

Technical Note

To:	Frank Cowell Project Manager JJ Rhatigan Limited Anna House 214-218 High Road Seven Sisters London N15 4NP	Date:	05 September 2025
Turnkey ref:		0112-TN003i7	
		Author:	Kene Onwubuya
		Reviewed:	Dave Rutherford

Title: CTC, Hayes – Blocks A, B, C, D, E and F Addendum Verification Report

1 Introduction

JJ Rhatigan instructed Turnkey Regeneration Limited (Turnkey) to prepare an addendum Verification Report at their CTC Hayes site. This report is 'Issue 7', following further import of topsoil to Blocks A & D and assessment of chemical data from imported topsoil used in Blocks A, B, C, D, E & F.

This addendum report is specific for Blocks A, B, C, D, E and F and provides an update to the site-wide Verification Report referenced below:

- Turnkey Verification Report (Final). Crown Trading Centre, Hayes. Ref: 0112-R002i3. Dated: March 2025

As part of the requirements set out in the Remediation Method Statement (RMS)¹, verification of the clean cover to be placed as part of soft landscaping is required, underlain by a marker layer when at ground level. Landscaping is subject to the ground level and also at podium level in planters – the layouts, also showing block areas, is presented in Appendix A for these levels.

For clarity, all works regarding contamination-related conditions are complete for these six blocks, i.e. the whole site.

1.1 Regulatory Context

The primary objective of this addendum Verification Report is to seek partial discharge of Planning Condition 36iii and iv (Ref: Hillingdon 73955/APP/2022/3516) for the CTC Hayes development as outlined below:

(iii) Upon completion of the approved remedial works, this condition will not be discharged until a comprehensive verification report has been submitted to and approved by the LPA. The report shall include the details of the final remediation works and their verification to show that the works for each phase have been carried out in full and in accordance with the approved methodology.

(iv) No contaminated soils or other materials shall be imported to the site. All imported soils for landscaping purposes shall be clean and free of contamination.

Before any part of the development is occupied, all imported soils shall be independently tested for chemical contamination, and the results of this testing shall be submitted and approved in writing by the

¹ Turnkey Remediation Statement (Final). Crown Trading Centre, Hayes. Ref: 0097-R002i3. Dated: May 2023

Local Planning Authority. All soils used for gardens and/or landscaping purposes shall be clean and free of contamination.

REASON

To ensure that risks from land contamination to the future users of the land and neighbouring land are minimised, together with those to controlled waters, property and ecological systems and the development can be carried out safely without unacceptable risks to workers, neighbours and other offsite receptors in accordance with 'Hillingdon Local Plan: Part 2 (January 2020) Policies – DME1 11: Protection of Ground Water Resources and DME1 12: Development of Land Affected by Contamination'

Planning Condition 36i was discharged in 2023 and it is understood that Turnkey's recent verification report discharged Planning Condition 36ii.

1.2 Objectives

The objectives of this addendum Verification Report are summarised below:

- Partial discharge of Planning Condition 36ii, iii & iv of planning permission 73955/APP/2022/3516 (wording updated via Non Material Amendment reference: 73955/APP/2025/604).
- ensure any identified potential pollutant linkages are broken or will be broken on completion of the works across sectional areas; and
- comply with all relevant planning conditions and ensure works are carried out in a suitable manner to discharge relevant planning conditions.

The report has been completed in accordance with Land Contamination: Risk Management (issued October 2020 and updated July 2023 and June 2025).

2 Topsoil and Soft Landscaping Verification

Topsoil to be utilised within Blocks B, C, E and F as a clean cover layer comprises is supplied from two sources:

- Boughton Loam Ltd. Telford Way. Kettering. Northamptonshire NN16 8UN
- Springfield Direct Ltd. Denham. Middlesex UB9 4DF

Supplier documentation is presented in Appendix A. JJ Rhatigan also supplied Turnkey with certification from the supplier confirming that the soils complied with the chemical thresholds set in the verification criteria and those set out in BS3882 Specification for Topsoil.

The imported topsoil is to be used within plant boxes and soft landscaping areas within Blocks A, B, C, D, E and F.

To refresh on the frequency of sampling, 1 sample per 100m³ for the first 500m³ and then every 500m³ for further import, should the source be consistent. The sources have proven to be consistent.

2.1 Verification Testing of Imported Soil

The following sections are reported in the chronological order that topsoil was imported.

2.1.1 Block F

Based on information provided by JJ Rhatigan, the volume of topsoil imported for use in Block F was 275m³. An initial 6 no. samples of the topsoil so far delivered to site were collected for testing (3 no. from each source, meaning there was flexibility on where each was used and represent adequate quota to also partially represent topsoil used in Block E). The contractor deemed these to be representative of the Block F topsoil, i.e. negating the need for further sampling/testing.

The samples were analysed for the suite of contaminants listed in the RMS including heavy metals, polycyclic aromatic hydrocarbons (PAHs), speciated total petroleum hydrocarbons (TPH), other organics and asbestos.

This is with the exception of 1 no. sample (TS3-03) where a marginal exceedance of vanadium (84mg/kg vs screening criteria of 82mg/kg) was recorded. This is not considered a significant issue (see Section 2.2 for further justification). Asbestos was not identified in any of the samples analysed.

The analytical data was screened against the RMS verification criteria for imported material with no exceedances identified in majority of the samples. This is with the exception of 2 no. samples (TS2-01 and TS2-03) from the same source where very marginal exceedances of boron (3.1mg/kg vs screening criteria of 3.0mg/kg) was recorded. This is not considered to be a significant issue (see Section 2.2 for further justification). Asbestos was not identified in any of the samples analysed.

The verification screening exercise is reported in Appendix B with the laboratory certificates of analysis provided in Appendix C.

2.1.2 Block E

The maximum volume of topsoil imported for use in Block E is ~380m³, as confirmed by JJ Rhatigan. To build on what was sampled to represent Block F, a further 3 no. samples of the material were collected that the contractor deemed to be representative of the Block E topsoil material, thus negating the requirement for further sampling/testing. In addition, some imported sand was utilised in planters at podium level and therefore 1 no. representative sample (sample ref. SS01-01) of this material was collected for record purposes².

A very small section of topsoiling was completed with Blocks A and D.

The samples were analysed for the suite of contaminants listed in the RMS including heavy metals, PAHs, speciated TPH, other organics and asbestos.

The analytical data was screened against the RMS verification criteria for imported material with no exceedances identified in majority of the samples.

The verification screening exercise is reported in Appendix B with the laboratory certificates of analysis provided in Appendix C.

2.1.3 Block C

The maximum volume of topsoil imported for use in Block C is ~640m³, as confirmed by JJ Rhatigan. The topsoil areas are shown in a drawing presented in Appendix A. To build on what was sampled to represent Blocks E and F, a further 4 no. samples of the material were collected that the contractor deemed to be representative of the Block C topsoil material, thus negating the requirement for further sampling/testing.

The samples were analysed for the suite of contaminants listed in the RMS including heavy metals, PAHs, speciated TPH, other organics and asbestos.

The analytical data was screened against the RMS verification criteria for imported material with no exceedances identified in majority of the samples. This is with the exception of 2 no. samples (TS1-04 and TS1-07) from the same source where very marginal exceedances of boron (3.2mg/kg and 3.4mg/kg vs screening criteria of 3.0mg/kg) was recorded. This is not considered to be a significant issue (see Section 2.2 for further justification). Asbestos was not identified in any of the samples analysed.

The verification screening exercise is reported in Appendix B with the laboratory certificates of analysis provided in Appendix C.

2.1.4 Block B

The maximum volume of topsoil imported for use in Block B is ~310m³, as confirmed by JJ Rhatigan. The topsoil areas are shown in a drawing presented in Appendix A. To build on what was sampled to represent Block B, a further 1 no. sample of the material was required. However, 4 no. samples were collected to enable representation of topsoil in Blocks A and D as well (which will be reported in a further update to this

² This material does not constitute part of the required thickness of topsoil in locations where it was used.

addendum report). These soils that were collected were deemed to be representative of the blocks' topsoil material, thus negating the requirement for further sampling/testing.

The samples were analysed for the suite of contaminants listed in the RMS including heavy metals, PAHs, speciated TPH, other organics and asbestos.

The analytical data was screened against the RMS verification criteria for imported material with no exceedances identified in majority of the samples. This is with the exception of 1 no. sample (TS1-08) where an exceedance of vanadium (98mg/kg vs screening criteria of 82mg/kg) was recorded. This is not considered a significant issue (see Section 2.2 for further justification). Asbestos was not identified in any of the samples analysed.

The verification screening exercise is reported in Appendix B with the laboratory certificates of analysis provided in Appendix C.

2.1.5 Blocks A and D

The maximum volume of topsoil imported for use in Block A and D was ~950m³ and ~210m³, respectively, as confirmed by JJ Rhatigan. The topsoil areas are shown in a drawing presented in Appendix A. To build on what was sampled to represent Blocks A and D, a further 3 no. samples of the material was required. However, 4 no. samples were collected to enable representation of topsoil in Block B as well (which was reported in Issue 6 of this addendum report). These soils that were collected were deemed to be representative of the blocks' topsoil material, thus negating the requirement for further sampling/testing.

The samples were analysed for the suite of contaminants listed in the RMS including heavy metals, PAHs, speciated TPH, other organics and asbestos.

The analytical data was screened against the RMS verification criteria for imported material with no exceedances identified in majority of the samples. As noted in Section 2.1.4, this is with the exception of 1 no. sample (TS1-08) where an exceedance of vanadium (98mg/kg vs screening criteria of 82mg/kg) was recorded. This is not considered a significant issue (see Section 2.2 for further justification). Asbestos was not identified in any of the samples analysed.

The verification screening exercise is reported in Appendix B with the laboratory certificates of analysis provided in Appendix C.

2.2 Justification for use of topsoil with marginal boron and vanadium exceedances

Following the marginal exceedances recorded for boron and vanadium (as indicated in Section 2.1), it is imperative to provide justification to show that these exceedances are not detrimental to human health – these points are outlined below.

2.2.1 Statistical analysis

It is possible to undertake statistical analysis under planning using the UCL95 approach in line with the CL:AIRE Statistical Guidance³, which is a conservative approach (e.g. when compared to Part 2A, which uses LCL95). This assessment was undertaken for the two contaminants (boron and vanadium), which recorded exceedances of the RMS verification criteria for imported material. The outputs from the calculations are outlined below:

- Boron – UCL95 = 2.61mg/kg versus screening criteria of 3.0mg/kg
- Vanadium – UCL95 = 55.27mg/kg versus screening criteria of 82mg/kg

From the above, the UCL95 values are below the RMS verification criteria. This means that the topsoil is suitable for its intended use without further action.

³ CL:AIRE (2008); Guidance on Comparing Soil Contamination Data with a Critical Concentration

Additional information on the assessment is presented in Appendix B.

2.2.2 Derivation of cover layer and import verification criteria

Under typical circumstances, in order to identify potential contaminants of concern (CoC), soil analytical data is screened against Land Quality Management Suitable 4 Use Levels (S4UL)^{4,5} generic assessment criteria (GAC) for public open space – residential⁶ (POSresi) and residential - with homegrown produce (Resi hgp)⁷ end use.

However, in order to be conservative and reduce the potential for increasing the contaminant load on the site (via importation of material with high concentrations), some of the RMS verification criteria were derived using historic concentrations recorded at the site, i.e. lower than the S4UL GAC. This rationale is presented in Appendix C2 of the Remediation Statement. The criteria for boron and vanadium were based on “twice site-wide average” of concentrations recorded on the site.

For completeness, the topsoil concentrations have now also been screened against the S4UL GACs for both POSresi and Resihgp, with no exceedances recorded (including for the two compounds under consideration).

In addition, the mean concentrations for each compound were also calculated with the resulting concentrations below all the screening criteria, including the RMS verification criteria and the S4UL for POSresi and Resihgp.

A breakdown of the comparison for boron and vanadium is outlined in Table 2.1 below with the full screening spreadsheet provided in Appendix B.

Table 2.1: Boron and vanadium comparison against various screening criteria

Contaminant	Recorded Concentration (mg/kg)	UCL (mg/kg)	Mean Concentration (mg/kg)	Site Derived GAC (mg/kg)	S4UL GAC (POSresi) ⁸ mg/kg	S4UL GAC (Reshgp) ⁸ mg/kg
Boron	3.1	2.61	2.36	3.0	290	21,000
Vanadium	84	55.27	42.94	82	410	2000

Based on the above evidence, we can conclude that the topsoil utilised in the development is suitable for intended use with no detriment to human health.

2.3 Verification of Thickness of Clean Cover

There is a requirement to confirm that 600mm thickness of clean cover (i.e. imported topsoil) was installed within soft landscaping areas in Blocks A, B, C, D, E and F, as indicated in the RMS. Where laid on site won soils, a marker layer (e.g. terram) should be laid prior to topsoil being laid.

⁴ LQM/CIEH S4ULs (2015) for Human Health Risk Assessment (Copyright Land Quality Management Limited reproduced with permission); publication number S4UL3759.

⁵ Category 4 Screening Levels (C4SL) will sometimes be considered in screening contaminant concentrations but there are no C4SL values for a number of contaminants (including boron and vanadium) and therefore S4UL is generally utilised.

⁶ This is the end use of the development based on conceptual site model submitted for Planning

⁷ This is considered the most conservative S4UL GAC

⁸ The screening criteria was developed with the following assumptions which have been changed from the CLEA default parameter set. Soil type is a sandy loam with an organic matter content of 1%. This is considered to be more conservative than the CLEA default of 6%.

The contractor has verified that the recommended 600mm thick topsoil was placed across the soft landscaping areas. Example photos are presented in Appendix D. The only exception to this is within the footprint of installed below ground utilities where a reduced thickness of topsoil has been installed (typically 300-450mm).

Site photographs showing the topsoil and marker layer placement is presented in Appendix D.

2.4 River Wall

The river wall schematic is presented in Appendix A. For completeness, it can be confirmed that the structural activity and the backfilling of site won soils has been undertaken (*these soils have already been confirmed as suitable for use as part of the main verification report – these soils results are presented in Appendix C for interest and ease*).

Site progress photos are presented in Appendix D. The hardstanding is to be installed, however the soils are suitable for use without this, thus the photos of the finished hardstanding is not considered essential to include within this report.

2.5 Closing Remark

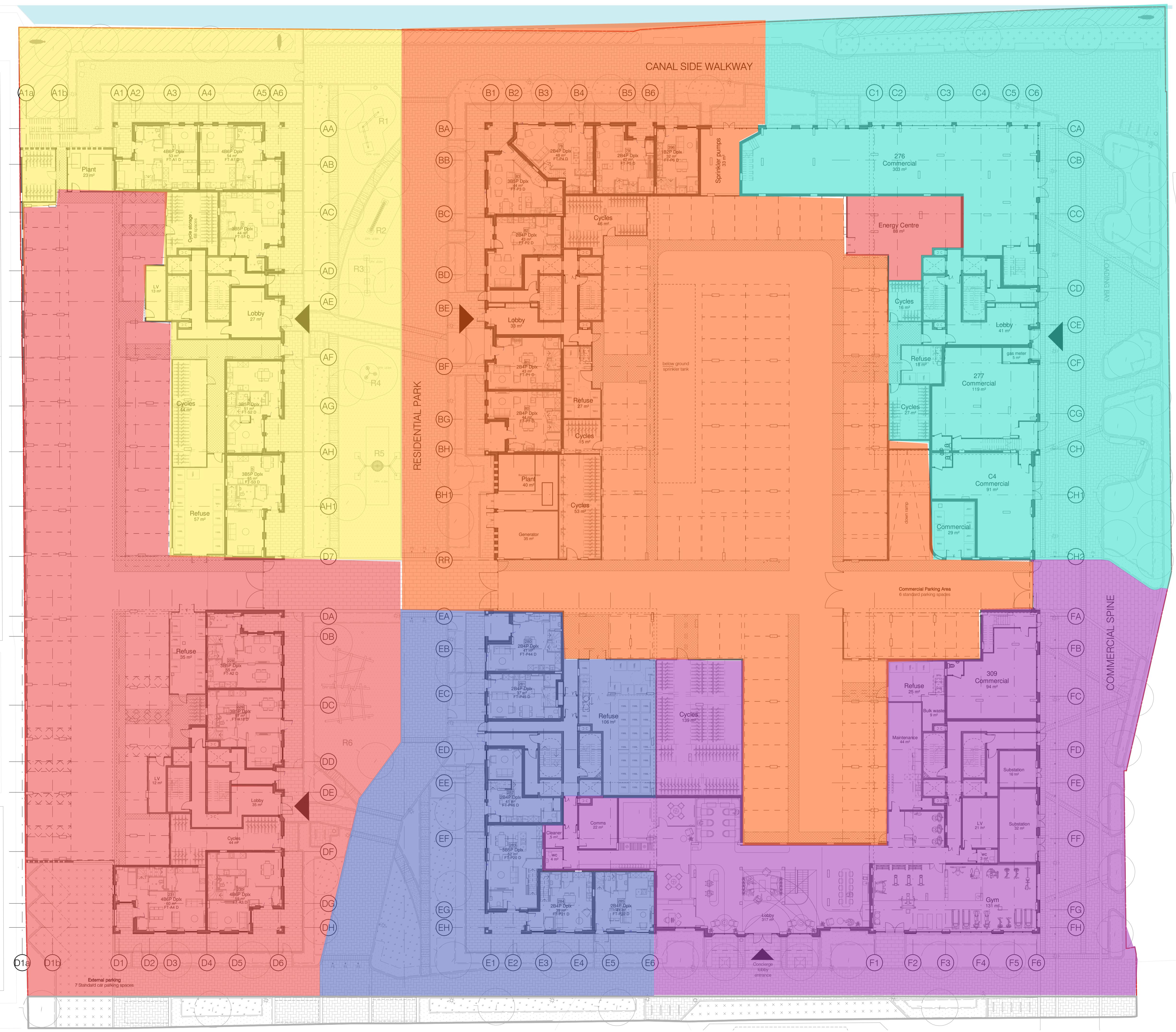
This update of the addendum report marks the last in the series, as all topsoiling has been completed in line with the RMS. There are no further open matters related to contamination/remediation. This report, therefore, is the final piece to confirm that the site is suitable for use and should enable the discharge of any outstanding planning conditions.

Author:	
Kene Onwubuya	
Reviewer:	
Dave Rutherford	

Copyright and Non-Disclosure Notice

The contents and layout of this report are subject to copyright owned by Turnkey Regeneration (©Turnkey Regeneration Ltd 2025) save to the extent that copyright has been legally assigned by us to another party or is used by Turnkey Regeneration under licence. To the extent that we own the copyright in this report, it may not be copied or used without our prior written agreement for any purpose other than the purpose indicated in this report.

The methodology (if any) contained in this report is provided to you in confidence and must not be disclosed or copied to third parties without the prior written agreement of Turnkey Regeneration. Disclosure of that information may constitute an actionable breach of confidence or may otherwise prejudice our commercial interests. Any third party who obtains access to this report by any means will, in any event, be subject to the Third Party Disclaimer set out below.



Third-Party Disclaimer

Any disclosure of this report to a third-party is subject to this disclaimer. The report was prepared by Turnkey Regeneration at the instruction of, and for use by, our client named on the front of the report. It does not in any way constitute advice to any third-party who is able to access it by any means. Turnkey Regeneration excludes to the fullest extent lawfully permitted all liability whatsoever for any loss or damage howsoever arising from reliance on the contents of this report. We do not however exclude our liability (if any) for personal injury or death resulting from our negligence, for fraud or any other matter in relation to which we cannot legally exclude liability.

Appendix A – Supporting Documentation

P01 09.09.22 Stage 3B Issue - Scheme adjusted to 2 stairs per core

Rev Date Description

FRA
FRANK REYNOLDS ARCHITECTS
Hoxton, London N1 7LB
T: +44 (0)20 7812 8454

CLIENT Greystar

PROJECT CTC - Stage 3B (SEP 2022)

DRAWING NAME Stage 3B - Ground Floor - GA Plan

STATUS TENDER DATE MAY 2022

DRAWN BY JM CHECK BY AD SCALE 1:200 SIZE A1

JOB NO. 1140 DRAWING NO. 010101 REVISION P01

1140CTC-FRA-ZZ-00-DR-A-010101

GENERAL NOTES
 1. DO NOT SCALE FROM THIS DRAWING
 2. ALL DIMENSIONS TO BE CHECKED ON SITE
 3. THIS DRAWING IS THE PROPERTY OF THE ARCHITECT / CONTRACT ADMINISTRATOR

Scale 1:200
 0 4 8 12 24 36ft
 0 12m

Key

- Section 1 - Block F Show Flats
- Section 2 - Block F
- Section 3 - Block E
- Section 4 - Block C
- Section 5 - Block A Show Flats
- Section 6 - Block B
- Section 7 - Block A
- Section 8 - Block D & Energy Centre

P01 09.09.2022 Stage 3B Issue - Scheme adjusted to 2 stairs per core

Rev Date Description

FRA
Frank Reynolds Architects
Hoxton, London N1 7LB
T: +44 (0)20 7812 8454

CLIENT

Greystar

PROJECT

CTC - Stage 3B (2022)

DRAWING NAME

Stage 3B - First Floor

STATUS

TENDER

DATE

MAY 2022

DRAWN BY

JM

CHECK BY

AD

SCALE

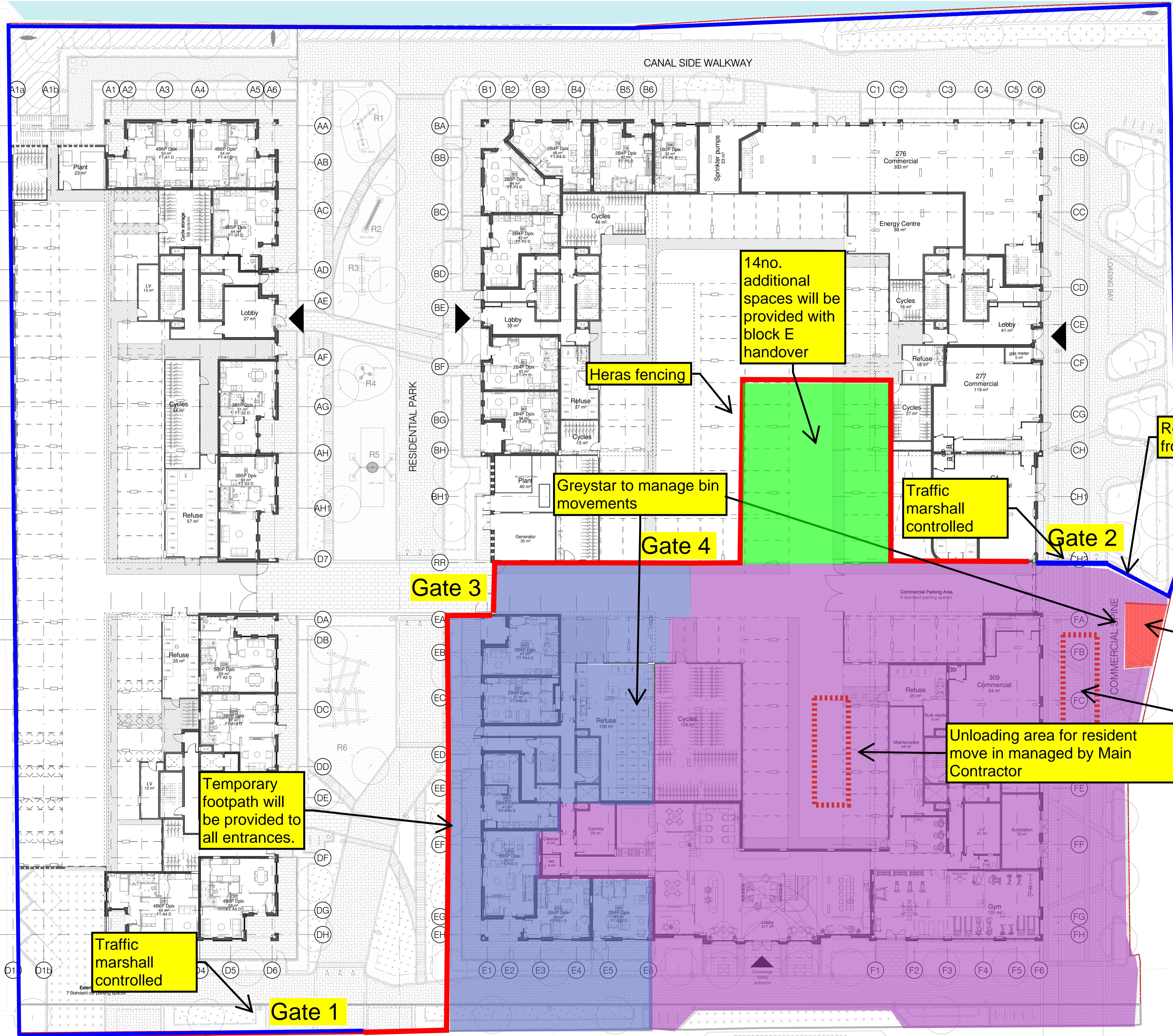
1:200

SIZE

A1

JOB NO.

1140


DRAWING NO.

010103

REVISION

P01

1140CTC-FRA-ZZ-01-DR-A-010103

1. DO NOT SCALE FROM THIS DRAWING
2. ALL DIMENSIONS TO BE CHECKED ON SITE
3. NOT TO SCALE. DRAWINGS ARE NOT TO SCALE
NOTES AND DIMENSIONS ARE REFERRED TO THE ARCHITECT / CONTRACT ADMINISTRATOR

P01 09.09.22 Stage 3B Issue - Scheme adjusted to 2 stairs per core

Rev Date Description

FRA
FRANK REYNOLDS ARCHITECTS
Hoxton, London N1 7LB
T: +44 (0)20 7812 8454

CLIENT

PROJECT

DRAWING NAME

STATUS

TENDER

DATE

MAY 2022

DRAWN BY JM CHECK BY AD SCALE 1:200 SIZE A1

JOB NO. 1140 DRAWING NO. 010101 REVISION P01

1140CTC-FRA-ZZ-00-DR-A-010101

GENERAL NOTES

1. DO NOT SCALE FROM THIS DRAWING
2. ALL DIMENSIONS TO BE CHECKED ON SITE
3. THIS DRAWING IS THE PROPERTY OF THE ARCHITECT / CONTRACT ADMINISTRATOR

Scale 1:200

0 4 8 12m
0 12 24 36ft

Key

- Section 1 - Block F Show Flats
- Section 2 - Block F
- Section 3 - Block E
- Section 4 - Block C
- Section 5 - Block A Show Flats
- Section 6 - Block B
- Section 7 - Block A
- Section 8 - Block D & Energy Centre

P01 09.09.2022 Stage 3B Issue - Scheme adjusted to 2 stairs per core

Rev Date Description

FRANK
REYNOLDS
ARCHITECTS

Hoxton, London N1 7LB

T: +44 (0)20 7812 8454

CLIENT

Greystar

PROJECT

CTC - Stage 3B (2022)

DRAWING NAME

Stage 3B - Mezzanine Floor

STATUS TENDER DATE MAY 2022

DRAWN BY JM CHECK BY AD SCALE 1:200 SIZE A1

JOB NO. 1140 DRAWING NO. 010102 REVISION P01

1140CTC-FRA-ZZ-01-DR-A-010102

GENERAL NOTES

- DO NOT SCALE FROM THIS DRAWING
- ALL DIMENSIONS TO BE CHECKED ON SITE
- FOR FURTHER INFORMATION OR BIDDING ENQUIRIES REFER TO THE ARCHITECT / CONTRACT ADMINISTRATOR

Scale 1:200
0 4 8 12m
0 12 24 36ft

P01 09.09.22 Stage 3B Issue - Scheme adjusted to 2 stairs per core

Rev Date Description

FRANK
REYNOLDS
ARCHITECTS
Hoxton, London N1 7LB
T: +44 (0)20 7812 8454

CLIENT

PROJECT

DRAWING NAME

DATE

STATUS

TENDER

DATE

DRAWN BY

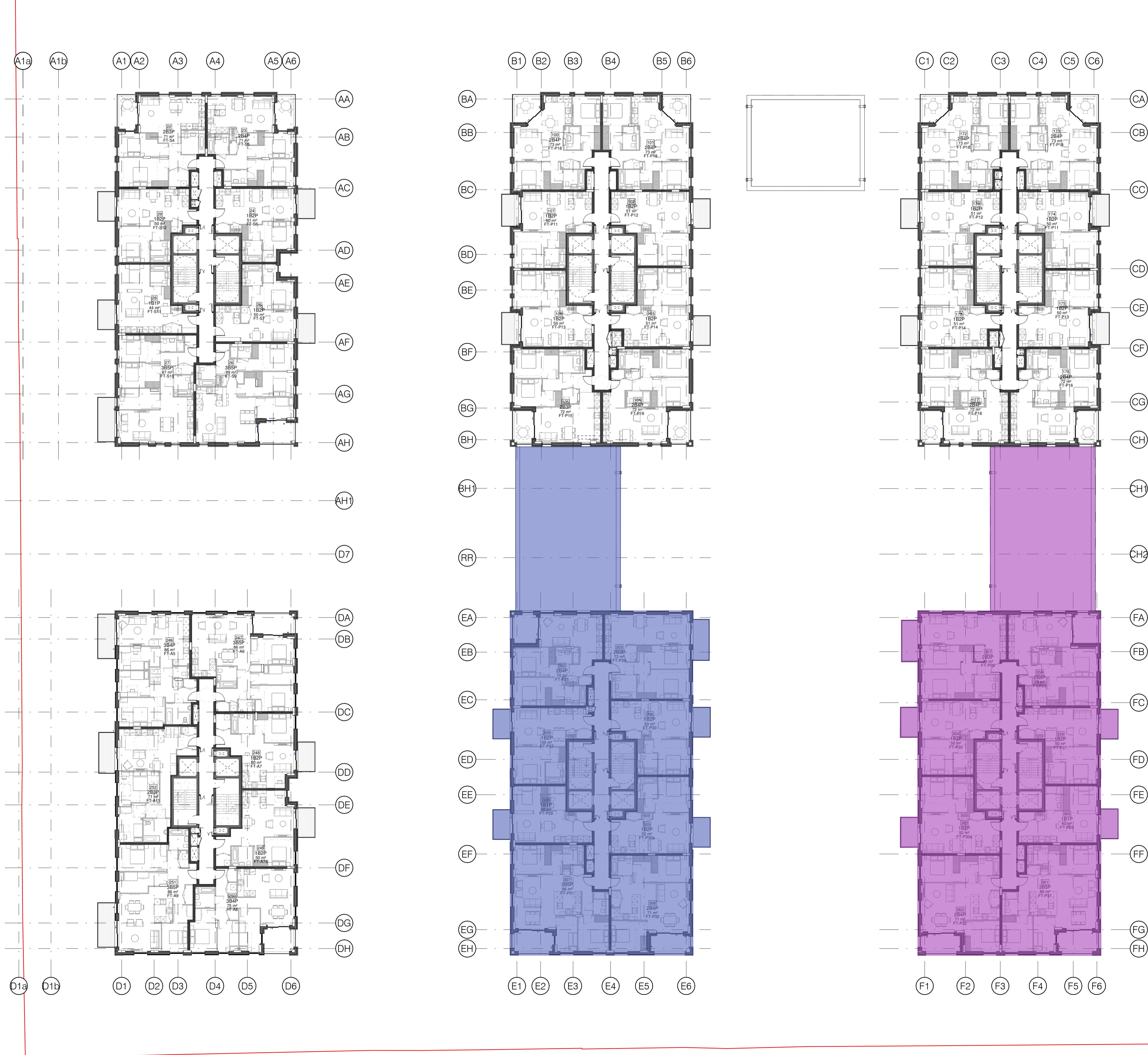
CHECK BY

SCALE

SIZE

JM AD 1:200 A1

JOB NO.


DRAWING NO.

REVISION

1140 010103 P01

1140CTC-FRA-ZZ-01-DR-A-010103

GENERAL NOTES
 1. DO NOT SCALE FROM THIS DRAWING
 2. ALL DIMENSIONS TO BE CHECKED ON SITE
 3. ALL DIMENSIONS ARE IN METRES
 4. THIS DRAWING IS THE PROPERTY OF THE
 ARCHITECT / CONTRACT ADMINISTRATOR

Scale 1:200
 0 4 8 12m
 0 12 24 36ft

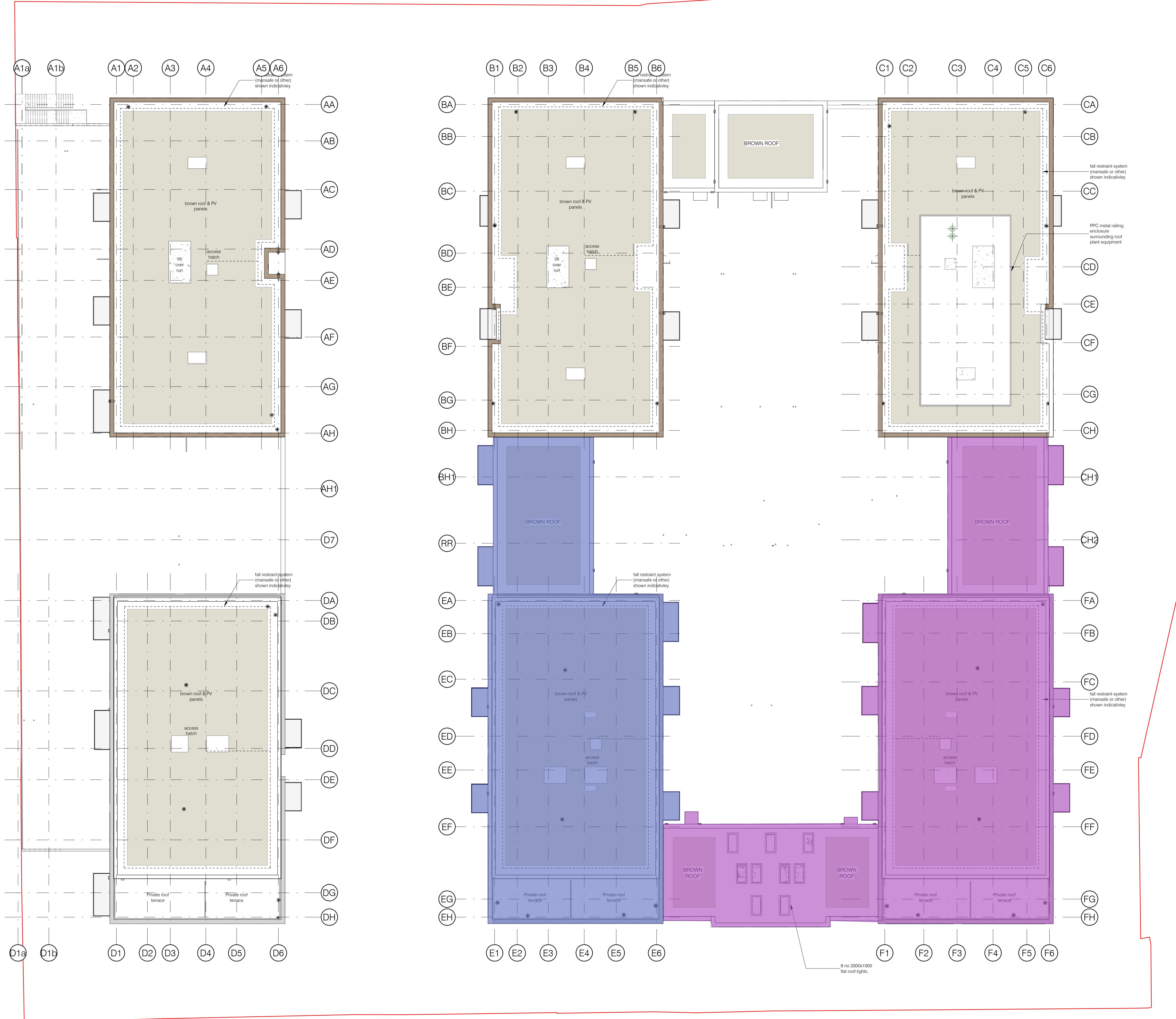
Key

- Section 1 - Block F Show Flats
- Section 2 - Block F
- Section 3 - Block E
- Section 4 - Block C
- Section 5 - Block A Show Flats
- Section 6 - Block B
- Section 7 - Block A
- Section 8 - Block D & Energy Centre

P01 09.09.2022 Stage 3B Issue - Scheme adjusted to 2 stairs per core

Rev Date Description

FRANK
REYNOLDS
ARCHITECTS


Hoxton, London N1 7LB

T: +44 (0)20 7812 8454

CLIENT
Greystar
PROJECT
CTC - Stage 3B (2022)
DRAWING NAME
Stage 3B - Third Floor

STATUS TENDER DATE MAY 2022
 DRAWN BY JM CHECK BY AD SCALE 1:200 SIZE A1
 JOB NO. 1140 DRAWING NO. 010105 REVISION P01

1140CTC-FRA-ZZ-03-DR-A-010105

GENERAL NOTES
 1. DO NOT SCALE FROM THIS DRAWING
 2. ALL DIMENSIONS TO BE CHECKED ON SITE
 3. THIS DRAWING IS THE PROPERTY OF THE ARCHITECT / CONTRACT ADMINISTRATOR

Scale 1:200
 0 4 8 12m
 0 12 24 36ft

P01 09.09.2022 Stage 3B Issue - Scheme adjusted to 2 stairs per core

Rev Date Description

FRA
Hoxton, London N1 7LB
T: +44 (0)20 7812 8454

FRANK REYNOLDS ARCHITECTS

CLIENT

Greystar

PROJECT

CTC - Stage 3B (2022)

DRAWING NAME

Stage 3B - Roof Plan

STATUS

TENDER

DATE

MAY 2022

DRAWN BY

JM

CHECK BY

AD

SCALE

1:200

SIZE

A1

JOB NO.

1140

DRAWING NO.

010112

REVISION

P01

1140CTC-FRA-ZZ-RF-DR-A-010112

Amended Report

Report No.:	25-02435-2		
Initial Date of Issue:	10-Feb-2025	Date of Re-Issue:	10-Feb-2025
Re-Issue Details:	This report has been revised and directly supersedes 25-02435-1 in its entirety		
Client	Springbridge Direct Ltd		
Client Address:	Oxford Road Denham Middlesex UB9 4DF		
Contact(s):	Tom Hawkins		
Project	Springbridge Yard		
Quotation No.:	Q25-37158	Date Received:	24-Jan-2025
Order No.:		Date Instructed:	24-Jan-2025
No. of Samples:	2		
Turnaround (Wkdays):	10	Results Due:	06-Feb-2025
Date Approved:	07-Feb-2025	Subcon Results Due:	06-Feb-2025

Approved By:

Details: David Smith, Technical Director

For details about application of accreditation to specific matrix types, please refer to the Table at the back of this report

Results - Soil

Project: Springbridge Yard

Client: Springbridge Direct Ltd		Chemtest Job No.: 25-02435			
Quotation No.: Q25-37158		Chemtest Sample ID.: 1922378			
Order No.:		Client Sample Ref.: Topsoil			
		Client Sample ID.: Top			
		Sample Type: SOIL			
		Date Sampled: 22-Jan-2025			
		Time Sampled: 11:26			
		Asbestos Lab: DURHAM			
Determinand	HWOL Code	Accred.	SOP	Units	LOD
ACM Type		U	2192		N/A
Asbestos Identification		U	2192		N/A
Moisture		N	2030	%	0.020
Soil Colour		N	2040		N/A
Other Material		N	2040		N/A
Soil Texture		N	2040		N/A
Boron (Hot Water Soluble)		M	2120	mg/kg	0.40
Cyanide (Total)		M	2300	mg/kg	0.50
Arsenic		M	2455	mg/kg	0.5
Cadmium		M	2455	mg/kg	0.10
Chromium		M	2455	mg/kg	0.5
Copper		M	2455	mg/kg	0.50
Mercury		M	2455	mg/kg	0.05
Nickel		M	2455	mg/kg	0.50
Lead		M	2455	mg/kg	0.50
Selenium		M	2455	mg/kg	0.25
Zinc		M	2455	mg/kg	0.50
Chromium (Hexavalent)		N	2490	mg/kg	0.50
					< 0.50

Results - Soil

Project: Springbridge Yard

Client: Springbridge Direct Ltd		Chemtest Job No.:			25-02435
Quotation No.: Q25-37158		Chemtest Sample ID.:			1922378
Order No.:		Client Sample Ref.:			Topsoil
		Client Sample ID.:			Top
		Sample Type:			SOIL
		Date Sampled:			22-Jan-2025
		Time Sampled:			11:26
		Asbestos Lab:			DURHAM
Determinand	HWOL Code	Accred.	SOP	Units	LOD
Aliphatic VPH >C5-C6	HS_2D_AL	U	2780	mg/kg	0.05 < 0.05
Aliphatic VPH >C6-C7	HS_2D_AL	U	2780	mg/kg	0.05 < 0.05
Aliphatic VPH >C7-C8	HS_2D_AL	U	2780	mg/kg	0.05 < 0.05
Aliphatic VPH >C6-C8 (Sum)	HS_2D_AL	N	2780	mg/kg	0.10 < 0.10
Aliphatic VPH >C8-C10	HS_2D_AL	U	2780	mg/kg	0.05 < 0.05
Total Aliphatic VPH >C5-C10	HS_2D_AL	U	2780	mg/kg	0.25 < 0.25
Aliphatic EPH >C10-C12 MC	EH_2D_AL_#1	M	2690	mg/kg	2.00 < 2.0
Aliphatic EPH >C12-C16 MC	EH_2D_AL_#1	M	2690	mg/kg	1.00 < 1.0
Aliphatic EPH >C16-C21 MC	EH_2D_AL_#1	M	2690	mg/kg	2.00 3.5
Aliphatic EPH >C21-C35 MC	EH_2D_AL_#1	M	2690	mg/kg	3.00 25
Aliphatic EPH >C35-C40 MC	EH_2D_AL_#1	N	2690	mg/kg	10.00 17
Total Aliphatic EPH >C10-C35 MC	EH_2D_AL_#1	M	2690	mg/kg	5.00 30
Total Aliphatic EPH >C10-C40 MC	EH_2D_AL_#1	N	2690	mg/kg	10.00 47
Aromatic VPH >C5-C7	HS_2D_AR	U	2780	mg/kg	0.05 < 0.05
Aromatic VPH >C7-C8	HS_2D_AR	U	2780	mg/kg	0.05 < 0.05
Aromatic VPH >C8-C10	HS_2D_AR	U	2780	mg/kg	0.05 < 0.05
Total Aromatic VPH >C5-C10	HS_2D_AR	U	2780	mg/kg	0.25 < 0.25
Aromatic EPH >C10-C12 MC	EH_2D_AR_#1	U	2690	mg/kg	1.00 < 1.0

Results - Soil

Project: Springbridge Yard

Client: Springbridge Direct Ltd		Chemtest Job No.:			25-02435	
Quotation No.: Q25-37158		Chemtest Sample ID.:			1922378	
Order No.:		Client Sample Ref.:			Topsoil	
		Client Sample ID.:			Top	
		Sample Type:			SOIL	
		Date Sampled:			22-Jan-2025	
		Time Sampled:			11:26	
		Asbestos Lab:			DURHAM	
Determinand	HWOL Code	Accred.	SOP	Units	LOD	
Aromatic EPH >C12-C16 MC	EH_2D_AR_#1	U	2690	mg/kg	1.00	< 1.0
Aromatic EPH >C16-C21 MC	EH_2D_AR_#1	U	2690	mg/kg	2.00	11
Aromatic EPH >C21-C35 MC	EH_2D_AR_#1	U	2690	mg/kg	2.00	6.0
Aromatic EPH >C35-C40 MC	EH_2D_AR_#1	N	2690	mg/kg	1.00	31
Total Aromatic EPH >C10-C35 MC	EH_2D_AR_#1	U	2690	mg/kg	5.00	17
Total Aromatic EPH >C10-C40 MC	EH_2D_AR_#1	N	2690	mg/kg	10.00	48
Total VPH >C5-C10	HS_2D_Total	U	2780	mg/kg	0.50	< 0.50
Total EPH >C10-C35 MC	EH_2D_Total_#1	U	2690	mg/kg	10.00	47
Total EPH >C10-C40 MC	EH_2D_Total_#1	N	2690	mg/kg	10.00	95
Benzene		M	2760	µg/kg	1.0	< 1.0
Toluene		M	2760	µg/kg	1.0	< 1.0
Ethylbenzene		M	2760	µg/kg	1.0	< 1.0
m & p-Xylene		M	2760	µg/kg	1.0	< 1.0
o-Xylene		M	2760	µg/kg	1.0	< 1.0
Nitrogen (Total)		SN	2790	%	0.10	0.23
Naphthalene		M	2800	mg/kg	0.10	< 0.10
Acenaphthylene		N	2800	mg/kg	0.10	< 0.10
Acenaphthene		M	2800	mg/kg	0.10	< 0.10

Results - Soil

Project: Springbridge Yard

Client: Springbridge Direct Ltd		Chemtest Job No.:			25-02435
Quotation No.: Q25-37158		Chemtest Sample ID.:			1922378
Order No.:		Client Sample Ref.:		Topsoil	
		Client Sample ID.:		Top	
		Sample Type:		SOIL	
		Date Sampled:		22-Jan-2025	
		Time Sampled:		11:26	
		Asbestos Lab:		DURHAM	
Determinand	HWOL Code	Accred.	SOP	Units	LOD
Fluorene		M	2800	mg/kg	0.10
Phenanthrene		M	2800	mg/kg	0.10
Anthracene		M	2800	mg/kg	0.10
Fluoranthene		M	2800	mg/kg	0.10
Pyrene		M	2800	mg/kg	0.10
Benzo[a]anthracene		M	2800	mg/kg	0.10
Chrysene		M	2800	mg/kg	0.10
Benzo[b]fluoranthene		M	2800	mg/kg	0.10
Benzo[k]fluoranthene		M	2800	mg/kg	0.10
Benzo[a]pyrene		M	2800	mg/kg	0.10
Indeno(1,2,3-c,d)Pyrene		M	2800	mg/kg	0.10
Dibenz(a,h)Anthracene		N	2800	mg/kg	0.10
Benzo[g,h,i]perylene		M	2800	mg/kg	0.10
Total Of 16 PAH's		N	2800	mg/kg	2.0
Total Phenols		M	2920	mg/kg	0.10
					< 0.10

Results - Topsoil Report

BS3882:2015

Chemtest Job No.: 25-02435

Chemtest Sample ID.: 1922378

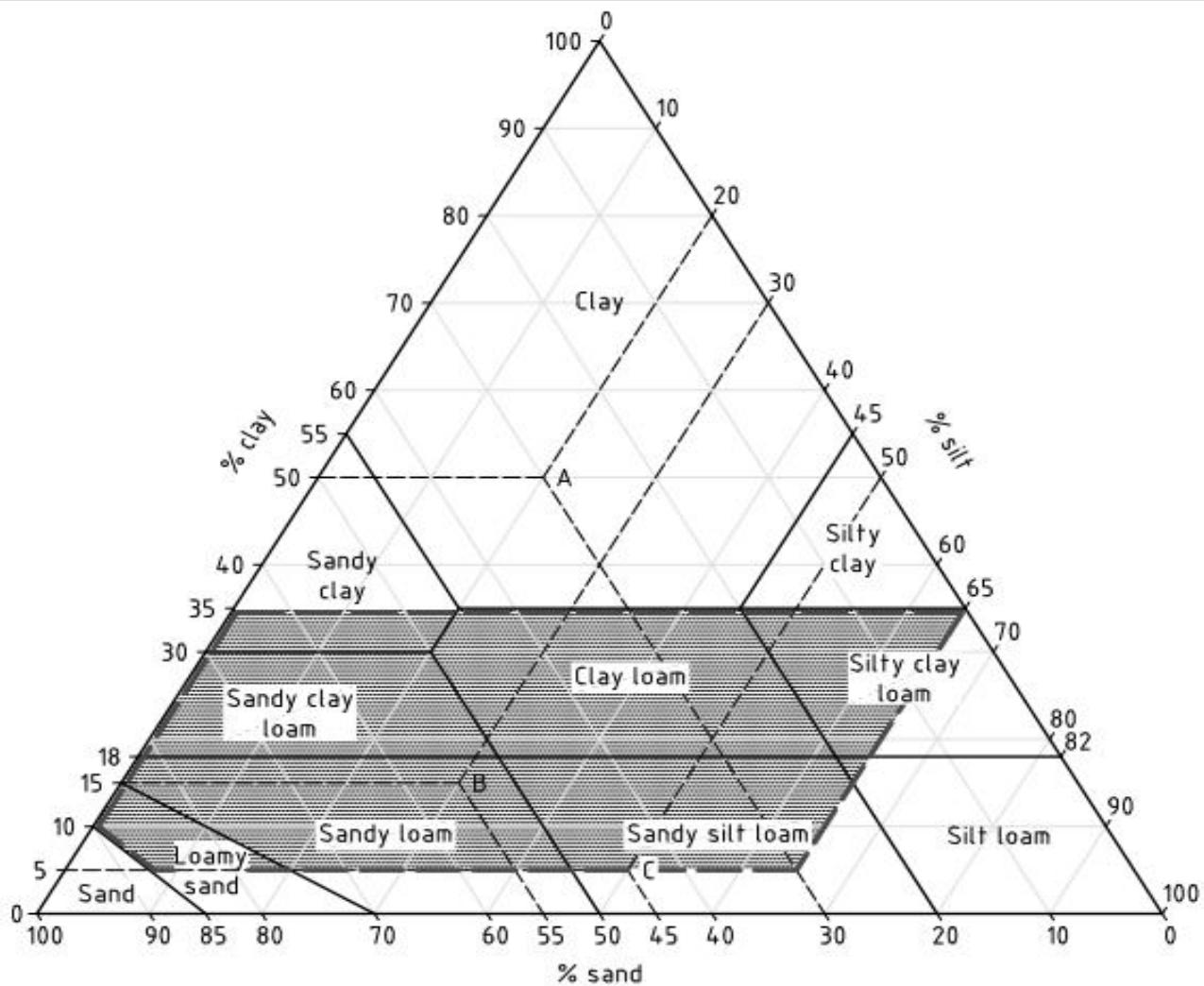
Client Sample Ref.: Topsoil

Sample Location:

Client Sample ID.: Top

Top Depth (m):

Bottom Depth (m):


Date Sampled: 22-Jan-2025

Time Sampled:

Parameter	Units	Multipurpose Range			Result	Compliant with Multipurpose Range? (Y/N)	Compliant with Specific Purpose Range? (Y/N)		
Texture							Acid	Low F	Calc.
Clay content (Sub Contracted)	%				6.0				
Silt content (Sub Contracted)	%				11.0				
Sand content (Sub Contracted)	%				84				
Soil texture class		See Attached Chart			Loamy Sand	YES			
Mass Loss on Ignition									
Clay 5-20%		3.0-20							
Clay 20-35%		5.0-20			3.1	YES	YES	YES	YES
Stone Content	% m/m								
>2mm (Sub Contracted)		0-30			4.2	YES			
>20mm (Sub Contracted)		0-10			0.70	YES			
>50mm (Sub Contracted)		0			< 0.10	YES			
Soil pH value		5.5-8.5			8.2	YES	NO	YES	YES
Carbonate (Calcareous only)	%				1.2				YES
Electrical Conductivity	µS/cm	If >3300 do ESP			3200	YES			
Available Nutrient Content									
Nitrogen %		>0.15			0.23	YES	YES		YES
Extractable phosphorus	mg/l	16-140			110	YES	YES	NO	YES
Extractable potassium	mg/l	121-1500			1400	YES	YES		YES
Extractable magnesium	mg/l	51-600			220	YES	YES		YES
Carbon : Nitrogen Ratio		<20:1			7.4/1	YES	YES	YES	YES
Exchangeable sodium	%	<15			4.2				
Available Calcium	mg/l				1700				
Available Sodium	mg/l				160				
Phytotoxic Contaminants (by soil pH)		< 6.0	6.0-7.0	> 7.0					
Zinc (Nitric Acid extract)	mg/kg	<200	<200	<300	38	YES			
Copper (Nitric Acid extract)	mg/kg	<100	<135	<200	8.6	YES			
Nickel (Nitric Acid extract)	mg/kg	<60	<75	<110	5.4	YES			
Visible Contaminants	% mm								
>2mm		<0.5			0.000	YES			
.... of which plastics		<0.25			0.000	YES			
.... man-made sharps		zero in 1kg			0.000	YES			

BS3882:2015

Topsoil: Texture Classification Chart

Key

Area within which the texture of topsoil is required to fall

NOTE Examples of textural classification are as follows.

- Soil A with 30% sand, 20% silt and 50% clay is in the "clay" textural class.
- Soil B with 55% sand, 30% silt and 15% clay is in the "sandy loam" textural class.
- Soil C with 45% sand, 50% silt and 5% clay is in the "sandy silt loam" textural class.

Permission to reproduce extracts from BS 3882:2015 is granted by BSI.

British Standards can be obtained in PDF or hard copy formats from the BSI online shop: www.bsigroup.com/Shop or by contacting BSI Customer Services for hardcopies only: Tel: +44 (0)20 8996 9001, Email: cservices@bsigroup.com.

Test Methods

SOP	Title	Parameters included	Method summary	Water Accred.
2010	pH Value of Soils	pH at 20°C	pH Meter	
2020	Electrical Conductivity	Electrical conductivity (EC) of aqueous extract or calcium sulphate solution for topsoil	Measurement of the electrical resistance of a 2:1 water/soil extract.	
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <30°C.	
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930	
2115	Total Nitrogen in Soils	Nitrogen	Determination by elemental analyser	
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES	
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry	
2260	Carbonate	Carbonate	Titration	
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.	
2400	Cations	Cations	ICP-MS	
2420	Phosphate	Phosphate	Spectrophotometry - Discrete analyser	
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.	
2455	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.	
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.	
2620	LOI 440	LOI 440 Trommel Fines	Determination of the proportion by mass that is lost from a soil by ignition at 440°C.	
2690	EPH A/A Split	Aliphatics: >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35– C40 Aromatics: >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35– C40	Acetone/Heptane extraction / GCxGC FID detection	
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.	
2780	VPH A/A Split	Aliphatics: >C5–C6, >C6–C7,>C7–C8,>C8–C10 Aromatics: >C5–C7,>C7–C8,>C8–C10	Water extraction / Headspace GCxGC FID detection	
2790	Semi-Volatile Organic Compounds (SVOCs) in Soils by GC-MS	Semi-volatile organic compounds(cf. USEPA Method 8270)	Acetone/Hexane extraction / GC-MS	
2800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-MS	Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene*	Dichloromethane extraction / GC-MS	
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1-Naphthol and Trimethylphenols Note: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.	

Report Information

Key

U	UKAS accredited
M	MCERTS and UKAS accredited
N	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
T	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
SOP	Standard operating procedure
LOD	Limit of detection

This report shall not be reproduced except in full, and only with the prior approval of the laboratory.

Any comments or interpretations are outside the scope of UKAS accreditation.

The Laboratory is not accredited for any sampling activities and reported results relate to the samples 'as received' at the laboratory.

Uncertainty of measurement for the determinands tested are available upon request .

None of the results in this report have been recovery corrected.

All results are expressed on a dry weight basis.

The following tests were analysed on samples 'as received' and the results subsequently corrected to a dry weight basis EPH, VPH, TPH, BTEX, VOCs, SVOCs, PCBs, Phenols.

For all other tests the samples were dried at $\leq 30^{\circ}\text{C}$ prior to analysis.

All Asbestos testing is performed at the indicated laboratory .

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1.

NEW_ASB Eurofins Chemtest Limited, 11 Depot Road, Newmarket, CB8 0AL
DURHAM Eurofins Chemtest Limited, Unit A North Wing, Prospect Business Park, Crookhall Lane, Consett, Co Durham, DH8 7PW

Sample Deviation Codes

- A - Date of sampling not supplied
- B - Sample age exceeds stability time (sampling to extraction)
- C - Sample not received in appropriate containers
- D - Broken Container
- E - Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt.

All water samples will be retained for 14 days from the date of receipt.

Charges may apply to extended sample storage.

Water Sample Category Key for Accreditation

Report Information

DW - Drinking Water
GW - Ground Water
LE - Land Leachate
NA - Not Applicable
PL - Prepared Leachate
PW - Processed Water
RE - Recreational Water
SA - Saline Water
SW - Surface Water
TE - Treated Effluent
TS - Treated Sewage
UL - Unspecified Liquid

Clean Up Codes

NC - No Clean Up
MC - Mathematical Clean Up
FC - Florisil Clean Up

HWOL Acronym System

HS - Headspace analysis
EH - Extractable hydrocarbons – i.e. everything extracted by the solvent
CU - Clean-up – e.g. by Florisil, silica gel
1D - GC – Single coil gas chromatography
Total - Aliphatics & Aromatics
AL - Aliphatics only
AR - Aromatic only
2D - GC-GC – Double coil gas chromatography
#1 - EH_2D_Total but with humics mathematically subtracted
#2 - EH_2D_Total but with fatty acids mathematically subtracted
+ - Operator to indicate cumulative e.g. EH+EH_Total or EH_CU+HS_Total

If you require extended retention of samples, please email your requirements to:
customerservices@chemtest.com