B U R O H A P P O L D E N G I N E E R I N G

TFL Landholdings at Northwood

Drainage Strategy

034233

28 October 2015

Revision 03

Copyright © 1976 - 2015 BuroHappold Engineering. All Rights Reserved.

Revision	Description	Issued by	Date	Checked
00	First Draft	GL	07/10/2015	NP
01	Second Draft Issue (revised following comments)	GL	14/10/2015	NP/GP
02	Final Draft Issue (revised following comments)	GL	19/10/2015	NP
03	Final Issue	GL	28/10/2015	NP

\\Srv-bath03\project filing\034233 Green Lane, Northwood Station Phase 2\F8 Civils - Infrastructure\03 Reports\Drainage Strategy\151028 GL 034233 Northwood Station Drainage Strategy Report 03.docx

This report has been prepared for the sole benefit, use and information of Transport for London for the purposes set out in the report or instructions commissioning it. The liability of Buro Happold Limited in respect of the information contained in the report will not extend to any third party.

author	Geoff Lewis
date	28/10/2015
approved	Nichole Pau
signature	Jan Gurt
date	28/10/2015

•••

Contents

1	Executi	ve Summary	8
2	Introdu	iction	9
	2.1	Planning Policy	10
3	Existing	g Drainage Arrangement	11
	3.1	Foul Water	12
	3.2	Storm Water	12
	3.3	Sewers Affected by the Development	12
4	Surface	Water Drainage Strategy	15
	4.1	Critical Drainage Area	15
	4.2	External Catchment Areas	18
5	Sustain	able Drainage	20
	5.1	Objectives	20
	5.2	Sustainable Drainage	20
	5.3	Sustainable Urban Drainage Systems (SuDS)	21
	5.4	Attenuation of development run off	21
	5.5	Water Quality	23
	5.6	Maintenance of Sustainable Drainage Systems	23
6	Foul W	ater Drainage	24
7	Conclu	sions	25
	Append	lix A Proposed Development	
	Append	lix B Thames Water Sewer Mapping	
	Append	lix C Proposed Drainage Layout	
	Append	lix D WINDES Calculations	
Та	ble of T	ables	
		: Sustainable Drainage Systems	20
Та	ble 6—1	: Foul water discharge calculations	24

Table of Figures

Figure 3—1: Thames Water Utilities Ltd.'s sewer map (see also Appendix B)	11
Figure 3—2 View of culvert of railway culvert at upstream end Figure 3—3 Open ditch at entrance to culvert	12
Figure 3—4 Headwall at upstream end of railway culvert	12
Figure 3—5: Sewers affected by the proposed development	13
Figure 4—1: Extract form L B of Hillingdon's Surface Water Management Plan	15
Figure 4—2: LIDAR plot section through railway track	16
Figure 4—3: Flood Flow Paths at the junction of Green Lane, Eastbury Road and Station Approach.	17
Figure 4—4 Catchment areas.	18
Figure 4—5: Proposed Surface Water Sewer in Central Way	19
Figure 5—1: Example of geo cellular units for storage at podium level (Aquaflow)	22
Figure 5—2: Permeable paving to car parking areas with geo-cellular units under to attenuate surface flows and roof drainage	22
Figure 5—3: Example of storm water source control system with water treatment membrane	23

Glossary

Term	Definition
Attenuation	A method to reduce a flood peak to prevent flooding, increasing the duration of the flow.
Brownfield	Land previously developed that has potential to be regenerated.
Catchment	 A river catchment is the area to which the river drains either naturally or with artificial engineering. A surface water catchment is the area from which water drains into a river. A groundwater catchment is the area that consists of the groundwater river flow.
Climate Change	An expected change in the world's climate.
Discharge	The rate of flow of water measured in terms of volume per unit time.
Greenfield	Land which has not been previously developed.
Groundwater	Water present within underground strata known as aquifers.
Management Train	A series of staged SuDS processes utilised to mimic natural run off characteristics.
Previously Developed Land	Land which is or was occupied by a permanent structure (excluding agricultural or forestry buildings) and associated fixed surface infrastructure (see also Brownfield).
Run-off	Flow over surfaces to the drainage system due to impermeable ground or saturated permeable ground.
Sustainable Drainage Systems (SuDS)	SuDS are used as a strategy to manage surface water in a sustainable or least damaging manner through management practices and physical structures.
Sustainable Development	Development which meets the needs of the present without compromising the ability of future generations to meet their own needs.

1 Executive Summary

This drainage strategy has been prepared by Buro Happold (BH) in relation to a mixed use development at Transport for London's Landholdings at Northwood for Transport for London (TfL). This report should be read in conjunction with the Flood Risk Assessment (FRA).

The proposed development will involve the abandonment of existing foul and surface water sewers in Station Approach and the station car park.

Two drainage catchments to the north of the development site have been identified as contributing flows to the 300mm dia. surface water sewer in Station Approach which is to be abandoned and the flows diverted into a new sewer laid in Green Lane and Central Way on the eastern boundary.

A new surface water sewer will be constructed to receive the flow emanating from the external catchments and the attenuated flows from the development.

During a severe storm, the surface water run off which currently flows along Station Approach and into the station car park, will be intercepted in a combined kerb/channel along the site's frontage in Green Lane and diverted into a new surface water sewer.

It is proposed to attenuate this runoff by installing oversized pipes at the southern end of the new surface water sewer, by restricting the flow from the sewer to the same rate that would be experienced in the pre-development situation. The attenuation is designed to accommodate the runoff from a 1% AEP storm event plus 30% climate change allowance.

This attenuation measures proposed will not adversely affect flood conditions downstream or have a significant impact on the capacity of the existing railway crossing culvert/ditch system to the south of the site.

The new sewer will be designed in accordance with Thames Water Utilities requirements and in accordance with 'Sewers for Adoption' 7th Edition.

The surface water runoff from the proposed development will be managed in a sustainable manner, restricting the discharge to a level equivalent to three times the greenfield rate, in accordance with the London Plan.

Due the ground conditions and other site constraints, a system of source control utilising geo cellular units has been selected to provide the attenuation of the runoff.

The measures outlined in the report are subject to the agreement of the drainage undertaker Thames Water Utilities Limited. A capacity check will be required and undertaken by Thames Water to establish whether any up-grading of the system is necessary.

2 Introduction

Buro Happold has been instructed by Transport for London (TfL) to prepare a drainage strategy regarding the proposed development for TfL's Landholdings at Northwood, London, HA6 2QB. The drainage strategy has been prepared in conjunction with the Flood Risk Assessment (FRA) also prepared by Buro Happold.

The site is located on the junction of Green Lane (B469) and Eastbury Road within the London Borough of Hillingdon (LBH).

The site comprises land north and south of Green Lane including part of the highway. The area of land north of Green Lane comprises a parade of single storey retail units located over the railway bridge with a two storey adjoining unit on the Corner of Eastbury Road. The northern part of the site is bounded by the Eastbury Surgery to the north; Green Lane to the south; Eastbury Road to the east and the retail units on the bridge to the west.

The majority of the site lies south of Green Lane, in Northwood and comprises the existing London Underground (LU) station and a mix of A-Class uses, residential flats, a light industrial use and an area of surface car parking. The southern part of the site is bounded by Green Lane to the north; the London Underground compound to the south; the railway line to the east; and the rear boundaries of the Northwood Central Club, St John's United Reformed Church and residential properties fronting Hallowell Road to the west.

A site plan for Phase 1 of the proposed development is shown in Appendix A.

The planning application proposals are:

A hybrid planning application for comprehensive redevelopment of the site comprising full planning permission involving demolition of existing buildings to provide 93 residential units (C3) and associated car parking, 1,440 sq.m retail (A1-A5), a new operational railway station (Sui Generis) with step free access and associated station car parking; new bus interchange, and a new piazza. Outline planning consent for up to 34 residential units, car parking (all matters reserved apart from access) and refurbishment works to existing retail units along Station Approach.

Proposal details:

- 127 residential units comprising:
 - 32 x 1 bed apartments
 - 56 x 2 bed apartments
 - 5 x 3 bed apartments
 - 34 x townhouses (3/4 bed)

The detailed planning application applies to the northern development area comprising of seven residential/retail blocks with a central section formed by a two level basement structure forming an underground car park as described in **Appendix A**.

The outline comprises 34 townhouses in a linear form on a north/south axis, with car parking spaces in front and gardens to the rear, the residential units are served by Central Way.

2.1 Planning Policy

The London Plan (Greater London Authority, March 2015; '*The London Plan: Spatial Development Strategy for Greater London*') sets out the overall development strategy for London for the next 20 to 25 years, consisting of an integrated economic, environmental, transport and social framework. It contains policies specific to flood risk management and the use of sustainable drainage.

The flood risk management policy (5.12) reiterates that set out in the National Planning Policy Framework (NPPF).

The sustainable drainage policy (5.13) states that unless there are practical reasons for not doing so, development should utilise sustainable urban drainage systems (SuDS). Such development should aim to achieve greenfield run-off rates in line with a drainage hierarchy that puts infiltration and the storage of water for later use as the most preferential mechanisms, and discharge to combined sewers as the least.

The London Plan sets out environmental targets for developers in London to incorporate into the design and operations of their developments. The Supplementary Planning Guidance (SPG) to the London Plan has been published to provide further information regarding drainage matters. Of particular relevance to surface water drainage is the SPG statement:

• Run-off from developments on brownfield sites should not exceed three times the greenfield run-off rate (Para 3.4.10)

The SPG also states that SuDS should be utilised for all developments wherever practical and should aim to provide additional benefits to a scheme as well as reduce flood risk.

3 Existing Drainage Arrangement

Thames Water Utilities Limited is the drainage undertaker for the Northwood area and has supplied mapping of their sewerage systems in the vicinity of the station. Figure 3-1 shows the location of public storm and foul water sewers and is shown below. The foul sewers are shown in red and storm water sewers are shown in blue. Details of the sewer sizes and manhole cover and invert levels can be found in **Appendix B** of this report.

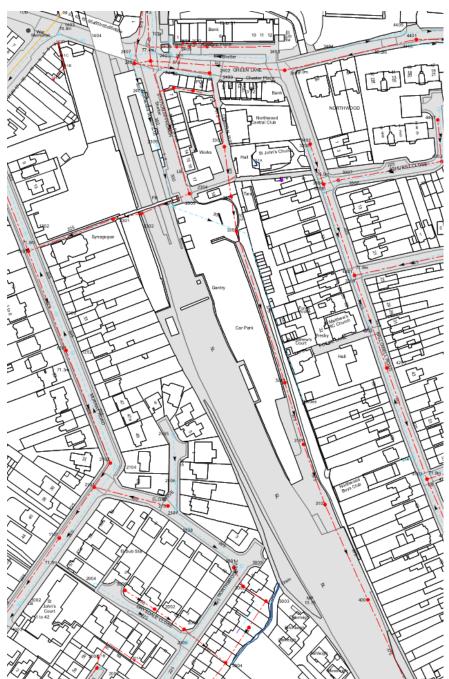


Figure 3—1: Thames Water Utilities Ltd.'s sewer map (see also Appendix B)

Revision 03 28 October 2015 Page 11

3.1 Foul Water

There are two foul sewers which are within the proposed development area. The first is a 225 mm dia. pipe located in Station Approach which runs from north to south before turning 135 degree angle before the existing car park entrance. It then runs westwards under the railway line and connects with the foul sewer in Murray Road. The second sewer is a 375 mm dia. pipe laid in Central Way and runs southwards from Green Lane along the eastern boundary of the station car park towards Highfield Road.

3.2 Storm Water

There is a 300 mm dia. surface water sewer which runs north/south on the western side of Station Approach, parallel with the railway until the car park entrance where it turns 135 degrees across the northern part of the car park then southwards along the western boundary of the properties in Hallowell Road. The sewer discharges into an open ditch and then into a culvert, see Figures 3-2, 3-3 and 3-4 below (no dimensions provided), which crosses at an angle under the railway and emerges as an open watercourse which runs in a south westerly direction along the rear gardens of properties in North Brook Drive.

Figure 3—2 View of culvert of railway culvert at upstream end Figure 3—3 Open ditch at entrance to culvert

Figure 3—4 Headwall at upstream end of railway culvert

3.3 Sewers Affected by the Development

To facilitate the proposed development it will be necessary to divert both foul and surface water sewers which currently cross the site. The sewers that will need to be diverted are shown below in Figure 3—5. The Thames Water sewer network shown in the layout plan is indicative only as it is traced from the Thames Water Asset plan. The exact location is to be verified through a ground investigation and survey.

The existing sewers required to be diverted or relocated are:

- existing 225mm diameter surface water drainage running in a north-south direction along the Station Approach and continue in east direction through the existing car park;
- existing surface water drainage running in east-west direction along the Green Lane before turning into Station Approach and connects with above 225mm diameter surface water drainage;
- existing 225mm diameter foul water drainage running in a north-south direction along the Station Approach that continues west crossing the railway track;
- existing 375mm diameter foul water drainage running in a west-east direction at the junction between Green Lane and Station Approach; and
- existing 150mm diameter foul water drainage running in an east-west direction behind the existing retail units.

The existing sewers that are likely to be affected by the development are indicated below Figure 3—5.

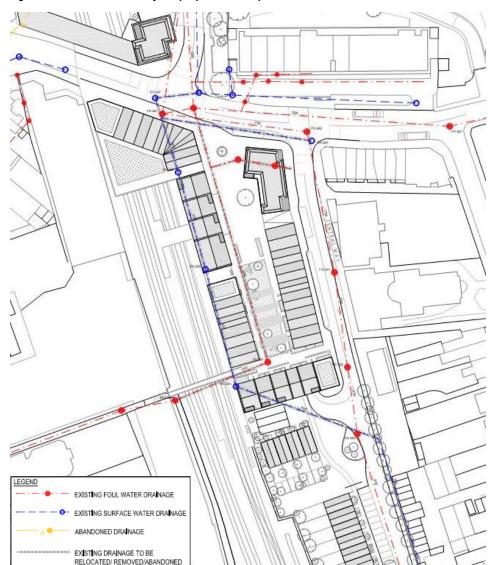
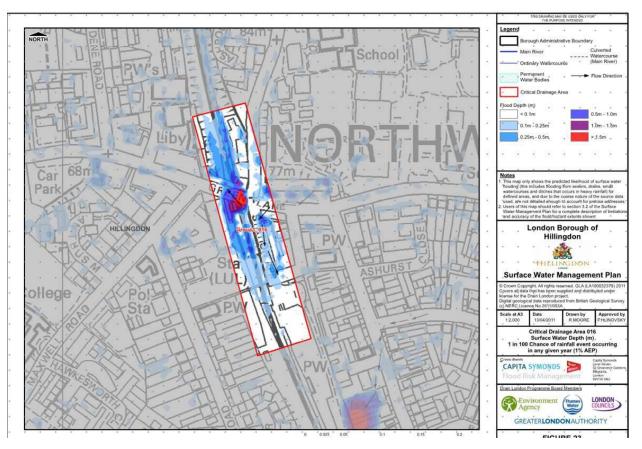


Figure 3—5: Sewers affected by the proposed development

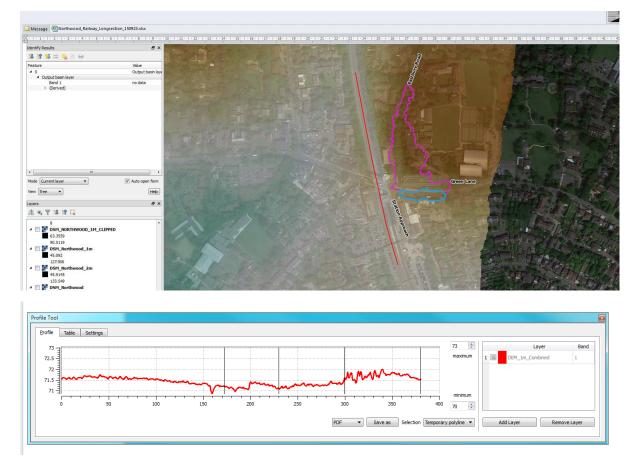
Revision 03 28 October 2015 Page 13 It is proposed to divert the surface water flows from the upstream catchments 1 & 2 (refer to Section 4.2) into a new piped system with sufficient capacity to accommodate the existing flow and the attenuated discharge from the development.


The following chapter describes the proposed development's surface water and foul drainage strategies.

4 Surface Water Drainage Strategy

4.1 Critical Drainage Area

The LBH's Surface Water Management Plan has identified that part of the site is designated as a 'critical drainage area'.



The above mapping shows the predicted area where it is likely that surface water flooding could occur due to the existing surface water drainage system being unable to cope with an estimated 1 in 100 AEP rainfall event. By reference to the LIDAR information available from the Environment Agency it is clear that the maximum depth of flooding, indicated in red, occurs at track level and would not therefore be exacerbated by the proposed development.

Currently the surface water runoff from the site is not attenuated; the drainage strategy to be adopted for the proposed development will reduce the peak flow and volume of runoff from the site by limiting the flows into the downstream sewerage system.

A copy of the LIDAR data is shown below, which illustrates that, the railway track dips at the station.

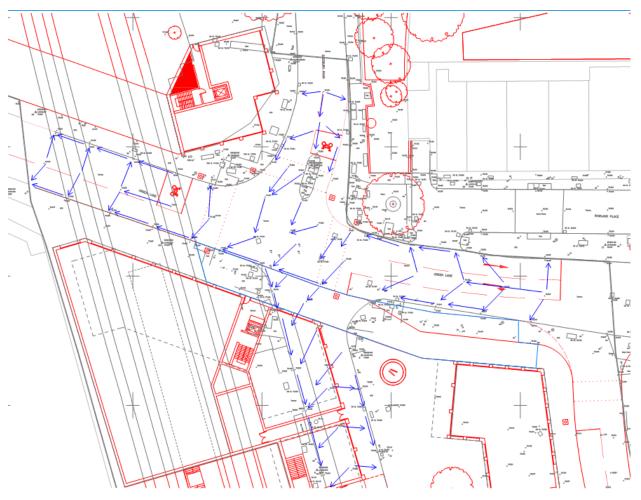


Figure 4—2: LIDAR plot section through railway track

The topographical survey shows a level difference of around 3 m from the junction of Eastbury Road and the junction of Maxwell Road. Surface flow in Eastbury Road, unable to enter the drainage system, will be routed westwards along Green Lane away from Station Approach, although, there will still be a proportion of the flow which will travel down Station Approach into the existing car park and most likely some will flow onto the railway track.

The proposed development will block off this flow route and divert the surface flow into the proposed sewer system away from the railway.

The flood flow paths at the Junction of Green Lane /Eastbury Road / Station Approach. Flow are indicated at Figure 4—3:

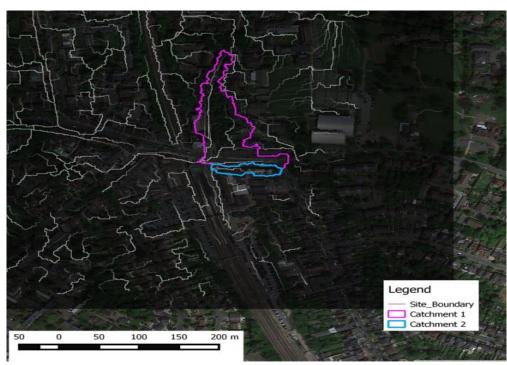


Figure 4—3: Flood Flow Paths at the junction of Green Lane, Eastbury Road and Station Approach.

The impact of the proposed development has been considered and the findings of an investigation show that the proposed development is unlikely to exacerbate this existing drainage problem by diverting surface waters flows away from the critical area. An assessment of the external catchment areas has been undertaken and is discussed in the following section.

4.2 External Catchment Areas

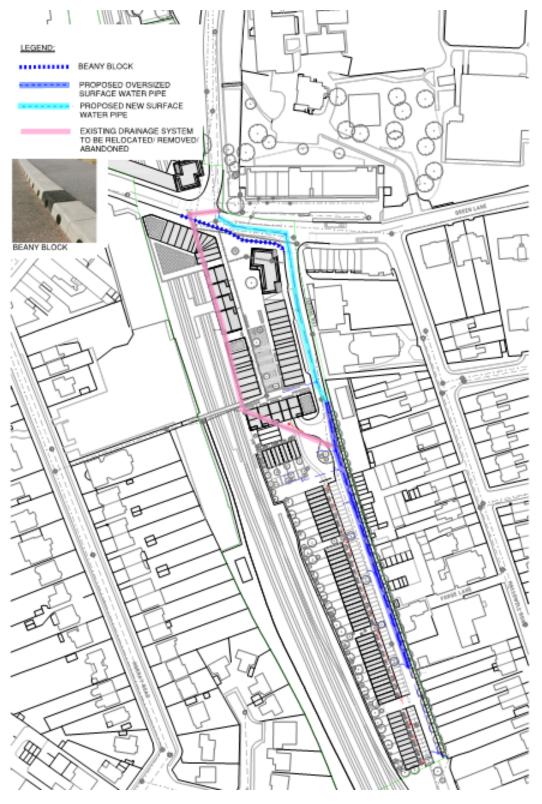
Two external catchment areas have been identified from the Government's LIDAR Composite DSM -1m as contributing to the surface water flow entering the existing sewer system which passes through the development site, see Figure 4–4.

Figure 4—4 Catchment areas.

The catchment areas contributing to the flooding are shown as:

Catchment 1 Area= 0.933 ha and Catchment 2 Area= 0.140 ha.

Based on an inspection of the ratio of permeable to impermeable area within each catchment, the assumption is made that the 'worst case' can be obtained by taking 50% of catchment 1 area and 100% of catchment 2 area.


It is assumed that the existing sewers have been built to guidelines set out within the 'sewers for adoption'. As a minimum these sewers are designed to convey storm events up to and including the 1 in 30 year event without flooding. It is also assumed that flows up to the 5 year event would be contained in the drainage system of catchment areas 1& 2. WINDES calculations are included at **Appendix D**.

Surface flow from the off-site catchments that currently flow down Station Approach will be intercepted by the new kerb laid on the southern side of Green Lane. The collected runoff will be directed to a new surface water sewer located along Central Way.

At the southern end of the new surface water sewer 'oversized pipes' will be introduced to attenuate the runoff to the same level that would have been experienced from the site in its current state for events up to and including the 1 in 100 year event with an allowance for climate change. The flow that enters the culvert/ditch system to the south of the development will not exceed the existing rate of run off, and therefore, the flood risk to areas downstream of the site will be unaffected.

This drainage arrangement is illustrated in Figure 4—5.

Figure 4—5: Proposed Surface Water Sewer in Central Way

5 Sustainable Drainage

5.1 Objectives

The strategy to be adopted at this site is guided by the Consolidated London Plan 2015, and the Supplementary Planning Guidance (SPG) 'Sustainable Design and Construction 'April 2014. The objective of the guidance is to incorporate sustainable drainage in all developments to prevent the volume of surface water runoff increasing during heavy rainfall and to ensure the run off from the existing catchments upstream of the development is accommodated within the development's sewerage system to prevent exacerbating flooding downstream.

5.2 Sustainable Drainage

In accordance with the London Plan Policy (5.13), the development's surface water run-off is to be managed as close as possible to the location where it is generated i.e. at source and it is to be controlled and disposed of in line with the SUDS hierarchy.

- surface water re-uses;
- infiltration into the natural ground;
- attenuation of surface water in open water features and ponds for slow release;
- attenuation of surface water in underground tanks for slow release;
- discharge of surface water run-off to a watercourse;
- discharge of surface water run-off to a surface water sewer; and
- discharge of surface water run-off to a combined sewer.

There are a number of SUDS devices that can be employed but not all are suitable for high density urban developments. Those considered suitable for this development are shown below:

Table 5—1: Sustainable	Drainage	Systems

	Green Roofs	Filter trenches*	Permeable surfaces*	Swales	Ponds/basins	Attenuation tanks	Rainwater harvesting
Full Application	×	×	-	×	×	>	<
Outline Application	×	×	~	×	×	>	>

The London Plan requires the design of surface water runoff management to be carried out following a sustainable drainage hierarchy. A preliminary assessment of the site has considered this hierarchy and concluded that:

- the use of infiltration for the management of surface water runoff is not appropriate due to the expected impermeable nature of the underlying soils e.g. London Clay;
- the configuration of the development does not support the use of ponds or swales on site; and
- the most appropriate mitigation for surface water runoff from on-site sources is to store surface water runoff in tanks and discharge the attenuated runoff into local sewers at a controlled rate of three times the greenfield run off rate in accordance with the London Plan.

5.3 Sustainable Urban Drainage Systems (SuDS)

SuDS take account of the quantity and quality of surface water run-off together with the amenity value of surface water in the urban environment. These systems aim to provide a more sustainable solution than traditional piped drainage systems and should:

- manage run-off flow rates, reducing the impact of urbanisation on flooding;
- protect or enhance water quality; and
- be sympathetic to the environmental setting and the needs of the local community.

There are several advantages to using SuDS which include:

- effective control of peak flows;
- improved water quality;
- reduction in surface erosion;
- reduced sewer surcharging and flooding as discharge flow rates are reduced; and
- water conservation through rainwater harvesting and surface water re-use egg irrigation and/or top-up to water features and ponds.

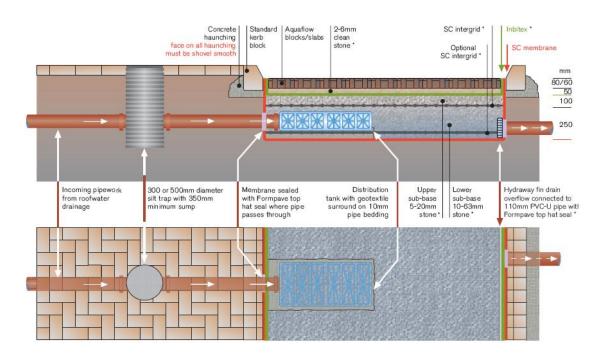
At Para 3.4.10 of the SPG the level of runoff permitted from a development is stated as:

All developments on green field sites must maintain green run-off rates. On previously developed sites, runoff rates should not be more than three times the calculated Greenfield rate. The only exception to this, where greater discharge rates may be acceptable, are where pumped discharge would be required to meet the standards or where surface water drainage is to tidal waters and therefore would be able to discharge at unrestricted rates provided unacceptable scour would result.

5.4 Attenuation of development run off

Preliminary design calculations for on-site drainage have established the volume of rainfall to be stored on site (via underground tanks) following a 1 in 100 year rainfall event with an allowance made for climate change. Each of the storage tanks will be fitted with a discharge control device to reduce the outflow to three times the greenfield run off rate, before discharging into the new storm water sewer in Central Way. The proposed drainage layout is shown at **Appendix C.**

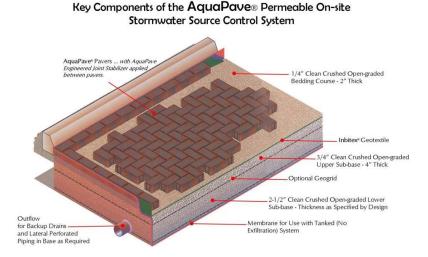
As part of the full application, on–site storage is provided within geo cellular units at the podium level. All roof water drainage is connected into the storage units, also. surface water will drain through permeable surfacing into the storage units. WINDES storage calculations are shown at **Appendix D**.


The outline part of the application where the proposed development is residential, car parking spaces are provided to the front of the properties. The car parking spaces and other hardstanding will be constructed with a permeable surface allowing the rainfall to permeate through to the geo-cellular storage units below. The rainwater downpipes at the properties are also connected into the storage tank, the collected storm water is then released into the storm water sewer at three times the greenfield rate. The impact downstream will be to reduce the peak flow in the downstream storm water system and reduce flood risk.

Examples of the podium and the car parking storage units are illustrated below:

Figure 5—1: Example of geo cellular units for storage at podium level (Aquaflow)

Figure 5—2: Permeable paving to car parking areas with geo-cellular units under to attenuate surface flows and roof drainage



5.5 Water Quality

To ensure that the quality of the surface water run-off from the proposed development does not compromise the downstream receiving sewer network, a number of treatment systems are to be installed within the drainage network to improve water quality, they are:

- all gullies within hardstanding areas are to be fully rodable and trapped;
- drainage systems serving car park areas are to drain to the surface water sewer system via appropriate oil separators as outlined in the Environment Agency's 'Pollution Prevention Guidance Use and design of oil separators in surface water drainage systems : PPG 3';
- the drainage from the podium level over the underground car park will drain directly into the surface water sewer system having undergone filtration through the permeable paving and attenuation tank;
- filtration trenches are to be installed along hardstanding areas/footpaths as a means of providing the first stage of treatment; and
- permeable pavements are to be installed with geotextile 'inbitex' to promote the removal and filtering out of oils and hydrocarbons (illustrated below Figure 5—3).

Figure 5—3: Example of storm water source control system with water treatment membrane

5.6 Maintenance of Sustainable Drainage Systems

To ensure that sustainable drainage systems operate efficiently and retain the attenuation capacity that they are designed for, they will require regular inspection and maintenance. A SuDS Management Plan is to be developed during the detailed design of the drainage network, both on-plot and within the external public realm, to identify:

- the purpose of each SuDS feature and its contribution to the overall drainage network;
- the location of the SuDS and any access routes or restricted access;
- the type of maintenance activity required for each drainage system and the anticipated frequency of this activity;
- access requirements in terms of man entry versus restricted access;
- health and safety considerations;
- manufacturer's specifications and recommendations for cleaning and replacement; and
- the management body responsible for maintaining the SuDS e.g. estate facilities management.

6 Foul Water Drainage

Foul Water

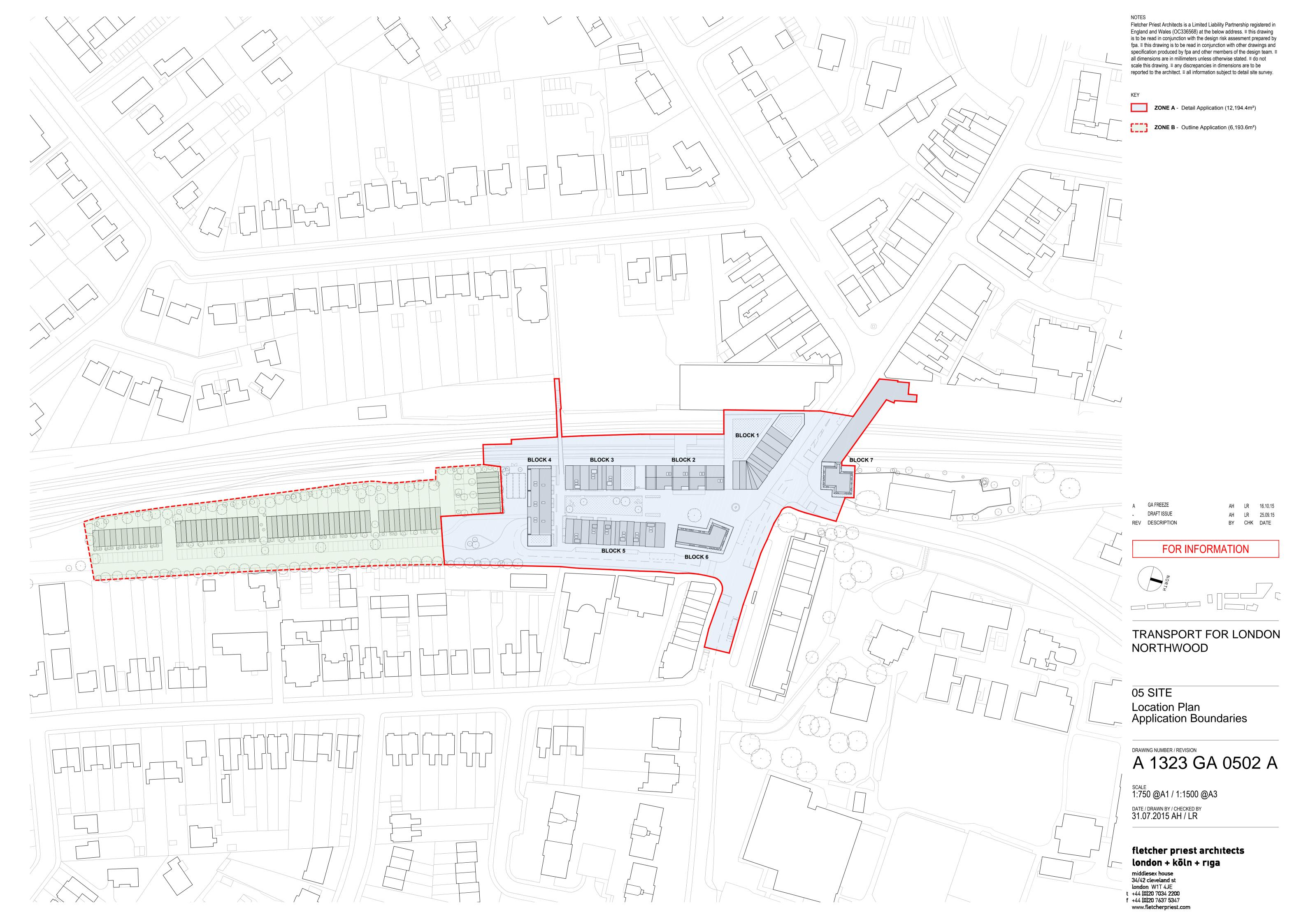
The proposed development's foul water discharges will be collected in a separate foul drainage system and connected to the existing public foul sewers. The points of connection will be subject to agreement with the drainage undertaker Thames Water Utilities. A capacity check will be required and undertaken by Thames Water on the receiving sewers to establish whether any up-grading of the system downstream of the development will be required.

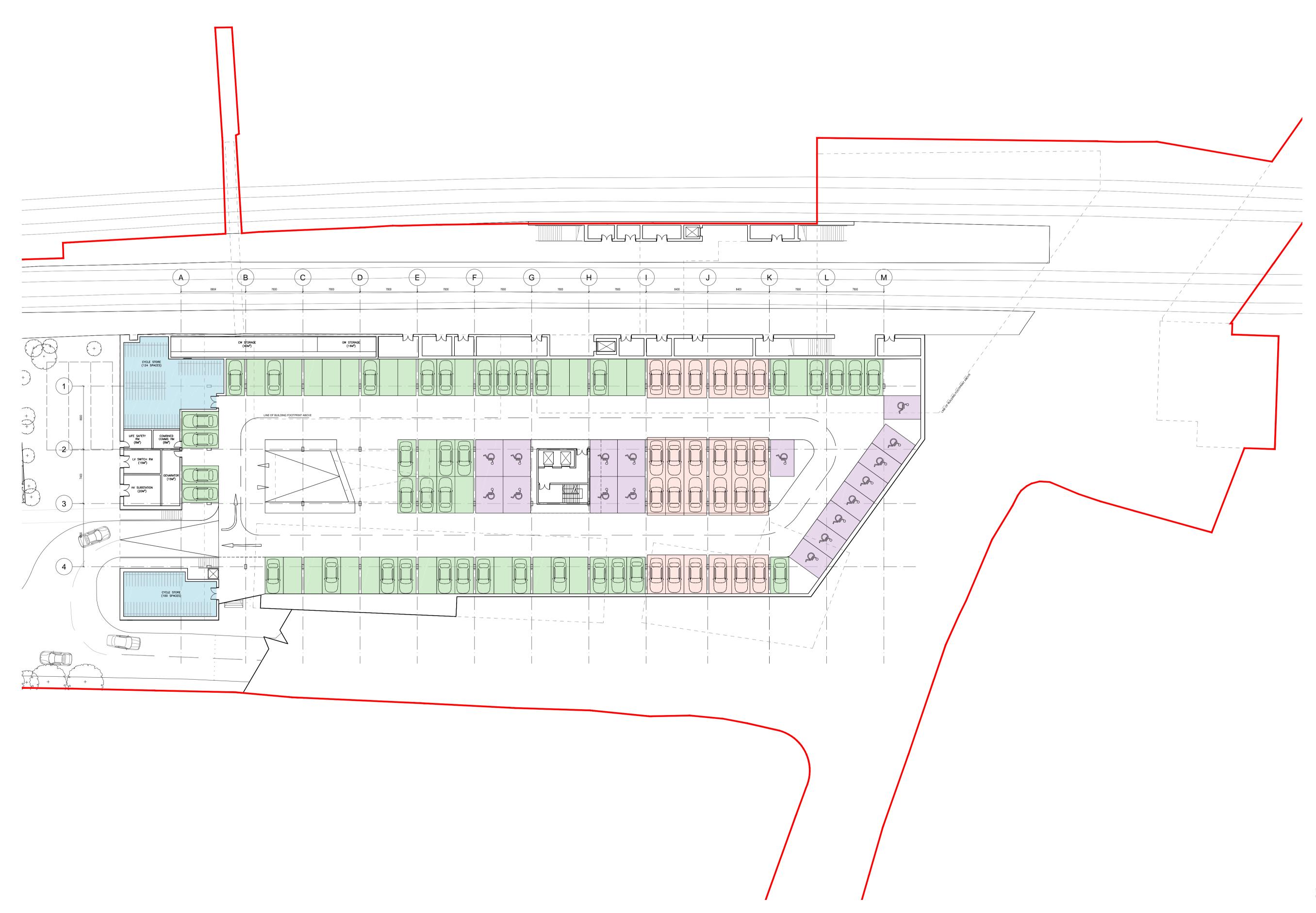
A comparison of the estimated foul water discharges from the existing and proposed development is shown in the table below:

Variable	Existing	Proposed	Comment			
Commercial						
	Daily Discharge Rate	e 300l/day/100m ²				
Area	1.847	1,436				
Daily Foul Discharge	5.541	4,308	DWF			
Allowable Peak + Infiltration	33,246	25,848	6 DWF			
Infiltration Allowance	3,325	2,585	10% (6DWF)			
Peak Flow	0.42	0.33	litres/sec			
	Resid	ential				
	Daily Discharge Ra	te 4000l/day/unit				
Number of Units	0	127				
Daily Foul Drainage	0	508.000	6DWF			
Infiltration Allowance	0	50,800	10%(5DWF)			
Peak Flow	0	6.47	Litres/sec			
Peak Flow	0.42	6.80	Litres/sec			

Table 6—1: Foul water discharge calculations

The impact of the increased discharge of 6.40 litres/second, from the proposed development will be modelled by Thames Water Utilities to determine the most appropriate points of connection to the foul sewer system and whether any reinforcement to the downstream system is required to mitigate the impact.


A preliminary foul water drainage strategy is shown at Appendix B

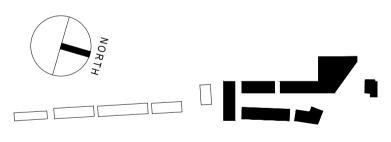

7 Conclusions

The conclusions of this drainage strategy report are:

- the proposed development will be drained by separate foul and surface water drainage system;
- surface flow from off-site catchments that currently flow down Station Approach will be intercepted by the new kerb laid on the southern side of Green Lane. The collected runoff will be directed to a new surface water sewer located along Central Way;
- at the southern end of the new surface water sewer 'oversized pipes' will be introduced to attenuate the run off to the same level that would have been experienced from the site for events up to and including the 1in 100 year event with an allowance for climate change. The flow that enters the culvert /ditch system to the south of the development will not exceed the existing rate of runoff, therefore, the flood risk to areas downstream of the site is considered to be unaffected;
- the surface water runoff from the proposed development will be restricted to three times the greenfield run off rate in accordance with the London Plan (SPG) guidance;
- overall there will be a reduction in the run off from the site following the development as the existing site's run off is not attenuated;
- SuDS measures will be incorporated within the development suitable for the prevailing ground conditions and land availability;
- 30% climate change has been considered in establishing the volume of attenuation required for the site;
- the issue of the critical drainage area has been investigated, and found to be confined to the railway track. The proposed development will not exacerbate the flooding, but the proposed development provides an opportunity to improve the situation, subject to detailed level information at the detail design stage, by diverting overland flow away from the railway track;
- the surface water runoff from the development can be managed in a sustainable manner; and
- the points of connection for the development's foul and surface water drainage will be subject to agreement with the drainage undertaker Thames Water Utilities. Capacity checks are required and will be undertaken by Thames Water on the receiving sewers to establish whether any up-grading of the system downstream of the development will be required.

Appendix A Proposed Development

NOTES Fletcher Priest Architects is a Limited Liability Partnership registered in England and Wales (OC336568) at the below address. \equiv this drawing is to be read in conjunction with the design risk assessment prepared by fpa. \equiv this drawing is to be read in conjunction with other drawings and specification produced by fpa and other members of the design team. \equiv all dimensions are in millimeters unless otherwise stated. \equiv do not scale this drawing. \equiv any discrepancies in dimensions are to be reported to the architect. \equiv all information subject to detail site survey.


KEY:

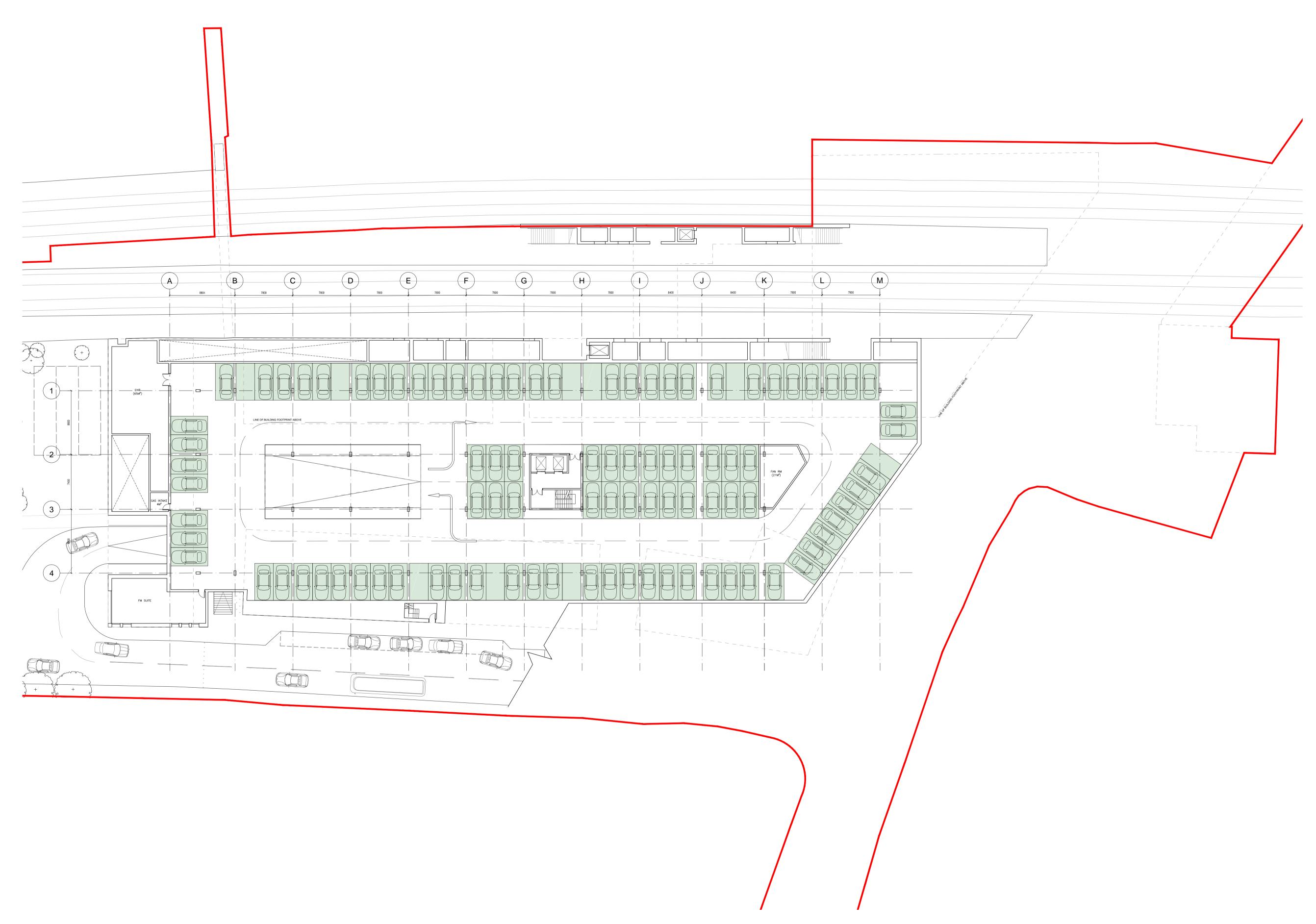
TOTAL CAR SPACES - 126 (61 Commuter / 17 Accessible / 48 Residential)

IN ABEYANCE, STRUCTURES/SERVICES TO BE COORDINATED WITH BH.					
B	GA FREEZE GA FREEZE	AH	LR	16.10.15	
~	GA FREEZE DRAFT ISSUE	AH	LR	09.10.15	
- RFV	DESCRIPTION	AH BY	LR CHK	25.09.15 DATE	
	DESCRIPTION	DI	OTIK	DATE	

FOR INFORMATION

TRANSPORT FOR LONDON NORTHWOOD

20 GA PLANS Zones A Blocks 1-7 Lower Ground 2 Floor Plan

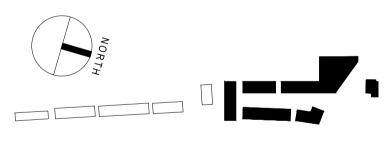

DRAWING NUMBER / REVISION

SCALE 1:250 @A1 / 1:500 @A3 DATE / DRAWN BY / CHECKED BY 31.07.2015 RE / LR

fletcher priest architects london + kōln + riga

middlesex house 34/42 cleveland st london W1T 4JE t +44 [0]20 7034 2200 f +44 [0]20 7637 5347 www.fletcherpriest.com

NOTES Fletcher Priest Architects is a Limited Liability Partnership registered in England and Wales (OC336568) at the below address. \equiv this drawing is to be read in conjunction with the design risk assessment prepared by fpa. \equiv this drawing is to be read in conjunction with other drawings and specification produced by fpa and other members of the design team. \equiv all dimensions are in millimeters unless otherwise stated. \equiv do not scale this drawing. \equiv any discrepancies in dimensions are to be reported to the architect. \equiv all information subject to detail site survey.


KEY:

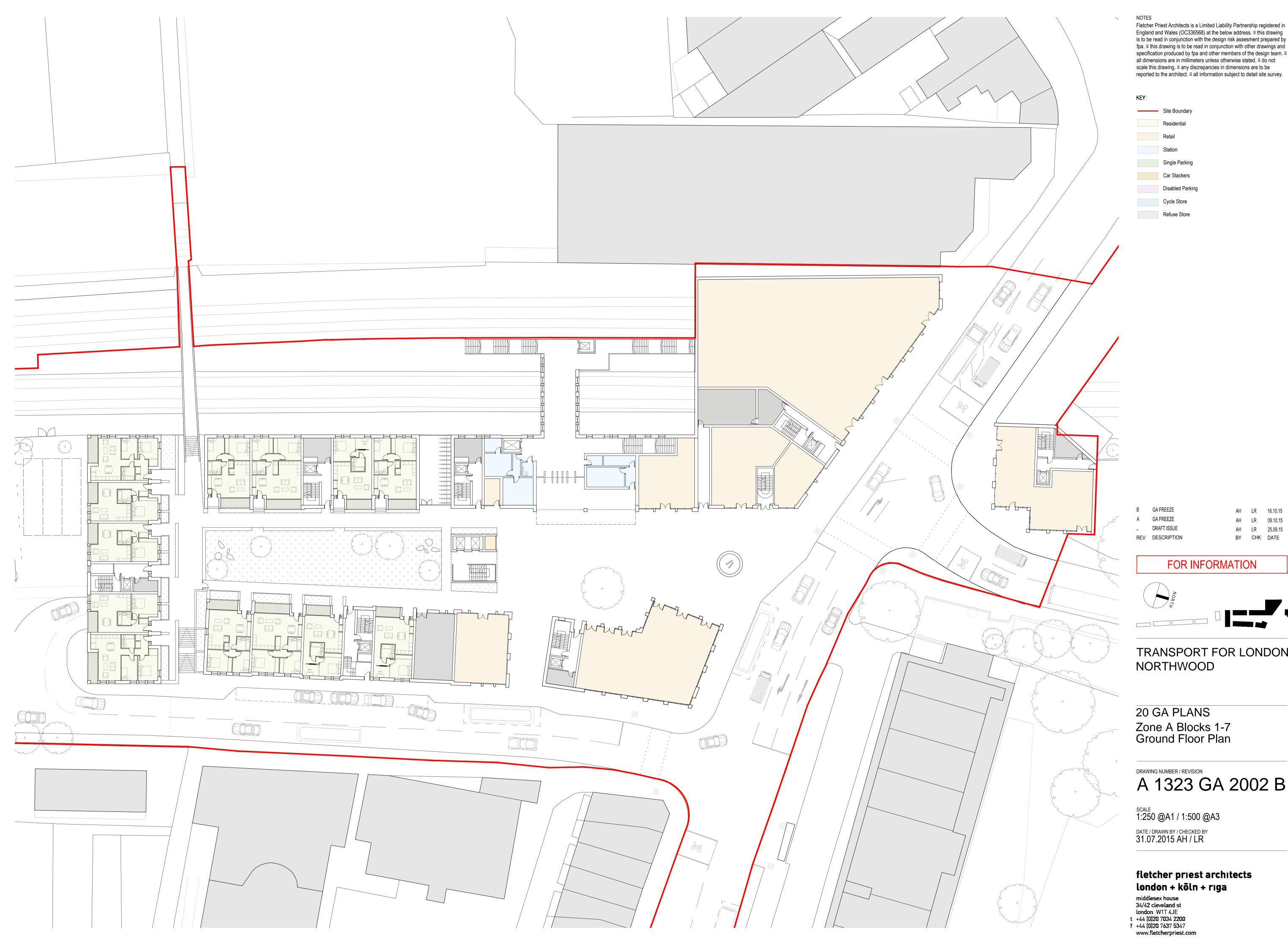
TOTAL CAR SPACES - 126 (61 Commuter / 17 Accessible / 48 Residential)

IN ABEYANCE, STRUCTURES/SERVICES TO BE COORDINATED WITH BH.					
B	GA FREEZE GA FREEZE	AH AH	LR LR	16.10.15 09.10.15	
-	DRAFT ISSUE	AH	LR	25.09.15	
REV	DESCRIPTION	BY	СНК	DATE	

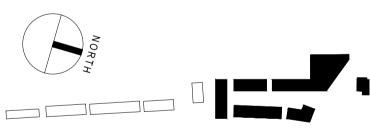
FOR INFORMATION

TRANSPORT FOR LONDON NORTHWOOD

20 GA PLANS Zone A Blocks 1-7 Lower Ground 1 Floor Plan


DRAWING NUMBER / REVISION

SCALE 1:250 @A1 / 1:500 @A3 DATE / DRAWN BY / CHECKED BY 31.07.2015 RE / LR


fletcher priest architects london + kōln + riga

middlesex house 34/42 cleveland st london W1T 4JE t +44 [0]20 7034 2200 f +44 [0]20 7637 5347 www.fletcherpriest.com

England and Wales (OC336568) at the below address. ≡ this drawing is to be read in conjunction with the design risk assesment prepared by fpa. ≡ this drawing is to be read in conjunction with other drawings and specification produced by fpa and other members of the design team. ≡ all dimensions are in millimeters unless otherwise stated. ≡ do not scale this drawing. ≡ any discrepancies in dimensions are to be reported to the architect. \equiv all information subject to detail site survey. KEY: Site Boundary Residential Retail Station Single Parking Car Stackers Disabled Parking Cycle Store Refuse Store GA FREEZE GA FREEZE DRAFT ISSUE BY CHK DATE FOR INFORMATION

AH LR 16.10.15 AH LR 09.10.15 Α AH LR 25.09.15 REV DESCRIPTION

TRANSPORT FOR LONDON NORTHWOOD

20 GA PLANS

Zone A Blocks 1-7 Ground Floor Plan

A 1323 GA 2002 B

DRAWING NUMBER / REVISION

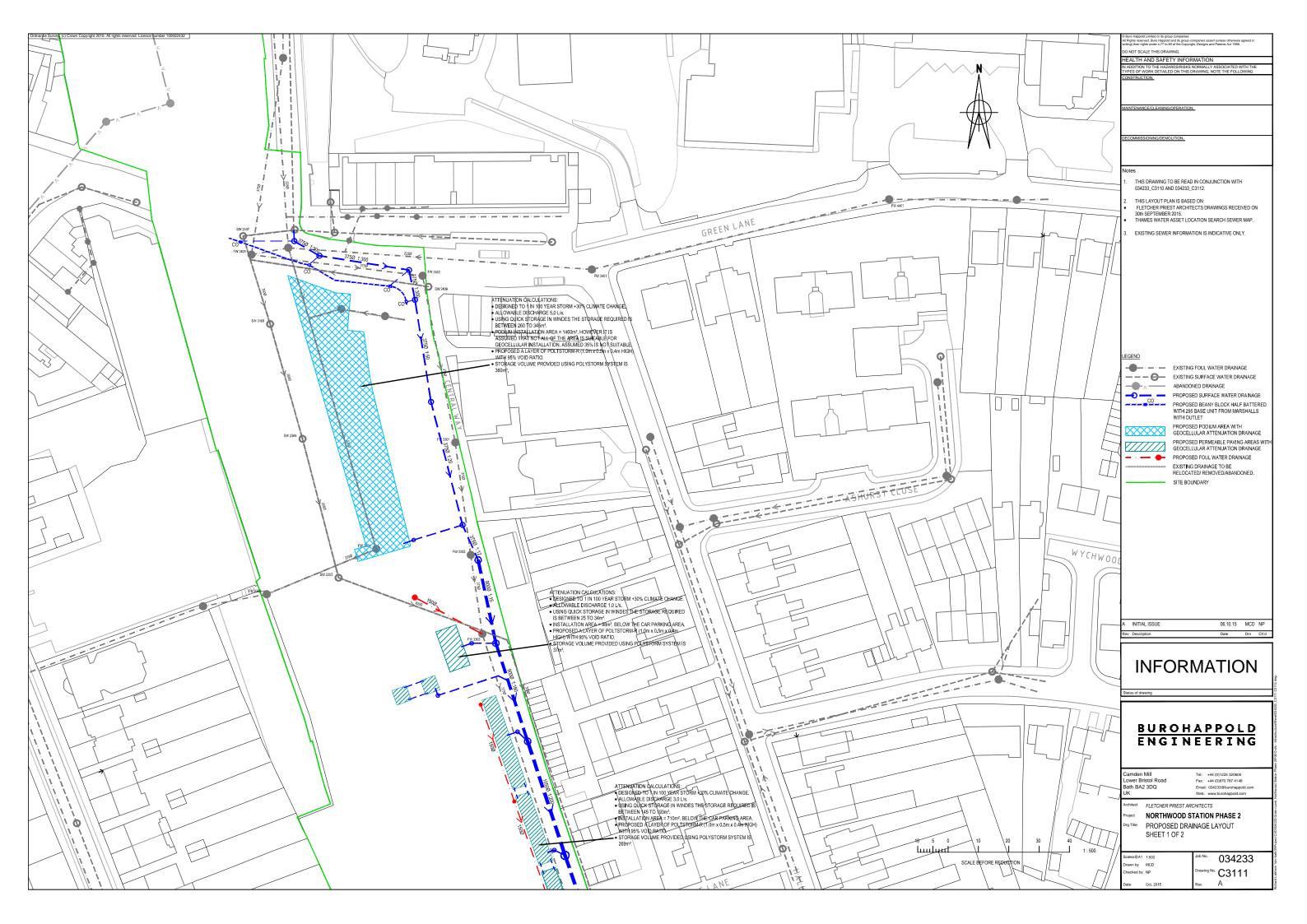
Appendix B Thames Water Sewer Mapping

The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified and established on site before any works are undertaken.

Based on the Ordnance Survey Map with the Sanction of the controller of H.M. Stationery Office, License no. 100019345 Crown Copyright Reserved.

<u>Thames Water Utilities Ltd</u>, Property Searches, PO Box 3189, Slough SL1 4W, DX 151280 Slough 13 T 0845 070 9148 E <u>searches@thameswater.co.uk</u> I <u>www.thameswater-propertysearches.co.uk</u>

Manhole Reference	Manhole Cover Level	Manhole Invert Level
4406	79.97	78.96
4403	79.67	78.53
4402	79.61	75.84
4401 4405	80.03 80.14	76.14 79.22
4403	79.88	78.89
141C	n/a	n/a
141B	n/a	n/a
1404	76.1	74.36
2407	77.2 77.02	75.59
2401 2408	75.69	70.1 74.13
2403	77.41	74.76
2406	77.43	75.93
2306	73.5	72.27
241L 2404	n/a 78.33	n/a 76.17
2404 2405	78.33 78.01	76.17 76.17
241K	n/a	n/a
241F	n/a	n/a
2411	n/a	n/a
241H	n/a	n/a
2304 241E	72.09 n/a	69.84 n/a
241E 241J	n/a	n/a
241G	n/a	n/a
241D	n/a	n/a
2402	78.88	69.91 77 02
2409 3301	78.85 75.36	77.93 69.76
3301	75.36 73.7	69.76 69.64
3303	72.37	69.48
331A	n/a	n/a
3403	80.47	79.65
331B	n/a	n/a
3401 3201	80.11 71.77	76.37 68.98
3305	76.07	74.64
3402	76.36	74.47
3306	n/a	n/a
3304	n/a	n/a
3404	80.53	79.21
3307 3308	n/a n/a	n/a n/a
3309	71.96	70.5
4301	71.99	69.88
4202	71.01	69.31
4201	70.92	68.95
4407 4408	n/a n/a	n/a n/a
4303	n/a	n/a
4304	n/a	n/a
4307	73.2	71.03
4302	73.29	70.58
201A 201B	n/a	n/a
201B 2005	n/a 65.97	n/a 64.42
2003	67.12	65.7
1001	69.84	67.53
1003	69.83	68.09
1004	n/a	n/a
1008 2002	n/a 68.61	n/a 67.56
1002	70.56	67.50 69.03
0001	n/a	n/a
0002	n/a	n/a
2006	70.17	69.34 69.32
2004	70.63	69.03 p/a
1007 1005	n/a n/a	n/a n/a
1005	n/a	n/a
0004	n/a	n/a
1101	71.43	68.57
2108	70.26	68.7
0108 2107	n/a 72.03	n/a 70.77
2107	72.03 71.14	69.59
2101	71.46	68.86
2106	71.19	70.02
2104	71.49	70.05
2102	71.49	69.03
411A 4102	n/a 71 79	n/a 70 14
4102 4101	71.79 71.83	70.14 68.78
4101	72.48	70.86
4107	n/a	n/a
401A	n/a	n/a
4106	n/a	n/a
4104	n/a	n/a


Manhole Reference	Manhole Cover Level	Manhole Invert Level
4002	72.34	71.12
4105	n/a	n/a
3004	n/a	n/a
3001	67.34	66.34
3005	67.03	65.56
3002	66.89	65.57
301A	n/a	n/a
301B	n/a	n/a
3003	n/a	n/a
3101	71.52	68.89
3102	71.27	68.73
4001	71.76	68.48
031A	n/a	n/a
1406	70.83	66.77
1402	70.89	69.45
141A	n/a	n/a
141D	n/a	n/a
1403	74.69	72.89
2105	71.1	70.14
0110	n/a	n/a
0112	n/a	n/a
0102	n/a	n/a
0211	n/a	n/a
0202	n/a	n/a
0203	n/a	n/a
1202	72.34	70.78
1201	71.35	69.22
0204	n/a	n/a
1203	71.24	69.38
0201	69.37	65.42
1301	71.24	69.41
0303	69.32	68.14
1302	71.18	69.5
2301	71.65	69.52
2302	n/a	n/a
031C	n/a	n/a
2305	72.04	70.51
0302	69.43	68.34
031B	n/a	n/a
0301	69.42	65.64
0114	n/a	n/a
0109	n/a	n/a
0113	n/a	n/a
0103	n/a	n/a
0104	n/a	n/a
0111	n/a	n/a
0005	n/a	n/a
0105	n/a	n/a
0106	n/a	n/a
0003	n/a	n/a
0101	n/a	n/a
0107	n/a	n/a
2007	n/a	n/a
2008	n/a	n/a

shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual of mains and services must be verified and established on site before any works are undertaken.

Thames Water Utilities Ltd, Property Searches, PO Box 3189, Slough SL1 4W, DX 151280 Slough 13 T 0845 070 9148 E searches@thameswater.co.uk I www.thameswater-propertysearches.co.uk

Appendix C Proposed Drainage Layout

Appendix D WINDES Calculations

Project: 034233 Green Lane, Northwood Station Phase 2

Quick Storage Estimate

100 year Storm Event + 20% Climate Change

Apartment Block Phase 1

🖌 Quick Storage	Estimate				- • ×		
Micro	Variables						
Drainage.	FSR Rainfall			Cv (Summer)	0.750		
	Return Period (years) 100		100	Cv (Winter)	0.840		
				Impermeable Area (ha)	0.530		
Variables	Region	England and	Wales 🔻	Maximum Allowable Discharge	5.0		
Results	Map	M5-60 (mm)	20.600	(i/s)			
Design		Ratio R	0.437	Infiltration Coefficient (m/hr)	0.00000		
Overview 2D				Safety Factor	2.0		
Overview 3D				Climate Change (%)	30		
Vt							
Analyse OK Cancel Help							
	Enter M	Maximum Allowa	ble Discharge	between 0.0 and 999999.0			

🖌 Quick Storage	Estimate
Micro Drainage.	Results
Dramage.	Global Variables require approximate storage of between 260 m ³ and 345 m ³ .
	These values are estimates only and should not be used for design purposes.
Variables	
Results	
Design	
Overview 2D	
Overview 3D	
Vt	
	Analyse OK Cancel Help
	Enter Maximum Allowable Discharge between 0.0 and 999999.0

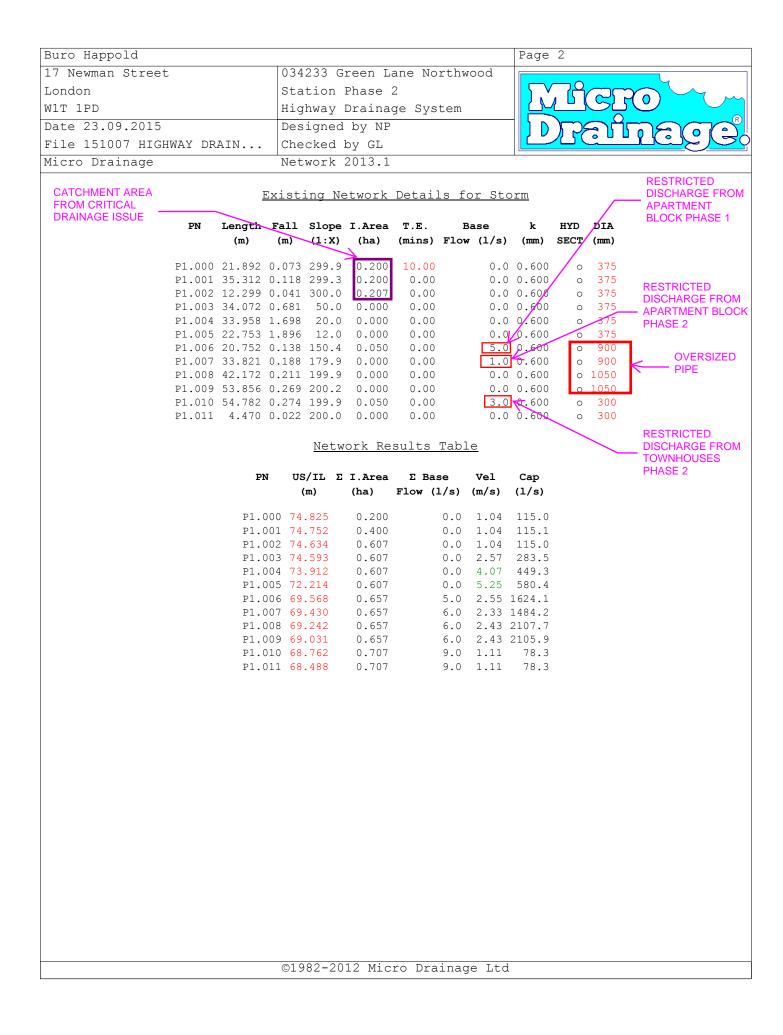
Apartment Block Phase 2

🖌 Quick Storage	Estimate				- • •		
Milero	Variables						
Drainage.	FSR Rainfall		-	Cv (Summer)	0.750		
	Return Period	(years)	100	Cv (Winter)	0.840		
				Impermeable Area (ha)	0.060		
Variables	Region	England and	Wales 👻	Maximum Allowable Discharge (//s)	1.0		
Results	Мар	M5-60 (mm)	20.600	(//3)			
Design		Ratio R	0.437	Infiltration Coefficient (m/hr)	0.00000		
Overview 2D				Safety Factor	2.0		
Overview 3D				Climate Change (%)	30		
Vt							
Analyse OK Cancel Help							
	Enter M	laximum Allowab	ole Discharge t	petween 0.0 and 999999.0			

🖌 Quick Storage	Estimate
Micro	Results
Drainage.	Global Variables require approximate storage of between 25 m ³ and 34 m ³ .
	These values are estimates only and should not be used for design purposes.
Variables	
Results	
Design	
Overview 2D	
Overview 3D	
Vt	
	Analyse OK Cancel Help
	Enter Maximum Allowable Discharge between 0.0 and 999999.0

Townhouses Phase 2

ſ	🖌 Quick Storage	Estimate				- • •		
	Micro	Variables						
	Drainage.	FSR Rainfall		-	Cv (Summer)	0.750		
		Return Period	(years)	100	Cv (Winter)	0.840		
					Impermeable Area (ha)	0.300		
	Variables	Region	England and	Wales 👻	Maximum Allowable Discharge (I/s)	3.0		
	Results	Мар	M5-60 (mm)	20.600	(//3)			
	Design		Ratio R	0.437	Infiltration Coefficient (m/hr)	0.00000		
	Overview 2D				Safety Factor	2.0		
	Overview 3D				Climate Change (%)	30		
	Vt							
	Analyse OK Cancel Help							
	Enter Maximum Allowable Discharge between 0.0 and 999999.0							


🕖 Quick Storage	Estimate
Micro	Results
Drainage.	Global Variables require approximate storage of between 145 m ³ and 193 m ³ .
	These values are estimates only and should not be used for design purposes.
Variables	
Results	
Design	
Overview 2D	
Overview 3D	
Vt	
	Analyse OK Cancel Help
	Enter Maximum Allowable Discharge between 0.0 and 999999.0

Buro Happold	Page 1	
17 Newman Street	034233 Green Lane Northwood	
London	Station Phase 2	
W1T 1PD	Highway Drainage System	
Date 23.09.2015	Designed by NP	DESTRET
File 151007 HIGHWAY DRAIN	Checked by GL	
Micro Drainage	Network 2013.1	

Time Area Diagram for Storm

Time (mins)	Area (ha)	Time (mins)	Area (ha)	Time (mins) 8-12	Area (ha)	Time (mins)	Area (ha)
0-4	0.194	4-8	0.403	8-12	0.080	12-16	0.029
	Total	Area C	Contrib	uting (1	ha) = (0.707	

Total Pipe Volume (m³) = 139.760

Buro Happold	Page 3	
17 Newman Street	034233 Green Lane Northwood	
London	Station Phase 2	
W1T 1PD	Highway Drainage System	THERE A
Date 23.09.2015	Designed by NP	DESTRESS
File 151007 HIGHWAY DRAIN	Checked by GL	
Micro Drainage	Network 2013.1	•

MH Name	MH CL (m)	MH Depth (m)	Coni	MH nection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
MH1	77.200	2.375	Open	Manhole	1500	P1.000	74.825	375				
MH2	77.477	2.725	Open	Manhole	1500	P1.001	74.752	375	P1.000	74.752	375	
MH3	78.800	4.166	Open	Manhole	1500	P1.002	74.634	375	P1.001	74.634	375	
MH4	78.700	4.107	Open	Manhole	1500	P1.003	74.593	375	P1.002	74.593	375	
MH5	75.900	1.988	Open	Manhole	1500	P1.004	73.912	375	P1.003	73.912	375	
MH6	74.210	1.996	Open	Manhole	1500	P1.005	72.214	375	P1.004	72.214	375	
MH7	72.398	2.830	Open	Manhole	2100	P1.006	69.568	900	P1.005	70.318	375	225
MH8	72.000	2.570	Open	Manhole	2100	P1.007	69.430	900	P1.006	69.430	900	
MH9	71.600	2.358	Open	Manhole	2100	P1.008	69.242	1050	P1.007	69.242	900	
MH10	71.600	2.569	Open	Manhole	2100	P1.009	69.031	1050	P1.008	69.031	1050	
MH11	71.600	2.838	Open	Manhole	1200	P1.010	68.762	300	P1.009	68.762	1050	
MH12	71.390	2.902	Open	Manhole	1200	P1.011	68.488	300	P1.010	68.488	300	
MHEXT	71.577	3.111	Open	Manhole	1500		OUTFALL		P1.011	68.466	300	

Manhole Schedules for Storm

Buro Happold	Page 4	
17 Newman Street	034233 Green Lane Northwood	
London	Station Phase 2	
W1T 1PD	Highway Drainage System	THERE A
Date 23.09.2015	Designed by NP	DESTRECT
File 151007 HIGHWAY DRAIN	Checked by GL	
Micro Drainage	Network 2013.1	

PIPELINE SCHEDULES for Storm

<u>Upstream Manhole</u>

PN	Hyd Sect	Diam (mm)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
P1.000	0	375	MH1	77.200	74.825	2.000	Open Manhole	1500
P1.001	0	375	MH2	77.477	74.752	2.350	Open Manhole	1500
P1.002	0	375	MH3	78.800	74.634	3.791	Open Manhole	1500
P1.003	0	375	MH4	78.700	74.593	3.732	Open Manhole	1500
P1.004	0	375	MH5	75.900	73.912	1.613	Open Manhole	1500
P1.005	0	375	MH 6	74.210	72.214	1.621	Open Manhole	1500
P1.006	0	900	MH7	72.398	69.568	1.930	Open Manhole	2100
P1.007	0	900	MH8	72.000	69.430	1.670	Open Manhole	2100
P1.008	0	1050	MH9	71.600	69.242	1.308	Open Manhole	2100
P1.009	0	1050	MH10	71.600	69.031	1.519	Open Manhole	2100
P1.010	0	300	MH11	71.600	68.762	2.538	Open Manhole	1200
P1.011	0	300	MH12	71.390	68.488	2.602	Open Manhole	1200

Downstream Manhole

PN	Length (m)	Slope (1:X)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
P1.000	21.892	299.9	MH2	77.477	74.752	2.350	Open Manhole	1500
P1.001	35.312	299.3	MH3	78.800	74.634	3.791	Open Manhole	1500
P1.002	12.299	300.0	MH4	78.700	74.593	3.732	Open Manhole	1500
P1.003	34.072	50.0	MH5	75.900	73.912	1.613	Open Manhole	1500
P1.004	33.958	20.0	MH6	74.210	72.214	1.621	Open Manhole	1500
P1.005	22.753	12.0	MH7	72.398	70.318	1.705	Open Manhole	2100
P1.006	20.752	150.4	MH8	72.000	69.430	1.670	Open Manhole	2100
P1.007	33.821	179.9	MH9	71.600	69.242	1.458	Open Manhole	2100
P1.008	42.172	199.9	MH10	71.600	69.031	1.519	Open Manhole	2100
P1.009	53.856	200.2	MH11	71.600	68.762	1.788	Open Manhole	1200
P1.010	54.782	199.9	MH12	71.390	68.488	2.602	Open Manhole	1200
P1.011	4.470	200.0	MHEXT	71.577	68.466	2.811	Open Manhole	1500

Buro Happold 17 Newman Street		1	134000	- rocr	Lane Nort		Page 5
						πωοσα	
London			Station				
W1T 1PD					nage Syste	m	
Date 23.09.2015			Designed				DELLER
File 151007 HIGHWAY	DRAIN.		Checked				
Micro Drainage		1	letwork	2013.	1		
	<u>Setting</u>	<u>g Out</u>	Inform	ation	- True Co	pordinate	<u>es (Storm)</u>
			D: . /T	···	US Easting		
	PN	Name		(mm)	(m)	(m)	(North)
			()	()	(,	(/	()
	P1.000	MH1	1500		509235.799	191467.21	17
	P1.001	MH2	1500		509256.507	191460.11	7
	P1.002	MH3	1500		509291.268	191453.90)4
							~~•
	P1.003	MH4	1500		509292.008	191441.62	27
		-					•
							Ţ
	P1.004	MH5	1500		509297.878	191408.00	55
							•
	P1.005	MH 6	1500		509305.634	191375.00	05
							a
							T
	P1.006	MH7	2100		509311.413	191352.99	98
							•
	P1.007	MH8	2100		509317.623	191333.19	97
							•
	P1.008	MH9	2100		509326.423	191300.54	±⊥ 1
							•
	P1.009	MH10	2100		509339.677	191260.50	05
							è.
	D1 010	N4171 1	1000			101000 00	
	P1.010	MHTT	1200		509357.536	TAT50A.03	20
							₹
	P1.011	MH12	1200		509375.425	191157.91	17
							le 🔍
	PN	DSMH	Dia/Len	Width	DS Easting	DS Northi	ng Layout
		Name	(mm)	(mm)	(m)	(m)	(North)
	D1 011	MITTIN	1 - 0 0		500270 675	101154 0	40
	P1.011	MHEXI	1500		509378.675	191154.8	49
							•

Buro Happold					Page 6
17 Newman Street	034233	Green	Lane No	orthwood	
London	Station	Phas	e 2		
W1T 1PD	Highway	Drai	nage Sys	stem	
Date 23.09.2015	Designe				
File 151007 HIGHWAY DRAIN	Checked	-			
Micro Drainage	Network	-			
			-		
	Area	a Sum	mary for	Storm	
			-		
Pipe P	IMP PIMP	PIMP	Gross	Imp.	Pipe Total
Number T	ype Name	(%) 2	Area (ha)	Area (ha)	(ha)
1.000		100	0.200	0.200	0.200
1.000		100	0.200	0.200	0.200
1.002		100	0.207	0.207	0.207
1.003		100	0.000	0.000	0.000
1.004		100	0.000	0.000	0.000
1.005		100	0.000	0.000	0.000
1.006		100	0.050	0.050	0.050
1.007		100	0.000	0.000	0.000
1.008		100	0.000	0.000	0.000
1.009		100	0.000	0.000	0.000
1.010		100	0.050	0.050	
1.011		100	0.000	0.000	
		200	Total	Total	Total
			0.707	0.707	
Outfall Pipe Numbe		C. Le (m	evel I. Le) (m		D,L W rel (mm) (mm)
P1.01	1 MHEXT	71.	577 68.	466 69.5	00 1500 0
	<u>Simulat</u>	ion (<u>Criteria</u>	for Stor	<u>m</u>
	ion Factor art (mins) Level (mm) f (Global)	0.50	0 M 0 0 Flow pe 0	ADD Factor I r Person pe	- % of Total Flow 0.000 * 10m ³ /ha Storage 2.000 Inlet Coeffiecient 0.800 er Day (1/per/day) 0.000 Run Time (mins) 60 ut Interval (mins) 1
					Number of Time/Area Diagrams 0 Number of Real Time Controls 0
	<u>Synthe</u>	etic	Rainfall	<u>Details</u>	
М5-60		land a			Profile Type Summer Cv (Summer) 0.750 Cv (Winter) 0.840 tion (mins) 30

Buro Happold						Page 7			
17 Newman Street	0342	33 Gree	n Lane	North	vood				
London	Stat	ion Pha	se 2			\int	20/		
VIT 1PD	High	way Dra	inage S	System				250	\bigcirc
Date 23.09.2015	_	.gned by					\sim	A	\sim
								לן ס ט ט	╗(。(:
File 151007 HIGHWAY DRAIN		ked by							
Aicro Drainage	Netw	ork 201	3.1						
Hot Sta: Manhole Headloss Co Foul Sewage per N Number of Input Hydrograg Number of Online Contro Rainfall Mode Regio	uction Fa Start (m rt Level beff (Glo hectare (bhs 0 Num l n England br Flood	Simula actor 1.00 ins) (mm) bbal) 0.50 1/s) 0.00 Jumber of bber of St Synthetic F d and Wal Risk Warr Analysis	ation Cr 00 Add 0 00 Flow 00 Offline torage S <u>2 Rainfa</u> 2SR M5-60 es Ra ning (mm	iteria MADD F per Per Contro tructur <u>11 Detai</u> 0 (mm) 2 atio R) 300.0 p Fine	Flow - actor * In son per ls 0 Nur es 0 Nur <u>ls</u> 20.800 C 0.438 C DVI Inertia	% of Tot 10m³/ha et Coeff Day (1/g uber of ? uber of F v (Summe v (Winte) Status	cal Flc Storag Fiecien Per/day Fime/Ar Real Ti r) 0.7 r) 0.8 OFF	ow 0.000 ge 2.000 nt 0.800 r) 0.000 cea Diagr ime Contr 50	rams O
Prof	ile(s)					Summ	er and	Winter	
Duration(s) Return Period(s) (Climate Char	years) uge (%) Return	Climate	Firs	t X 1	first Y	, 480, 6 2 First Z	00, 72 , 10, 3 0, 30, 0/F	1440 30, 100 30, 30 Lvl	
Duration(s) Return Period(s) (Climate Char	(mins) (years) ge (%) Return		Firs	t X 1	first Y	, 480, 6 2	00, 72 , 10, 3 0, 30, 0/F	0, 960, 1440 30, 100 30, 30 Lvl	
Duration(s) Return Period(s) (Climate Char PN Storm P1.000 15 Winte	(mins) years) ge (%) Return Period r 2	Climate Change 0%	Firs Surcha	t X I arge Summer	first Y	, 480, 6 2 First Z	00, 72 , 10, 3 0, 30, 0/F	0, 960, 1440 30, 100 30, 30 Lvl	
Duration(s) Return Period(s) (Climate Char PN Storm P1.000 15 Winte P1.001 15 Winte	(mins) years) ge (%) Return Period r 2 r 2	Climate Change 0% 0%	Firs Surch 10/15 \$ 10/15 \$	t X 1 arge Summer Summer	first Y	, 480, 6 2 First Z	00, 72 , 10, 3 0, 30, 0/F	0, 960, 1440 30, 100 30, 30 Lvl	
Duration(s) Return Period(s) (Climate Char PN Storm P1.000 15 Winte P1.001 15 Winte P1.002 15 Winte	(mins) years) ge (%) Return Period r 2 r 2 r 2	Climate Change 0% 0% 0%	Firs Surch 10/15 : 10/15 : 10/15 :	t X 1 arge Summer Summer Summer	first Y	, 480, 6 2 First Z	00, 72 , 10, 3 0, 30, 0/F	0, 960, 1440 30, 100 30, 30 Lvl	
Duration(s) Return Period(s) (Climate Char PN Storm P1.000 15 Winte P1.001 15 Winte P1.002 15 Winte P1.003 15 Winte	(mins) years) ge (%) Return Period r 2 r 2 r 2 r 2 r 2	Climate Change 0% 0% 0%	Firs Surch 10/15 \$ 10/15 \$	t X 1 arge Summer Summer Summer	first Y	, 480, 6 2 First Z	00, 72 , 10, 3 0, 30, 0/F	0, 960, 1440 30, 100 30, 30 Lvl	
Duration(s) Return Period(s) (Climate Char PN Storm P1.000 15 Winte P1.001 15 Winte P1.002 15 Winte P1.003 15 Winte P1.004 15 Winte	(mins) years) ge (%) Return Period r 2 r 2 r 2 r 2 r 2 r 2	Climate Change 0% 0% 0% 0%	Firs Surch 10/15 : 10/15 : 10/15 :	t X 1 arge Summer Summer Summer	first Y	, 480, 6 2 First Z	00, 72 , 10, 3 0, 30, 0/F	0, 960, 1440 30, 100 30, 30 Lvl	
Duration(s) Return Period(s) (Climate Char PN Storm P1.000 15 Winte P1.001 15 Winte P1.002 15 Winte P1.003 15 Winte P1.004 15 Winte P1.005 15 Winte	(mins) years) ge (%) Return Period r 2 r 2 r 2 r 2 r 2 r 2 r 2 r 2	Climate Change 0% 0% 0% 0% 0%	Firs Surch 10/15 : 10/15 : 10/15 :	t X 1 arge Summer Summer Summer	first Y	, 480, 6 2 First Z	00, 72 , 10, 3 0, 30, 0/F	0, 960, 1440 30, 100 30, 30 Lvl	
Duration(s) Return Period(s) (Climate Char PN Storm P1.000 15 Winte P1.001 15 Winte P1.002 15 Winte P1.003 15 Winte P1.004 15 Winte P1.005 15 Winte P1.006 15 Winte	<pre>(mins) years) ge (%) Return Period r 2 r 2 r 2 r 2 r 2 r 2 r 2 r 2 r 2 r 2</pre>	Climate Change 0% 0% 0% 0% 0%	Firs Surch 10/15 : 10/15 : 10/15 :	t X 1 arge Summer Summer Summer	first Y	, 480, 6 2 First Z	00, 72 , 10, 3 0, 30, 0/F	0, 960, 1440 30, 100 30, 30 Lvl	
Duration(s) Return Period(s) (Climate Char PN Storm P1.000 15 Winte P1.001 15 Winte P1.002 15 Winte P1.003 15 Winte P1.004 15 Winte P1.005 15 Winte	<pre>(mins) years) ge (%) Return Period r 2 r 2 r 2 r 2 r 2 r 2 r 2 r 2 r 2 r 2</pre>	Climate Change 0% 0% 0% 0% 0%	Firs Surch 10/15 : 10/15 : 10/15 :	t X 1 arge Summer Summer Summer	first Y	, 480, 6 2 First Z	00, 72 , 10, 3 0, 30, 0/F	0, 960, 1440 30, 100 30, 30 Lvl	
Duration(s) Return Period(s) (Climate Char PN Storm P1.000 15 Winte P1.001 15 Winte P1.002 15 Winte P1.003 15 Winte P1.004 15 Winte P1.005 15 Winte P1.006 15 Winte	<pre>(mins) years) ge (%) Return Period r 2 r 2 r 2 r 2 r 2 r 2 r 2 r 2 r 2 r 2</pre>	Climate Change 0% 0% 0% 0% 0%	Firs Surch 10/15 : 10/15 : 10/15 :	t X 1 arge Summer Summer Summer	first Y	, 480, 6 2 First Z	00, 72 , 10, 3 0, 30, 0/F	0, 960, 1440 30, 100 30, 30 Lvl	
Duration(s) Return Period(s) (Climate Char PN Storm P1.000 15 Winte P1.001 15 Winte P1.002 15 Winte P1.003 15 Winte P1.003 15 Winte P1.004 15 Winte P1.005 15 Winte P1.006 15 Winte P1.007 15 Winte P1.008 15 Winte P1.009 15 Winte	<pre>(mins) years) ge (%) Return Period r 2 r 2 r 2 r 2 r 2 r 2 r 2 r 2 r 2 r 2</pre>	Climate Change 0% 0% 0% 0% 0% 0%	Firs Surch 10/15 : 10/15 : 100/15 :	t X arge Summer Summer Summer	first Y	, 480, 6 2 First Z	00, 72 , 10, 3 0, 30, 0/F	0, 960, 1440 30, 100 30, 30 Lvl	
Duration(s) Return Period(s) (Climate Char PN Storm P1.000 15 Winte P1.001 15 Winte P1.002 15 Winte P1.003 15 Winte P1.003 15 Winte P1.004 15 Winte P1.005 15 Winte P1.006 15 Winte P1.007 15 Winte P1.008 15 Winte	<pre>(mins) years) ge (%) Return Period r 2 r 2 r 2 r 2 r 2 r 2 r 2 r 2 r 2 r 2</pre>	Climate Change 0% 0% 0% 0% 0% 0% 0%	First Surch 10/15 : 10/15 : 100/15 : 2/15 :	t X I arge Summer Summer Summer Summer	first Y	, 480, 6 2 First Z	00, 72 , 10, 3 0, 30, 0/F	0, 960, 1440 30, 100 30, 30 Lvl	
Duration(s) Return Period(s) (Climate Char PN Storm P1.000 15 Winte P1.001 15 Winte P1.002 15 Winte P1.003 15 Winte P1.003 15 Winte P1.004 15 Winte P1.005 15 Winte P1.006 15 Winte P1.007 15 Winte P1.008 15 Winte P1.009 15 Winte	(mins) years) years) years) years) years) Return Period r 2 r 2 r 2 r 2 r 2 r 2 r 2 r 2	Climate Change 0% 0% 0% 0% 0% 0% 0% 0%	First Surch 10/15 : 10/15 : 100/15 : 2/15 :	t X arge Summer Summer Summer	first Y	, 480, 6 2 First Z	00, 72 , 10, 3 0, 30, 0/F	0, 960, 1440 30, 100 30, 30 Lvl	
Duration(s) Return Period(s) (Climate Char PN Storm P1.000 15 Winte P1.001 15 Winte P1.002 15 Winte P1.003 15 Winte P1.004 15 Winte P1.005 15 Winte P1.006 15 Winte P1.006 15 Winte P1.008 15 Winte P1.009 15 Winte P1.010 15 Winte	(mins) years) years) years) years) years) Return Period r 2 r 2 r 2 r 2 r 2 r 2 r 2 r 2	Climate Change 0% 0% 0% 0% 0% 0% 0% 0% 0%	First Surcha 10/15 : 10/15 : 100/15 : 2/15 : 2/15 :	t X I arge Summer Summer Summer Summer	first Y	, 480, 6 2 First Z Overflow	00, 72 , 10, 3 0, 30, 0/F	0, 960, 1440 30, 100 30, 30 Lvl	
Duration(s) Return Period(s) (Climate Char PN Storm P1.000 15 Winte P1.001 15 Winte P1.002 15 Winte P1.003 15 Winte P1.003 15 Winte P1.004 15 Winte P1.005 15 Winte P1.006 15 Winte P1.007 15 Winte P1.008 15 Winte P1.009 15 Winte P1.010 15 Winte P1.011 15 Winte	(mins) years) years) years) years) years) Return Period r 2 r 2 r 2 r 2 r 2 r 2 r 2 r 2	Climate Change 0% 0% 0% 0% 0% 0% 0% 0% 0%	First Surcha 10/15 : 10/15 : 100/15 : 2/15 : Flooded	t X I arge Summer Summer Summer Summer	First Y Flood	, 480, 6 2 First Z Overflow	00, 72 , 10, 3 0, 30, 0/F	0, 960, 1440 30, 100 30, 30 Lvl	
Duration(s) Return Period(s) (Climate Char PN Storm P1.000 15 Winte P1.001 15 Winte P1.002 15 Winte P1.003 15 Winte P1.004 15 Winte P1.005 15 Winte P1.005 15 Winte P1.006 15 Winte P1.006 15 Winte P1.007 15 Winte P1.008 15 Winte P1.009 15 Winte P1.010 15 Winte P1.011 15 Winte	<pre>(mins) years) years) years) years) years years years Period r 2 r 2 r 2 r 2 r 2 r 2 r 2 r 2 r 2 r 2</pre>	Climate Change 0% 0% 0% 0% 0% 0% 0% 0% 0%	First Surcha 10/15 : 10/15 : 100/15 : 2/15 : Flooded Volume	t X I arge Summer Summer Summer Summer Summer Summer	First Y Flood O'flow	, 480, 6 2 First Z Overflow Pipe Flow	00, 72 , 10, 30, 0, 30, O/F Act.	0, 960, 1440 30, 100 30, 30 Lvl Exc.	
Duration(s) Return Period(s) (Climate Char PN Storm P1.000 15 Winte P1.001 15 Winte P1.002 15 Winte P1.003 15 Winte P1.003 15 Winte P1.004 15 Winte P1.005 15 Winte P1.006 15 Winte P1.007 15 Winte P1.008 15 Winte P1.009 15 Winte P1.010 15 Winte P1.011 15 Winte	<pre>(mins) years) years) years) years) years years years Period r 2 r 2 r 2 r 2 r 2 r 2 r 2 r 2 r 2 r 2</pre>	Climate Change 0% 0% 0% 0% 0% 0% 0% 0% 0%	First Surcha 10/15 : 10/15 : 100/15 : 2/15 : Flooded	t X I arge Summer Summer Summer Summer	First Y Flood	, 480, 6 2 First Z Overflow Pipe Flow	00, 72 , 10, 3 0, 30, 0/F	0, 960, 1440 30, 100 30, 30 Lvl Exc.	
Duration(s) Return Period(s) (Climate Char PN Storm P1.000 15 Winte P1.001 15 Winte P1.002 15 Winte P1.002 15 Winte P1.003 15 Winte P1.004 15 Winte P1.005 15 Winte P1.005 15 Winte P1.006 15 Winte P1.007 15 Winte P1.008 15 Winte P1.009 15 Winte P1.010 15 Winte P1.010 15 Winte P1.011 15 Winte	<pre>(mins) years) years) years) years) years years years Period r 2 r 2 r 2 r 2 r 2 r 2 r 2 r 2 r 2 r 2</pre>	Climate Change 0% 0% 0% 0% 0% 0% 0% 0% 0%	First Surcha 10/15 : 10/15 : 100/15 : 2/15 : Flooded Volume (m ³)	t X I arge Summer Summer Summer Summer Summer Flow / Cap.	First Y Flood O'flow (1/s)	, 480, 6 2 First Z Overflow Pipe Flow (l/s)	00, 72 , 10, 30, 0/F Act.	0, 960, 1440 30, 100 30, 30 Lvl Exc.	
Duration(s) Return Period(s) (Climate Char PN Storm P1.000 15 Winte P1.001 15 Winte P1.002 15 Winte P1.003 15 Winte P1.003 15 Winte P1.004 15 Winte P1.005 15 Winte P1.006 15 Winte P1.006 15 Winte P1.007 15 Winte P1.008 15 Winte P1.009 15 Winte P1.010 15 Winte P1.010 15 Winte P1.011 15 Winte P1.011 15 Winte	(mins) years) years) years) years) years) Return Period r 2 r 2 r 2 r 2 r 2 r 2 r 2 r 2	Climate Change 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%	First Surcha 10/15 : 10/15 : 100/15 : 2/15 : Flooded Volume (m ³) 0.000	t X I arge Summer Summer Summer Summer Summer Flow / Cap. 0.27	First Y Flood O'flow (1/s) 0.0	<pre>, 480, 6 2 First Z Overflow Pipe Flow (1/s) 26.7</pre>	00, 72 , 10, 30, 0/F Act.	0, 960, 1440 30, 100 30, 30 Lvl Exc.	
Duration(s) Return Period(s) (Climate Char PN Storm P1.000 15 Winte P1.001 15 Winte P1.002 15 Winte P1.002 15 Winte P1.003 15 Winte P1.004 15 Winte P1.005 15 Winte P1.005 15 Winte P1.006 15 Winte P1.007 15 Winte P1.008 15 Winte P1.001 15 Winte P1.011 15 Winte P1.011 15 Winte P1.011 15 Winte P1.000 MH1 P1.001 MH1 P1.001 MH1	(mins) years) years) years) years) years) Return Period r 2 r 2 r 2 r 2 r 2 r 2 r 2 r 2	Climate Change 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%	First Surcha 10/15 : 10/15 : 100/15 : 2/15 : Flooded Volume (m ³) 0.000 0.000	t X I arge Summer Summer Summer Summer Summer Flow / Cap. 0.27 0.53	First Y Flood O'flow (1/s) 0.0 0.0	<pre>, 480, 6</pre>	00, 72 , 10, 30, 0/F Act.	0, 960, 1440 30, 100 30, 30 Lvl Exc.	
Duration(s) Return Period(s) (Climate Char PN Storm P1.000 15 Winte P1.001 15 Winte P1.002 15 Winte P1.002 15 Winte P1.003 15 Winte P1.004 15 Winte P1.005 15 Winte P1.006 15 Winte P1.006 15 Winte P1.007 15 Winte P1.008 15 Winte P1.001 15 Winte P1.011 15 Winte P1.011 15 Winte P1.011 15 Winte P1.000 MH1 P1.001 MH2 P1.002 MH3	(mins) years) years) years) years) years) Return Period r 2 r 2 r 2 r 2 r 2 r 2 r 2 r 2	Climate Change 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%	First Surch: 10/15 : 10/15 : 100/15 : 100/15 : 2/15 : Flooded Volume (m ³) 0.000 0.000 0.000	t X I arge Summer Summer Summer Summer Summer Flow / Cap. 0.27 0.53 0.96	First Y Flood O'flow (1/s) 0.0 0.0 0.0	<pre>, 480, 6</pre>	00, 72 , 10, 30, 0/F Act.	0, 960, 1440 30, 100 30, 30 Lvl Exc. S OK OK OK	
Duration(s) Return Period(s) (Climate Char PN Storm P1.000 15 Winte P1.001 15 Winte P1.002 15 Winte P1.002 15 Winte P1.003 15 Winte P1.004 15 Winte P1.005 15 Winte P1.005 15 Winte P1.006 15 Winte P1.007 15 Winte P1.008 15 Winte P1.001 15 Winte P1.011 15 Winte P1.011 15 Winte P1.011 15 Winte P1.001 MH1 P1.001 MH1 P1.002 MH3 P1.003 MH4	(mins) years) years) years) years) years) Return Period r 2 r 2 r 2 r 2 r 2 r 2 r 2 r 2	Climate Change 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%	First Surcha 10/15 : 10/15 : 100/15 : 100/15 : 2/15 : Flooded Volume (m ³) 0.000 0.000 0.000 0.000	t X I arge Summer Summer Summer Summer Summer Flow / Cap. 0.27 0.53 0.96 0.34	First Y Flood O'flow (1/s) 0.0 0.0 0.0 0.0	<pre>, 480, 6</pre>	00, 72 , 10, 30, 0/F Act.	0, 960, 1440 30, 100 30, 30 Lvl Exc. S OK OK OK OK OK	
Duration(s) Return Period(s) (Climate Char PN Storm P1.000 15 Winte P1.001 15 Winte P1.002 15 Winte P1.003 15 Winte P1.003 15 Winte P1.004 15 Winte P1.005 15 Winte P1.006 15 Winte P1.006 15 Winte P1.007 15 Winte P1.008 15 Winte P1.001 15 Winte P1.011 15 Winte P1.011 15 Winte P1.011 15 Winte P1.001 MH1 P1.001 MH1 P1.002 MH3 P1.003 MH4 P1.004 MH5	(mins) years) years) years) years) years) Return Period r 2 r 2 r 2 r 2 r 2 r 2 r 2 r 2	Climate Change 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%	First Surcha 10/15 : 10/15 : 100/15 : 100/15 : 2/15 : Flooded Volume (m ³) 0.000 0.000 0.000 0.000	t X I arge Summer Summer Summer Summer Summer Flow / Cap. 0.27 0.53 0.96 0.34 0.21	First Y Flood O'flow (1/s) 0.0 0.0 0.0 0.0 0.0 0.0	<pre>, 480, 6</pre>	00, 72 , 10, 30, 0/F Act.	0, 960, 1440 30, 100 30, 30 Lvl Exc. S OK OK OK OK OK OK	
Duration(s) Return Period(s) (Climate Char PN Storm P1.000 15 Winte P1.001 15 Winte P1.002 15 Winte P1.003 15 Winte P1.003 15 Winte P1.004 15 Winte P1.005 15 Winte P1.006 15 Winte P1.007 15 Winte P1.008 15 Winte P1.009 15 Winte P1.010 15 Winte P1.011 15 Winte P1.011 15 Winte P1.011 15 Winte P1.001 MH1 P1.001 MH1 P1.002 MH3 P1.003 MH4 P1.004 MH5 P1.005 MH6	(mins) years) years) years) years) years) Return Period r 2 r 2 r 2 r 2 r 2 r 2 r 2 r 2	Climate Change 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%	First Surcha 10/15 : 10/15 : 10/15 : 100/15 : 2/15 : Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000	t X I arge Summer Summer Summer Summer Summer Flow / Cap. 0.27 0.53 0.96 0.34 0.21 0.17	First Y Flood O'flow (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	<pre>, 480, 6</pre>	00, 72 , 10, 30, 0/F Act.	0, 960, 1440 30, 100 30, 30 Lvl Exc. S OK OK OK OK OK OK OK OK	
Duration(s) Return Period(s) (Climate Char PN Storm P1.000 15 Winte P1.001 15 Winte P1.002 15 Winte P1.003 15 Winte P1.003 15 Winte P1.004 15 Winte P1.005 15 Winte P1.006 15 Winte P1.007 15 Winte P1.008 15 Winte P1.001 15 Winte P1.010 15 Winte P1.011 15 Winte P1.011 15 Winte P1.001 MH1 P1.001 MH1 P1.002 MH3 P1.003 MH4 P1.004 MH5 P1.005 MH6 P1.005 MH6 P1.006 MH7	(mins) years) years) years) years) years) Return Period r 2 r 2 r 2 r 2 r 2 r 2 r 2 r 2	Climate Change 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%	First Surcha 10/15 : 10/15 : 100/15 : 100/15 : 2/15 : Flooded Volume (m ³) 0.000 0.000 0.000 0.000	t X I arge Summer Summer Summer Summer Summer Flow / Cap. 0.27 0.53 0.96 0.34 0.21	First Y Flood O'flow (1/s) 0.0 0.0 0.0 0.0 0.0 0.0	<pre>, 480, 6</pre>	00, 72 , 10, 30, 0/F Act.	0, 960, 1440 30, 100 30, 30 Lvl Exc. S OK OK OK OK OK OK	

Buro Happold	Page 8	
17 Newman Street	034233 Green Lane Northwood	
London	Station Phase 2	
W1T 1PD	Highway Drainage System	
Date 23.09.2015	Designed by NP	DETERMENT
File 151007 HIGHWAY DRAIN	Checked by GL	
Micro Drainage	Network 2013.1	

PN	US/MH Name	Water Level (m)	Surch'ed Depth (m)	Flooded Volume (m³)	Flow / Cap.	O'flow (l/s)	Pipe Flow (l/s)	Status
P1.008	MH9	69.422	-0.870	0.000	0.07	0.0	97.2	OK
P1.009	MH10	69.235	-0.846	0.000	0.06	0.0	92.9	OK
P1.010	MH11	69.175	0.113	0.000	1.08	0.0	80.2	SURCHARGED
P1.011	MH12	68.853	0.065	0.000	1.59	0.0	80.0	SURCHARGED

Buro Happold			Page 9						
17 Newman Street	034233 Gre	en Lane Northwood							
London	Station Ph	ase 2							
W1T 1PD	Highway Dr	ainage System	L'ECTO						
Date 23.09.2015	Designed b								
File 151007 HIGHWAY DRAIN	Checked by	•							
Micro Drainage	Network 20								
	NOUNDIN 20								
<u>10 year Return Period Summa</u>	<u>ry of Criti</u>	cal Results by Max	imum Level (Rank 1) for Storm						
Hot St Hot Start Manhole Headloss Coef Foul Sewage per hec	Simulation Criteria Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * 10m³/ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficcient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000 Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0								
Number of Online Controls	0 Number of :	Storage Structures 0 N	Number of Real Time Controls 0						
Destroyal Market		<u>c Rainfall Details</u>	Cr. (Cummore) 0.750						
Rainfall Model Region B		FSR M5-60 (mm) 20.800 les Ratio R 0.438							
	ingrana ana na								
Margin for		ming (mm) 300.0 E							
	-	3 Timestep Fine Inert DTS Status ON	ia Status OFF						
	1	JIS Status ON							
Profile Duration (a) (ma	()	60 120 190 240 2	Summer and Winter 50, 480, 600, 720, 960,						
Duración(s) (m.	115, 15, 50,	00, 120, 100, 240, 3	1440						
Return Period(s) (yea	ars)		2, 10, 30, 100						
Climate Change	(%)		0, 30, 30, 30						
F	eturn Climate	First X First	Y First Z O/F Lvl						
PN Storm P	Period Change	Surcharge Flood	Overflow Act. Exc.						
P1.000 15 Winter	10 +30%	10/15 Summer							
P1.001 15 Winter		10/15 Summer							
P1.002 15 Winter		10/15 Summer							
P1.003 15 Winter		100/15 Summer							
P1.004 15 Winter P1.005 15 Winter	10 +30% 10 +30%								
P1.006 15 Winter	10 +30%								
P1.007 15 Winter	10 +30응								
P1.008 15 Winter	10 +30%								
P1.009 15 Winter	10 +30%								
P1.010 15 Winter P1.011 15 Winter	10 +30%								
PI.UII IS WINCER	10 +30%	2/15 Summer							
Wa	ter	Flooded	Pipe						
US/MH Le	vel Surch'ed	Volume Flow / O'flo	w Flow						
PN Name (1	m) Depth (m)	(m³) Cap. (l/s)	(1/s) Status						
P1.000 MH1 75.	390 0.190	0.000 0.58 0.	0 57.0 SURCHARGED						
P1.001 MH2 75.			0 116.9 SURCHARGED						
P1.002 MH3 75.			0 189.6 SURCHARGED						
P1.003 MH4 74.			0 190.3 ОК						
P1.004 MH5 74.			0 190.2 ОК						
P1.005 MH6 72.			0 189.3 OK						
P1.006 MH7 69. P1.007 MH8 69.			0 210.1 OK 0 210.7 OK						
F1.007 MHO 09.		0.000 0.22 0.							
		Micro Drainage Lt							

Buro Happold	Page 10	
17 Newman Street	034233 Green Lane Northwood	
London	Station Phase 2	
W1T 1PD	Highway Drainage System	
Date 23.09.2015	Designed by NP	
File 151007 HIGHWAY DRAIN	Checked by GL	
Micro Drainage	Network 2013.1	

PN	US/MH Name	Water Level (m)	Surch'ed Depth (m)	Flooded Volume (m³)	Flow / Cap.	O'flow (l/s)	Pipe Flow (l/s)	Status
P1.008	MH9	69.544	-0.748	0.000	0.14	0.0	203.6	OK
P1.009	MH10	69.524	-0.557	0.000	0.11	0.0	168.4	OK
P1.010	MH11	69.517	0.455	0.000	1.45	0.0	107.8	SURCHARGED
P1.011	MH12	68.936	0.148	0.000	2.15	0.0	107.8	SURCHARGED

Buro Happold			Page 11
17 Newman Street	034233 Gree	en Lane North	vood
London	Station Pha	ase 2	
W1T 1PD	Highway Dra	ainage System	
Date 23.09.2015	Designed by	/ NP	
File 151007 HIGHWAY DRAIN	Checked by		
Micro Drainage	Network 201		
Areal Reducti Hot Start I Manhole Headloss Coeff Foul Sewage per hect Number of Input Hydrographs Number of Online Controls Rainfall Model	<u>Simul</u> ion Factor 1.0 art (mins) Level (mm) f (Global) 0.5 tare (l/s) 0.0 0 Number of S <u>Syntheti</u>	Lation Criteria 000 Additional 0 MADD F 0 000 Flow per Per 000 5 Offline Contro 5 torage Structur c Rainfall Detai FSR M5-60 (mm) 2	y Maximum Level (Rank 1) for Storm Flow - % of Total Flow 0.000 factor * 10m³/ha Storage 2.000 Inlet Coefficcient 0.800 rson per Day (1/per/day) 0.000 ls 0 Number of Time/Area Diagrams 0 es 0 Number of Real Time Controls 0 ils 20.800 Cv (Summer) 0.750 0.438 Cv (Winter) 0.840
Profile	Analysis E (s) .ns) 15, 30, rrs)	Timestep Fine DTS Status ON	DVD Status OFF Inertia Status OFF 240, 360, 480, 600, 720, 960, 1440 2, 10, 30, 100 0, 30, 30, 30
	eturn Climate eriod Change		First Y First Z O/F Lvl Flood Overflow Act. Exc.
	erioù change	Surcharge	FIOOD OVERHOW ACC. EXC.
P1.000 15 Winter		10/15 Summer	
P1.001 15 Winter P1.002 15 Winter		10/15 Summer 10/15 Summer	
P1.003 15 Winter		100/15 Summer	
P1.004 15 Winter	30 +30%	,	
P1.005 15 Winter	30 +30%		
P1.006 15 Winter	30 +30%		
P1.007 15 Winter	30 +30%		
P1.008 30 Winter	30 +30%		
P1.009 30 Winter	30 +30%		
P1.010 30 Winter P1.011 30 Winter	30 +30% 30 +30%		
FI.UII SU WINCEL	50 +50%	2/15 Summer	
Wat	ter	Flooded	Pipe
US/MH Lev		Volume Flow /	-
PN Name (n		(m ³) Cap.	(l/s) (l/s) Status
P1.000 MH1 75.		0.000 0.76	0.0 74.3 SURCHARGED
P1.001 MH2 75. P1.002 MH3 75.		0.000 1.43 0.000 2.71	
P1.002 MH3 75. P1.003 MH4 74.		0.000 2.71	
P1.003 MH4 74. P1.004 MH5 74.			
P1.005 MH6 72.		0.000 0.48	
P1.006 MH7 69.		0.000 0.28	
P1.007 MH8 69.	751 -0.579	0.000 0.27	
	@1982_2012	Micro Draina	ne Itd
1	SI307-2015	MICIO DIAINA	ye Liu

Buro Happold	Page 12	
17 Newman Street	034233 Green Lane Northwood	
London	Station Phase 2	
W1T 1PD	Highway Drainage System	
Date 23.09.2015	Designed by NP	
File 151007 HIGHWAY DRAIN	Checked by GL	
Micro Drainage	Network 2013.1	1

PN	US/MH Name	Water Level (m)	Surch'ed Depth (m)	Flooded Volume (m³)	Flow / Cap.	O'flow (l/s)	Pipe Flow (l/s)	Status
P1.008		69.717	-0.575	0.000	0.15		205.6	OK
P1.009	MH10	69.710	-0.371	0.000	0.10	0.0	159.1	OK
P1.010	MH11	69.702	0.640	0.000	1.62	0.0	120.2	SURCHARGED
P1.011	MH12	68.981	0.193	0.000	2.39	0.0	120.2	SURCHARGED

Buro Happold		Page 13									
17 Newman Street	034233 Green Lane Northwood										
London	Station Phase 2										
W1T 1PD	Highway Drainage System	LIELELO M									
Date 23.09.2015	Designed by NP										
File 151007 HIGHWAY DRAIN	Checked by GL										
Micro Drainage	Network 2013.1										
100 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm Simulation Criteria Areal Reduction Factor 1.000 Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * 10m³/ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000 Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 0 Number of Storage Structures 0 Number of Real Time Controls 0 Synthetic Rainfall Details Rainfall Model FSR M5-60 (mm) 20.800 Cv (Summer) 0.750 Region England and Wales Ratio R 0.438 Cv (Winter) 0.840 Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF											
Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440 Return Period(s) (years) 2, 10, 30, 100 Climate Change (%) 0, 30, 30, 30 Return Climate First X First Y First Z O/F Lvl PN Storm Period Change Succharge Flood Overflow Act. Exc.											
P1.000 15 Winter P1.001 15 Winter	100 +30% 10/15 Summer 100 +30% 10/15 Summer										
P1.002 15 Winter	100 +30% 10/15 Summer										
P1.003 15 Winter	100 +30% 100/15 Summer										
P1.004 15 Winter	100 +30%										
P1.005 15 Winter	100 +30%										
P1.006 30 Winter P1.007 30 Winter	100 +30% 100 +30%										
P1.008 30 Winter	100 +30%										
P1.009 30 Winter	100 +30%										
P1.010 30 Winter	100 +30% 2/15 Summer										
P1.011 30 Winter	100 +30% 2/15 Summer										
	ter Flooded	Pipe									
US/MH Lev		-									
	m) Depth (m) (m^3) Cap. $(1/s)$										
P1.000 MH1 76.		0 102.8 SURCHARGED									
P1.001 MH2 76. P1.002 MH3 75.		0 186.5 SURCHARGED 0 296.1 SURCHARGED									
P1.002 MH3 75. P1.003 MH4 75.		0 295.1 SURCHARGED 0 295.3 SURCHARGED									
P1.004 MH5 74.		0 293.9 OK									
P1.005 MH6 72.		0 294.9 ОК									
P1.006 MH7 70.		0 280.8 OK									
P1.007 MH8 70.	046 -0.284 0.000 0.29 0.	0 280.3 OK									
©1982-2012 Micro Drainage Ltd											

Buro Happold	Page 14		
17 Newman Street	034233 Green Lane Northwood	_	
London	Station Phase 2		
W1T 1PD	Highway Drainage System		
Date 23.09.2015	Designed by NP	DESTRET	
File 151007 HIGHWAY DRAIN	Checked by GL		
Micro Drainage	Network 2013.1	1	

PN	US/MH Name	Water Level (m)	Surch'ed Depth (m)	Flooded Volume (m³)	Flow / Cap.	O'flow (l/s)	Pipe Flow (l/s)	Status
P1.008		70.034	-0.258	0.000	0.18		249.0	OK
P1.009	MH10	70.025	-0.056	0.000	0.11	0.0	176.2	OK
P1.010	MH11	70.005	0.943	0.000	1.86	0.0	137.7	SURCHARGED
P1.011	MH12	69.053	0.265	0.000	2.74	0.0	137.8	SURCHARGED

Geoff Lewis Buro Happold Limited 17 Newman Street London W1T 1PD UK

T: +44 (0)207 927 9700 F: +44 (0)870 787 4145 Email: geoff.lewis@burohappold.com