

4041 MCERTS

Ian Bailey
Kalex Ltd
Bridge House
The Ash
Little Hadham
Ware
SG11 2DG

e: Kalex Group

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS
t: 01923 225404
f: 01923 237404
e: reception@i2analytical.com

Analytical Report Number : 21-52927

Project / Site name:	Thames Materials	Samples received on:	25/01/2021
Your job number:	TML	Samples instructed on / Analysis started on:	25/01/2021
Your order number:	TEM-JAN21	Analysis completed by:	01/02/2021
Report Issue Number:	1	Report issued on:	01/02/2021
Samples Analysed:	1 soil sample		

Signed: *Agnieszka Czerwińska*

Agnieszka Czerwińska
Technical Reviewer (Reporting Team)
For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils - 4 weeks from reporting
leachates - 2 weeks from reporting
waters - 2 weeks from reporting
asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement.
Application of uncertainty of measurement would provide a range within which the true result lies.
An estimate of measurement uncertainty can be provided on request.

4041

Analytical Report Number: 21-52927**Project / Site name: Thames Materials****Your Order No: TEM-JAN21**

Lab Sample Number				1747322
Sample Reference				T1/2201/01
Sample Number				None Supplied
Depth (m)				None Supplied
Date Sampled				22/01/2021
Time Taken				1330
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status	
Stone Content	%	0.1	NONE	< 0.1
Moisture Content	%	0.01	NONE	7.9
Total mass of sample received	kg	0.001	NONE	1.2

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	11.3
Total Cyanide	mg/kg	1	MCERTS	< 1
Free Cyanide	mg/kg	1	MCERTS	< 1
Total Sulphate as SO4	mg/kg	50	MCERTS	6600
Water Soluble Sulphate as SO4 16hr extraction (2:1)	mg/kg	2.5	MCERTS	620
Water Soluble SO4 16hr extraction (2:1 Leachate Equivale	g/l	0.00125	MCERTS	0.31
Water Soluble SO4 16hr extraction (2:1 Leachate Equivale	mg/l	1.25	MCERTS	312
Sulphide	mg/kg	1	MCERTS	< 1.0
Total Organic Carbon (TOC)	%	0.1	MCERTS	0.5

Speciated PAHs

Naphthalene	mg/kg	0.05	MCERTS	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	1.4
Anthracene	mg/kg	0.05	MCERTS	0.35
Fluoranthene	mg/kg	0.05	MCERTS	1.7
Pyrene	mg/kg	0.05	MCERTS	1.5
Benzo(a)anthracene	mg/kg	0.05	MCERTS	1
Chrysene	mg/kg	0.05	MCERTS	0.63
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	0.75
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	0.47
Benzo(a)pyrene	mg/kg	0.05	MCERTS	0.71
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	0.4
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	0.46
Coronene	mg/kg	0.05	NONE	< 0.05

Total PAH

Total WAC-17 PAHs	mg/kg	0.85	NONE	9.51
-------------------	-------	------	------	------

4041 MCERTS

Analytical Report Number: 21-52927**Project / Site name: Thames Materials****Your Order No: TEM-JAN21**

Lab Sample Number	1747322		
Sample Reference	T1/2201/01		
Sample Number	None Supplied		
Depth (m)	None Supplied		
Date Sampled	22/01/2021		
Time Taken	1330		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status

Heavy Metals / Metalloids

Antimony (aqua regia extractable)	mg/kg	1	ISO 17025	2.8
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	9.9
Barium (aqua regia extractable)	mg/kg	1	MCERTS	140
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	0.58
Boron (water soluble)	mg/kg	0.2	MCERTS	1.6
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	21
Copper (aqua regia extractable)	mg/kg	1	MCERTS	74
Lead (aqua regia extractable)	mg/kg	1	MCERTS	52
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3
Molybdenum (aqua regia extractable)	mg/kg	0.25	MCERTS	1.8
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	18
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	31
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	79

Petroleum Hydrocarbons

TPH C10 - C40	mg/kg	10	MCERTS	170
---------------	-------	----	--------	-----

U/S = Unsuitable Sample I/S = Insufficient Sample

4041 MCERTS

Analytical Report Number : 21-52927

Project / Site name: Thames Materials

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1747322	T1/2201/01	None Supplied	None Supplied	Brown loam and clay with gravel and brick.

4041 MCERTS

Analytical Report Number : 21-52927**Project / Site name: Thames Materials****Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)**

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Free cyanide in soil	Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Speciated WAC-17 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270. MCERTS accredited except Coronene.	L064-PL	D	NONE
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Sulphide in soil	Determination of sulphide in soil by acidification and heating to liberate hydrogen sulphide, trapped in an alkaline solution then assayed by ion selective electrode.	In-house method	L010-PL	D	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
TPH Banding in Soil by FID	Determination of hexane extractable hydrocarbons in soil by GC-FID.	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	W	MCERTS
Sulphate, water soluble, in soil	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.**For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.****Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.**