

ALLARBORICULTURE

07375110399

e - info@allarboriculture.co.uk

ARBORICULTURAL IMPACT ASSESSMENT AND METHOD STATEMENT

BS5837:2012

On behalf of:
Mr. Davinder Lachhar

Site address:
26 Parkway,
Hillingdon, UB10 9JX

Prepared by:
KC

Report Reference:
AAAIA26PA

Report Date:
15th December 2025

Contents

Chapters	Content	Page no.
1.0	Instruction	3
2.0	Statement Of Purpose	3
3.0	Associated Documents	3
4.0	Site Description	3
5.0	Vegetation Description	3
6.0	Arboricultural Impact Assessment	4
7.0	Method Statement	6

Appendix 1	Tree Survey Schedule
Appendix 2	Tree Protection
Appendix 3	Tree Protection Plan

1.0 Instruction

All Arboriculture has been instructed by Mr. Davinder Lachhar to undertake a tree survey in accordance with BS5837:2012 *Trees In relation to design, demolition and construction – Recommendations*, and to produce an Arboricultural Impact Assessment, Arboricultural Method Statement and Tree Protection Plan. The instruction was received on the 11th July 2023. The tree survey was carried out on the 13th July 2023 and 12th December 2025.

2.0 Statement of purpose

The purpose of this report is to provide local planning authorities with sufficient arboricultural information to consider the effect of the proposed development on nearby trees, and to demonstrate that trees have been carefully considered throughout the development process.

The report includes an arboricultural method statement that describes how work will be undertaken to provide adequate protection of retained trees.

3.0 Associated documents and drawings

This report should be read in conjunction with the following documents and drawings:

1. MA All in One Rev A
2. British Standards Institute - BS5837:2012 Trees in relation to design, demolition and construction – Recommendations
3. Tree Protection Plan – AATPP26PA

4.0 Site description

The site is in the urban area of Hillingdon. The site is relatively flat with no abrupt changes in levels. The proposal is the erection of a detached residential dwelling. The site falls under the jurisdiction of London Borough of Hillingdon Council who have not been approached to ascertain whether any of the trees on site are protected by a tree preservation order or conservation area.

5.0 Vegetation description

There are no trees within the site, but there are trees just beyond the boundary.

Some basic tree protection measures and working methodology (in accordance with BS 5837:2012) will ensure they are not detrimentally affected during construction.

6.0 Arboricultural impact assessment

Table 1: Summary of impacts

Tree removal	None
Facilitation pruning	None
Demolition within RPA	None
New surfacing within RPA	None
New structures within RPA	None

Building construction in relation to tree roots: No tree removal is required to facilitate the development. Traditional foundations may be used and will not impact any of the off site trees. There is an existing hard standing around the site which will remain in place during the development.

Building construction in relation to tree crowns: No facilitation pruning is required. It is important that sufficient growing space is allowed between the mature crown extent of each tree and the roof edge of the proposed structures. This is to reduce conflicts of interest in the future and to reduce the pressure to prune trees to keep them clear of roofs: A clearance of two metres from the mature tree crown is generally considered acceptable which is the case with this proposal.

Tree root and canopy protection: The RPA (Root protection area) of the retained tree should be protected during the development phase with heras fencing to ensure heavy machinery is not operated, or materials stored within the rooting area. This can be detrimental to the tree, causing soil compaction and root die back. The crowns of retained trees also require protection to avoid damaging branches. The heras fencing should follow the line of the RPA, or crown extent, whichever is greater. Where access is required within the RPA, the heras fencing may be temporarily pulled back and the exposed ground augmented with alternative protection as detailed in the method statement. Alternatively, if hard surfacing is required within the RPA, it may be laid prior to heavy machinery entering the site and following appropriate protocol, in order to provide a hard surface from which to operate. The protection of the RPA and canopy spread is detailed in the Arboricultural Method Statement below.

Special surfacing: To avoid the roots of the retained trees being affected by soil compaction, all existing hard surfaces (within the RPAs of retained trees) will be left in situ during demolition and construction and only be removed (by small machinery) at the landscaping stage. For any new surfacing the existing ground will be graded up to form a no dig surface utilising a 3D load spreader, a no-fines aggregate and a porous wearing course. All works close to and within the RPAs will need to be carried out strictly by hand.

Materials delivery, storage and handling: Materials should not be handled or stored within the RPAs of retained trees; the load exerted can result in soil compaction and leachate from spills can be toxic to trees.

Surface drains, soakaways and services: It is important that services, surface drains and soakaways avoid the RPAs of retained trees as roots can be damaged during trench excavations which is the case for this proposal.

7.0 Arboricultural method statement

Implementation and phasing of the proposed development: Prior to any building work commencing on site, a meeting will be held with the Arboricultural Consultant and Site Manager present. During the meeting details regarding the location of tree protection will be discussed and a time to reconvene in order to assess the protection will be agreed.

Protective fencing: Protective fencing must be installed prior to the commencement of any construction development activity and will be retained in the positions shown on the tree protection plan (AATPP26PA). The fencing will be to the BS 5837:2012 'Trees in relation to design, demolition and construction – recommendations' (section 6.2) i.e. preformed galvanised steel mesh panels ('Heras' or similar) facings on a driven braced scaffold pole framework. It will be retained at the locations shown until construction is completed. It may be moved or removed only with notice to and consent from the local planning authority.

Ground protection: Temporary ground protection to be installed within the RPA's of G2 should be capable of supporting pedestrian movements only, a single thickness of scaffold boards placed either on top of a driven scaffold frame, so as to form a suspended walkway, or on top of a compression-resistant layer (e.g. 100 mm depth of woodchip), laid onto a geotextile membrane.

Storage and handling of materials: This site has sufficient space for materials to be stored and handled.

Contractors parking: There is sufficient space for parking on Parkway.

Welfare Facilities: Toilets and hand washing facilities shall be made available within the existing building and there is space for temporary facilities on site.

Surface drains, soakaways and services: No details of new service runs have been provided at this stage. They should be routed to avoid the RPA's of retained trees and be connected to the existing. If this is not possible, special techniques must be employed to place the services within the RPA of the trees. The British Standard suggests a range of trench less methods suitable for various applications including micro tunnelling, surface launched directional drilling, Pipe ramming and Impact Moleing/ thrust boring. It is important common ducts should be used where it is not possible to avoid the RPA. Further guidance on installing underground services adjacent to trees can be found in the NJUG Guidelines for the Planning, Installation and Maintenance of Utility Apparatus in Proximity to Trees (Volume 4 Issue 2). This document outlines a number of techniques that may be used for trenching near trees, including trench less techniques, discontinuous trenching and hand digging.

Supervision: Supervision will not be required.

Tree works: No tree works are required.

Sequencing of works

1. Installation of Tree Protection as shown on the TPP.
2. Arboricultural Consultant to check Tree Protection at this stage.
3. Main construction phase
4. Remove tree protection when all construction activity has ended.
5. Carry out landscaping works (**if required**).
6. Completion

Contacts

Architect and Agent:

Name: V-Design Cad Services Ltd
Tel: 0203 488 4890
E: info@vdesigncad.co.uk

Arboricultural Consultant:

Name: K Chesterman
Tel: 07375110399
E: info@allarboriculture.co.uk

APPENDIX 1 - Tree Schedule Schedule

Tree No	Species	Height (m)	Trunk Diameter (cm)	Crown spread (m)		Crown height above ground (m)	Life stage	General observations	BS 5837 cat	Root protection area (m)	
1	Oak <i>Quercus robur</i>	8	50	3	3	3	Early Mature	Off site tree. Previously reduced.		C	6.0
				3	3						
2	Cypress Group <i>Cupressus x leylandii</i>	5	20	2	2	1	Early Mature	Off site group. Previously reduced.		C	2.4
				2	2						

APPENDIX 1 - Tree Schedule Schedule

Survey Key

Diameter (mm)

Stem diameter in millimetres measured at 1.5m above ground level. Where the stem is divided below 1.5m, measurement is taken as directed by BS:5837 Annex C.

RPA - Root Protection Area

RPA circle radius is determined from Annex D of BS:5837. R- Radius

A – Area

Branch Spread (m)

Radial crown spread in metres, measured for each of the four cardinal points of the compass from the centre of the trunk.

N	E
W	S

Low branches

Height above ground in metres of the lowest branch and use of the 4 cardinal points of the compass.

Age class

(NP) Newly planted – a tree within 3 years after planting

(Y) Young – a tree within its first one third of life expectancy

(EM) Early Mature – a tree within its second third of life expectancy

(M) Mature – a tree in its final one third of life expectancy

(OM) Over Mature – a tree having reached its maximum life span and is declining in health and size due to old age

(V) Veteran – a tree in the second or mature stage of its life and has important wildlife and habitat features including; hollowing or associated decay fungi, holes, wounds and large dead branches.

(A) Ancient – a tree in the ancient or third and final stage of their life that is of interest biologically, aesthetically or culturally because of its age, size and condition

Physiological Condition

GOOD – a tree in a healthy condition with no significant problems

FAIR – a tree generally in good health with some problems that can be remediated
POOR – a tree in poor health with significant problems that can't be remediated
DEAD – a tree without sufficient live material to sustain life

Structural Condition

An assessment of the structural/safe condition of the tree categorised into:

GOOD – a tree in a safe condition with no significant defects

FAIR – a tree in a safe condition at present but with defects or with significant defects that can be remediated
POOR – a tree with significant defects that can't be remediated.

EC - Estimated remaining contribution in years (based on the species and its current condition)

<10 Up to 10 years

10+ 10 years or more

20+ 20 years or more

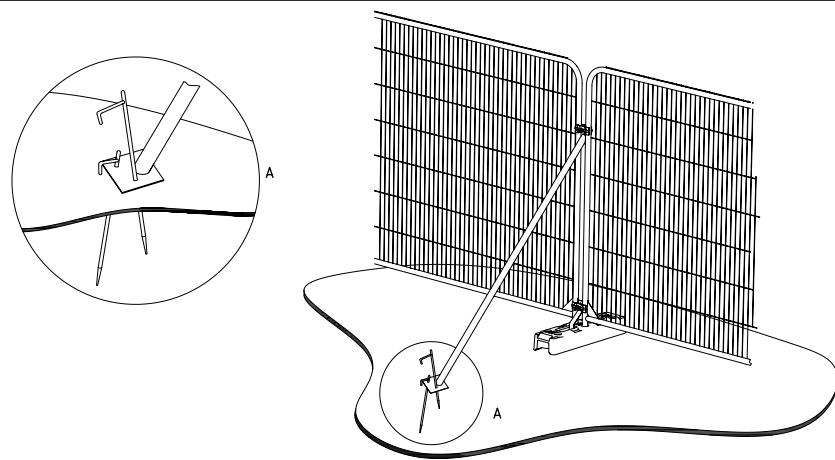
40+ 40 years or more

Category (Tree quality assessment)

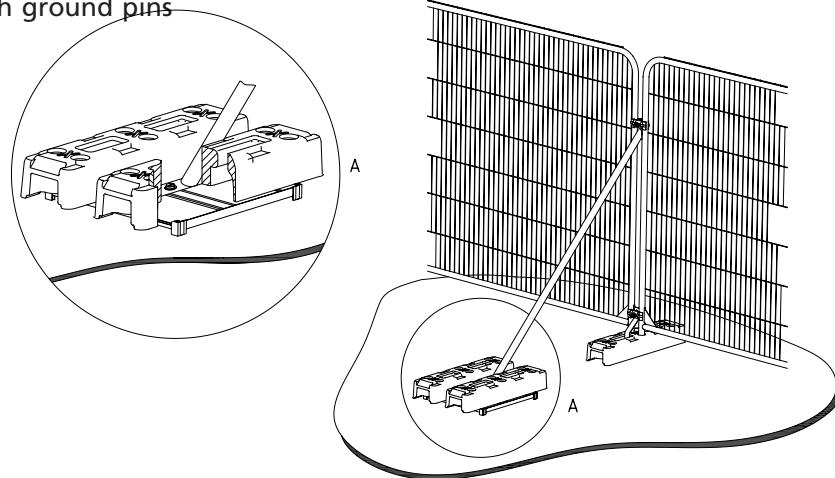
Category U – Tree in poor condition that cannot realistically be retained for longer than 10

years Category A – Trees of high quality

Category B – Trees of moderate quality Category


C – Trees of low quality

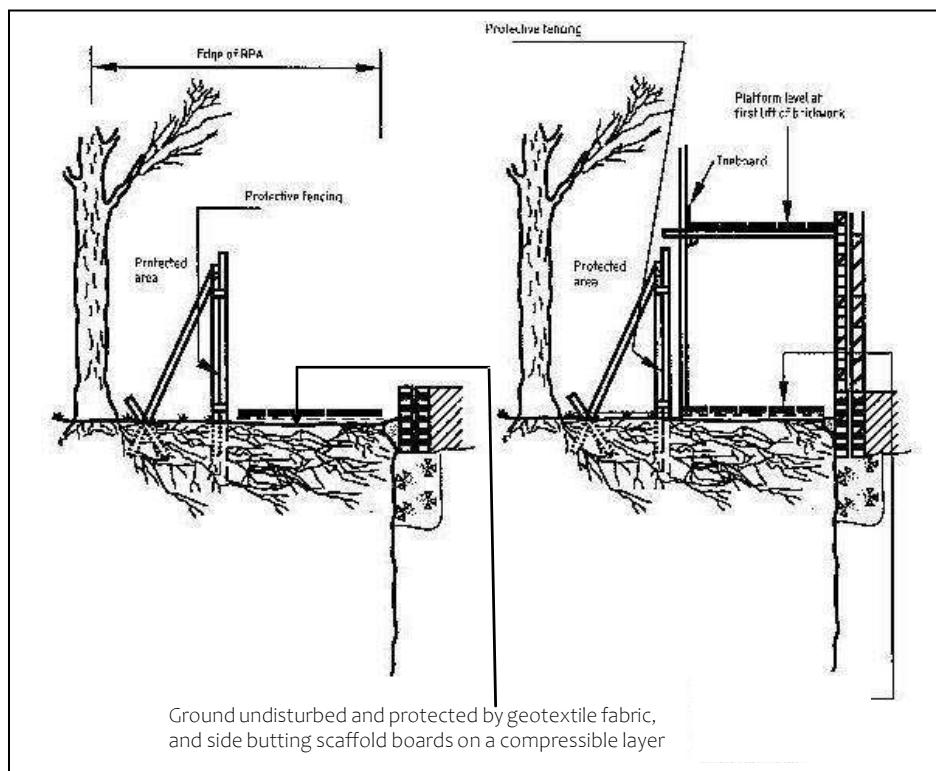
APPENDIX 2 – Protective Fencing


Protective fencing should be erected before any construction commences on site. It should also be in position to protect important trees prior to demolition.

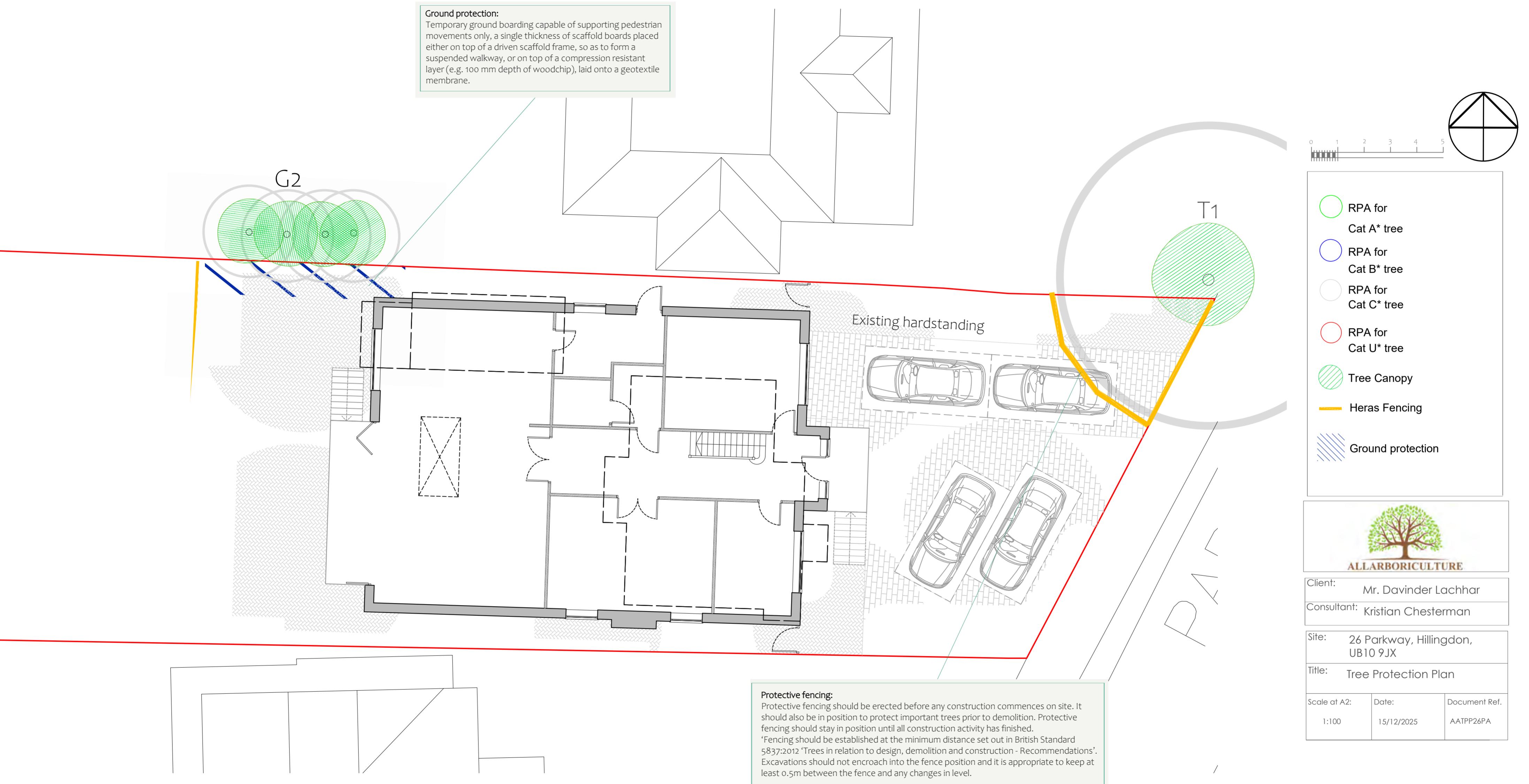
Protective fencing should stay in position until all construction activity has finished.

‘Fencing should be established at the minimum distance set out in British Standard 5837:2012 ‘Trees in relation to design, demolition and construction - Recommendations’. Excavations should not encroach into the fence position and it is appropriate to keep at least 0.5m between the fence and any changes in level.

a) Stabilizer strut with base plate secured with ground pins



b) Stabilizer strut mounted on block tray


APPENDIX 2 – Ground Protection

Where ground protection measures are necessary, they can be provided by laying a geotextile mat onto the existing ground level and adding to this compressible materials, such as bark mulch or sharp sand to form a safe, level surface. Onto this surface is laid scaffold boards which become the working surface for the duration of the construction phase.

Where scaffolding is proposed above the area requiring protection the footway can be suspended above ground level using the upright scaffold poles onto which horizontal supports can be attached and then boards used to form the footway surface. A geotextile mat should be laid on the ground beneath to prevent contamination from materials dropped through the footway.

APPENDIX 3 – Tree Protection Plan

