
163 FIELD END ROAD LONDON HA5 1QL

BS4142 PLANT NOISE ASSESSMENT

24 November 2025

Jasmine Lounge

163 FIELD END ROAD LONDON HA5 1QL

BS4142 PLANT NOISE ASSESSMENT

Document Reference: RP.251124.0 - 163 FIELD END ROAD LONDON - PLANT NOISE ASSESSMENT.DOCX

Revision	Description	Issued by	Issue date
-	First Issue – Plant Noise Assessment	Damien Hesnan	24/11/2025

DISCLAIMER

This report has been prepared by Aran Acoustics Ltd with due care and diligence in accordance with the instruction of the client and within the terms and conditions of the Contract with the Client.

The report is for the sole use of the Client and Aran Acoustics Ltd shall not be held responsible for any use of the report or its content for any purpose other than that for which it was prepared and provided to the Client.

Aran Acoustics Ltd accepts no responsibility of whatever nature to any third parties who may have been made aware of or have acted in the knowledge of the report or its contents.

No part of this document may be copied or reproduced without the prior written approval of Aran Acoustics Ltd.

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	SITE DESCRIPTION.....	2
3.0	ENVIRONMENTAL NOISE SURVEY.....	3
3.1	Measurement Equipment.....	3
3.2	Weather Conditions	3
4.0	SURVEY RESULTS.....	4
5.0	ASSESSMENT CRITERIA	5
5.1	British Standard 4142.....	5
5.2	Target Plant Noise Levels	6
6.0	PLANT NOISE LEVEL ASSESSMENT.....	7
6.1	Mitigation Strategy	8
6.2	Vibration.....	8
7.0	SUMMARY AND CONCLUSION.....	9
	APPENDIX A – SITE PLAN	10
	APPENDIX B – SITE PHOTOS	11
	APPENDIX C – PLANT NOISE CALCULATION SHEET	12
	APPENDIX D – TECHNICAL DATA SHEETS.....	13

1.0 INTRODUCTION

Aran Acoustics in collaboration with Airtight Building Solutions Ltd have been appointed to carry out a noise impact assessment for the proposed installation of a kitchen extract system at 163 Field End Road, London.

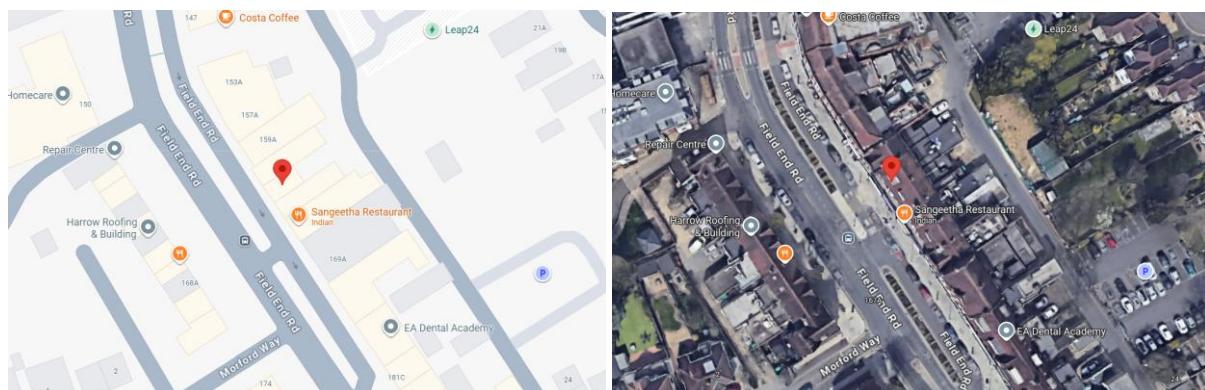
A noise survey and assessment has been requested to ensure that noise emissions from the proposed plant do not cause undue disturbance to nearby noise sensitive locations.

The purpose of this assessment is to determine the existing noise levels at the nearest noise sensitive location and establish the maximum permissible noise levels from the plant.

To establish suitable plant noise levels, an assessment has been carried out in accordance with BS 4142:2014 'Methods for rating and assessing industrial and commercial sound'. This assessment has been benchmarked against an environmental noise survey undertaken on 19 November 2025.

This report therefore describes the noise survey and its results. Figure 4.1 contains a graphical representation of the noise measurements taken on site. Section 5.0 provides the maximum permissible noise levels for the proposed plant. Section 6.0 presents an assessment of plant noise levels based on the proposed installation and its location.

2.0 SITE DESCRIPTION


The site is located at 163 Field End Road, London, forming part of a parade of mixed-use commercial premises fronting Field End Road. The premises comprise a ground floor commercial unit with residential accommodation situated on upper floor levels.

Proposals include the installation of a kitchen extract system serving the ground floor unit. The extract fan and associated ductwork are to be installed externally at roof level to the rear of the property, with the discharge directed horizontally as shown on the drawings included in Appendix A.

The nearest noise sensitive receptor is the first floor residential window situated directly above the host premises. Additional residential properties are located to the rear of the site; however, the dominant assessment location is the first floor window immediately overlooking the proposed plant installation.

The existing acoustic environment is characterised by continuous road traffic activity along Field End Road, together with noise associated with parking movements, commercial activity from the surrounding units and existing mechanical plant installed on nearby premises. These noise sources contribute to the residual acoustic climate across both daytime and evening periods.

Figure 2.1 below shows a location map and aerial photo of the site and surrounding area.

Table 2.1 – Location map and aerial photo of the site*

**Imagery courtesy of Google Maps*

3.0 ENVIRONMENTAL NOISE SURVEY

An environmental noise survey was carried out at the site on 19 November 2025. The survey was carried out over a continuous 24-hour period to capture both daytime and night-time acoustic conditions representative of the surrounding environment.

The microphone was mounted at first floor height at the rear of the premises in close proximity to the nearest residential window. The position was selected to be representative of the most exposed façade of the host property in relation to the proposed plant installation.

A site plan showing the microphone location is provided in Appendix A. Site photos of the microphone position are provided in Appendix B.

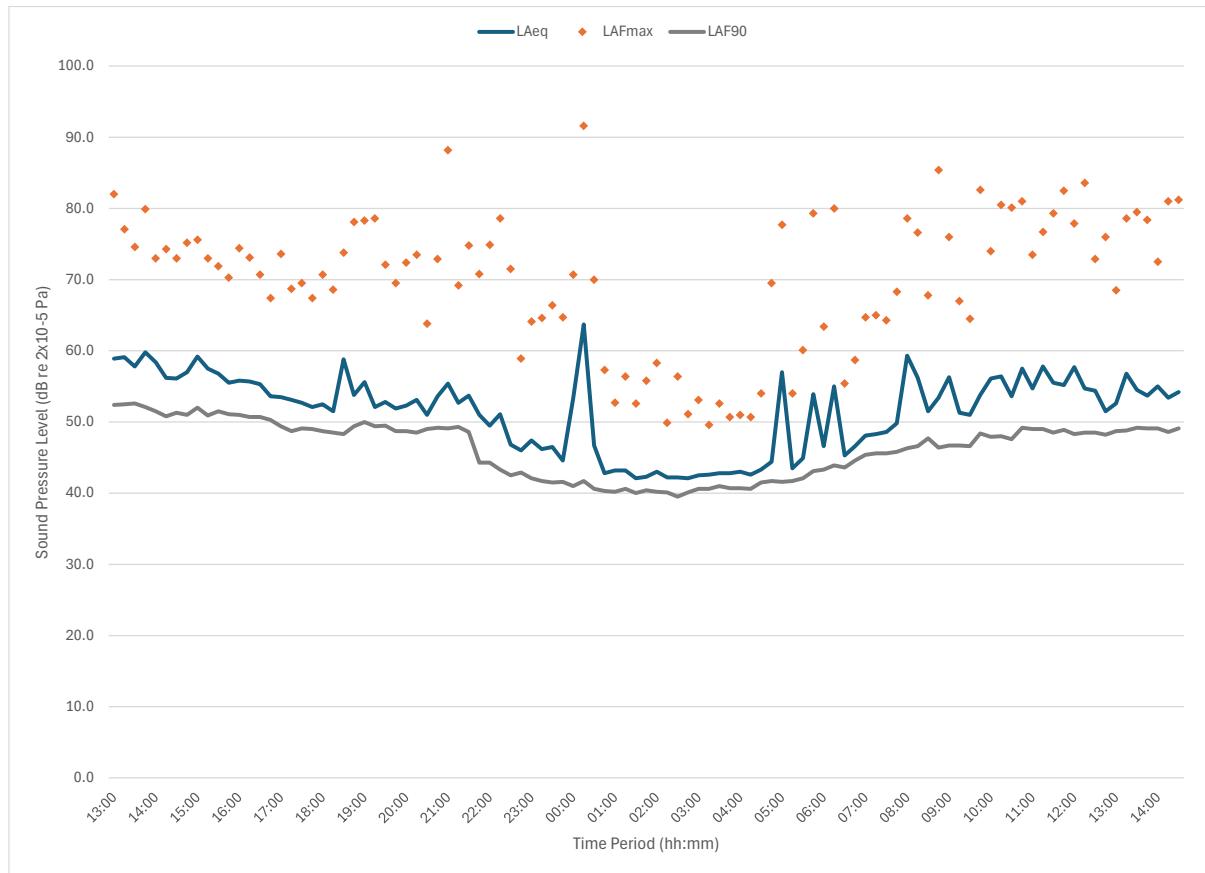
3.1 Measurement Equipment

The following measurement equipment was used, which complies with the performance specifications for a Class 1 device in accordance with BS EN 61672-1, BS EN 61260 and BS EN 60942.

Name	Serial Number	Last Calibrated	Calibration Due
Norsonic Precision Sound Analyser Type 140	1404768	Dec 2024	Dec 2026
Norsonic Type 1209 Pre-amplifier	31313	Dec 2024	Dec 2026
Norsonic Type 1225 Microphone	157320	Dec 2024	Dec 2026
Rion Type NC-74 Acoustic Calibrator	35046846	Feb 2025	Feb 2026

Table 3.1 – Measurement equipment used on site

Measurements were logged as consecutive A weighted 15-minute samples with statistical indices stored for each interval. The sound level meter was field calibrated immediately before and after the survey with no material drift observed.


3.2 Weather Conditions

The weather was mainly fine and dry for the duration of the survey. Wind speed remained below 5 m/s. The temperature was approximately 01 - 14 °C.

The weather conditions were seen as suitable for environmental noise surveying in accordance with BS 7445-1:2003 '*Description and measurement of environmental noise*'.

4.0 SURVEY RESULTS

The noise levels measured during the survey period are shown in Figure 4.1 below. The full set of acoustic data measured on site is available upon request.

Figure 4.1 – Measured noise levels

Results of the survey show that noise levels to the rear of the property remained relatively consistent through the day with a reduction during the night period. This is attributable to road traffic and existing plant activity in the locality.

The following table provides a summary of the noise levels measured on site at the fixed microphone position during the survey period including the equivalent continuous A-weighted sound pressure level; $L_{Aeq,T}$ and representative background noise level; $L_{A90,T}$.

Time Period	Average Noise Level L_{Aeq} , dB	Representative Background L_{A90} , dB
Day (07:00 – 23:00 hours)	55	49
Night (23:00 – 07:00 hours)	51	41

Table 4.1 - Summary of measured noise levels

5.0 ASSESSMENT CRITERIA

Section 4.0 above provides a summary of measured noise levels on site. The following section provides a summary of guidance documentation relevant to this development.

5.1 British Standard 4142

BS 4142:2014 describes a method of determining the level of noise of an industrial nature, together with the procedures for assessing whether the noise in question is likely to give rise to complaints from persons living in the vicinity. As such, an assessment to BS 4142 is typically called for within planning conditions.

The likelihood of complaints in response to a specific noise depends on various factors. BS 4142 assesses the likelihood of complaints by considering the margin by which the noise in question exceeds the background noise level. BS 4142 states that:

- a) Typically, the greater this difference, the greater the magnitude of the impact.
- b) A difference of around +10 dB or more is likely to be an indication of a significant adverse impact, depending on the context.
- c) A difference of around +5 dB is likely to be an indication of an adverse impact, depending on the context.
- d) The lower the rating level is relative to the measured background sound level, the less likely it is that the specific sound source will have an adverse impact or a significant adverse impact. Where the rating level does not exceed the background sound level, this is an indication of the specific sound source having a low impact, depending on the context.

This standard also allows for an appropriate correction for the acoustic features present in the noise using a number of methods. A correction should be applied if one or more of the following features (see the list below), are present within the noise sources in question.

- The noise is of a tonal nature, i.e. it contains a distinguishable, discreet, continuous note such as whine, hiss, screech, hum;
- The noise is impulsive, i.e. it contains distinct impulses such as bangs, clicks, clatters, or thumps;
- The noise contains other characteristics that are neither tonal nor impulsive but is irregular enough to attract attention.

It can be concluded from BS4142 guidance document that noise levels from plant and equipment associated with the development should not generally exceed the background noise level when measured at the nearest noise sensitive location. This is a positive indication of low noise impact.

5.2 Target Plant Noise Levels

The proposed operating hours for the kitchen extract system are between 10:00 and 23:00 hours. The representative background sound level measured during the survey was 49 dB L_{A90} during the daytime period and 41 dB L_{A90} during the night-time period. Although the system is not intended to operate beyond 23:00 hours, the night-time background level has been included for completeness.

The manufacturer's octave-band sound power data and the calculated spectrum at the receptor have been reviewed. The predicted plant noise is broadband in character with no tonal, impulsive or other distinguishing acoustic features. On this basis no acoustic feature correction is applied in accordance with the procedures set out in BS 4142.

The design aim is for the rating level from the plant to be at least 10 dB below the representative background sound level at the nearest residential receptor. Based on the measured background levels, the maximum permissible specific sound levels at the nearby receptors are given in Table 5.1.

Time Period	Representative Background, L_{A90}	Tolerance Factor	Correction Factor	Max Noise Level at Residential
Day (07:00 – 23:00 hours)	49 dBA	-10 dB	0 dB	39 dBA
Night (23:00 – 07:00 hours)*	41 dBA	-10 dB	0 dB	31 dBA

Table 5.1 - Plant noise level targets

*The extract system is not currently proposed to operate at night. The night-time target is included for completeness.

6.0 PLANT NOISE LEVEL ASSESSMENT

Noise predictions have been undertaken for the proposed kitchen extract system using the octave band sound power data provided for the Helios GBW 500/4/4 extract fan. The assessment includes contributions from inlet duct breakout incorporating a CP03-C-0560-1D attenuator, fan case breakout, and the outlet discharge fitted with a CP03-C-0560-2D attenuator. The fan and ductwork assembly are to be installed at roof level to the rear of the premises with a horizontal discharge, as indicated on the drawings provided in Appendix A.

Predicted specific sound levels at the nearest first floor residential receptor have been calculated using standard propagation methods, including silencer insertion loss, breakout attenuation through 0.55mm galvanised steel ductwork, end reflection, and distance attenuation from each component. The receptor is located at the first floor rear window directly above the host premises.

The combined level from all elements of the kitchen extract system has been calculated as **32dBA** at the nearest noise sensitive receptor. This is comfortably below the maximum permissible rating level of **39dBA** derived in Section 5.2 and therefore meets the design target required to achieve a low impact in accordance with BS 4142.

The octave band calculation results are presented in Table 6.1 below.

Noise Source	Octave Band Centre Frequency, dB							
	63 Hz	125 Hz	250 Hz	500 Hz	1.0 K Hz	2.0 K Hz	4.0 K Hz	dBA
Inlet Duct	-33.7	15.3	17.3	7.3	7.3	2.3	-8.7	13
Fan Case Breakout	-32.9	31.1	31.1	15.1	17.1	13.1	10.1	25
Duct Outlet	-45.1	17.9	28.9	22.2	21.1	26.1	24.1	31
Combined SPL (Lp)	-30.1	31.4	33.3	23.1	22.7	26.4	24.3	32

Table 6.1 – Calculated Plant Noise Levels

The calculated rating level is therefore 7 dB below the daytime design criterion of 39 dBA. On this basis, the plant noise emissions are not expected to give rise to adverse impact at nearby residential receptors under the proposed operating hours.

Plant noise calculation sheets are provided in Appendix C. Manufacturers noise level data sheets are provided in Appendix D.

6.1 Mitigation Strategy

The following mitigation measures are integral to the extract system design and have been included within the plant noise calculations presented in Section 6.0.

A CP03-C-0560-1D silencer is installed on the inlet side of the fan to reduce upstream breakout from the external ductwork. A CP03-C-0560-2D silencer is installed on the discharge side to control noise emitted from the horizontal outlet located on the roof of the proposed ground floor extension. Both silencers have been selected based on their octave band insertion loss characteristics, which have been applied directly within the assessment.

The external ductwork is constructed from 0.55mm galvanised steel, which provides inherent attenuation through breakout surfaces and contributes to the overall sound reduction performance of the system. No additional casing lagging or secondary enclosure is proposed or required based on the calculated sound levels.

These measures ensure that noise emissions from the extract system comply with the derived daytime planning target at nearby residential windows.

6.2 Vibration

Mechanical plant such as extract fans can transmit structure-borne vibration into the building fabric, which may re-radiate as audible noise. In this case, the extract fan and associated ductwork will be mounted on the flat roof of the proposed ground floor extension, with the discharge facing away from the host building towards the rear service yard.

The roof-mounted configuration provides natural separation between the fan assembly and the first floor residential accommodation above the premises. Standard installation practice requires the fan unit to be mounted on suitable anti-vibration pads with flexible connectors fitted at both the inlet and outlet to prevent rigid coupling to the ductwork system. These measures limit the potential for vibration transfer into the supporting structure.

The horizontal steel ductwork will be supported from the new extension roof structure. Provided that intermediate supports incorporate suitable resilient packers or rubber isolation where required, the risk of vibration transmission into the main building fabric is minimal. No direct fixing of the system to internal partitions or upper floor structures is proposed.

With these provisions in place, the likelihood of structure-borne vibration or re-radiated noise affecting nearby residential rooms is considered negligible. The proposed installation is therefore expected to operate without giving rise to vibration-related disturbance.

7.0 SUMMARY AND CONCLUSION

A noise impact assessment has been undertaken for the proposed kitchen extract system to be installed at 163 Field End Road, London. The system comprises a Helios GBW 500/4/4 extract fan installed at roof level to the rear of the premises, with associated inlet and outlet ductwork fitted with CP03-C-0560 silencers. The installation serves the ground floor commercial unit and operates between 10:00 and 23:00 hours.

A 24-hour environmental noise survey was carried out on 19 November 2025 to establish representative background sound levels at the nearest noise sensitive receptor, identified as the first floor rear-facing residential window above the host premises. The measured background sound level was 49 dB L_{A90} during daytime hours and 41 dB L_{A90} during night-time hours.

Based on BS 4142 guidance, a design target of 39 dBA was derived for the maximum specific sound level from the proposed plant at the nearest receptor. This target corresponds to the background sound level minus 10 dB to ensure a low impact, with no acoustic feature correction applied owing to the broadband and non-tonal nature of the predicted plant noise.

Octave band calculations have been undertaken for the inlet duct breakout, fan case breakout and the outlet discharge incorporating the specified silencers, breakout attenuation and propagation to the receptor. The combined specific sound level at the most exposed residential façade is calculated to be 32 dBA, which is 7 dB below the daytime design target.

The assessment therefore confirms that the proposed kitchen extract system meets the BS 4142 design criteria and is not expected to result in adverse impact at nearby residential properties. With the silencers and installation configuration included within the design, the system is considered suitable for operation during the proposed hours without causing disturbance.

APPENDIX A – SITE PLAN

VENTILATION (PROPOSED)

EXTRACT SYSTEM SPECIFICATIONS

1) EXTRACT CANOPY
 Double front canopy (W1/00 x D1/200 x H600/400) above cooking units with removable and washable standard grease filters.

2) ESP 3000E
 Our ESP (Electrostatic Precipitators or ESP's) have been specifically designed for kitchen extract systems and have integral lamps to collect the oil, grease and smoke particles filtered out of the exhaust. This not only simplifies servicing but eradicates potentially dangerous grease buildups at the bottom of the units and greatly cuts down on buildups of grease within the ducting.

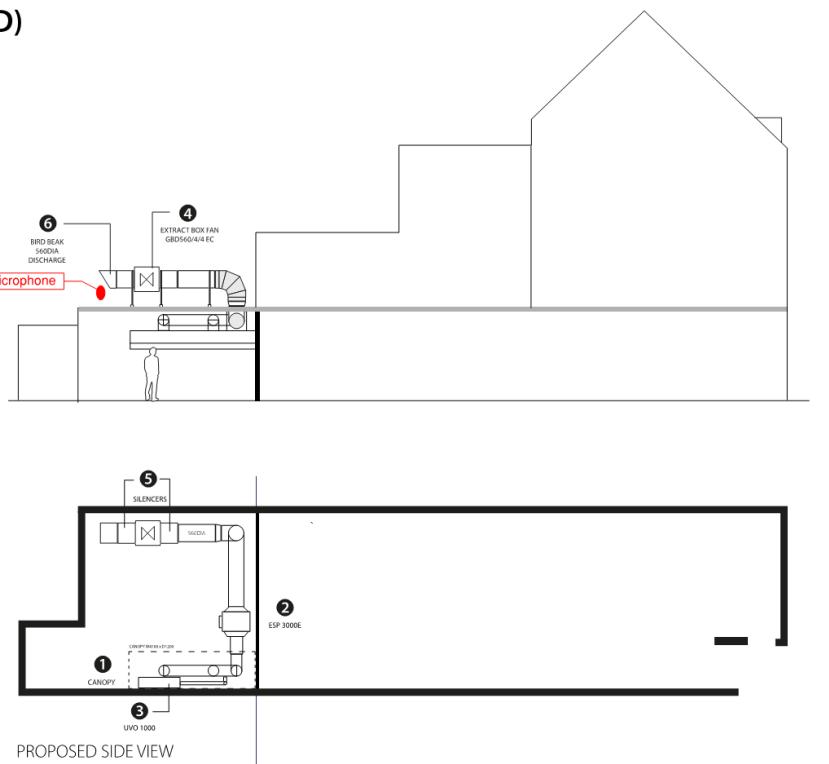
The extraction voltage has been designed to run at a negative potential which enhances the breakdown of particles and also produces more ozone which is helpful in reducing cooking odours. Our ESP units fit inline with the kitchen ducting and can be controlled independently to cope with all extract volume requirements.

3) UV-O 1000
 UV-O 1000 which can handle up to 2 m³/min of air flow. The UV-O range uses UV-C technology to produce ozone and hydroxyl free radicals to control odours and bacteria.

Unlike other UV-C systems, our UV-O units are located outside of the kitchen extract duct and are connected via a spigot and small diameter ducting.

Our UV-O units use air that does not come from the exhaust duct but from the ambient air around the unit, which is filtered on entry. This means that it is able to provide a uniform supply of ozone and hydroxyl free radicals into the extract system with an air flow of 2 m³/min.

This enclosed and integrated UV-C technology allows for the fitting of commercial kitchens in locations such as residential areas and shopping centres, where previously planning permission may not have been granted. After extensive research and development, we have been able to derive the best combination of lamps to provide the most effective odour control.


4) EXTRACT BOX FAN GBD 560/4/4 EC - 3PH Gigabox Centrifugal Fan - Helios
 This is a high quality fan complete with discharge adapter and flexible connector. It is a three phase (400V), dual speed and speed controllable.

All Helios fans are a very high quality product with a huge reputation for reliability. See the data sheet.

This is an acoustically lined cubic ventilation box complete with intake and extract spigots and with flexible connectors to reduce vibration transmission. Sound Pressure Breakout @40dB - 44dB@9V Watts: 2.3 kW RPM: 1410 min-1.

5) DUCTING WITH BIRD BEAK FLEX OUTLET
 Gated flexible ducting complete with 400 x 560 mm of nominal cross section area with adequate stiffening and cross bracing discharging bird beak flue outlet over the front side. Ducting to be secured to the structure with duct support brackets with anti-vibration mountings.

6) DUCTING WITH BIRD BEAK FLEX OUTLET
 Gated flexible ducting complete with 400 x 560 mm of nominal cross section area with adequate stiffening and cross bracing discharging bird beak flue outlet over the front side. Ducting to be secured to the structure with duct support brackets with anti-vibration mountings.

purifiedair
 In Partnership

HDG
 Kitchen & Ventilation

HAS 1RH	SCALE	DATE	DRWG NO
1/100@A3	2025		061125-A

BY HDG Unit A2 Connaught Business Centre, Hyde Estate Road NW9 6JL

APPENDIX B – SITE PHOTOS

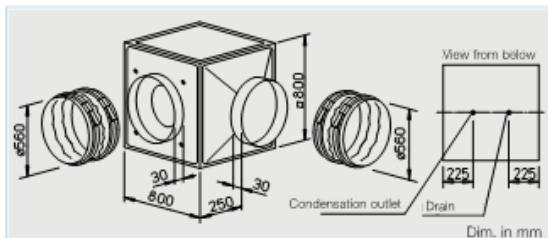
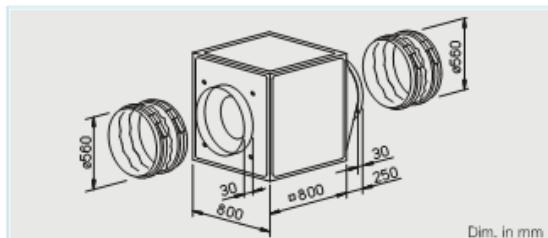
APPENDIX C – PLANT NOISE CALCULATION SHEET

Kitchen Extract Inlet Duct	QTY	63 Hz	125 Hz	250 Hz	500 Hz	1.0 kHz	2.0 kHz	4.0 kHz	dBA
Helios GBW 500/4/4 (Lw)	1		57	66	69	74	70	64	63
CP03-C-0560-1D Attenuator	1	-2	-4	-7	-14	-14	-9	-9	
0.55mm Galvanised Steel Duct SRI		0.0	-6.0	-10.0	-16.0	-21.0	-27.0	-32.0	
Distance Attenuation	10.9	-31.7	-31.7	-31.7	-31.7	-31.7	-31.7	-31.7	
SPL at Receiver (Lp)		-33.7	15.3	17.3	7.3	7.3	2.3	-8.7	13
<hr/>									
Kitchen Extract Case Breakout	QTY	63 Hz	125 Hz	250 Hz	500 Hz	1.0 kHz	2.0 kHz	4.0 kHz	dBA
Helios GBW 500/4/4 (Lw)	1	0	64	64	48	50	46	43	43
SuperLag Superflex Prime 5/25	1								
Barrier Correction	0	0	0	0	0	0	0	0	
Distance Attenuation	12.4	-32.9	-32.9	-32.9	-32.9	-32.9	-32.9	-32.9	
SPL at Receiver (Lp)		-32.9	31.1	31.1	15.1	17.1	13.1	10.1	25
<hr/>									
Kitchen Extract Duct Outlet	QTY	63 Hz	125 Hz	250 Hz	500 Hz	1.0 kHz	2.0 kHz	4.0 kHz	dBA
Helios GBW 500/4/4 (Lw)	1		62	74	75	75	74	70	
CP03-C-0560-2D Attenuator	1	-3	-6	-10	-19	-20	-14	-12	
Duct Attenuation	0.5	-0.4	-0.4	-0.4	-0.1	-0.1	-0.1	-0.1	
Bend Losses	0	0	0	0	0	0	0	0	
End Reflection Loss	450	-8	-4	-1	0	0	0	0	
Distance Attenuation	13.8	-33.8	-33.8	-33.8	-33.8	-33.8	-33.8	-33.8	
SPL at Receiver (Lp)		-45.1	17.9	28.9	22.2	21.1	26.1	24.1	31
Combined SPL at Receiver (Lp)		-30.1	31.4	33.3	23.1	22.7	26.4	24.3	32

APPENDIX D – TECHNICAL DATA SHEETS

560 mm ø GigaBox centrifugal fan

Helios



GB

Arbitrary installation position and flexible assembly by five possible discharge directions.

GB T120

Designed for moving dirty, humid and hot air up to max. 120° C. Motor located outside the air flow.

■ Special features of types

GB T120

- Designed for moving dirty, humid and hot air volumes up to max. 120° C.
- Motor located outside of air flow.
- Temperature insulated partition panel between motor and impeller, lined with 20 mm thick, flame-retardant mineral wool.
- Easily accessible motor and impeller unit, removable without disassembling the system components.
- Inspection cover with handle, simply remove for cleaning and maintenance.
- Condensate collector with condensate spigot included in delivery. Drill hole for rain drainage (accessories) for outdoor installation is prepared.

□ Assembly GB T120

Installation must be carried out with condensation discharge showing downward. Flexible assembly by three possible centrifugal discharge directions via the discharge adapter. Outdoor installation is possible using outdoor cover hood and external weather louvers (accessories).

■ Feature

□ Assembly of types GB

Arbitrary installation position and flexible assembly by five possible discharge directions via the discharge adapter. For wall mounting the wall bracket (accessories) have to be used. Outdoor installation is possible using outdoor cover

hood and external weather louvers (accessories).

■ Specification of both types

□ Casing

Self-supporting frame construction from aluminium hollow profiles. Double-walled side panels from galvanised sheet steel, lined with 20 mm thick temperature insulating and flame-retardant mineral wool. Intake cone for ideal inflow as well as spigot and flexible sleeve (for the respective max. permissible air flow temperature) for duct connection.

With discharge adapter (from square to circular) on the pressure side for low-loss discharge and flexible sleeve to reduce vibration transmission. Simple positioning by standard crane hooks.

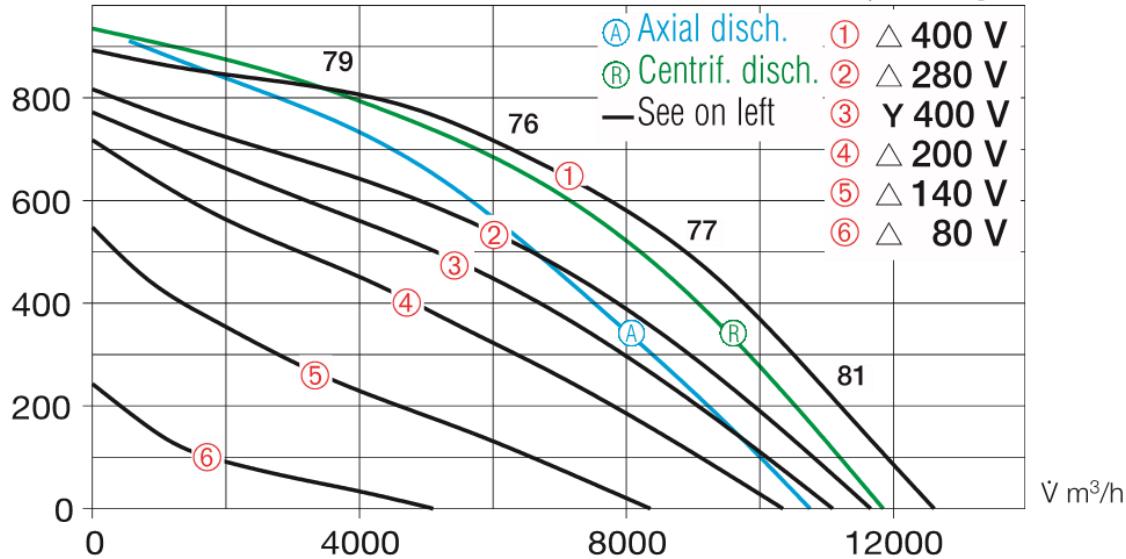
□ Impeller

Smooth running backward curved aluminium centrifugal impeller highly efficient and direct driven. Energy efficient with a low noise development. Dynamically balanced together with the motor to DIN ISO 1940 Pt.1 – class 6.3.

□ Motor

Maintenance-free external rotor motor or IEC-standard motor protected to IP 54. With ball bearings and interference-free as standard.

□ Electrical connection


Standard terminal box (IP 54) fitted on the motor; with GB T120 fitted on the motor support plate.

Type	Ref. no.	Air flow volume (FID)	R.P.M.	Sound press. case breakout	Motor power (nominal)	Current	Wiring diagram	Maximum air flow	Weight (net) kg	5 step transformer controller with mot. protect. unit	Full motor protection unit using the thermal contacts	
		V m ³ /h	min ⁻¹	dB(A) in 4 m	kW	A	No.	+°C	+°C	kg	Type Ref. no.	Type Ref. no.
1 Phase motor, 230 V / 1 ph. / 50 Hz, capacitor motor, protection to IP 54												
GBW 560/4	5508	9123	1409	45	1.83	7.93	10.4	867	45	45	92	MWS 10 1946
2 speed motor, 3 Phase motor, 400 V / 3 ph. / 50 Hz, Y/△ wiring, protection to IP 54												
GDB 560/6/6	5522	7800/9000	705/885	35	0.51/0.80	0.90/1.85	1.90	867	60	60	80	RDS 4 1316
GDB 560/4/4	5521	11500/13000	1110/1350	44	1.70/2.60	2.80/4.80	4.90	867	55	45	90	RDS 7 1578
2 speed motor, 3 Phase motor, 400 V / 3 ph. / 50 Hz, Y/△ wiring, protection to IP 54												
GDB 560/4/4 T120	5778	11520/12300	1250/1400	48	1.85/2.50	3.20/6.80	6.80	520	120	120	105	RDS 7 1578
T120												

1) incl. operation switch

GBD 560/4/4

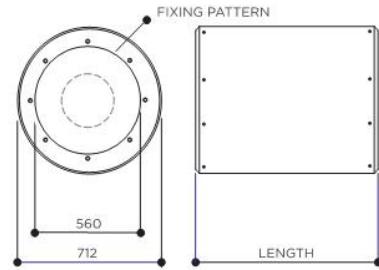
Frequency		Hz	Total	125	250	500	1k	2k	4k	8k	
Δp_{fa} Pa	L _{WA}	Case breakout	dB(A)	64	64	48	50	46	43	37	
	L _{WA}	Intake	dB(A)	77	57	66	69	74	70	64	55
	L _{WA}	Exhaust	dB(A)	81	62	74	75	75	74	70	61

 $\rho = 1,20 \text{ kg/m}^3$

ACOUSTICA MANUFACTURING LTD

CPO3-C-0560

560 DIA FAN MOUNTED SILENCER


Available in two standard lengths C Series Silencers have excellent attenuation properties, achieved with sound absorbing infill retained in the attenuator casing by a perforated liner. The central pod (code P) is an option to increase the insertion loss, however it will add resistance.

- Fits directly onto 560mm diameter fans
- Standard lengths 560mm (1D) & 1120mm (2D)
- Use up to 70°C (standard construction)
- Systems up to 1000 Pascals
- Special lengths on request

INSERTION LOSS (dB) - CENTRE BAND FREQUENCY

PRODUCT CODE	63 Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz
CPO3-C-0560-1D	2	4	7	14	14	9	9	7
CPO3-C-0560-2D	3	6	10	19	20	14	12	10
CPO3-C'P-0560-1D	3	7	9	18	24	24	20	15
CPO3-C'P-0560-2D	4	9	17	27	29	28	23	23

Insertion loss data is derived from continual testing to BS4718 and other standards in independent UKAS certified laboratories, which includes where appropriate, re-generated or self noise testing in both forward and reverse flow conditions. If you request system analysis from our technicians all predictions will be assessed using the relevant certified insertion loss data together with relevant dynamic corrections.

DIMENSIONAL DATA

CODE	LENGTH	FIXING PATTERN	MASS
CPO3-CA-0560-1D	560mm	12 x M10-620 PCD	22 Kg
CPO3-CA-0560-2D	1120mm	12 x M10-620 PCD	48 Kg
CPO3-CAP-0560-1D	560mm	12 x M10-620 PCD	26 Kg
CPO3-CAP-0560-2D	1120mm	12 x M10-620 PCD	57 Kg
CPO3-CB-0560-1D	560mm	16 x M10-605 PCD	22 Kg
CPO3-CB-0560-2D	1120mm	16 x M10-605 PCD	48 Kg
CPO3-CBP-0560-1D	560mm	16 x M10-605 PCD	26 Kg
CPO3-CBP-0560-2D	1120mm	16 x M10-605 PCD	57 Kg