

**Berrite Works
Iron Bridge Road South
West Drayton
UB7 8HY**

Preliminary Roost Assessment

Report ref.: R2832_PRA_a

Report Quality Control Information	
<i>Author</i>	<i>Meghan Porter (Qualifying member of CIEEM)</i>
<i>Approver</i>	<i>John Wenman MCIEEM</i>

February 2025

 JOHNWENMAN
ecological consultancy

1 Diesel House, Honey Hill, Wokingham, Berkshire RG40 3BL
Telephone: 0118 3271810 Mobile: 07979 403099 E-mail: info@wenman-ecology.co.uk
www.wenman-ecology.co.uk

John Wenman Ecological Consultancy LLP is a limited liability partnership registered in England and Wales with registered number OC339057.
Registered office: 100 New Wokingham Road, Crowthorne, Berkshire RG45 6JP where you may look at a list of members' names.

CONTENTS PAGE

1	EXECUTIVE SUMMARY	3
2	INTRODUCTION.....	4
2.1	Project Background.....	4
2.2	Site Location and Context.....	4
2.3	Report Objectives	5
3	LEGISLATIVE AND POLICY BACKGROUND	6
3.1	Relevant Legislation.....	6
3.2	Planning Policy	6
3.3	Mitigation Licensing	7
4	SURVEY METHODOLOGY.....	8
4.1	Desk Study	8
4.2	Building Inspection.....	8
5	SURVEY RESULTS.....	11
5.1	Desk Study	11
5.2	Building Inspection.....	11
6	DISCUSSION	16
6.1	Assessment of Potential Roost Suitability.....	16
7	IMPACT ASSESSMENT.....	17
7.1	Potential Impacts of Development Proposals	17
7.2	Conclusion	17
8	REFERENCES	18
APPENDIX 1 – POTENTIAL SUITABILITY CATEGORIES FOR ROOSTING BATS		19
APPENDIX 2 – DEFINITION OF BAT ROOST TYPES		20
APPENDIX 3 – FURTHER SURVEY RATIONALE		21
APPENDIX 4 - EXISITNG AND PROPOSED SITE LAYOUT		22

1 EXECUTIVE SUMMARY

- 1.1.1 John Wenman Ecological Consultancy LLP was instructed by Mr Ian Williams of AFA Architects & Planners Limited on behalf of their client to undertake an Preliminary Roost Assessment for bats at the commercial buildings at Berrite Works, West Drayton.
- 1.1.2 The aim of the PRA is to determine the actual or potential presence of bats in the buildings and whether further survey and/or mitigation would be required for future proposed development activities.
- 1.1.3 The urban area surrounding the buildings (referred to as B1 & B2) included a railway, canal with scattered trees and tree lines, which provide continuous habitat that could be used as a flight-path connecting to higher-quality foraging habitats for any bat(s) roosting in the buildings.
- 1.1.4 There was no roof void present in B1 and B2 had been badly damaged from a fire and therefore had no roof. There were no bat access points/features visible on either building that could provide sufficient space, shelter, protection and conditions for regular use by crevice-dwelling bats. Overall, the buildings were both deemed to be of negligible bat roost potential.
- 1.1.5 The development proposals will not impact on any bat roosts or potential roost features. The development proposals are therefore considered highly unlikely to result in the death, injury or disturbance of bats; the damage or destruction of a bat roost; or the obstruction of access to a bat roost. As such, a European Protected Species (EPS) mitigation licence would not be required for the planned works to go ahead lawfully.
- 1.1.6 In the unlikely event that bats are encountered during the construction activities, the works must stop immediately and a licensed ecologist should be called to site to attend to the bat and provide advice on how to proceed.
- 1.1.7 Biodiversity enhancements could be included within the new buildings in the form of integral or external bat and bird boxes.
- 1.1.8 This report contains information regarding a mobile species so it will likely be valid for less than 12 months (CIEEM 2019).

2 INTRODUCTION

2.1 Project Background

2.1.1 John Wenman Ecological Consultancy LLP was instructed by Mr Ian Williams of AFA Architects & Planners Limited on behalf of their client to undertake an Preliminary Roost Assessment for bats at the commercial buildings at Berrite Works, West Drayton.

2.1.2 The PRA was commissioned to discharge a planning condition attached to the granted planning permission issued by Hillingdon Borough Council for the redevelopment of the site to provide 3 no. replacement industrial units, surface level car parking and associated works, including the demolition of existing units (45237/APP/2022/3398).

2.1.3 Planning condition 13 states the following:

'Prior to the commencement of development (including demolition) a detailed bat survey must be submitted to and approved in writing by the Local Planning Authority. The survey shall be carried out at the correct time of year, by a suitably qualified expert and in accordance with best practice. Should bats be found then the development must proceed in accordance with an approved bat mitigation licence issued by Natural England with full details of the mitigation requirements provided to and approved in writing by the Local Planning Authority.'

REASON To ensure the protection of bats in accordance with Paragraph 179 of the National Planning Policy Framework (2023) and Policy DME1 7 of the Hillingdon Local Plan Part 2 (2020) and London Plan (2021) Policies G5 and G6'.

2.2 Site Location and Context

2.2.1 The existing commercial units are located on the northern side of Iron Bridge Road South, in West Drayton, London (central OS grid reference: TQ 07126 79993).

2.2.2 The site is bordered by the Grand Union Canal to the north and a railway line to the south, with further industrial units present to the east and residential houses present to the south of the railway line. There is a tree line along the canal and between the Horton Road Industrial Park to the north of the site. Parcels of deciduous woodland and bodies of water are present within Stockley Park Golf Club approximately 355m north of the site and is connected to further woodland and open grassland within Stockley Country Park.

2.3 Report Objectives

2.3.1 The aim of the PRA is to ascertain if there is evidence of the presence of bats and/or potential for roosting bats to be present, and therefore whether further survey and/or mitigation would be required for future proposed development activities.

3 LEGISLATIVE AND POLICY BACKGROUND

3.1 Relevant Legislation

3.1.1 In England and Wales, all bat species found in the wild are fully protected under the Wildlife & Countryside Act 1981 (as amended) (WCA) and Conservation of Habitats and Species Regulations 2017 (as amended); the regulations are commonly referred to as the Habitat Regulations and hereafter referred to as such. The Habitat Regulations refer to European Protected Species (EPS) and all species of bats in the United Kingdom (UK) are EPS. Although the UK left the European Union on the 31st January 2020 and is therefore no longer tied to European legislation, the Habitat Regulations have been retained in their current format.

3.1.2 The legal framework underpinned by the WCA and Habitat Regulations makes these specific actions an offence as follows:

- Deliberately kill, injure, capture or take a wild bat;
- Deliberately, intentionally or recklessly disturb bats; in particular any disturbance which is likely to impair their ability to survive, to breed or reproduce, to rear or nurture their young, to hibernate or migrate, or to significantly affect local distribution or abundance;
- Damage or destroy a place used by a bat for breeding or resting; and
- Intentionally or recklessly obstruct access to any place used by a bat for shelter or protection.

3.2 Planning Policy

3.2.1 The biodiversity duty imposed through the Environment Act 2021 states that Local Planning Authorities (LPAs) must consider what action they can take to conserve and enhance biodiversity in England. Government planning policy, such as the ODPM Circular 06/2005, requires LPAs to account for the conservation of protected species when considering and determining planning applications.

3.2.2 The ODPM Circular 06/2005 states that '*the presence of a protected species is a material consideration when a planning authority is considering a development proposal that, if carried out, would be likely to result in harm to the species or its habitat.*' This policy means that in instances where there is a reasonable likelihood of bats being present and affected by a development, surveys must be undertaken to inform a mitigation strategy to be agreed prior to granting planning permission.

3.3 Mitigation Licensing

3.3.1 The government's statutory nature conservation body, Natural England, is responsible for issuing European Protected Species (EPS) mitigation licences that would permit activities that would otherwise lead to an infringement of the Habitat Regulations. An EPS mitigation licence can be issued if the following three tests derived from Regulation 55 have been satisfied:

- (2)(e) – the derogation is for the purposes of '*preserving public health or public safety or other imperative reasons of overriding public interest, including those of a social or economic nature and beneficial consequences of primary importance for the environment.*'
- (9)(a) – there is '*no satisfactory alternative*' to the derogation; and
- (9)(b) – '*the action authorised will not be detrimental to the maintenance of the population of the species concerned at a favourable conservation status in their natural range.*'

3.3.2 LPAs have a statutory duty under Regulation 7(3)(e) of the Habitat Regulations to consider and determine whether these three tests are likely to be satisfied by planning proposals affecting EPS before granting planning permission. If an EPS mitigation licence is necessary, a licence can be sought once all the necessary planning consents have been granted. Natural England aims to issue a decision on licence applications within 30 working days of submission.

3.3.3 The Bat Mitigation Class Licence (BMCL) scheme allows ecologists to apply to become Registered Consultants to use this licence for low conservation status roosts, i.e. roosts comprising small numbers of seven commonly occurring species. A site registration form must be completed as a condition of the licence and submitted to Natural England at least three weeks before the licensable activities are due to start; Natural England aims to register sites within two weeks of submission.

3.3.4 Baseline survey information supporting EPS mitigation licence applications or BMCL site registrations must be up-to-date and have been completed within the current or most recent optimal season. A suitably experienced ecologist will be required to undertake a site walkover/check within three months prior to application/registration submission to confirm that conditions have not changed since the most recent survey.

4 SURVEY METHODOLOGY

4.1 Desk Study

4.1.1 A desk-based study for bats was undertaken to collate and review existing information about the site and the surrounding land. The study utilised the following open access resources:

- OS maps and Google Earth – maps and satellite imagery were used to identify potential flight-paths and foraging habitats for bats;
- DEFRA Data Services Platform and MAGIC – maps were used to locate relevant designated sites, habitats and granted European Protected Species licences; and
- existing bat survey reports – any available reports were obtained from the client or relevant planning portal.

4.2 Building Inspection

Survey Details

4.2.1 A detailed inspection of the exterior and interior of the buildings were undertaken on the 28th January 2025 by ecologist Meghan Porter (a qualifying member of CIEEM), registered under Natural England Bat Survey Class Licence CL17 (Registration no. 2023-11300-CL17-BAT) and assistant ecologist Samuel Wenman, in accordance with good practice guidance (Collins 2023). The equipment used during the inspection comprised binoculars, a high-power (1 million candlepower) LED torch, a headtorch, ladder and PPE (facemask, gloves etc.). The inspection involved a systematic search of the exterior and interior of the structure during daylight hours to compile information on potential and actual bat access points; potential and actual bat roost sites; and any evidence of bat presence.

External Survey

4.2.2 Frequently used bat access points and/or roost sites include (but are not limited to) spaces:

- behind hanging tiles, weatherboarding, soffit boxes and barge boards;
- under lead flashing (particularly around chimneys) and roof tiles/slates; and
- in existing bat boxes.

4.2.3 It is important to note that the two most abundant and widespread bat species, common pipistrelle (*Pipistrellus pipistrellus*) and soprano pipistrelle (*Pipistrellus pygmaeus*),

typically only require gaps measuring 15mm by 20mm to gain access to a roost inside a building.

4.2.4 The external survey involved a systematic search for evidence of bats including:

- live or dead specimens;
- droppings;
- urine marks;
- fur-oil staining; and
- squeaking noises.

4.2.5 It should be noted that bats can be present in a building while leaving no visible signs externally and wet weather has the potential to wash any evidence away. The search for evidence was focused on (but was not limited to) the ground, windowsills, windowpanes and walls (including cladding and hanging tiles); particularly in places near to potential bat access points and/or roost sites.

Internal Survey

4.2.6 The internal survey comprised a systematic search for evidence of bats within the buildings. Evidence of bats found during an internal inspection can include:

- live or dead specimens;
- droppings;
- urine marks;
- fur-oil staining;
- feeding remains (i.e. moth wings);
- squeaking noises;
- bat-fly (Nycteribiid) pupal cases; and
- odour.

4.2.7 It should be noted that only specimens or droppings can be relied upon in isolation to confirm the presence of a bat roost.

4.2.8 Frequently used roosting locations within the roof include (but are not limited to):

- the apex of the gable end or dividing walls;

- the top of chimney breasts;
- ridge and hip beams;
- mortise and tenon joints;
- behind purlins; and
- between tiles and roof lining.

Survey Limitations and Validity

4.2.9 There were no significant survey limitations because PRAs can be carried out at any time of year under any weather conditions and the building was fully accessible.

4.2.10 It should be noted that it is not always possible to inspect all potential roost sites during a survey, particularly for bat species which typically roost in hidden crevices. Therefore, an absence of bat evidence found during a survey does not necessarily equate to evidence of bat absence in a building.

4.2.11 This report contains information regarding a mobile species so it will likely be valid for less than 12 months (CIEEM 2019).

5 SURVEY RESULTS

5.1 Desk Study

5.1.1 The adjacent canal and tree lines provide continuous habitat that could be used as a path connecting the buildings to high-quality foraging habitats, such as the parcels of deciduous woodland and open grassland within Stockley Country Park and Golf Club to the north.

5.1.2 There were no bat mitigation licences listed on MAGIC that have been granted inside a 2-kilometre radius of the site. The nearest granted licence was over 2700m to the south-east and was granted for the damage and destruction of a resting place for brown long-eared (*Plecotus auritus*) and soprano pipistrelle (*Pipistrellus pygmaeus*) bats in 2014 (Case reference number: 2014-5172-EPS-MIT).

5.1.3 Previous ecological surveys were conducted by Matthew Game Consultancy in 2022, including a Preliminary Ecological Appraisal (PEA) of the site and Preliminary Roost Assessment (PRA) of the existing buildings. The findings from the PRA concluded that both B1 and B2 had negligible roosting potential, after the potential roost features (PRF) on B2 that were identified from ground level were closely investigated and found to be of limited extent (Matthew Game Consultancy, 2022).

5.2 Building Inspection

Overview

5.2.1 The findings from the external and internal inspections carried out for the two buildings are described with photographs, and annotated in a plan (see **Figure 1**), as follows:

External Survey – B1

5.2.2 The largest commercial building (B1) was of rendered blockwork construction, with corrugated metal on the western gable and a corrugated metal sheet roof (**Photographs 1 & 2**).

Photograph 1. Side of B1 viewed from west.

Photograph 2. Front of B1 viewed from south-west.

5.2.3 There was a flat-roofed, brickwork engine building at the eastern end of B1, which had damaged sections of the roof (**Photograph 3; Target note 1**). The timber fascia along the flat roofs were damaged in places but no gaps suitable for use by bats were observed. A section of the timber fascia was missing at the eaves of B1 with gaps under the roof sheeting visible, but this was not accessible for bats due to the presence of guttering across the roof (**Photograph 4; Target note 2**).

Photograph 3. Attached brickwork engine building; damaged fascia offering no roosting potential (western elevation).

Photograph 4. Missing section of fascia along eaves of B1 (southern elevation).

Internal Survey – B1

5.2.4 The building had no roof void internally, and was open to the ceiling throughout (**Photograph 5**). Daylight was visible at the eaves over the blockwork on the southern elevation with water ingress and damage visible (**Photograph 6**). No evidence of roosting bats was observed within the building.

Photograph 5. Interior of B1.

Photograph 6. Daylight visible at the eaves on the southern side of B1.

External Survey – B2

5.2.5 The second building was in a dilapidated state due to a fire resulting in the roof being removed and was attached to the eastern end of B1. A fire damaged building was attached on the eastern elevation and a flat roofed extension on the northern elevation (**Photographs 7 - 9**).

Photograph 7. Front of B2 viewed from south.

Photograph 8. Rear of B2 viewed from north-east.

Photograph 9. Internal of B2.

5.2.6 There were occasional cracks in the external brickwork of the building, which were of limited size and due to the single-skin construction, and were deemed to be of negligible suitability for use by bats (**Photograph 10; Target note 3**). There were gaps on the

internal walls of the single-skin brickwork where beams had been present, leaving open and exposed gaps that were inspected with a high powered torch and binoculars, and showed to have no internal cavity suitable for use by bats (**Photograph 11; Target note 4**).

Photograph 10. Superficial cracks in single-skin brickwork of B2 (western elevation).

Photograph 11. Open gap in single-skin brickwork; offering no roosting potential (internal B2).

5.2.7 A single-storey flat roofed building was present on the northern elevation of the building with the timber fascia being tight to the wall around the roof (**Photograph 12**). There was an open gap at the eaves above a door way, with old bird nesting material visible, but the gap was of limited extent for use by bats (**Photograph 13; Target note 5**).

Photograph 12. Tight timber fascia to wall on single storey extension (northern elevation).

Photograph 13. Bird nesting material present in gap under fascia (northern elevation).

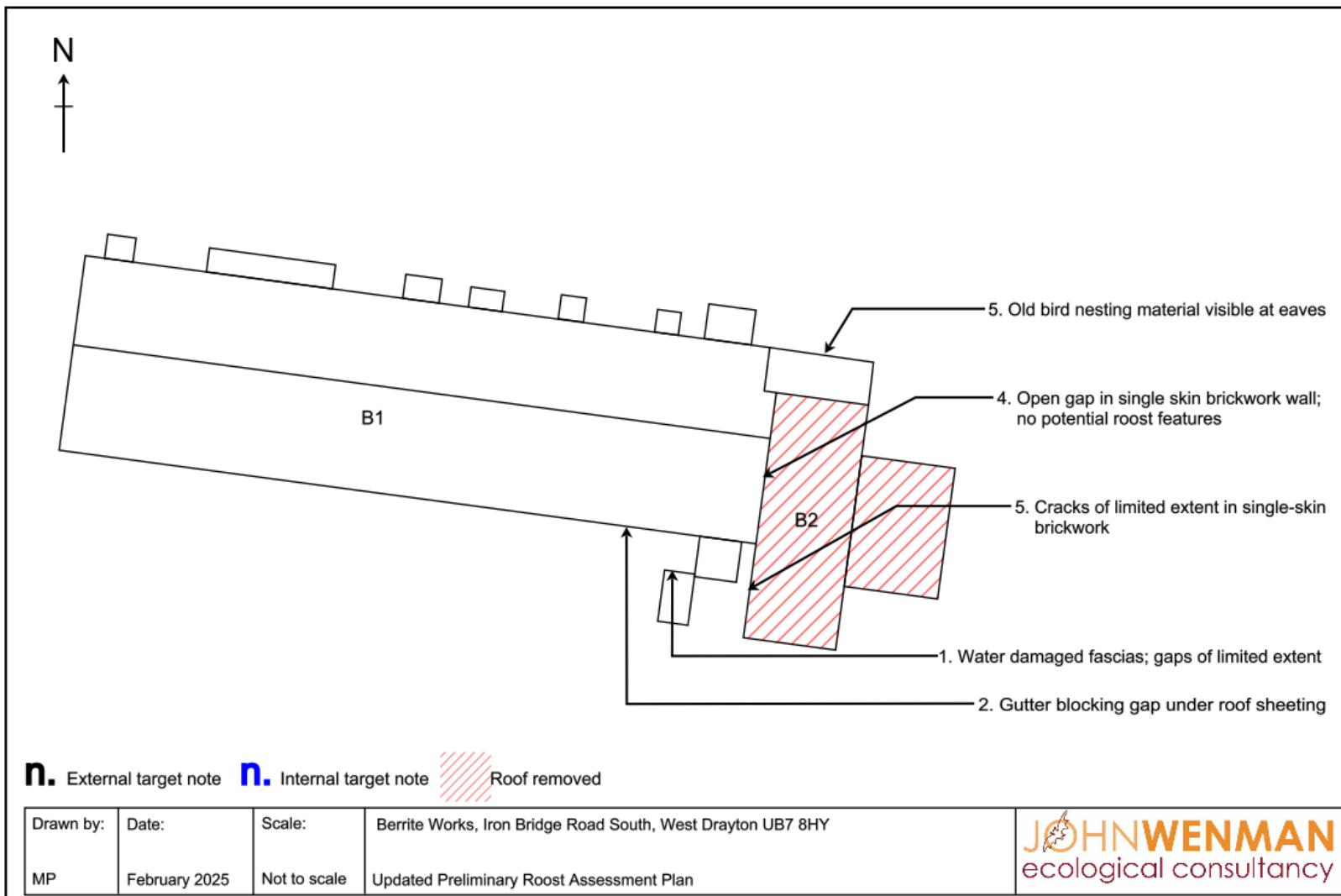


Figure 1. PRA survey findings.

6 DISCUSSION

6.1 Assessment of Potential Roost Suitability

- 6.1.1 The urban area surrounding the commercial buildings with the adjacent canal and tree lines provides continuous habitat that could be used as a flight-path connecting the site to high-quality foraging habitats such as the nearby parcels of deciduous woodland within Stockley Park Golf Club to the north of the site. The search of granted bat mitigation licences returned no results within 2km of the site.
- 6.1.2 There was no internal roof void within the larger commercial unit (B1), with the smaller building (B2) missing a roof due to fire damage. It is therefore considered highly unlikely that void-dwelling bats are present in the buildings.
- 6.1.3 Externally, B1 lacked any evidence or features which resembled potential roost features with the sufficient space, shelter, protection, conditions to support regular use by individual or small numbers of crevice-dwelling bats, such as the locally recorded common pipistrelle (*P. pipistrellus*) and soprano pipistrelle (*P. pygmaeus*). B2 had occasional open gaps and cracks in the brickwork, which were ruled out as having bat roost potential due to the single-skin construction and therefore lead to no suitable cavity. The building is also very exposed to the elements due to the dilapidated state. Therefore, both B1 and B2 have been assigned negligible potential suitability for bats (see **Appendix 2** for potential suitability categories).

7 IMPACT ASSESSMENT

7.1 Potential Impacts of Development Proposals

Overview

7.1.1 The development proposals consist of the construction of new commercial units following the removal of the two existing units (refer to planning drawings in **Appendix 4**). The impacts of the proposals, during construction and post development, have been assessed in accordance with the mitigation hierarchy as follows:

Construction Phase

7.1.2 The development proposals will not have an impact on features that have evidence of roosting bats or potential to be used by roosting bats. Therefore, it is considered highly unlikely that the proposals will result in the damage and/or destruction of a bat roost or cause disturbance, injury and/or death of bats, particularly disturbance that would affect the ability of bats to survive, reproduce, nurture young or hibernate.

Post Development

7.1.3 The proposed works do not result in the loss of any potential roost sites identified in the buildings. As such, it is considered highly unlikely that the proposals will result in the permanent damage/loss of a bat roost (if present) or affect significantly the local distribution or abundance of bats.

7.1.4 There are opportunities for ecological enhancements within the new commercial units. External or integral bat boxes should be installed on the northern elevation of the buildings, to provide roosting opportunities for bats foraging along the canal beside the site.

7.2 Conclusion

7.2.1 The development proposals will not have any potential impacts to bats and their roosts. As such, a European Protected Species (EPS) mitigation licence would not be required for the planning works to go ahead lawfully.

7.2.2 In the unlikely event that bats are encountered during construction, the works must stop immediately, and a suitably licensed ecologist should be called to site attend to the bat and provide advice on how to proceed; works should not continue until further written advice has been received. At this stage, an EPS mitigation licence may be required to permit the works to recommence lawfully.

REFERENCES

CIEEM (2019). *Advice Note on the Lifespan of Ecological Reports and Surveys*. CIEEM, Winchester.

Collins, J (ed.) (2023). *Bat Surveys for Professional Ecologists: Good Practice Guidelines (4th edition)*. The Bat Conservation Trust, London.

Mathews F., Kubasiewicz L.M., Gurnell J., Harrower C.A., McDonald R.A., Shore R.F. (2018). *A Review of the Population and Conservation Status of British Mammals*. A report by the Mammal Society under contract to Natural England, Natural Resources Wales and Scottish Natural Heritage. Natural England, Peterborough.

Mitchell-Jones, A. J. & McLeish, A. P. (2004). *Bat Workers' Manual (3rd edition)*. JNCC, Peterborough.

Reason, P.F. and Wray, S. (2023). *UK Bat Mitigation Guidelines: a guide to impact assessment, mitigation and compensation for developments affecting bats*. CIEEM, Ampfield.

APPENDIX 1 – POTENTIAL SUITABILITY CATEGORIES FOR ROOSTING BATS

The categories detailed in **Table 2** below are derived from the ‘*Bat Surveys for Professional Ecologists: Good Practice Guidelines (4th edition)*’ (Collins 2023) and provide guidance for assessing the potential suitability of buildings (and other structures) for roosting bats. These categories are applied using professional judgement and irrespective of whether the presence of a bat roost has been confirmed during a survey, as additional bat roosts could be present which have not yet been discovered.

Table 1. Categories for potential suitability of buildings (and other structures) for roosting bats.

Potential Suitability	Category Justification
None	A building (or structure) that has no features likely to be used by any roosting bats at any time of the year (i.e. a complete absence of cracks, crevices or voids that could provide suitable shelter).
Negligible	A building (or structure) that has no obvious features likely to be used by roosting bats, but in this case a small element of uncertainty remains as bats will occasionally use small and apparently unsuitable features. This category may also be used where a bat could potentially roost due to one attribute, but it is considered unlikely due to another attribute (e.g. a feature that is subject to constant illumination from artificial lighting).
Low	A building (or structure) that has one or more potential roost sites suitable for opportunistic use by individual bats at any time of the year. However, these potential roost sites for bats do not provide sufficient space, shelter, protection, conditions and/or surrounding suitable habitat to be used regularly or by large numbers (i.e. unlikely to be suitable for a maternity colony and not a classic hibernation site).
Moderate	A building (or structure) that has one or more potential roost sites suitable for regular use by individual bats, or small non-breeding groups, due to sufficient space, shelter, protection, conditions and surrounding habitat. However, these potential roost sites for bats are unlikely to support a roost of high conservation status with regards to the type of roost only (i.e. maternity colonies and classic hibernation sites).
High	A building (or structure) that has one or more potential roost sites suitable for use by large numbers of bats more regularly and for longer periods of time due to sufficient space, shelter, protection, conditions and surrounding habitat. These potential roost sites for bats are capable of supporting high conservation status roosts (i.e. maternity colonies and classic hibernation sites).

APPENDIX 2 – DEFINITION OF BAT ROOST TYPES

The potential suitability of a building in conjunction with any evidence of bat presence is used to provide an initial assessment of likely roost type and importance. The types of roost considered are based on the following Natural England definitions:

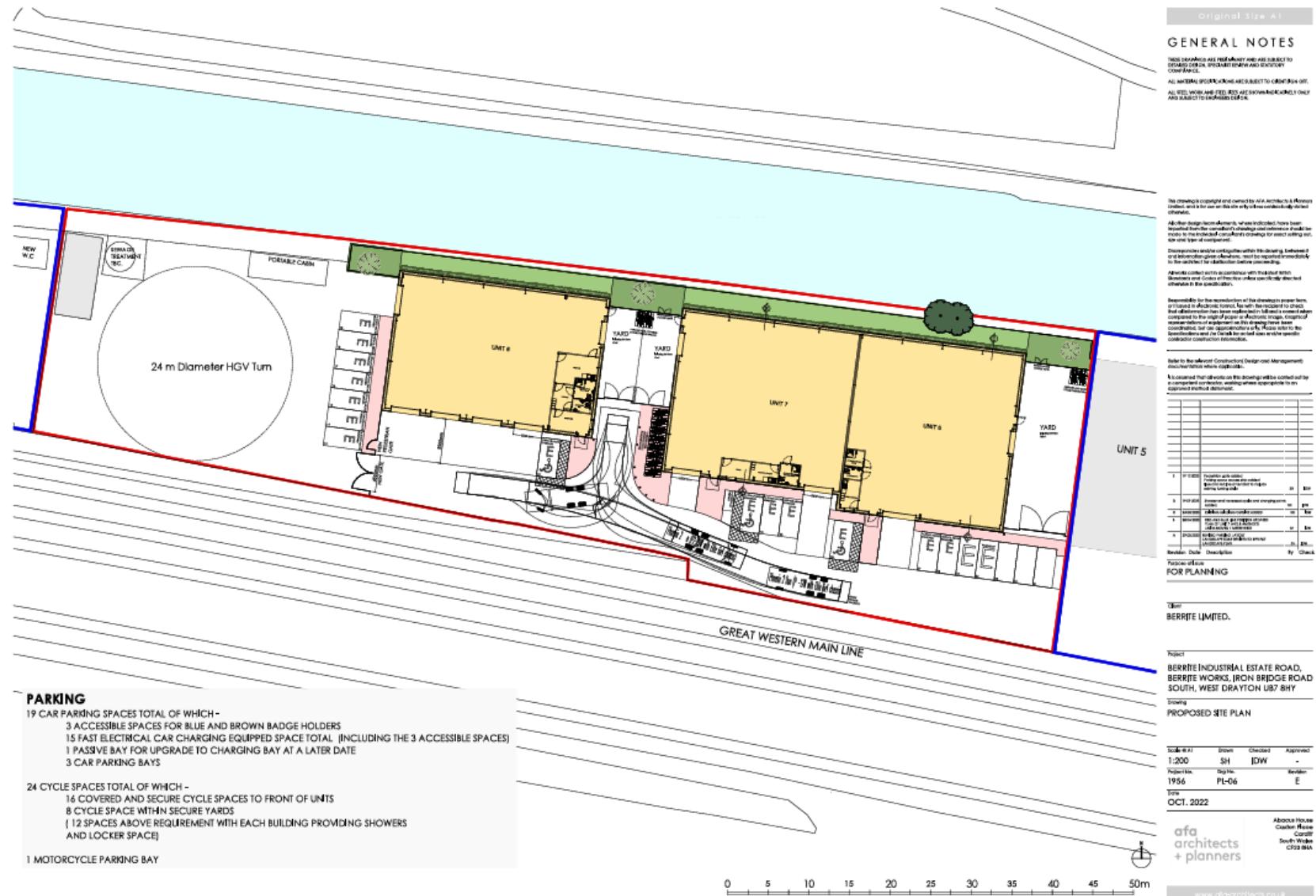
- Day roost – a summer resting place used by individual bats, or small non-breeding groups, during the day;
- Night roost – a resting place used by individual bats on occasion, or by a whole colony regularly, during the night;
- Feeding perch – a resting place used by individual bats, or a few individuals, primarily for short periods of feeding during the night;
- Transitional roost – a place used by a few individual bats, or occasionally small groups, for a short period of time upon waking from hibernation or in the period prior to hibernation;
- Maternity roost – a place used by small to large groups of female bats to give birth and raise their young to independence;
- Hibernation roost – a place used by individual bats, or in groups, during winter where there is a constant cool temperature and high humidity; and
- Satellite roost – a place used by a few individuals to small groups of breeding female bats found in close proximity to the main nursery colony throughout the breeding season.

The importance of a bat roost is underpinned by the conservation status of the suspected species (i.e. the distribution/rarity of a species in a specific geographic location) and the type of roost (i.e. not all roosts have the same level of importance in supporting the local bat population). Further roost characterisation surveys may be required to fully determine the importance of a confirmed roost to allow for a robust impact assessment.

APPENDIX 3 – FURTHER SURVEY RATIONALE

In cases where no evidence of use by bats is found during a building inspection but the possibility of their presence cannot be ruled out, further presence/likely absence survey is likely to be required if the development proposals will impact potential roost sites.


Emergence surveys are carried out to establish the presence or likely absence of roosting bats in buildings (and other structures) and these are designed in accordance with the '*Bat Surveys for Professional Ecologists: Good Practice Guidelines (4th edition)*' (Collins 2023) detailed in **Table 3** below.


Table 2. Recommended further survey for establishing presence/likely absence of roosting bats in buildings (and other structures).

Potential Suitability	Further Survey
None	No further surveys are required.
Negligible	No further surveys are required.
Low	A minimum of one dusk emergence survey visit should be undertaken in the period of May to August. However, if all areas (including cracks, crevices and voids) can be thoroughly inspected and no evidence of use by bats is found, then emergence surveys may not be required. In cases where a complete inspection cannot be carried out, professional judgement and proportionality should be applied when assessing the impacts of the development proposals.
Moderate	A minimum of two dusk emergence survey visits should be undertaken in the period of May to September, with at least one of the surveys between May and August; the survey visits should be spaced at least three weeks apart.
High	A minimum of three separate dusk emergence survey visits should be undertaken in the period of May to September (inclusive), with at least two of the surveys between May and August; the survey visits should be spaced at least three weeks apart.

In cases where the PRA and/or further survey establishes the presence of roosting bats in a building (or structure), this will likely trigger the need for roost characterisation to collect sufficient information to inform the impact assessment and mitigation strategy. The roost characterisation comprises information collected during the PRA, emergence surveys and by other methods, such as DNA analysis of bat droppings, and ultimately aims to determine the bat species roosting; the number of bats the roosts support; the roost access points; the locations of the roosts and the types of roost present. This information is crucial when applying for planning permission and/or a European Protected Species mitigation licence.

APPENDIX 4 - EXISITNG AND PROPOSED SITE LAYOUT

