

Rainwater harvesting tank size calculator to BS 8515:2009

Created by and for Graf UK Ltd

Customer: Carlos Vazquez Besada
 Project: Court Park Pavilion, Uxbridge, UK
 Plot/type: _____
 Quantity: _____

The intermediate approach (extract from BS 8515:2009)

To apply the intermediate approach to sizing the rainwater harvesting system for non-potable domestic use, storage capacity should be calculated from the following equations and should be the lesser of 5% of the annual rainwater yield or 5% of the annual non-potable water demand.

5% of the annual rainwater yield should be calculated using the equation:

$$Y_r = A \times e \times h \times \eta \times 0.05$$

where:

Y_r is the annual rainwater yield (L);
 A is the collecting area (m^2);
 e is the yield coefficient (%);
 h is the depth of rainfall (mm);
 η is the hydraulic filter efficiency.

$$\begin{aligned} A &= 97 \text{ } m^2 \\ e &= 0.8 \% \\ h &= 775 \text{ } mm \\ \eta &= 0.95 \end{aligned} \quad \begin{aligned} Y_r &= A \times e \times h \times \eta \times 0.05 \\ &= 97.00 \times 0.8 \times 775 \times 0.95 \times 0.05 \\ &= 2857 \text{ Litres} \end{aligned}$$

5% of the annual non-potable water demand should be calculated using the equation:

$$D_n = P_d \times n \times 365 \times 0.05$$

where:

D_n is the annual non-potable water demand (L);
 P_d is the daily requirement per person (L);
 n is the number of persons.

$$\begin{aligned} P_d &= 50 \text{ L} \\ n &= 3 \end{aligned} \quad \begin{aligned} D_n &= P_d \times n \times 365 \times 0.05 \\ &= 50.00 \times 3 \times 365 \times 0.05 \\ &= 2738 \text{ Litres} \end{aligned}$$

Final recommended tank size in accordance with BS 8515: 2009

$$\begin{aligned} 5\% \text{ of annual rainwater yield} &= 2857 \text{ L} \\ 5\% \text{ of annual non-potable water demand} &= 2738 \text{ L} \\ \text{Lesser of the two above figures} &= 2738 \text{ Litres} \\ \text{Closest/Most suitable tank size} &= 3,000 \text{ Litres} \end{aligned}$$

Notes & Rainfall statistics;		<i>FEH Annual average rainfall (mm)</i>	
Rainwater statistics taken from Figure 2 (page 9) BS 8515:2009		From	To
Above equations taken from 4.1.2.3 (page 12) BS 8515:2009			Max.
Enter site specific figures in to YELLOW boxes		520 to 650	= 650
Filter efficiency based on GRAF Optimax Pro filter (self-cleaning)		650 to 775	= 775
Tank sizes based on GRAF GmbH tanks by Graf UK Ltd		775 to 890	= 890
		890 to 1000	= 1000
		1000 to 1250	= 1250
		> 1250	= 1250