requirement for the individual ventilators will need to increase.

The table below provides guidance on the increase in performance specification required for additional numbers of ventilators.

Number of Ventilators	Performance Increase on Ventilator Specifications Stated Above
1	+0 dB
2	+3 dB
3	+5 dB
4	+6 dB

10.5 Ventilation & Overheating Assessment

With regard to Building Regulations Approved Document O, Sections 3.2 to 3.4 of this document relate to noise and state the following:

"In locations where external noise may be an issue (for example, where the local planning authority considered external noise to be an issue at the planning stage), the overheating mitigation strategy should take account of the likelihood that windows will be closed during sleeping hours (11pm to 7am).

Windows are likely to be closed during sleeping hours if noise within bedrooms exceeds the following limits.

a. 40dB $L_{Aeq,T}$, averaged over 8 hours (between 11pm and 7am).

b. 55dB L_{AFmax} , more than 10 times a night (between 11pm and 7am)."

The assessment in Section 10.1 indicates that the noise levels are above the limits for which Approved Document O states windows are likely to be closed during sleeping hours (2300 – 0700 hours). Approved Document O advises that further guidance can be found in the AVO guide.

With reference to the aforementioned AVO guidance, habitable rooms should be designed so as to avoid the reliance on openable windows to satisfy overheating targets. This can be achieved by use of solar rated glazing, black out blinds, or through fenestration design. In addition, the AVO guide (Table B-5) suggests mitigation measures in the form of attenuated or plenum windows, attenuated louvres or vents for overheating and sound attenuating balconies. This can be assisted with mechanical ventilation too, such as MVHR with a manual summer boost function. Air conditioning can also be considered. However, the introduction of mechanical solutions should be considered carefully, not only with regard to cost and maintenance, but sustainability and the environment.

10.6 Planning Condition

The Local Planning Authority may expect to be provided with details of the sound insulation treatments when available. Therefore, in granting consent it would be appropriate for a planning condition to be imposed along the following lines, (based on the example condition 1 drawn from PPG24):

“Construction work shall not begin until a scheme for protecting the proposed noise-sensitive development from noise from the road has been submitted to and approved by the local planning authority; all works which form part of the scheme shall be completed before any part of the noise-sensitive development is occupied.”

11.0 External Amenity Areas

Noise levels in external amenity areas should ideally not be above the range of 50-55dB $L_{Aeq,16hr}$, as stated in BS8233:2014. The design has achieved the lowest practicable noise levels. All dwellings facing roads will have access to winter gardens, where noise levels are expected will be within the range of 50-55dB $L_{Aeq,16hr}$ as stated in BS8233:2014.

It should be noted that BS8233:2014 states: *“In higher noise areas, such as city centres or urban areas adjoining the strategic transport network, a compromise between elevated noise levels and other factors, such as the convenience of living in these locations or making efficient use of land resources to ensure development needs can be met, might be warranted. In such a situation, development should be designed to achieve the lowest practicable levels in these external amenity spaces, but should not be prohibited.”*

12.0 Conclusions

A detailed environmental noise survey has been undertaken in order to establish the currently prevailing environmental noise climate around the site.

The environmental noise impact upon the proposed dwellings has been assessed in the context of national and local planning policies.

Appropriate target internal noise levels have been proposed. These are achievable using conventional mitigation measures.

Mitigation measures, including the use of suitably specified glazing, acoustically attenuated ventilation and appropriate thermal design have been recommended to reduce to a minimum the adverse impact on health and quality life arising from environmental noise.

The assessment shows the site, subject to appropriate mitigation measures, is suitable for residential development in terms of noise.

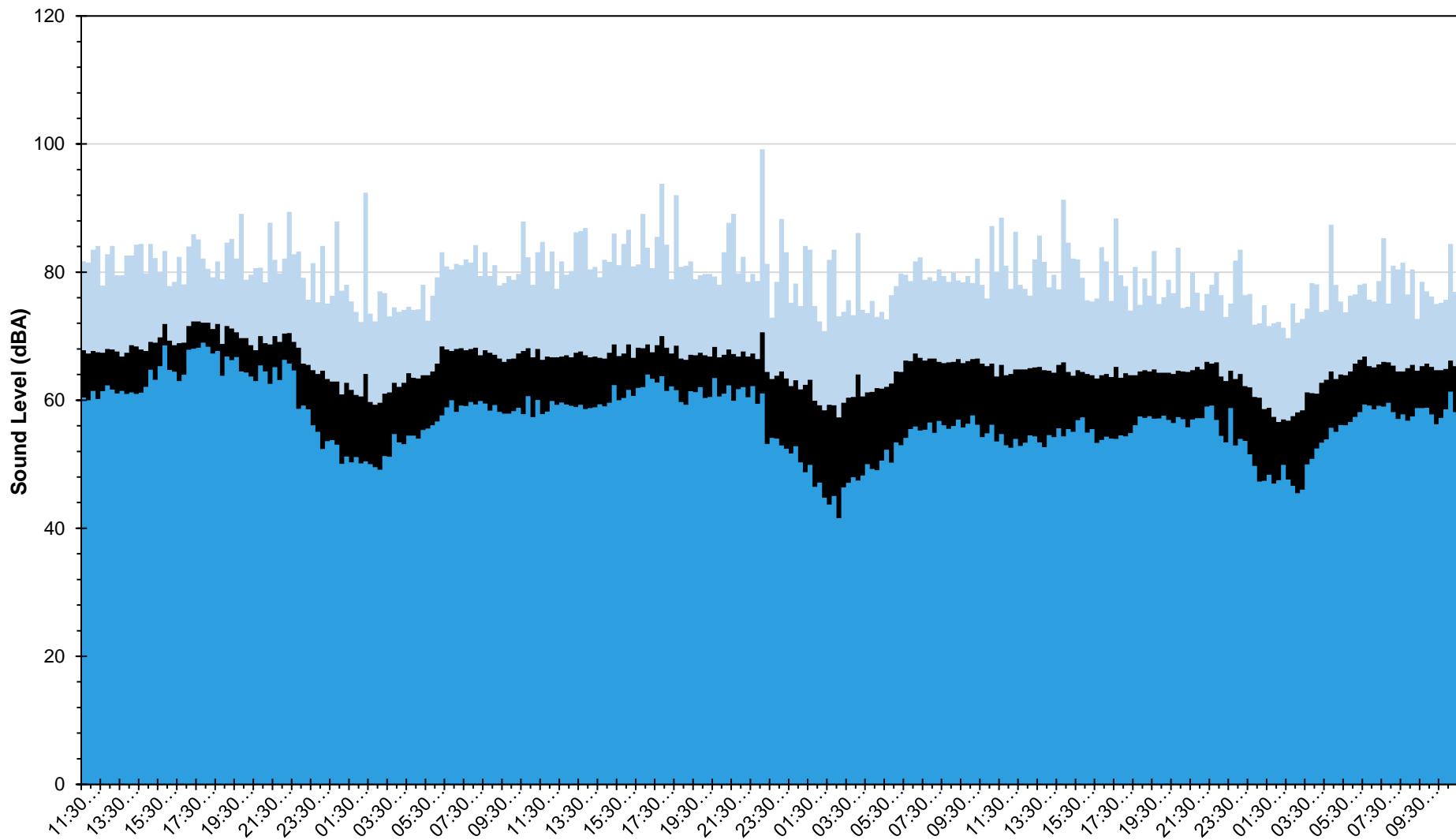
Appendix A

The acoustic terms used in this report are defined as follows:

dB	Decibel - Used as a measurement of sound level. Decibels are not an absolute unit of measurement but an expression of ratio between two quantities expressed in logarithmic form. The relationships between Decibel levels do not work in the same way that non-logarithmic (linear) numbers work (e.g. 30dB + 30dB = 33dB, not 60dB).
dBA	The human ear is more susceptible to mid-frequency noise than the high and low frequencies. The 'A'-weighting scale approximates this response and allows sound levels to be expressed as an overall single figure value in dBA. The _A subscript is applied to an acoustical parameter to indicate the stated noise level is A-weighted
	It should be noted that levels in dBA do not have a linear relationship to each other; for similar noises, a change in noise level of 10dBA represents a doubling or halving of subjective loudness. A change of 3dBA is just perceptible.
$L_{90,T}$	L_{90} is the noise level exceeded for 90% of the period T (i.e. the quietest 10% of the measurement) and is often used to describe the background noise level.
$L_{eq,T}$	$L_{eq,T}$ is the equivalent continuous sound pressure level. It is an average of the total sound energy measured over a specified time period, T .
L_{max}	L_{max} is the maximum sound pressure level recorded over the period stated. L_{max} is sometimes used in assessing environmental noise where occasional loud noises occur, which may have little effect on the L_{eq} noise level.
L_p	Sound Pressure Level (SPL) is the sound pressure relative to a standard reference pressure of 2×10^{-5} Pa. This level varies for a given source according to a number of factors (including but not limited to: distance from the source; positioning; screening and meteorological effects).
L_w	Sound Power Level (SWL) is the total amount of sound energy inherent in a particular sound source, independent of its environment. It is a logarithmic measure of the sound power in comparison to a specified reference level (usually 10^{-12} W).

Status Park, Heathrow

Position 1


L_{eq} , L_{max} and L_{90} Noise Levels

Friday 30 September 2022 to Monday 3 October 2022

L_{max}

L_{eq}

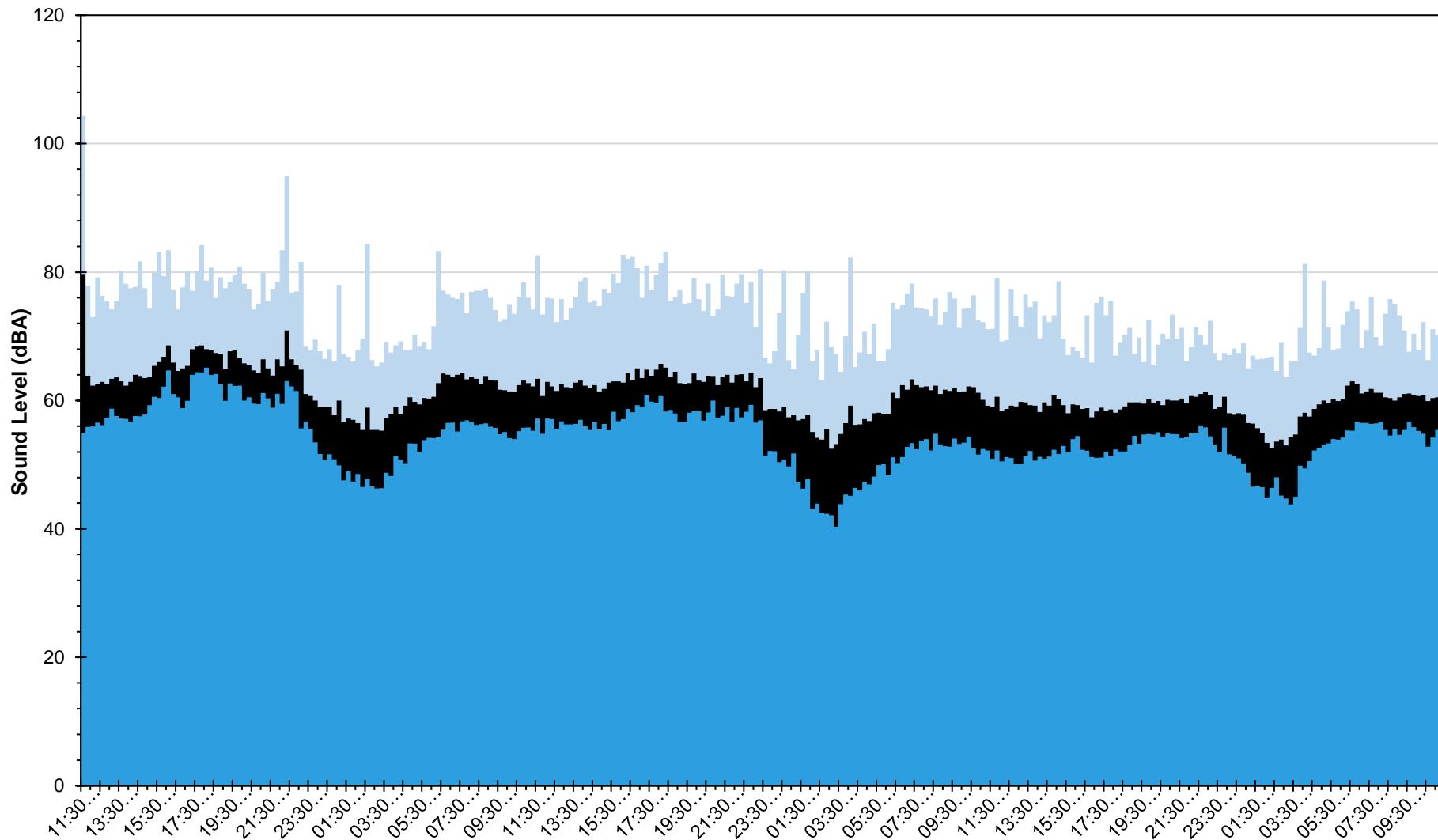
L_{90}

Date and Time

25776/TH2.1

Status Park, Heathrow

Position 2


L_{eq} , L_{max} and L_{90} Noise Levels

Friday 30 September 2022 to Monday 3 October 2022

L_{max}

L_{eq}

L_{90}

Date and Time

25776/TH2.2