

MODELLED FLOWS

				Return Period												
Node Label	Easting	Northing	2 yr	5 yr	10 yr	20 yr	30 yr	50 yr	75 yr	100 yr	100yr + 20%	100yr + 25%	100yr + 35%	100yr + 70%	250 yr	1000yr
138ln1	506174	182967	7.60	9.31	10.54	12.24	13.11	14.37	15.36	16.12	18.34	18.91	19.88	22.61	19.34	24.64
138ln2	506170	182935	7.60	9.31	10.54	12.24	13.11	14.37	15.36	16.12	18.29	18.86	19.84	22.50	19.30	24.28
137	506156	182898	7.60	9.31	10.54	12.24	13.10	14.37	15.36	16.12	18.26	18.77	19.61	21.83	19.13	23.57
137ln1	506151	182874	7.71	9.42	10.65	12.35	13.23	14.50	15.45	16.15	18.06	18.52	19.20	21.02	18.82	22.39
137a	506147	182846	7.71	9.42	10.65	12.34	13.22	14.50	15.49	16.27	18.52	19.10	20.18	23.62	19.58	26.04
136	506147	182832	7.71	9.42	10.65	12.34	13.22	14.50	15.49	16.27	18.52	19.10	20.18	23.62	19.58	26.04
136a	506145	182792	7.71	9.42	10.65	12.34	13.22	14.49	15.49	16.27	18.52	19.10	20.18	23.68	19.59	26.51
07132_003	506145	182761	7.71	9.42	10.65	12.34	13.22	14.49	15.49	16.27	18.52	19.10	20.18	23.64	19.58	26.50
07132_002	506145	182756	7.71	9.42	10.65	12.34	13.22	14.49	15.49	16.27	18.52	19.10	20.18	23.67	19.58	26.60
07132_001	506145	182750	7.71	9.42	10.65	12.34	13.21	14.49	15.49	16.27	18.52	19.10	20.18	23.79	19.58	26.91
135b	506149	182716	7.71	9.42	10.65	12.33	13.21	14.49	15.49	16.27	18.51	19.09	20.16	23.66	19.57	26.71
135	506150	182691	7.71	9.42	10.65	12.33	13.21	14.49	15.49	16.27	18.50	19.05	20.02	22.97	19.49	25.15
135D	506150	182683	7.71	9.42	10.65	12.33	13.21	14.49	15.49	16.27	18.50	19.05	20.02	22.97	19.49	25.15
134	506141	182648	7.71	9.42	10.65	12.33	13.15	14.34	15.29	16.03	18.20	18.76	19.78	23.04	19.22	25.67
134ln1	506119	182614	7.71	9.42	10.65	12.32	13.18	14.28	15.15	15.84	17.80	18.30	19.22	22.16	18.71	24.59
134ln2	506112	182576	7.71	9.42	10.65	12.32	13.00	13.95	14.87	15.61	17.78	18.35	19.41	22.80	18.83	25.61
134ln3	506108	182534	7.71	9.42	10.65	12.18	12.70	13.47	14.00	14.48	15.98	16.37	17.09	19.46	16.69	21.46
134ln4	506100	182491	7.71	9.42	10.64	11.80	11.80	12.92	14.11	15.05	17.75	18.46	19.78	23.86	19.05	27.16
133	506092	182442	7.71	9.42	10.65	12.25	12.44	12.46	12.54	12.72	13.28	13.41	13.57	14.31	13.48	14.98
P16	506095	182433	7.71	9.42	10.65	12.25	12.44	12.46	12.54	12.72	13.28	13.41	13.57	14.31	13.48	14.98
P16a	506093	182422	7.71	9.42	10.64	12.25	12.51	12.67	12.89	13.14	13.46	13.46	13.48	13.44	13.48	13.40
P14	506092	182412	7.71	9.42	10.64	12.25	12.51	12.67	12.89	13.14	13.46	13.46	13.48	13.44	13.48	13.40
P13	506086	182372	7.71	9.42	10.65	12.25	12.94	13.88	14.50	15.05	16.32	16.54	16.92	18.02	16.67	18.41
130	506068	182348	7.71	9.42	10.64	12.25	13.16	14.52	15.51	16.27	18.46	19.01	20.01	23.21	19.45	25.48

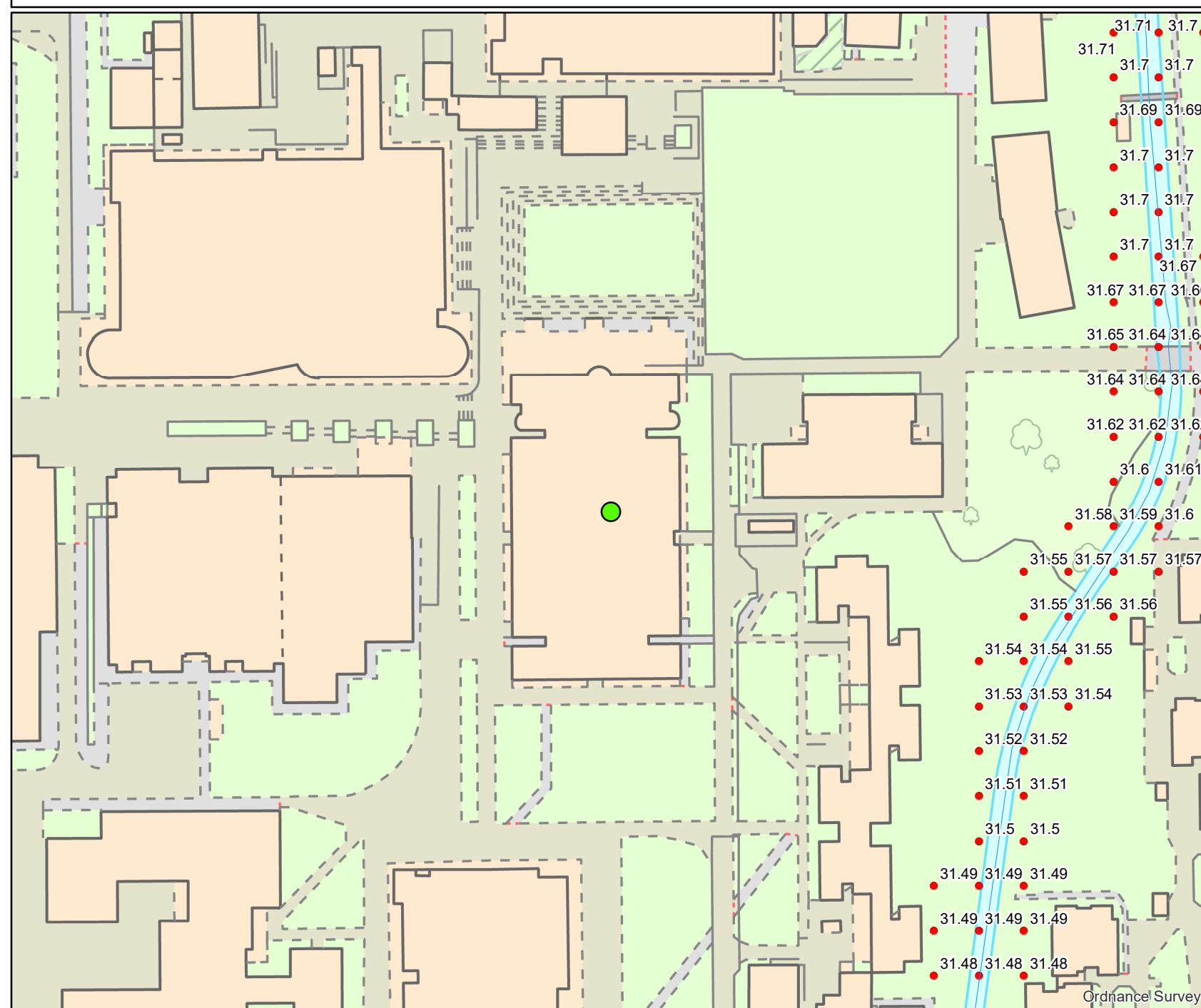
Environment Agency
Alchemy,
Bessemer Road,
Welwyn Garden City,
Hertfordshire,
AL7 1HE

0 15 30 60
Metres

Legend

- Statutory Main Rivers
- Site location

2D Node Results: Heights


- 1 in 2 year (50%) Defended

The data in this map has been extracted from the River Pinn Mapping Study (JBA, 2015). This model has been designed for catchment wide flood risk mapping. It should be noted that it was not created to produce flood levels for specific development sites within the catchment.

Modelled outlines take into account catchment wide defences.

Flood risk data requests including an allowance for climate change will be based on the 1 in 100 flood plus 20% allowance for climate change, unless otherwise stated. You should refer to 'Flood risk assessments: climate change allowances' to check if this allowance is still appropriate for the type of development you are proposing and its location. You may need to undertake further assessment of future flood risk using different allowances to ensure your assessment of future flood risk is based on best available evidence. <https://www.gov.uk/guidance/flood-risk-assessments-climate-change-allowances>

Produced by:
Partnerships & Strategic Overview,
Hertfordshire & North London

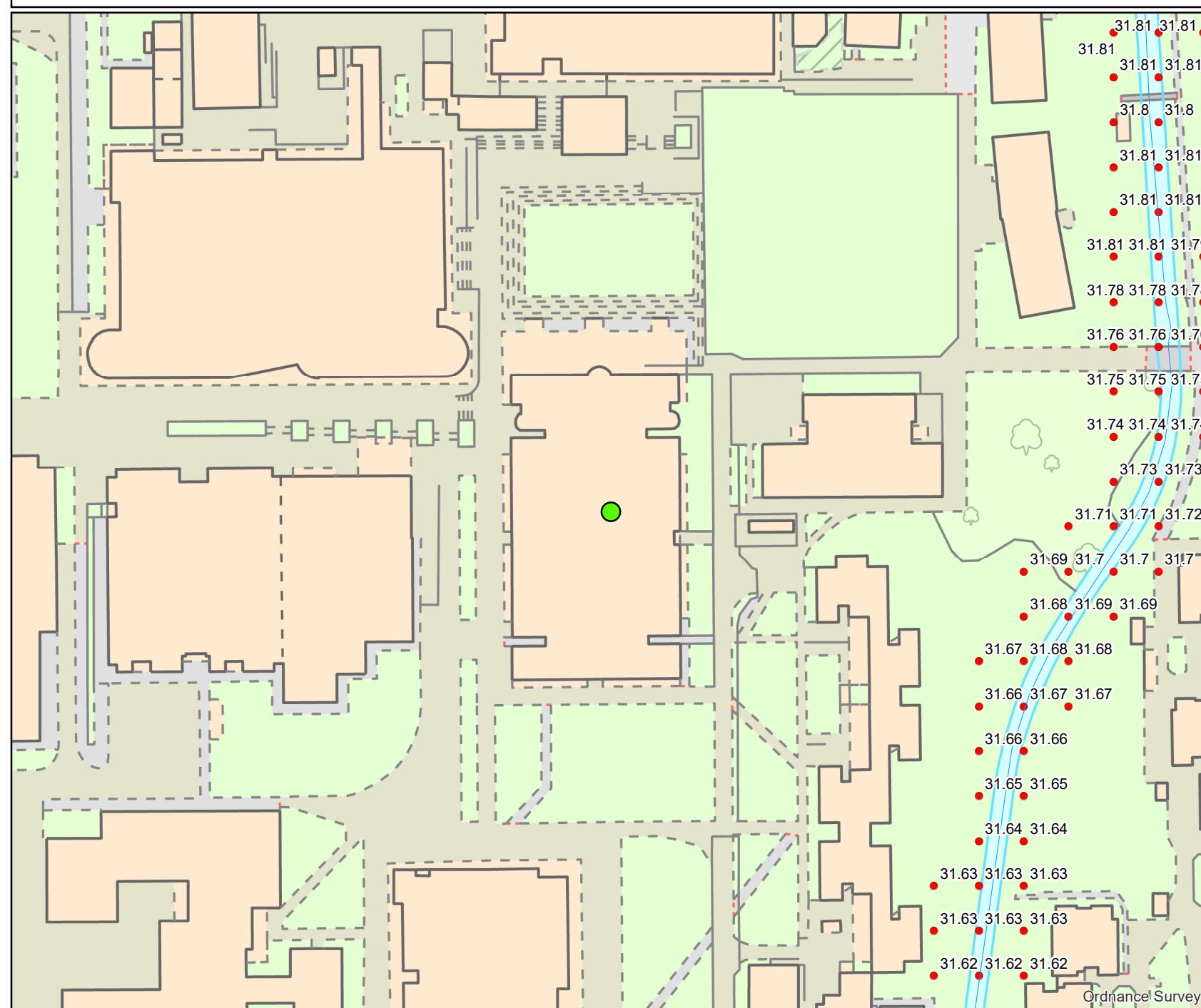
Environment Agency
Alchemy,
Bessemer Road,
Welwyn Garden City,
Hertfordshire,
AL7 1HE

0 15 30 60
Metres

Legend

- Statutory Main Rivers
- Site location

2D Node Results: Heights


- 1 in 5 year (20%) Defended

The data in this map has been extracted from the River Pinn Mapping Study (JBA, 2015). This model has been designed for catchment wide flood risk mapping. It should be noted that it was not created to produce flood levels for specific development sites within the catchment.

Modelled outlines take into account catchment wide defences.

Flood risk data requests including an allowance for climate change will be based on the 1 in 100 flood plus 20% allowance for climate change, unless otherwise stated. You should refer to 'Flood risk assessments: climate change allowances' to check if this allowance is still appropriate for the type of development you are proposing and its location. You may need to undertake further assessment of future flood risk using different allowances to ensure your assessment of future flood risk is based on best available evidence. <https://www.gov.uk/guidance/flood-risk-assessments-climate-change-allowances>

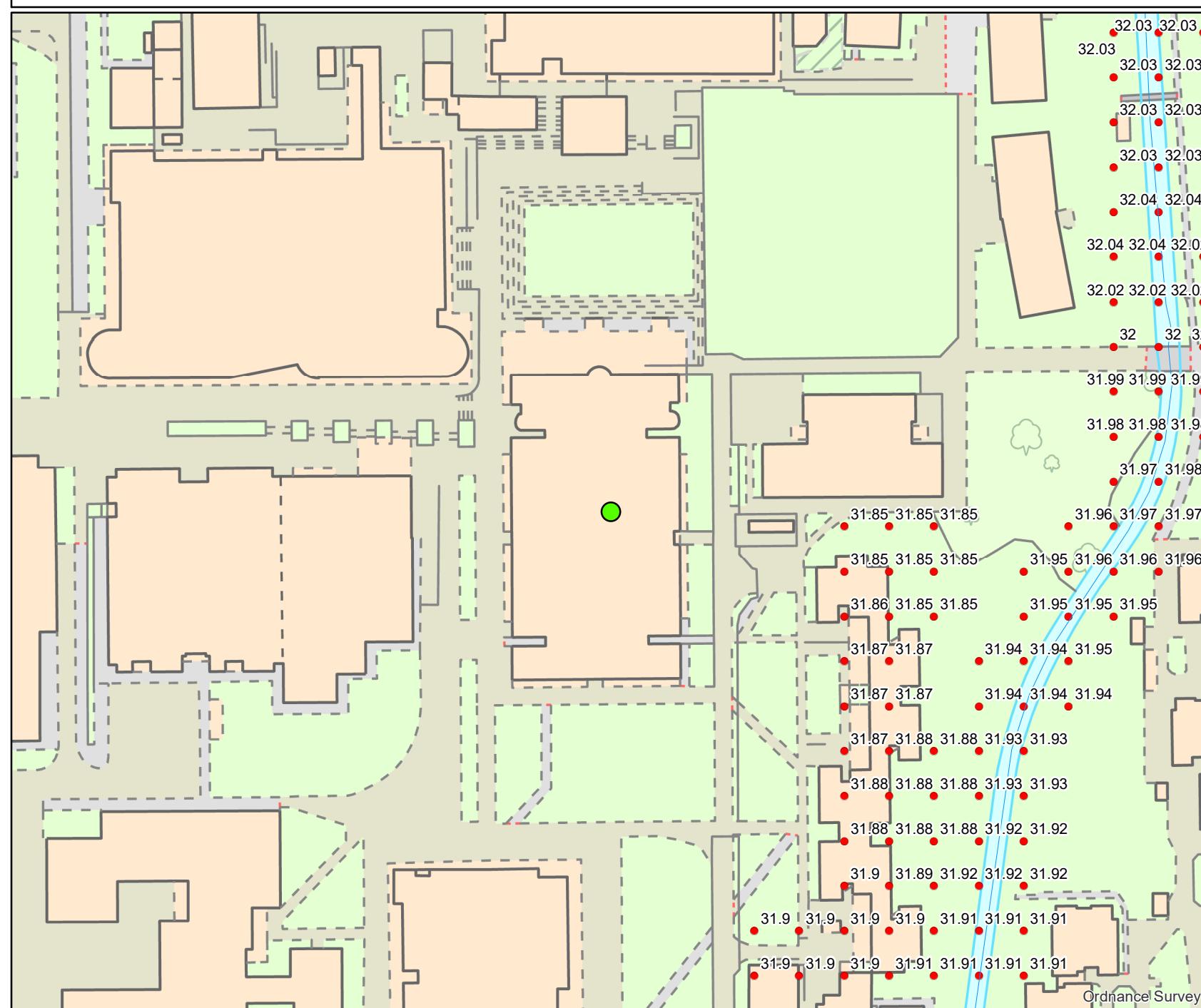
Produced by:
Partnerships & Strategic Overview,
Hertfordshire & North London

Environment Agency
Alchemy,
Bessemer Road,
Welwyn Garden City,
Hertfordshire,
AL7 1HE

0 15 30 60
Metres

Legend

- Statutory Main Rivers
- Site location


2D Node Results: Heights

- 1 in 10 year (10%) Defended

The data in this map has been extracted from the River Pinn Mapping Study (JBA, 2015). This model has been designed for catchment wide flood risk mapping. It should be noted that it was not created to produce flood levels for specific development sites within the catchment. Modelled outlines take into account catchment wide defences.

Flood risk data requests including an allowance for climate change will be based on the 1 in 100 flood plus 20% allowance for climate change, unless otherwise stated. You should refer to 'Flood risk assessments: climate change allowances' to check if this allowance is still appropriate for the type of development you are proposing and its location. You may need to undertake further assessment of future flood risk using different allowances to ensure your assessment of future flood risk is based on best available evidence. <https://www.gov.uk/guidance/flood-risk-assessments-climate-change-allowances>

Produced by:
Partnerships & Strategic Overview,
Hertfordshire & North London

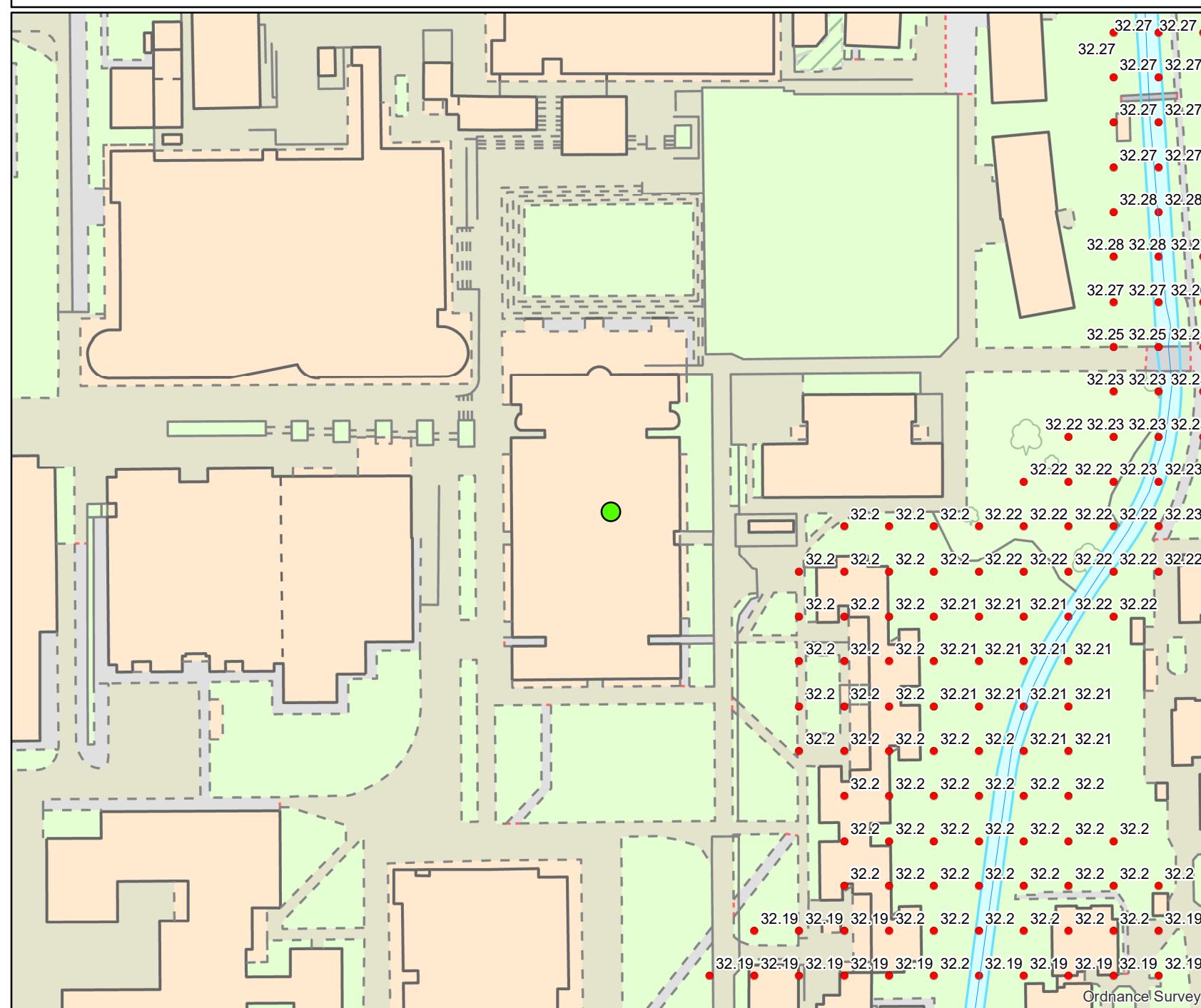
Environment Agency
Alchemy,
Bessemer Road,
Welwyn Garden City,
Hertfordshire,
AL7 1HE

0 15 30 60
Metres

Legend

- Statutory Main Rivers
- Site location

2D Node Results: Heights


- 1 in 20 year (5%) Defended

The data in this map has been extracted from the River Pinn Mapping Study (JBA, 2015). This model has been designed for catchment wide flood risk mapping. It should be noted that it was not created to produce flood levels for specific development sites within the catchment.

Modelled outlines take into account catchment wide defences.

Flood risk data requests including an allowance for climate change will be based on the 1 in 100 flood plus 20% allowance for climate change, unless otherwise stated. You should refer to 'Flood risk assessments: climate change allowances' to check if this allowance is still appropriate for the type of development you are proposing and its location. You may need to undertake further assessment of future flood risk using different allowances to ensure your assessment of future flood risk is based on best available evidence. <https://www.gov.uk/guidance/flood-risk-assessments-climate-change-allowances>

Produced by:
Partnerships & Strategic Overview,
Hertfordshire & North London

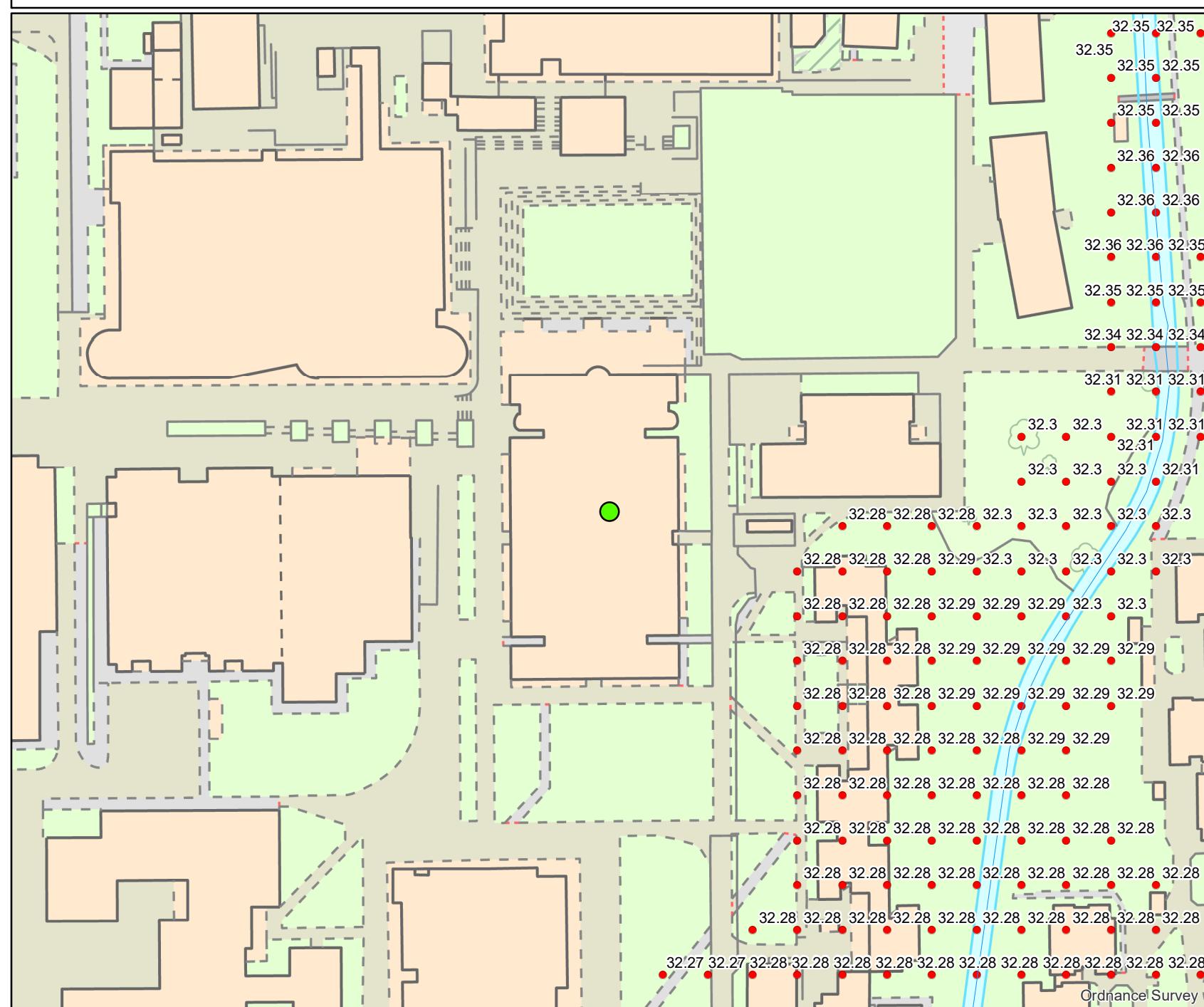
Environment Agency
Alchemy,
Bessemer Road,
Welwyn Garden City,
Hertfordshire,
AL7 1HE

0 15 30 60
Metres

Legend

- Statutory Main Rivers
- Site location

2D Node Results: Heights


- 1 in 30 year (3.33%) Defended

The data in this map has been extracted from the River Pinn Mapping Study (JBA, 2015). This model has been designed for catchment wide flood risk mapping. It should be noted that it was not created to produce flood levels for specific development sites within the catchment.

Modelled outlines take into account catchment wide defences.

Flood risk data requests including an allowance for climate change will be based on the 1 in 100 flood plus 20% allowance for climate change, unless otherwise stated. You should refer to 'Flood risk assessments: climate change allowances' to check if this allowance is still appropriate for the type of development you are proposing and its location. You may need to undertake further assessment of future flood risk using different allowances to ensure your assessment of future flood risk is based on best available evidence. <https://www.gov.uk/guidance/flood-risk-assessments-climate-change-allowances>

Produced by:
Partnerships & Strategic Overview,
Hertfordshire & North London

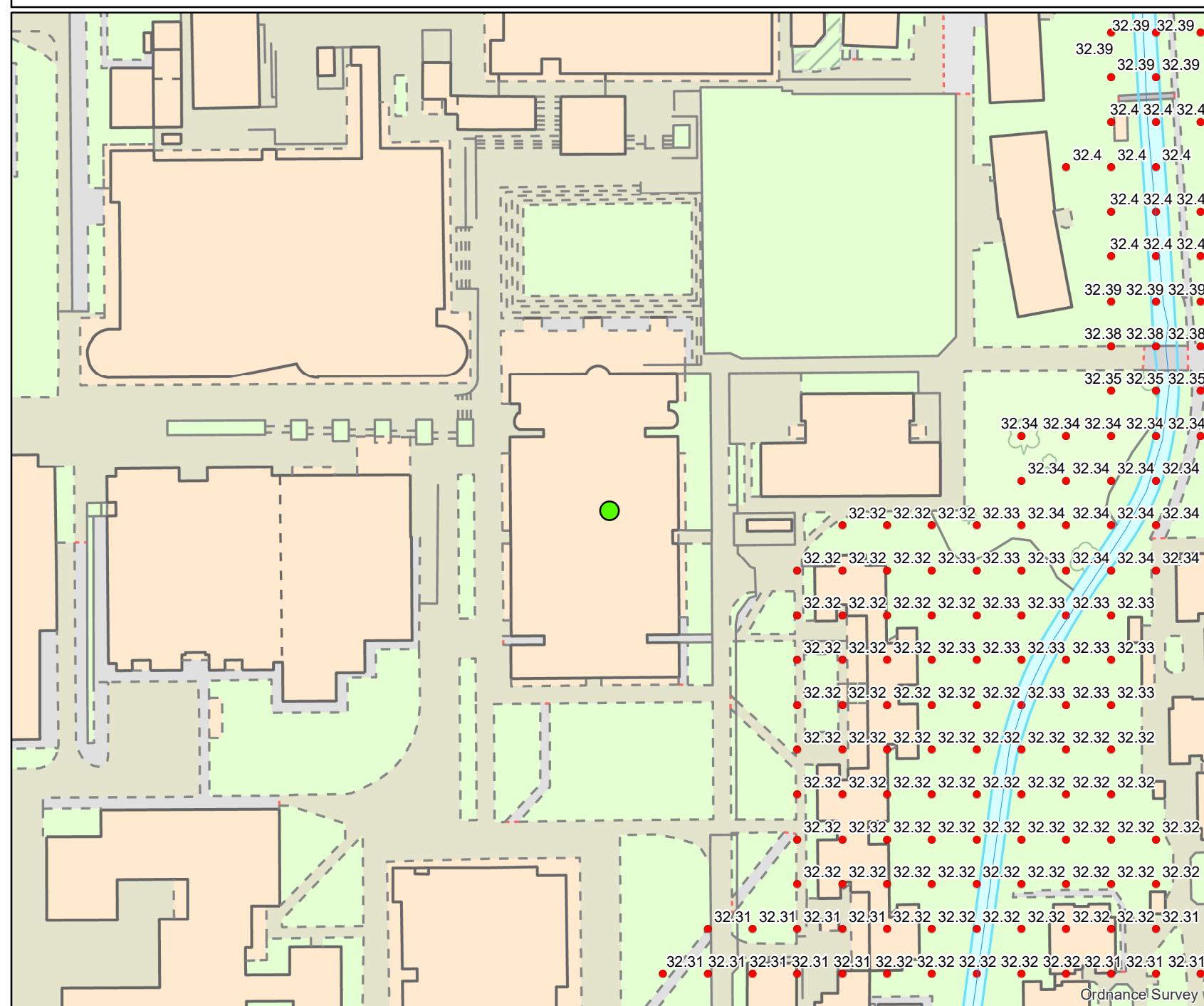
Environment Agency
Alchemy,
Bessemer Road,
Welwyn Garden City,
Hertfordshire,
AL7 1HE

0 15 30 60
Metres

Legend

- Statutory Main Rivers
- Site location

2D Node Results: Heights


- 1 in 50 year (2%) Defended

The data in this map has been extracted from the River Pinn Mapping Study (JBA, 2015). This model has been designed for catchment wide flood risk mapping. It should be noted that it was not created to produce flood levels for specific development sites within the catchment.

Modelled outlines take into account catchment wide defences.

Flood risk data requests including an allowance for climate change will be based on the 1 in 100 flood plus 20% allowance for climate change, unless otherwise stated. You should refer to 'Flood risk assessments: climate change allowances' to check if this allowance is still appropriate for the type of development you are proposing and its location. You may need to undertake further assessment of future flood risk using different allowances to ensure your assessment of future flood risk is based on best available evidence. <https://www.gov.uk/guidance/flood-risk-assessments-climate-change-allowances>

Produced by:
Partnerships & Strategic Overview,
Hertfordshire & North London

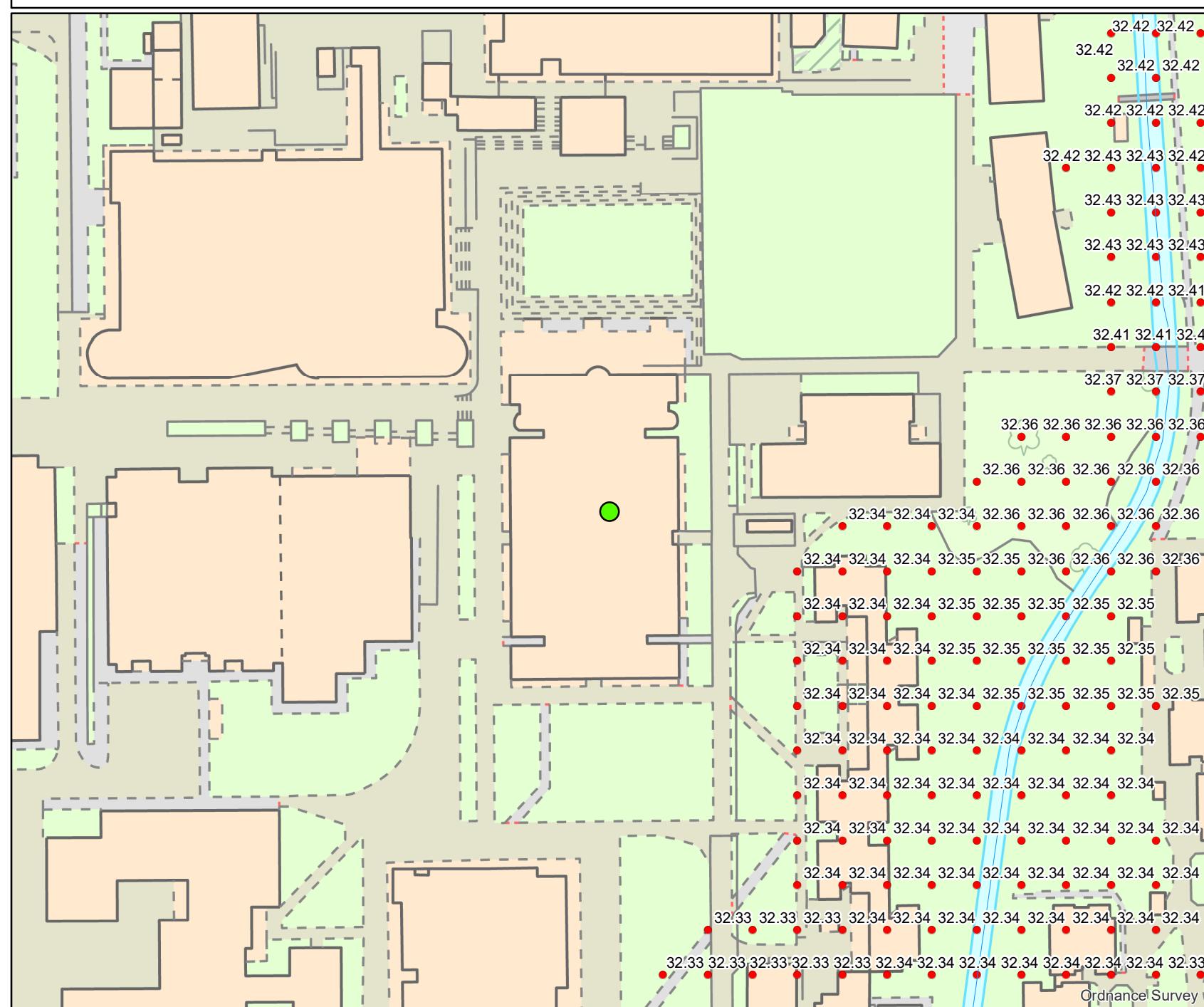
Environment Agency
Alchemy,
Bessemer Road,
Welwyn Garden City,
Hertfordshire,
AL7 1HE

0 15 30 60
Metres

Legend

- Statutory Main Rivers
- Site location

2D Node Results: Heights


- 1 in 75 year (1.33%) Defended

The data in this map has been extracted from the River Pinn Mapping Study (JBA, 2015). This model has been designed for catchment wide flood risk mapping. It should be noted that it was not created to produce flood levels for specific development sites within the catchment.

Modelled outlines take into account catchment wide defences.

Flood risk data requests including an allowance for climate change will be based on the 1 in 100 flood plus 20% allowance for climate change, unless otherwise stated. You should refer to 'Flood risk assessments: climate change allowances' to check if this allowance is still appropriate for the type of development you are proposing and its location. You may need to undertake further assessment of future flood risk using different allowances to ensure your assessment of future flood risk is based on best available evidence. <https://www.gov.uk/guidance/flood-risk-assessments-climate-change-allowances>

Produced by:
Partnerships & Strategic Overview,
Hertfordshire & North London

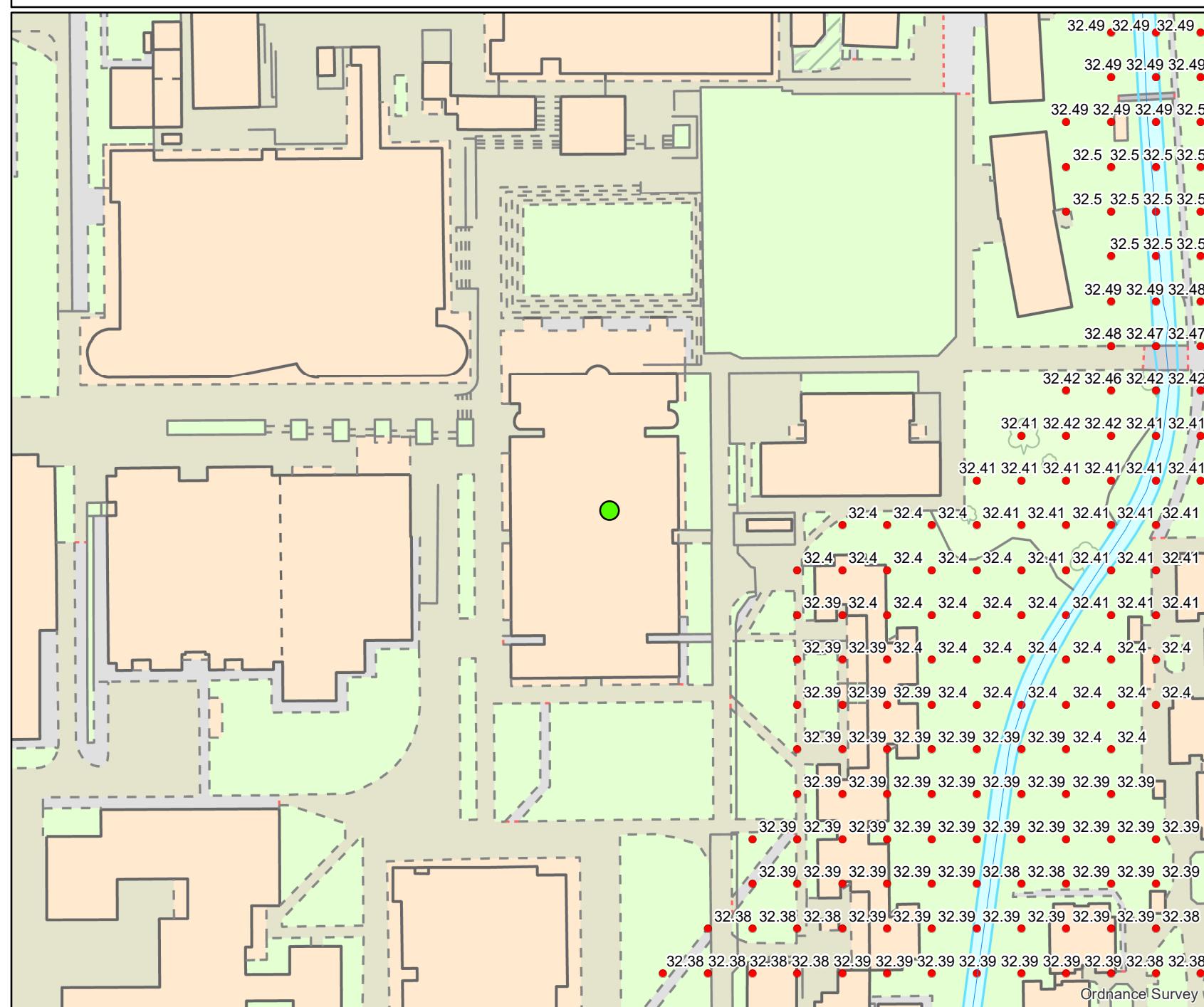
Environment Agency
Alchemy,
Bessemer Road,
Welwyn Garden City,
Hertfordshire,
AL7 1HE

0 15 30 60
Metres

Legend

- Statutory Main Rivers
- Site location

2D Node Results: Heights


- 1 in 100 year (1%) Defended

The data in this map has been extracted from the River Pinn Mapping Study (JBA, 2015). This model has been designed for catchment wide flood risk mapping. It should be noted that it was not created to produce flood levels for specific development sites within the catchment.

Modelled outlines take into account catchment wide defences.

Flood risk data requests including an allowance for climate change will be based on the 1 in 100 flood plus 20% allowance for climate change, unless otherwise stated. You should refer to 'Flood risk assessments: climate change allowances' to check if this allowance is still appropriate for the type of development you are proposing and its location. You may need to undertake further assessment of future flood risk using different allowances to ensure your assessment of future flood risk is based on best available evidence. <https://www.gov.uk/guidance/flood-risk-assessments-climate-change-allowances>

Produced by:
Partnerships & Strategic Overview,
Hertfordshire & North London

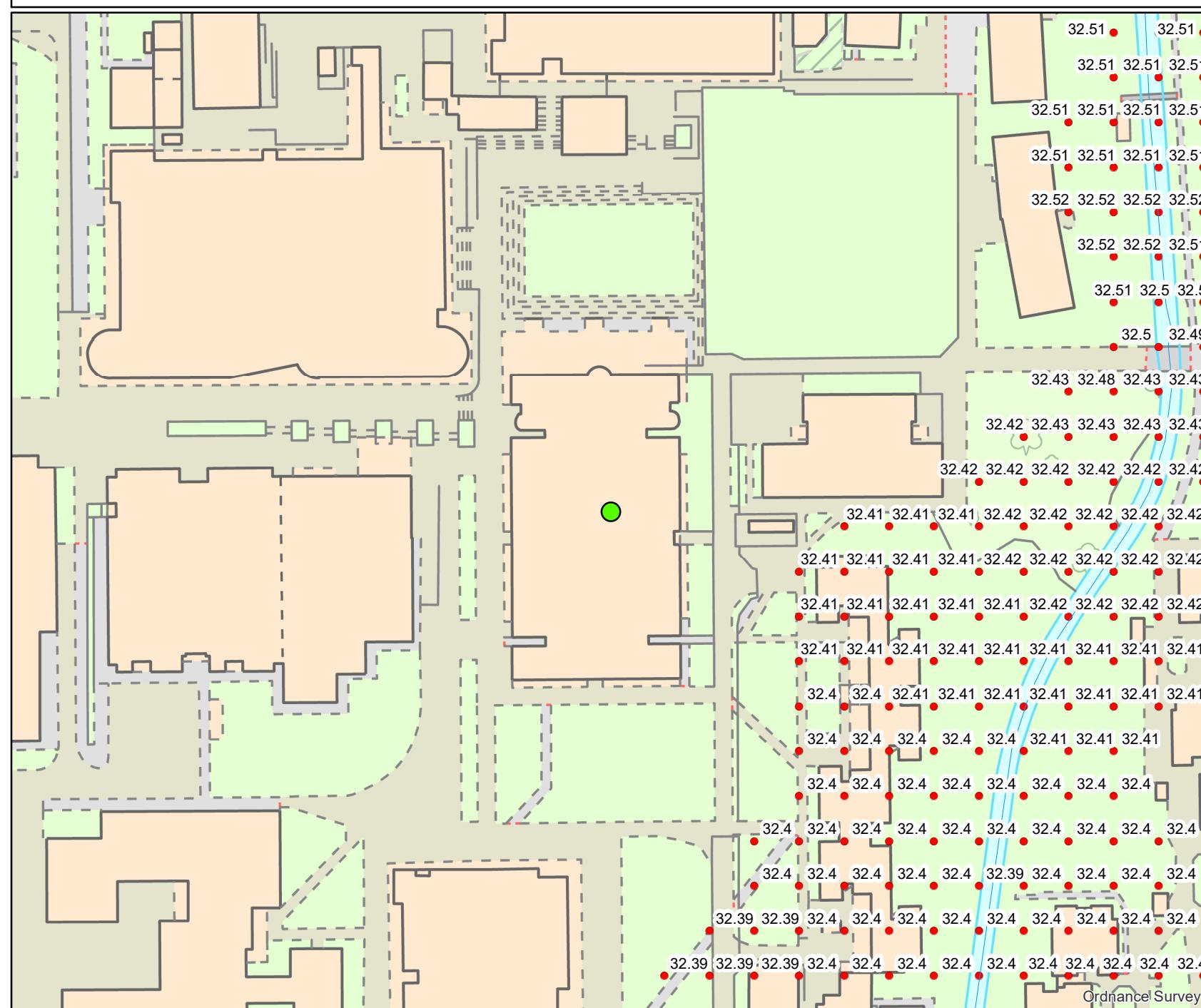
Environment Agency
Alchemy,
Bessemer Road,
Welwyn Garden City,
Hertfordshire,
AL7 1HE

0 15 30 60
Metres

Legend

- Statutory Main Rivers
- Site location

2D Node Results: Heights


- 1 in 100 year + 20% (*CC)
- Defended

The data in this map has been extracted from the River Pinn Mapping Study (JBA, 2015). This model has been designed for catchment wide flood risk mapping. It should be noted that it was not created to produce flood levels for specific development sites within the catchment.

Modelled outlines take into account catchment wide defences.

Flood risk data requests including an allowance for climate change will be based on the 1 in 100 flood plus 20% allowance for climate change, unless otherwise stated. You should refer to 'Flood risk assessments: climate change allowances' to check if this allowance is still appropriate for the type of development you are proposing and its location. You may need to undertake further assessment of future flood risk using different allowances to ensure your assessment of future flood risk is based on best available evidence. <https://www.gov.uk/guidance/flood-risk-assessments-climate-change-allowances>

Produced by:
Partnerships & Strategic Overview,
Hertfordshire & North London

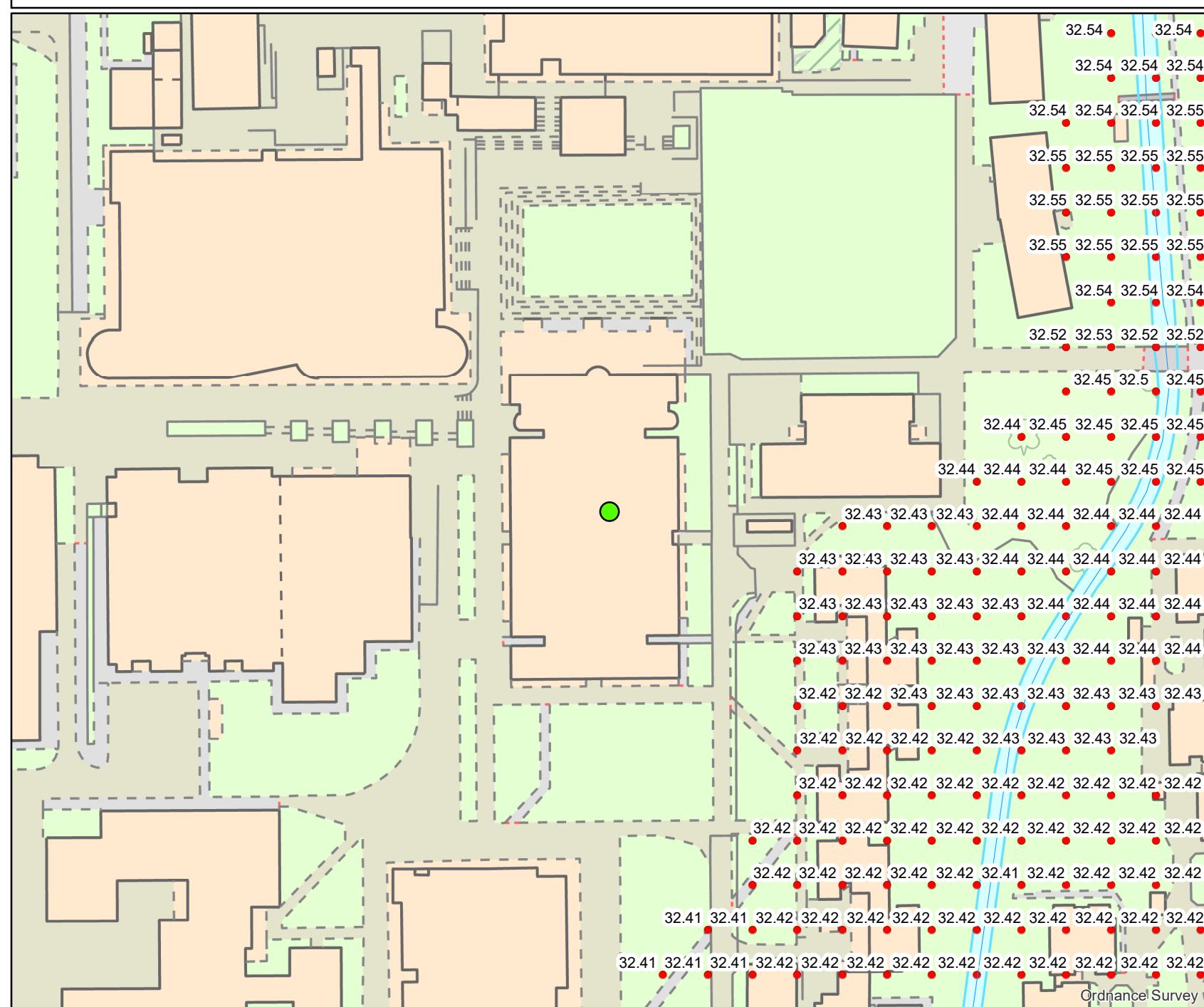
Environment Agency
Alchemy,
Bessemer Road,
Welwyn Garden City,
Hertfordshire,
AL7 1HE

0 15 30 60
Metres

Legend

- Statutory Main Rivers
- Site location

2D Node Results: Heights


- 1 in 100 year + 25% (*CC)
- Defended

The data in this map has been extracted from the River Pinn Mapping Study (JBA, 2015). This model has been designed for catchment wide flood risk mapping. It should be noted that it was not created to produce flood levels for specific development sites within the catchment.

Modelled outlines take into account catchment wide defences.

Flood risk data requests including an allowance for climate change will be based on the 1 in 100 flood plus 20% allowance for climate change, unless otherwise stated. You should refer to 'Flood risk assessments: climate change allowances' to check if this allowance is still appropriate for the type of development you are proposing and its location. You may need to undertake further assessment of future flood risk using different allowances to ensure your assessment of future flood risk is based on best available evidence. <https://www.gov.uk/guidance/flood-risk-assessments-climate-change-allowances>

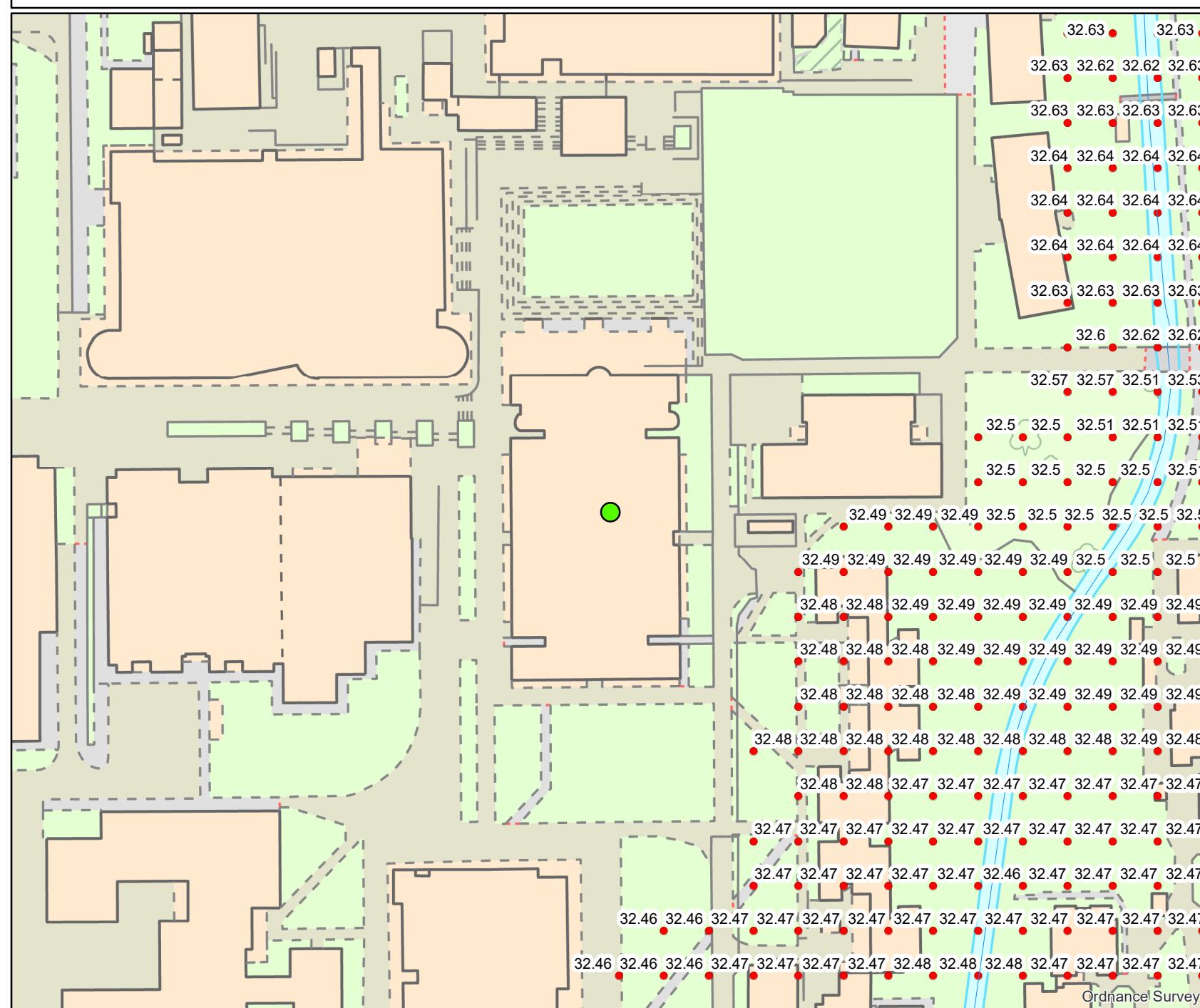
Produced by:
Partnerships & Strategic Overview,
Hertfordshire & North London

Environment Agency
Alchemy,
Bessemer Road,
Welwyn Garden City,
Hertfordshire,
AL7 1HE

0 15 30 60
Metres

Legend

- Statutory Main Rivers
- Site location


2D Node Results: Heights

- 1 in 100 year + 35% (*CC)
- Defended

The data in this map has been extracted from the River Pinn Mapping Study (JBA, 2015). This model has been designed for catchment wide flood risk mapping. It should be noted that it was not created to produce flood levels for specific development sites within the catchment. Modelled outlines take into account catchment wide defences.

Flood risk data requests including an allowance for climate change will be based on the 1 in 100 flood plus 20% allowance for climate change, unless otherwise stated. You should refer to 'Flood risk assessments: climate change allowances' to check if this allowance is still appropriate for the type of development you are proposing and its location. You may need to undertake further assessment of future flood risk using different allowances to ensure your assessment of future flood risk is based on best available evidence. <https://www.gov.uk/guidance/flood-risk-assessments-climate-change-allowances>

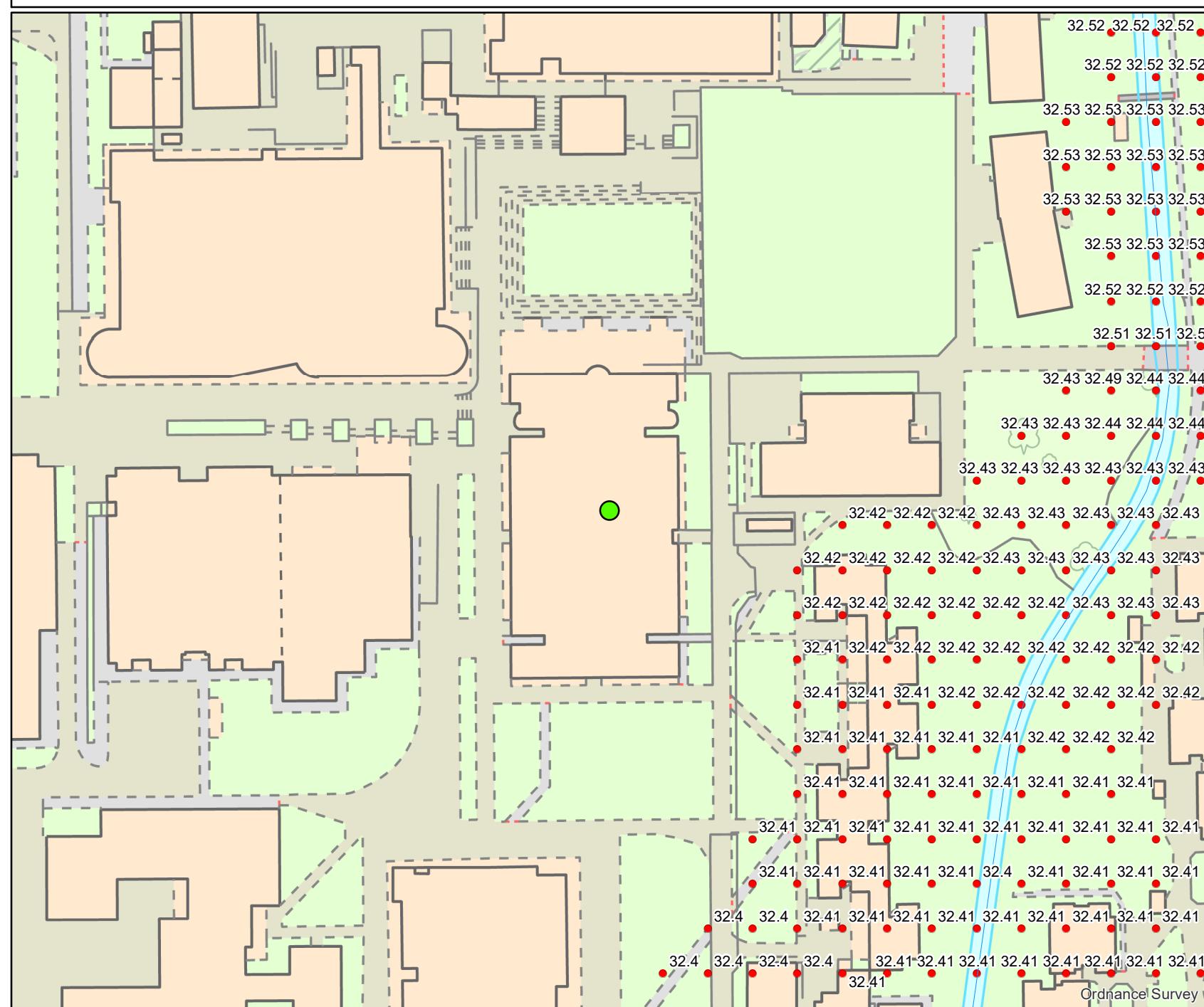
Produced by:
Partnerships & Strategic Overview,
Hertfordshire & North London

Environment Agency
Alchemy,
Bessemer Road,
Welwyn Garden City,
Hertfordshire,
AL7 1HE

0 15 30 60
Metres

Legend

- Statutory Main Rivers
- Site location


2D Node Results: Heights

- 1 in 100 year + 70% (*CC)
- Defended

The data in this map has been extracted from the River Pinn Mapping Study (JBA, 2015). This model has been designed for catchment wide flood risk mapping. It should be noted that it was not created to produce flood levels for specific development sites within the catchment. Modelled outlines take into account catchment wide defences.

Flood risk data requests including an allowance for climate change will be based on the 1 in 100 flood plus 20% allowance for climate change, unless otherwise stated. You should refer to 'Flood risk assessments: climate change allowances' to check if this allowance is still appropriate for the type of development you are proposing and its location. You may need to undertake further assessment of future flood risk using different allowances to ensure your assessment of future flood risk is based on best available evidence. <https://www.gov.uk/guidance/flood-risk-assessments-climate-change-allowances>

Produced by:
Partnerships & Strategic Overview,
Hertfordshire & North London

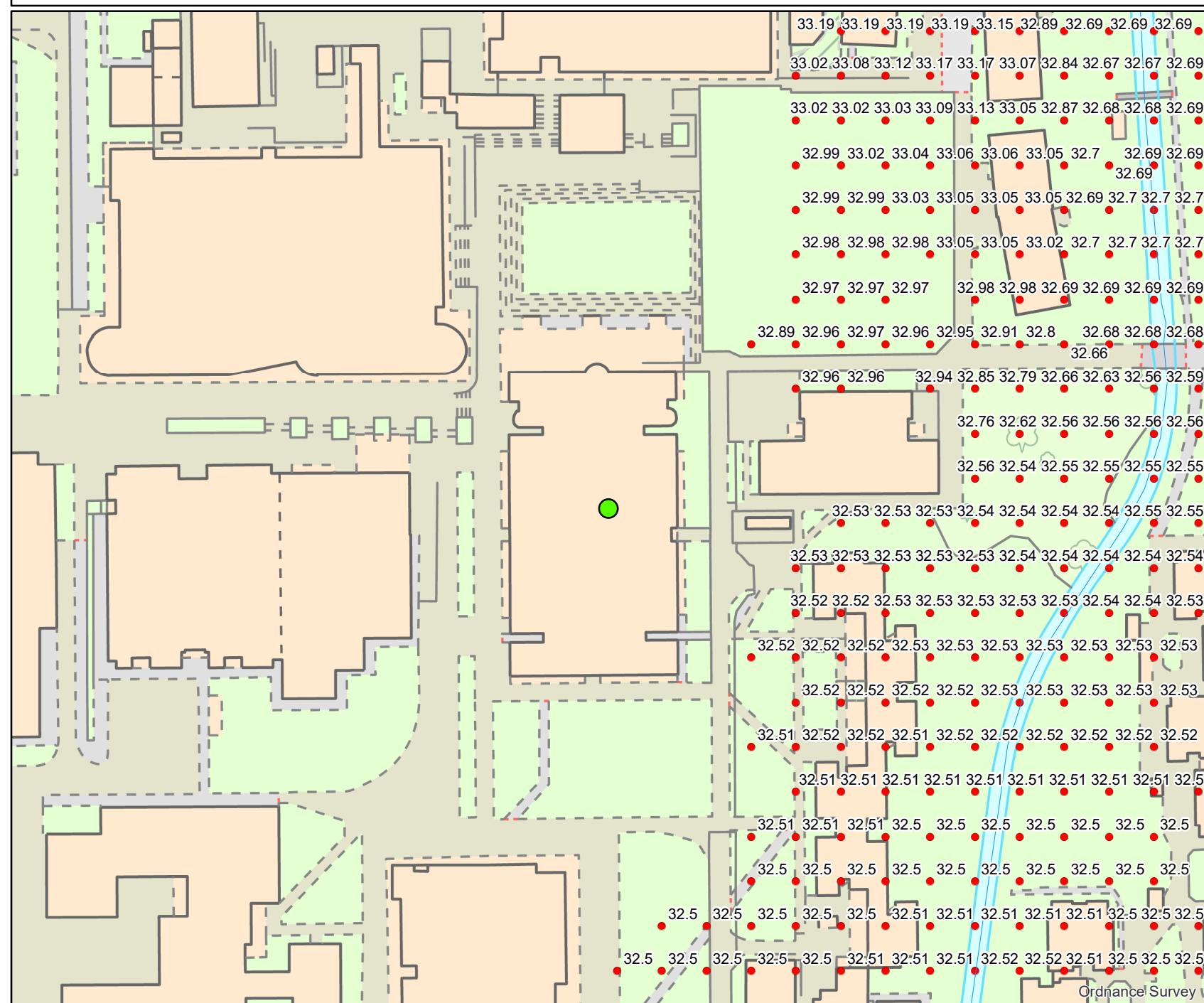
Environment Agency
Alchemy,
Bessemer Road,
Welwyn Garden City,
Hertfordshire,
AL7 1HE

0 15 30 60
Metres

Legend

Statutory Main Rivers

Site location


2D Node Results: Heights

- 1 in 250 year (0.4%) Defended

The data in this map has been extracted from the River Pinn Mapping Study (JBA, 2015). This model has been designed for catchment wide flood risk mapping. It should be noted that it was not created to produce flood levels for specific development sites within the catchment. Modelled outlines take into account catchment wide defences.

Flood risk data requests including an allowance for climate change will be based on the 1 in 100 flood plus 20% allowance for climate change, unless otherwise stated. You should refer to 'Flood risk assessments: climate change allowances' to check if this allowance is still appropriate for the type of development you are proposing and its location. You may need to undertake further assessment of future flood risk using different allowances to ensure your assessment of future flood risk is based on best available evidence. <https://www.gov.uk/guidance/flood-risk-assessments-climate-change-allowances>

Produced by:
Partnerships & Strategic Overview,
Hertfordshire & North London

69
●
2.7
●
2.7
●
Environment Agency
Alchemy,
Bessemer Road,
Welwyn Garden City
Hertfordshire,
AL7 1HE

A number line starting at 0 and ending at 60, with tick marks at 0, 15, 30, and 60. The word "Metres" is written below the line.

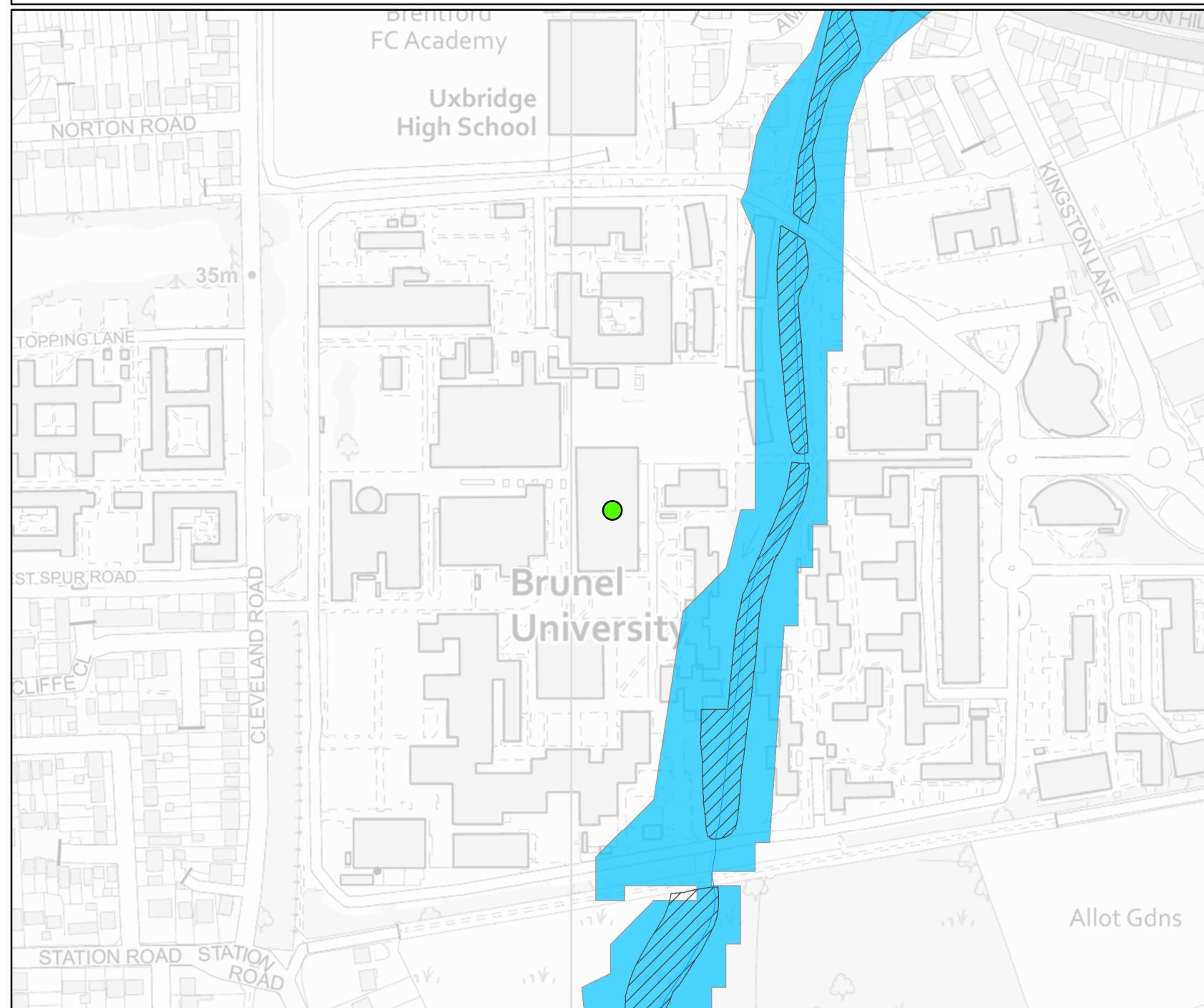
59 | Legend

- Statutory Main Rivers
- Site location

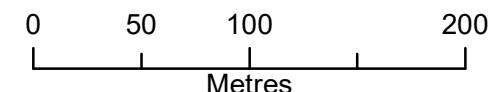
2D Node Results: Heights

- 1 in 1000 year (0.1%) Defended

The data in this map has been extracted from the River Pinn Mapping Study (JBA, 2015). This model has been designed for catchment wide flood risk mapping. It should be noted that it was not created to produce flood levels for specific development sites within the catchment. Modelled outlines take into account catchment wide


Modelled sentence takes into account statement that defences.

Flood risk data requests including an allowance for


climate change will be based on the 1 in 100 flood

plus 20% allowance for climate change, unless otherwise stated. You should refer to 'Flood risk assessments: climate change allowances' to check if this allowance is still appropriate for the type of development you are proposing and its location. You may need to undertake further assessment of future flood risk using different allowances to ensure your assessment of future flood risk is based on best available evidence.

<https://www.gov.uk/guidance/flood-risk-assessments-and-climate-change-allowances>

Environment Agency
Alchemy,
Bessemer Road,
Welwyn Garden City,
Hertfordshire,
AL7 1HE

Legend

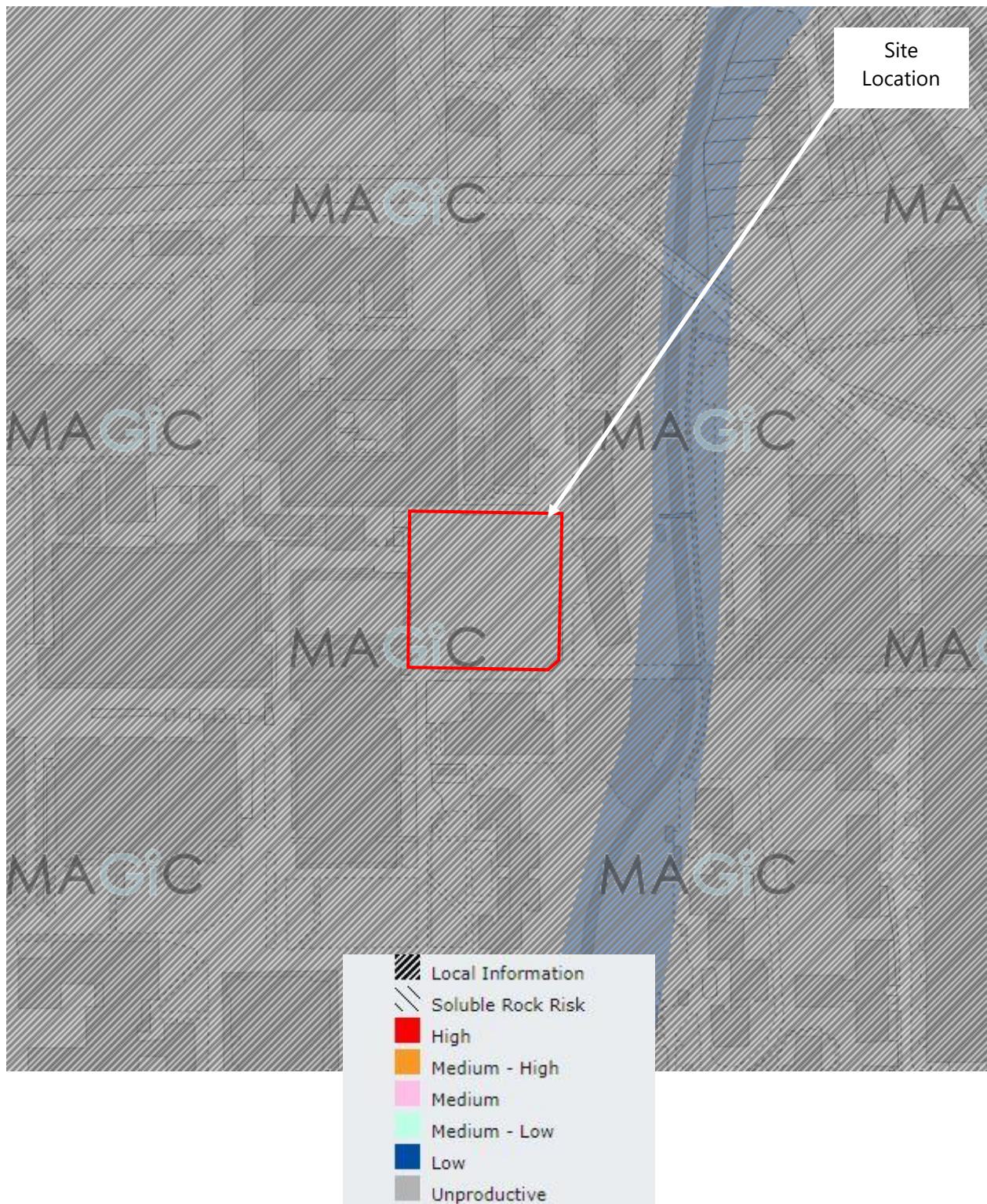
— Statutory Main Rivers

● Site location

Flood Event Outlines

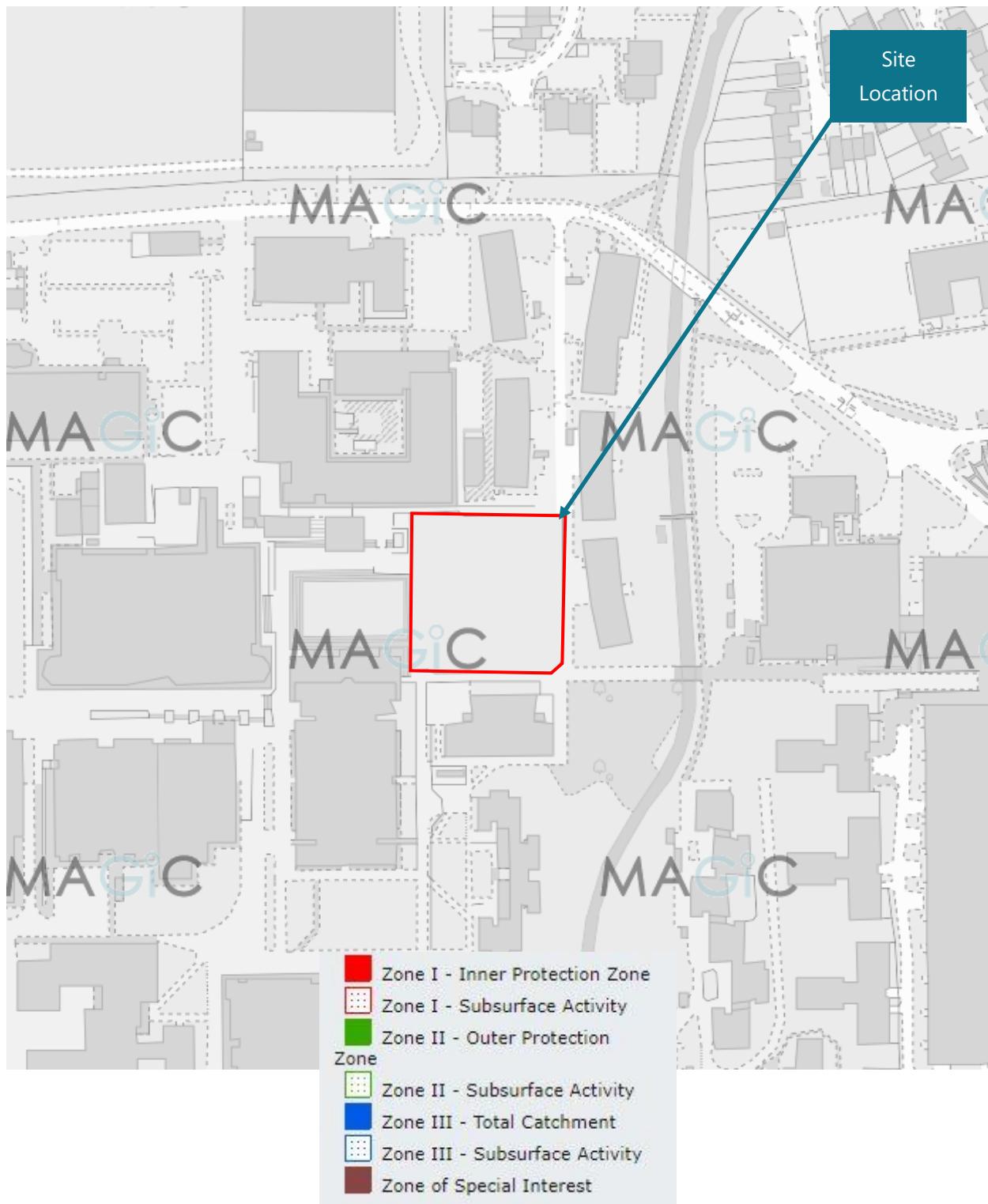
▨ 1977

■ 1988


The historic flood event outlines are based on a combination of anecdotal evidence, Environment Agency staff observations and survey.

Our historic flood event outlines do not provide a definitive record of flooding.

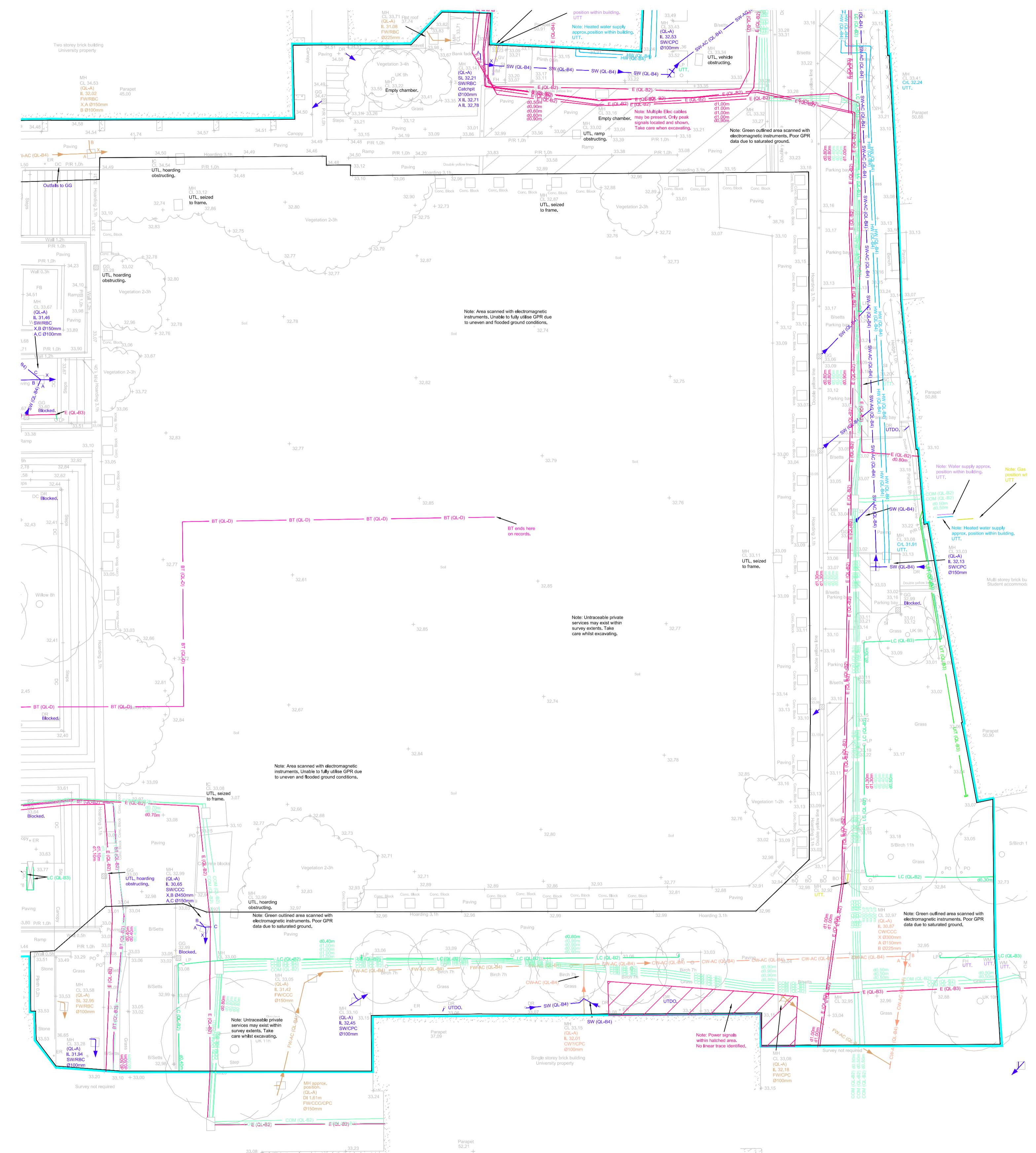
It is possible that there will be an absence of data in places where we have not been able to record the extent of flooding.


It is also possible for errors occur in the digitisation of historic records of flooding.

Produced by:
Partnerships & Strategic Overview,
Hertfordshire & North London

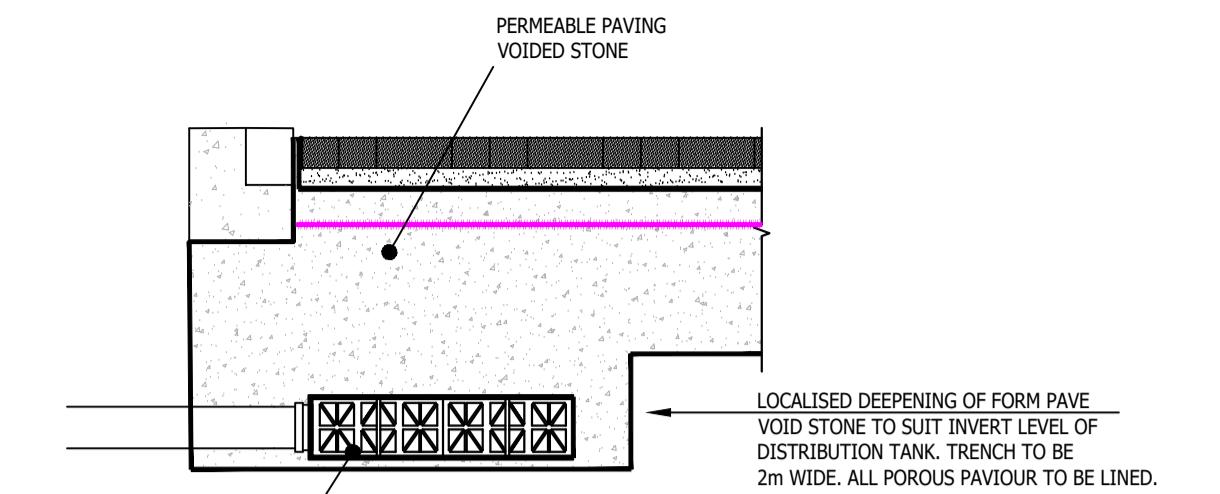
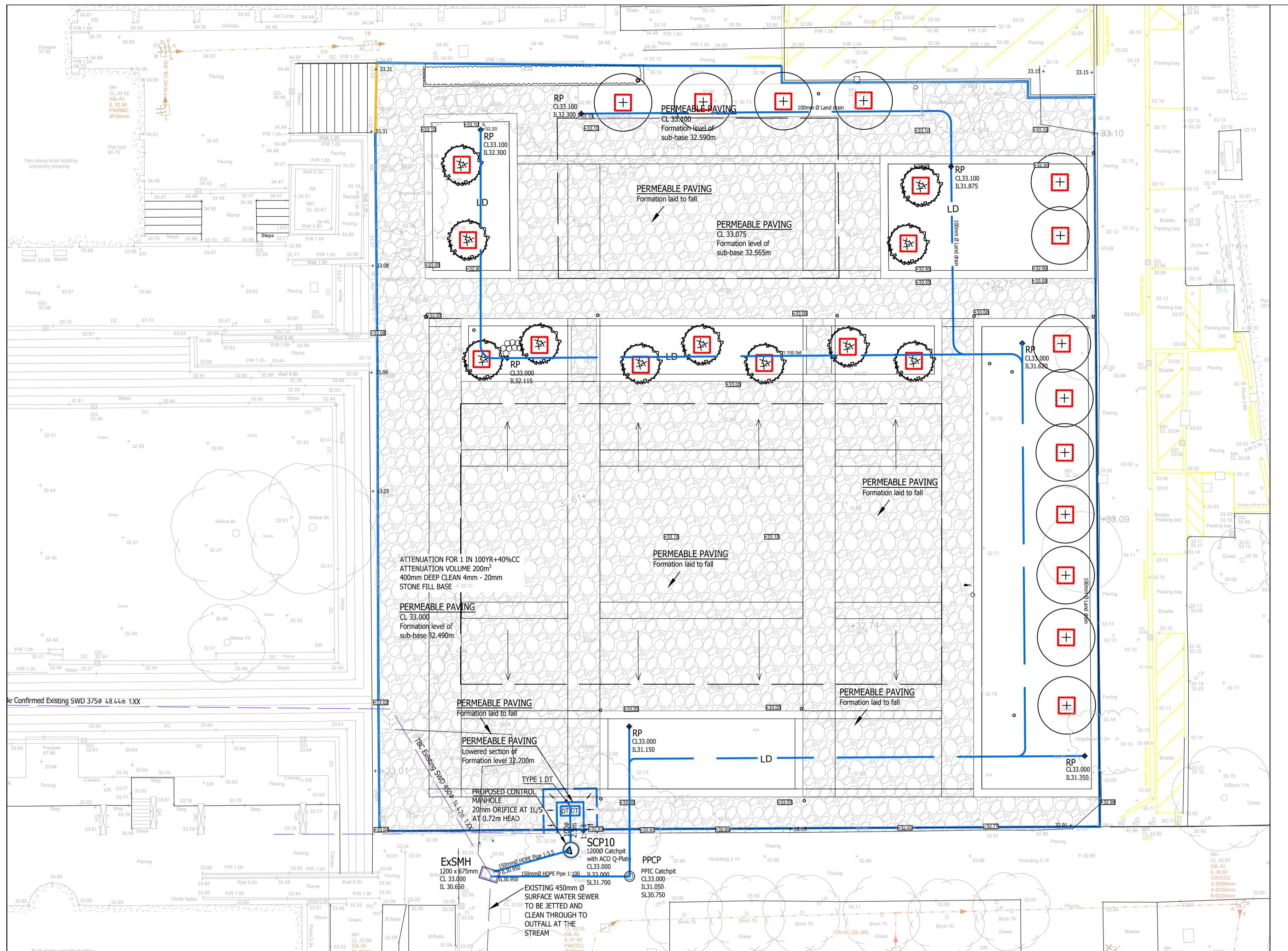
Environment Agency's Online Groundwater Vulnerability Zones Map

The site overlies an 'Unproductive' Aquifer

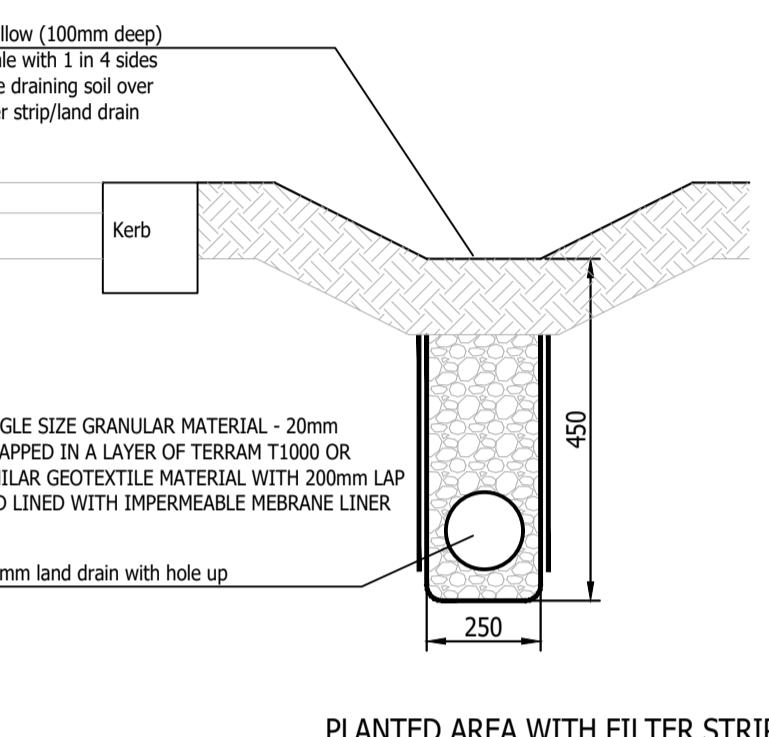


Environment Agency's Online Groundwater Source Protection Zones Map

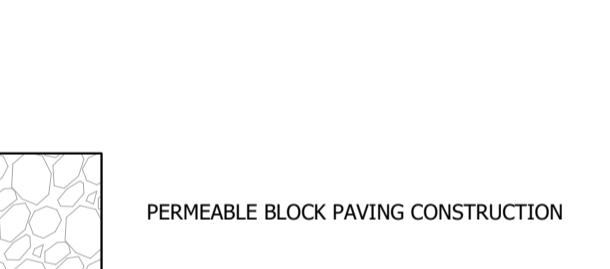
The site is removed from all Groundwater Source Protection Zones



Appendix C

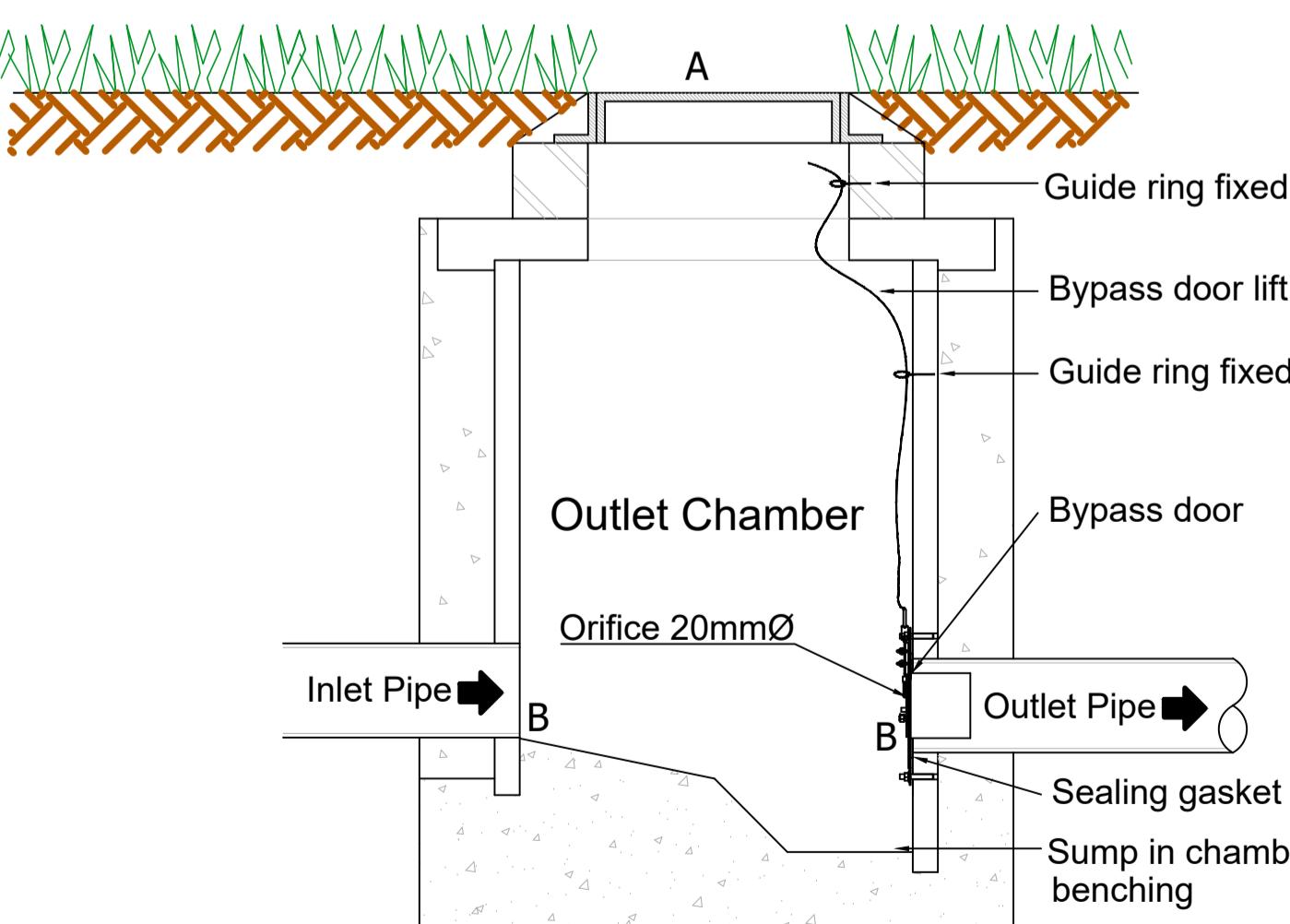
Topographic Survey



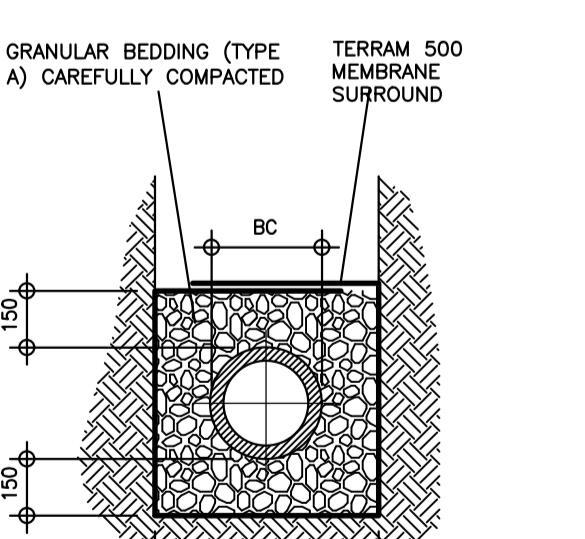
Appendix D


Drainage Strategy Layout & Micro Drainage Calculations

**TYPICAL POROUS INLET DETAIL
(MARKED DT ON LAYOUT)**

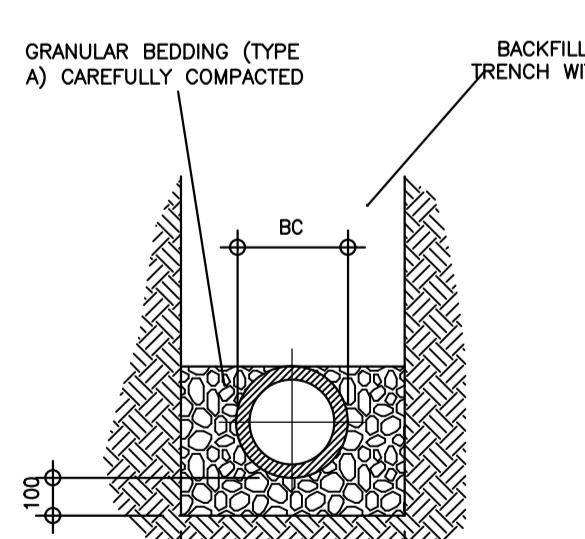


PLANTED AREA WITH FILTER STRIP & LAND DRAIN UNDER

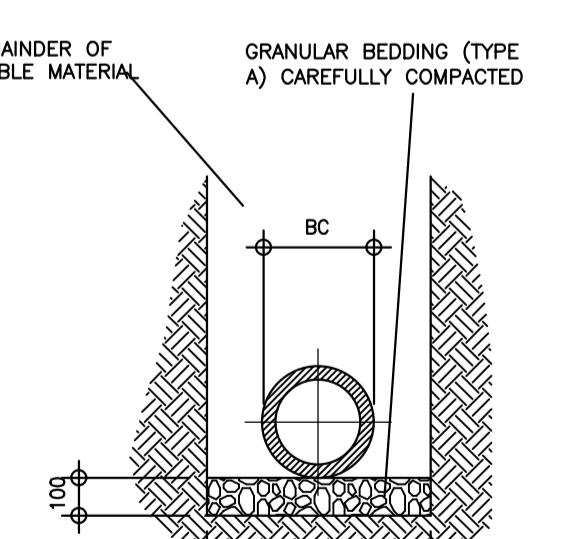


PERMEABLE BLOCK PAVING CONSTRUCTION

Note:
**THE FORMATION LEVELS
STATED ON THIS LAYOUT
DO NOT INCLUDE THE DEPTH
OF CAPPING REQUIRED.**



**1200mm CONTROL CHAMBER
WITH ACO Q-PLATE FLOW CONTROL**


GRANULAR SURROUND

TO BE USED WHERE PIPE PASSES WITHIN 3M OF NEW OR EXISTING TREES UNLESS PIPE REQUIRED CONCRETE SURROUND

GRANULAR SIDE FILL

TO BE USED WHERE COVER TO CROWN OF PIPE IS GREATER THAN 900mm UNDER ROADS, FOOTWAYS & HARDSTANDINGS

CONCRETE SURROUND

TO BE USED WHERE COVER TO CROWN OF PIPE IS LESS THAN 900mm UNDER ROADS, FOOTWAYS & HARDSTANDINGS AND LESS THAN 600mm IN LANDSCAPED AREAS

PIPE BEDDING DETAILS

GRANULAR BEDDING TYPE A - SHALL CONSIST OF AGGREGATES FROM NATURAL SOURCES OR SYNTHETIC FUELSH WHICH COMPLYING WITH THE RELEVANT PROVISIONS OF BS 882 AND BS 379 PART 2, RESPECTIVELY. THE SIZE OF THE AGGREGATES SHALL BE ACCORDING TO PIPE DIAMETER TO APPROVED DOCUMENT H OF THE BUILDING REGULATIONS - 5mm TO 10mm SIZE MATERIAL FOR 100mm PIPES, 14mm FOR 150mm PIPES & 20mm FOR PIPES 150-600mm.

GENERAL NOTES

1. The location, size, depth and identification of existing services that may be shown or referred to on this drawing have been assessed from non-intrusive observations, record drawings or the like. The contractor shall safely carry out intrusive investigations, trial holes or soundings prior to commencing work to satisfy himself that it is safe to proceed and that the assessments are accurate. Any discrepancies shall be notified to gta prior to works commencing.
2. Tender or bidding drawings shall not be used for construction or the ordering of materials.
3. Do not scale. All dimensions and levels to be site confirmed.
4. This drawing shall be read in conjunction with all relevant architects, consultants drawings and specifications, together with H&S plan requirements.
5. Copyright : This drawing must not be copied, amended or reproduced without the prior written agreement of gta.

6. All drawings specifications and recommendations made by gta are subject to Local Authority and other relevant Statutory Authorities approval. Any works or services made abortive due to the client proceeding prior to these approvals is considered wholly at the clients risk. gta hold no responsibility for resulting abortive works or costs.

SPECIFICATION NOTES

All drainage shall be constructed and commissioned in accordance with BS EN 295 & BS EN52, Building Regulations Doc. H and any particular requirement of the Building Control Officer.

Drainage pipelines shall be in PVC-u below ground as Marley or similar approved, or vitrified clay. All sewer pipelines to be VC only.

This drawing shall be read in conjunction with all other relevant drainage drawings, architectural drawings and structural drawings.

For manhole details, gully details, bedding etc, refer to gta detail sheets.

All foul water drains shall have a fall of 1:40 or steeper, unless noted otherwise.

All cement used for concrete drainage installations shall be sulphate resistant to class 3 of BRE Digest 363. (Grade ST5)

The use of short radius or 90° bends for changes in direction is not permitted, only long or medium radius 45° bends shall be used. All junctions shall be 45°.

All drains shall have granular bed and surround as class "S" bedding, unless noted otherwise.

All drainage works shall commence from the downstream end first unless agreed otherwise. Outfall level to be checked by contractor prior to any works commencing and any discrepancy identified to engineer prior to laying and drainage.

ABBREVIATIONS

FWD	FOUL DRAIN
SWD	SURFACE WATER DRAIN
MH	MANHOLE
IC	INSPECTION CHAMBER
FIC	450mm DIA. FOUL INSPECTION CHAMBER - D202.6
SIC	450mm DIA. SURFACE WATER INSPECTION CHAMBER - D202.6
SAC	300mm DIA. FOUL/LESS CHAMBER - D202.18
SWP	300mm DIA. SURFACE WATER ACCESS CHAMBER - D202.18
SPD	SOIL VENT PIPE DROP
SS	STUB STACK OR DIRECT DRAIN CONNECTION
FFL	FINISHED FLOOR LEVEL
SSL	STRUCTURAL SLAB LEVEL
CL	COVER LEVEL
IL	INVESTIGATED LEVEL
SL	SUMP LEVEL
BL	BASE LEVEL
CBS	CONCRETE BED & SURROUND
CLASS 5	GRANULAR BED & SURROUND
CLASS B	GRANULAR BED

KEY

Existing surface water drain
Private surface water drain
Private Surface Water Manhole

DISTRIBUTION TANKS			
Type	Size	Pipe connection dia.	Max. Drained Area m ²

1	708mm x 708mm x 150mm thick	100φ	100	3 l/s
---	-----------------------------	------	-----	-------

NOTES:
DT Type 1 specification reference - SEL: PVO005101. All other types are based on a multiplication of this size and need to be manufactured to order.

P2	DRAINAGE ADJUSTED TO SUIT REPLAN	20.02.23	GS	NS
P1	INITIAL ISSUE	30.12.22	GS	NS
Rev	Amendments	Date	Dsn	Chk
Status				
PRELIMINARY				
Client				
BRUNEL UNIVERSITY				
Architect				
Project				
LANDSCAPE REDEVELOPMENT OF THE CRANK BUILDING				
Title				
DRAINAGE STRATEGY LAYOUT				
Date	December 2022	Scale @ A1	1:200	
Clients Ref.	Project Ref.		12365	
gta Civils & Transport				
Maple House, 192-198 London Road, Burgess Hill, West Sussex, RH15 9RD Tel: 01444 871444 Web: www.gtacivils.co.uk				
Drawing Number	12365/1601	Rev.	P2	

GTA Civils Ltd		Page 1
Gloucester House		
66a Church Walk		
Burgess Hill, BN43 6LB		
Date 02-Mar-23 8:22	Designed by jpakenham	
File 12365 Porous Paving (1865m2).SRCX	Checked by	
XP Solutions	Source Control 2020.1	

ICP SUDS Mean Annual Flood

Input

Return Period (years) 1 SAAR (mm) 600 Urban 0.000
 Area (ha) 0.187 Soil 0.300 Region Number Region 6

Results 1/s

QBAR Rural 0.3
 QBAR Urban 0.3

Q1 year 0.2

Q1 year 0.2
 Q30 years 0.6
 Q100 years 0.9

GTA Civils Ltd		Page 1
Gloucester House	Brunel Uni	
66a Church Walk	Porous Paving calcs	
Burgess Hill, BN43 6LB	1 in 100yr+40%	
Date 20/02/2023	Designed by AE	
File 12365 Porous Paving	Checked by	
XP Solutions	Source Control 2020.1	

Summary of Results for 100 year Return Period (+40%)

Half Drain Time : 1384 minutes.

Storm Event	Max Level	Max Depth	Max Infiltration	Max Control	Max Σ Outflow	Max Volume	Status
	(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
15 min Summer	32.385	0.085		0.0	0.9	0.9	46.7 O K
30 min Summer	32.415	0.115		0.0	0.9	0.9	63.7 Flood Risk
60 min Summer	32.446	0.146		0.0	0.9	0.9	80.4 Flood Risk
120 min Summer	32.483	0.183		0.0	0.9	0.9	101.1 Flood Risk
180 min Summer	32.504	0.204		0.0	0.9	0.9	112.9 Flood Risk
240 min Summer	32.518	0.218		0.0	0.9	0.9	120.4 Flood Risk
360 min Summer	32.532	0.232		0.0	0.9	0.9	128.0 Flood Risk
480 min Summer	32.537	0.237		0.0	0.9	0.9	130.6 Flood Risk
600 min Summer	32.536	0.236		0.0	0.9	0.9	130.5 Flood Risk
720 min Summer	32.534	0.234		0.0	0.9	0.9	129.0 Flood Risk
960 min Summer	32.523	0.223		0.0	0.9	0.9	123.3 Flood Risk
1440 min Summer	32.501	0.201		0.0	0.9	0.9	110.7 Flood Risk
2160 min Summer	32.474	0.174		0.0	0.9	0.9	96.1 Flood Risk
2880 min Summer	32.454	0.154		0.0	0.9	0.9	85.1 Flood Risk
4320 min Summer	32.423	0.123		0.0	0.9	0.9	67.9 Flood Risk
5760 min Summer	32.398	0.098		0.0	0.9	0.9	54.2 O K
7200 min Summer	32.378	0.078		0.0	0.9	0.9	43.3 O K
8640 min Summer	32.362	0.062		0.0	0.9	0.9	34.4 O K
10080 min Summer	32.349	0.049		0.0	0.9	0.9	27.1 O K
15 min Winter	32.397	0.097		0.0	0.9	0.9	53.5 O K
30 min Winter	32.431	0.131		0.0	0.9	0.9	72.6 Flood Risk
60 min Winter	32.465	0.165		0.0	0.9	0.9	91.3 Flood Risk
120 min Winter	32.508	0.208		0.0	0.9	0.9	115.0 Flood Risk
180 min Winter	32.533	0.233		0.0	0.9	0.9	128.5 Flood Risk

Storm Event	Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
15 min Summer	161.536	0.0	47.1	19
30 min Summer	105.856	0.0	64.7	34
60 min Summer	65.788	0.0	82.5	64
120 min Summer	41.312	0.0	105.9	124
180 min Summer	31.050	0.0	120.5	184
240 min Summer	25.136	0.0	130.6	242
360 min Summer	18.374	0.0	143.8	362
480 min Summer	14.536	0.0	148.0	482
600 min Summer	12.048	0.0	147.5	602
720 min Summer	10.300	0.0	146.7	720
960 min Summer	7.996	0.0	144.9	960
1440 min Summer	5.560	0.0	140.7	1156
2160 min Summer	3.849	0.0	176.7	1516
2880 min Summer	2.968	0.0	179.3	1928
4320 min Summer	2.070	0.0	183.1	2724
5760 min Summer	1.614	0.0	185.9	3512
7200 min Summer	1.343	0.0	188.9	4256
8640 min Summer	1.162	0.0	192.1	5008
10080 min Summer	1.033	0.0	195.5	5744
15 min Winter	161.536	0.0	53.9	19
30 min Winter	105.856	0.0	73.5	33
60 min Winter	65.788	0.0	93.7	64
120 min Winter	41.312	0.0	119.8	122
180 min Winter	31.050	0.0	136.2	180

GTA Civils Ltd		Page 2
Gloucester House	Brunel Uni	
66a Church Walk	Porous Paving calcs	
Burgess Hill, BN43 6LB	1 in 100yr+40%	
Date 20/02/2023	Designed by AE	
File 12365 Porous Paving	Checked by	
XP Solutions	Source Control 2020.1	

Summary of Results for 100 year Return Period (+40%)

Storm Event	Max Level	Max Depth	Max Infiltration	Max Control	Max Σ	Max Outflow	Max Volume	Status
	(m)	(m)	(l/s)	(l/s)	(l/s)	(l/s)	(m³)	
240 min Winter	32.548	0.248		0.0	0.9	0.9	137.2	Flood Risk
360 min Winter	32.565	0.265		0.0	0.9	0.9	146.4	Flood Risk
480 min Winter	32.572	0.272		0.0	0.9	0.9	150.0	Flood Risk
600 min Winter	32.573	0.273		0.0	0.9	0.9	150.7	Flood Risk
720 min Winter	32.571	0.271		0.0	0.9	0.9	149.7	Flood Risk
960 min Winter	32.563	0.263		0.0	0.9	0.9	145.0	Flood Risk
1440 min Winter	32.538	0.238		0.0	0.9	0.9	131.4	Flood Risk
2160 min Winter	32.504	0.204		0.0	0.9	0.9	112.9	Flood Risk
2880 min Winter	32.478	0.178		0.0	0.9	0.9	98.1	Flood Risk
4320 min Winter	32.433	0.133		0.0	0.9	0.9	73.3	Flood Risk
5760 min Winter	32.396	0.096		0.0	0.9	0.9	53.3	O K
7200 min Winter	32.368	0.068		0.0	0.9	0.9	37.3	O K
8640 min Winter	32.345	0.045		0.0	0.8	0.8	24.6	O K
10080 min Winter	32.326	0.026		0.0	0.8	0.8	14.6	O K

Storm Event	Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
240 min Winter	25.136	0.0	147.5	240
360 min Winter	18.374	0.0	150.5	356
480 min Winter	14.536	0.0	150.3	472
600 min Winter	12.048	0.0	149.8	588
720 min Winter	10.300	0.0	149.2	702
960 min Winter	7.996	0.0	147.4	924
1440 min Winter	5.560	0.0	143.3	1340
2160 min Winter	3.849	0.0	199.9	1644
2880 min Winter	2.968	0.0	203.3	2100
4320 min Winter	2.070	0.0	208.2	2940
5760 min Winter	1.614	0.0	212.1	3752
7200 min Winter	1.343	0.0	216.5	4536
8640 min Winter	1.162	0.0	220.7	5192
10080 min Winter	1.033	0.0	225.3	5856

GTA Civils Ltd		Page 3
Gloucester House 66a Church Walk Burgess Hill, BN43 6LB	Brunel Uni Porous Paving calcs 1 in 100yr+40%	
Date 20/02/2023	Designed by AE	
File 12365 Porous Paving	Checked by	
XP Solutions	Source Control 2020.1	

Rainfall Details

Rainfall Model	FEH
Return Period (years)	100
FEH Rainfall Version	2013
Site Location GB 506953 187367 TQ 06953 87367	
Data Type	Point
Summer Storms	Yes
Winter Storms	Yes
Cv (Summer)	0.750
Cv (Winter)	0.840
Shortest Storm (mins)	15
Longest Storm (mins)	10080
Climate Change %	+40

Time Area Diagram

Total Area (ha) 0.187

Time (mins) Area
From: To: (ha)

0 4 0.187

GTA Civils Ltd		Page 4
Gloucester House 66a Church Walk Burgess Hill, BN43 6LB	Brunel Uni Porous Paving calcs 1 in 100yr+40%	
Date 20/02/2023 File 12365 Porous Paving	Designed by AE Checked by	
XP Solutions	Source Control 2020.1	

Model Details

Storage is Online Cover Level (m) 32.700

Porous Car Park Structure

Infiltation Coefficient Base (m/hr)	0.00000	Width (m)	40.0
Membrane Percolation (mm/hr)	1000	Length (m)	46.0
Max Percolation (l/s)	511.1	Slope (1:X)	0.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	32.300	Membrane Depth (m)	0

Orifice Outflow Control

Diameter (m) 0.020 Discharge Coefficient 0.600 Invert Level (m) 31.300

Annex

SuDS Drainage Management and Maintenance Plan

Ownership & Maintenance Responsibilities

This plan has been prepared for Brunel University in relation to this proposed development. No responsibility is accepted to any third party for all or part of this study in connection with this or any other development.

It is the responsibility of the site owner to ensure the Drainage Infrastructure in these areas is maintained in accordance with this Plan. The University's Estates Division will administer all related infrastructure.

Health and Safety

All those responsible for and involved in the maintenance of the site drainage systems should be safety-conscious and comply with the relevant health and safety legislation. This includes:

- The Health and Safety at Work etc Act 1974
- The Management of Health and Safety at Work Regulations 1999
- The Workplace (Health, Safety and Welfare) Regulations 1992

The Estates Division will be responsible for suitable risk assessment and management to ensure safe working conditions and practices, with as much work done during holiday periods as is practical.

Specialist contractors used should work to industry guidelines and be able to demonstrate safe working practices.

Employers have a duty to employees to inform them about the risks of their work environment and to decrease the risk as far as reasonably practicable. Appropriate personal protective equipment (PPE) should be provided and policies implemented based on risk assessment.

Operatives should be trained for working near water. Risks of contaminated water should be considered. Checking for open cuts and using nitrile gloves, waterproof plasters etc is advised.

Entry of pipes, chambers, tanks and culverts should be avoided wherever possible. Work should be carried out from the surface using appropriate equipment. In the event that entry cannot be avoided to perform a critical task, the required safety training, protection measures and precautions must be implemented prior to entry. Lone working should never be attempted.

For further information refer to Section 36 of The SuDS Manual (CIRIA C753).

Contamination or Dilution of Spillage

In the event of a spillage, it is the responsibility of the landowner to clear up any spillage before it enters the drainage system. The primary method of dealing with any spillage of hydrocarbons should be using sand to soak up the leak and prevent any hydrocarbons entering the drainage system. Once sand has been contaminated it should not be washed into the drainage system but disposed of by a Licensed Contractor.

Environment Agency – Emergency Contact Number

In the event of a spillage the Environment Agency should be contacted to notify the event and seek advice. The Environment Agency Incident Hotline is **0800 80 70 60** (Freephone 24hrs).

Schedule A – Sewers, Gullies and Manholes

Regular inspection and maintenance are required to ensure the effective long-term operation of private drains and manholes.

Post Completion: a CCTV survey to be carried out on all new and retained existing drainage systems and any downstream receiving systems.

The report will be used to prove the integrity of the as-built drainage system prior to issue of practical completion certificate and will be handed over to the Client & Management Company for future reference.

All drains and manholes are private and to be maintained by the Estates Division in shared areas. Operation and maintenance requirements for all sewers, manholes, gullies and channel drains are described in the following table:

Schedule	Action	Frequency
Regular Maintenance	<p>Inspect and identify any areas that are not operating correctly. If required, take remedial action</p> <p>Common yard & car park & other hard standing areas to be swept clear of debris, to prevent possibility of blockages to the receiving drainage systems</p> <p>Lift and inspect receiving manholes to check for any blockages</p>	<p>6 Monthly</p> <p>Monthly</p> <p>Monthly</p>
Remedial Actions	<p>Repair any damaged drains</p> <p>Replace / fix any loose manhole covers</p>	<p>As required</p> <p>As required</p>

Monitoring	Carry out full CCTV survey to confirm ongoing integrity of all drains. Inspect all silt pits during the survey	10-yearly intervals
------------	--	---------------------

Where appropriate refer also to specialist drainage manufacturer's information and maintenance requirements.

In all instances, inspection and cleaning should be carried out only by a specialist contractor and in accordance with the guidelines given in 'Safe Working in Sewers and at Sewage Works' published by National Joint Health and Safety Committee for the Water Services. Further information on safety is set out in Section 2.

Schedule B – Permeable Pavements

Inspection Frequency and Maintenance Requirements: as per table below:

Schedule	Action	Frequency
Regular Maintenance	Standard road sweeper	Annually after autumn leaf fall
Occasional Maintenance	Weed removal	Annually
Remedial Actions	Remediate adjacent landscaping to original levels	As required
	Paving repairs including replenishment of lost jointing material	As required
	Rehabilitation of surface and upper substructure by remedial sweeping	Every 10 to 15 years or as required if infiltration is reduced by clogging
Monitoring	Initial inspection	Monthly for first three months
	Inspection for evidence of poor operation and/or weed growth	Quarterly, 48 hrs after large storms in first six months
	Inspection for silt accumulation to establish sweeping frequencies	Annually
	Monitor inspection chambers	Annually

Civil Engineering - Transport Planning - Flood Risk

GTA Civils & Transport, Maple House, 192-198 London Road, Burgess Hill, West Sussex, RH15 9RD
T: 01444 871444 E: enquiries@gtacivils.co.uk www: gtacivils.co.uk

GTA Civils & Transport Limited, Registered in England No. 11917461. VAT Registration No. 319 2609 02

