




**Annex B: Site Photographs** 



| Client Name:      | Site Location:           | Project No.:     |
|-------------------|--------------------------|------------------|
| Bridge Industrial | NCP Flightpath, Heathrow | 460366.0000.0000 |

| Photo No. | Date       |
|-----------|------------|
| 1         | 28/07/2021 |

### **Description:**

The Site is currently utilised for Airport parking. A small temporary building was located immediately to the north of the access road, in the northern part of the site.



| Photo No. | Date       |
|-----------|------------|
| 2         | 28/07/2021 |

## Description:

The Site is accessed via a bridge over the M4 motorway from the east near the Radisson Hotel.





| Client Name:      | Site Location:           | Project No.:     |
|-------------------|--------------------------|------------------|
| Bridge Industrial | NCP Flightpath, Heathrow | 460366.0000.0000 |

 Photo No.
 Date

 3
 28/07/2021

Description:

View of the central part of the Site, Looking south east. The Site predominantly comprises hard standing asphalt and is used as airport parking.



Photo No. Date
4 28/07/2021

**Description:** 

View of the southerm part of the Site, Looking south east.





| Client Name:      | Site Location:           | Project No.:     |
|-------------------|--------------------------|------------------|
| Bridge Industrial | NCP Flightpath, Heathrow | 460366.0000.0000 |

Photo No. Date
5 28/07/2021

Description:

View of the southern part of the Site, Looking north east.



 Photo No.
 Date

 6
 28/07/2021

**Description:** 

View of the central part of the Site, Looking south.





Client Name:Site Location:Project No.:Bridge IndustrialNCP Flightpath, Heathrow460366.0000.0000

Photo No. Date
7 28/07/2021

Description:

Window sample 106



 Photo No.
 Date

 8
 28/07/2021

**Description:** 

Window sample 105.





**Annex C: Exploratory Hole Logs** 

#### WINDOW SAMPLE LOG WINDOW SAMPLE NO. WS101 Page 1 of 1 Date Drilling Started: Date Drilling Completed: Facility/Project Name: Project Number: NCP Carpark Heathrow 29/7/21 29/7/21 453101.0000.0000 Drilling Firm: Drilling Method: Surface Elev. (m) TOC Elevation (m) Total Depth (m bgs) Borehole Dia. (cm) **CC** Ground Investigations Window Sampling 5.0 Personnel Drilling Equipment: Window Sample Location: Logged By - Colin Morton Dando Terrier N: 51.4831 E: -0.4541 Driller - Andrew Leek Civil Town/City/or Village: Water Level Observations: County: Depth (m bgs) While Drilling: Date/Time **UB7 ODU** West Drayton After Drilling: Date/Time Depth (m bgs) SAMPLE DEPTH IN METERS % LITHOLOGIC GRAPHIC LOG SPT N VALUE **COMMENTS** RECOVERY **DESCRIPTION** NUMBER AND TYPE **USCS** MADE GROUND: Compacted subbase. MADE GROUND: dark brownish grey very sandy GRAVEL. Sand is fine to coarse, Gravel is sub-angular to sub-rounded, fine to coarse grained. Gravel consists of brick and concrete. Cobbles of brick. ENV/ Soft dark grey silty CLAY. Rare gravels of flint. Possibly reworked strata. (LANGLEY SILT MEMBER) D/ Firm light greyish brown slightly silty slightly gravelly CLAY. Gravel is D/ sub-angular to sub-rounded, fine to coarse grained. Gravel consists of chert and flint. (LANGLEY SILT MEMBER) 13 D ⊱ SPT 453101.0000.0 Very dense light brownish grey clayey sandy GRAVEL. Sand is fine to coarse, Gravel is sub-angular to sub-rounded, fine to coarse grained. Gravel consists of chert and flint. (TAPLOW GRAVEL MEMBER) HEATHROW LOGS.GPJ >50

#### WINDOW SAMPLE LOG WINDOW SAMPLE NO. WS102 Page 1 of 1 Date Drilling Started: Date Drilling Completed: Facility/Project Name: Project Number: NCP Carpark Heathrow 29/7/21 29/7/21 453101.0000.0000 Drilling Firm: Drilling Method: Surface Elev. (m) TOC Elevation (m) Total Depth (m bgs) Borehole Dia. (cm) **CC** Ground Investigations Window Sampling 5.0 Personnel Drilling Equipment: Window Sample Location: Logged By - Colin Morton Dando Terrier N: 51.4828 E: -0.4544 Driller - Andrew Leek Civil Town/City/or Village: Water Level Observations: County: Depth (m bgs) While Drilling: Date/Time **UB7 ODU** West Drayton After Drilling: Date/Time Depth (m bgs) SAMPLE DEPTH IN METERS *VELL DIAGRAM* % GRAPHIC LOG LITHOLOGIC SPT N VALUE **COMMENTS** RECOVERY **DESCRIPTION** NUMBER AND TYPE JSCS MADE GROUND: Compacted subbase. MADE GROUND: dark brownish grey slightly clayey very sandy GRAVEL. Sand is fine to coarse, Gravel is sub-angular to NV/ sub-rounded, fine to coarse grained. Gravel consists of brick and concrete. Bulk Soft dark grey silty CLAY. (LANGLEY SILT MEMBER) Soft light greyish brown slightly silty CLAY. (LANGLEY SILT MEMBER) NV2 7 Soft light greyish brown silty slightly sandy CLAY. Sand is fine 3/12/21 TPS grained. (LANGLEY SILT MEMBER) 0000 153101.0000 D/ Very dense greyish brown clayey very sandy GRAVEL. Sand is fine to coarse, Gravel is sub-angular to sub-rounded, fine to coarse grained. Gravel consists of chert and flint. (TAPLOW GRAVEL MEMBER) D/ >50 NCP CARPARK

### WINDOW SAMPLE LOG **WINDOW SAMPLE NO. WS103** Page 1 of 1 Facility/Project Name: Date Drilling Started: Date Drilling Completed: Project Number: NCP Carpark Heathrow 29/7/21 29/7/21 453101.0000.0000 TOC Elevation (m) Total Depth (m bgs) Borehole Dia. (cm) Drilling Firm: Drilling Method: Surface Elev. (m) **CC** Ground Investigations Window Sampling 5.0 Window Sample Location: Personnel Drilling Equipment: Logged By - Colin Morton N: 51.4830 E: -0.4542 Driller - Andrew Leek Dando Terrier Civil Town/City/or Village: Water Level Observations: County: While Drilling: Date/Time Depth (m bgs) **UB7 ODU** West Drayton After Drilling: Date/Time Depth (m bgs) SAMPLE **DEPTH IN METERS** 8 LITHOLOGIC GRAPHIC LOG SPT N VALUE **COMMENTS** DESCRIPTION RECOVERY NUMBER AND TYPE **USCS** MADE GROUND: dark brownish grey slightly clayey very sandy GRAVEL. Sand is fine to coarse, Gravel is sub-angular to sub-rounded, fine to coarse grained. Gravel consists of brick and concrete. Very slight seepage of water. ENV1 Slight Hydrocarbon odour. Soft greyish brown silty CLAY. (LANGLEY SILT MEMBER) D/ 1 NV2 2

#### WINDOW SAMPLE LOG WINDOW SAMPLE NO. WS104 Page 1 of 1 Date Drilling Started: Date Drilling Completed: Facility/Project Name: Project Number: NCP Carpark Heathrow 29/7/21 29/7/21 453101.0000.0000 Drilling Firm: Drilling Method: Surface Elev. (m) TOC Elevation (m) Total Depth (m bgs) Borehole Dia. (cm) **CC** Ground Investigations Window Sampling 5.0 Personnel Window Sample Location: Drilling Equipment: Logged By - Colin Morton N: 51.4827 E: -0.4537 Dando Terrier Driller - Andrew Leek Civil Town/City/or Village: Water Level Observations: County: Depth (m bgs) While Drilling: Date/Time **UB7 ODU** West Drayton After Drilling: Date/Time Depth (m bgs) SAMPLE DEPTH IN METERS % LITHOLOGIC GRAPHIC LOG SPT N VALUE **COMMENTS** RECOVERY **DESCRIPTION** NUMBER AND TYPE **USCS** MADE GROUND: Compacted subbase. MADE GROUND: dark brownish grey very sandy GRAVEL. Sand is fine to coarse, Gravel is sub-angular to sub-rounded, fine to coarse grained. Gravel consists of brick and concrete. NV/ .Perched water encountered at 0.3m Soft grey silty CLAY. (LANGLEY SILT MEMBER) D/ Soft greyish brown silty slightly gravelly CLAY. Gravel is sub-angular NV2 to sub-rounded, fine grained. Gravel consists of flint. Rare gravels. D (LANGLEY SILT MEMBER) 6 D Very dense greyish brown clayey sandy GRAVEL. Sand is fine to coarse, Gravel is sub-angular to sub-rounded, fine grained. Gravel consists of chert and flint. (TAPLOW GRAVEL MEMBER) >50

#### WINDOW SAMPLE LOG **WINDOW SAMPLE NO. WS105** Page 1 of 1 Date Drilling Started: Date Drilling Completed: Facility/Project Name: Project Number: NCP Carpark Heathrow 29/7/21 29/7/21 453101.0000.0000 Drilling Firm: Drilling Method: Surface Elev. (m) TOC Elevation (m) Total Depth (m bgs) Borehole Dia. (cm) **CC** Ground Investigations Window Sampling 5.0 Drilling Equipment: Window Sample Location: Personnel Logged By - Colin Morton N: 51.4825 E: -0.4536 **Dando Terrier** Driller - Andrew Leek Civil Town/City/or Village: Water Level Observations: County: Depth (m bgs) While Drilling: Date/Time **UB7 ODU** West Drayton After Drilling: Date/Time Depth (m bgs) SAMPLE **DEPTH IN METERS** % LITHOLOGIC GRAPHIC LOG SPT N VALUE **COMMENTS** RECOVERY **DESCRIPTION** NUMBER AND TYPE **USCS** MADE GROUND: Compacted subbase. MADE GROUND: dark brownish grey very sandy GRAVEL. Sand is fine to coarse, Gravel is sub-angular to sub-rounded, fine to coarse grained. Gravel consists of brick, concrete and flint. Cobbles of brick NV/ and concrete Soft light grey silty CLAY. (LANGLEY SILT MEMBER) D/ Very soft light greyish brown slightly silty CLAY. Rare fine gravels of flint. (LANĞLEY SILT MEMBER) ENV/ D 5 Dense, becoming very dense light greyish brown slightly clayey very sandy GRAVEL. Sand is fine to coarse, Gravel is sub-angular to sub-rounded, fine to medium grained. Gravel consists of chert and flint. (TAPLOW GRAVEL MEMBER) D/ 2 45 3 >50

#### WINDOW SAMPLE LOG WINDOW SAMPLE NO. WS106 Page 1 of 1 Date Drilling Started: Date Drilling Completed: Project Number: Facility/Project Name: NCP Carpark Heathrow 29/7/21 29/7/21 453101.0000.0000 Drilling Firm: Drilling Method: Surface Elev. (m) TOC Elevation (m) Total Depth (m bgs) Borehole Dia. (cm) **CC** Ground Investigations Window Sampling Personnel Window Sample Location: Drilling Equipment: Logged By - Colin Morton **Dando Terrier** N: 51.4821 E: -0.4545 Driller - Andrew Leek Civil Town/City/or Village: Water Level Observations: County: While Drilling: Date/Time Depth (m bgs) **UB7 ODU** West Drayton After Drilling: Date/Time Depth (m bgs) SAMPLE DEPTH IN METERS % LITHOLOGIC GRAPHIC LOG SPT N VALUE **COMMENTS** RECOVERY **DESCRIPTION** NUMBER AND TYPE MADE GROUND: Compacted subbase. MADE GROUND: dark greyish brown clayey very sandy GRAVEL. Sand is fine to coarse, Gravel is sub-angular to sub-rounded, fine to coarse grained. Gravel consists of brick, clinker and concrete. Occasional glass fragments. NV1 Very soft light brown slightly silty slightly sandy slightly gravelly CLAY. Sand is fine, Gravel is sub-angular to sub-rounded, fine grained. Gravel consists of flint. (LANGLEY SILT MEMBER) D/ D) NV2 Very dense light brown very sandy GRAVEL. Sand is fine to coarse, Gravel is sub-angular to sub-rounded, fine to medium grained. Gravel >50 consists of chert and flint. (TAPLOW GRAVEL MEMBER) 3ulk >50

| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |             |                 |                                                             | WINDOW S                                                                                                                                                                                                                                | AMPLE LOG                                                                                   |                                   |              |           |                                       |              |                                        |                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------|-----------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------|--------------|-----------|---------------------------------------|--------------|----------------------------------------|-------------------------------------|
| <b>1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7            |             | て               |                                                             |                                                                                                                                                                                                                                         |                                                                                             | WII                               | NDO          | N S       | AMPI                                  | LE N         | VO. V                                  | VS107                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |                 |                                                             |                                                                                                                                                                                                                                         | Data Drilling Startes                                                                       | J.                                | Deta F       | Neillin a | Camania                               | tadı         | Page 1                                 | 1 of 1<br>ct Number:                |
| Facili                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ty/Proje     | ci name     |                 | ICD Carpai                                                  | rk Hoothrow                                                                                                                                                                                                                             | Date Drilling Started 29/7/21                                                               | 1.                                | Date         | _         | Comple<br>7/21                        | iea.         | 1                                      |                                     |
| Drillin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | g Firm:      |             |                 | ICP Carpai                                                  | rk Heathrow  Drilling Method:                                                                                                                                                                                                           | Surface Elev. (m)                                                                           | TOC                               | <br>Elevatio |           |                                       | Depth        |                                        | 101.0000.0000<br>Borehole Dia. (cm) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | und l       | nvest           | igations                                                    | Window Sampling                                                                                                                                                                                                                         |                                                                                             |                                   |              | ()        |                                       | 5.0          | ( 290)                                 | December Dian (em)                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ow Sam       |             |                 | igationo                                                    | villaew campling                                                                                                                                                                                                                        | Personnel                                                                                   |                                   |              |           | Drilling                              |              | pment:                                 |                                     |
| N: 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.4819       | E. (        | 0 4540          |                                                             |                                                                                                                                                                                                                                         | Logged By - Colin                                                                           |                                   |              |           |                                       | _            | Jando                                  | Terrier                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Town/Ci      |             |                 | County:                                                     |                                                                                                                                                                                                                                         | Driller - Andrew Le Water Level Observ                                                      |                                   |              |           |                                       |              | Januo                                  | Terrier                             |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |             |                 |                                                             | UB7 ODU                                                                                                                                                                                                                                 | While Drilling:                                                                             |                                   | e/Time       |           |                                       |              |                                        | h (m bgs)                           |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Vest [       | лаую        | 110             |                                                             | 067 000                                                                                                                                                                                                                                 | After Drilling:                                                                             | Date                              | e/Time       |           |                                       |              | Dept                                   | th (m bgs)                          |
| NUMBER<br>AND TYPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RECOVERY (%) | SPT N VALUE | DEPTH IN METERS |                                                             | LITHOLOGIC<br>DESCRIPTION                                                                                                                                                                                                               |                                                                                             |                                   |              | nscs      | GRAPHIC LOG                           | WELL DIAGRAM | C                                      | COMMENTS                            |
| ENV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | =            | 4           | -<br>-<br>1—    | MADE (<br>GRAVE<br>sub-rou<br>and con<br>Very so<br>CLAY. § | GROUND: Compacted subbase GROUND: dark brownish grey self. Sand is fine to coarse, Grave nded, fine to coarse grained. Gracete.  If light greyish brown silty slight Sand is fine, Gravel is sub-angu. Gravel consists of flint. (LANG) | lightly clayey verel is sub-angular avel consists of lawy sandy slightly glar to sub-rounde | to<br>brick<br>gravel<br>ed, find | ly           |           |                                       |              | 3                                      |                                     |
| SPT SPICE OF CONTROL O |              | >50         | - 2             | GRAVE<br>sub-rou<br>and flint                               | nse, dense in parts, light greyis<br>iL. Sand is fine to coarse, Grave<br>nded, fine to medium grained. (<br>i. Band of stiff very sandy clay a<br>iL MEMBER)                                                                           | el is sub-angular i<br>Gravel consists of                                                   | to<br>f cher                      | t            |           | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |              | 00 00 00 00 00 00 00 00 00 00 00 00 00 |                                     |
| SPT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | >50         | -               |                                                             |                                                                                                                                                                                                                                         |                                                                                             |                                   |              |           |                                       |              |                                        |                                     |

| MPLE LOG |        | _ |  |   |      |                               |        |    |  |     |
|----------|--------|---|--|---|------|-------------------------------|--------|----|--|-----|
| × SA     |        |   |  |   |      |                               |        |    |  |     |
| Signa    | ature: |   |  | F | irm: | TRC COMPANIES                 | 11D 4  | DC |  | Гоу |
| ≶        |        |   |  |   |      | 20 Red Lion Street, London WC | / IK 4 | P3 |  | Fax |

| -            |                                         |                                                                                                                                              |                                    | BOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EHOLE L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | OG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7            |                                         | ~                                                                                                                                            |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | В                                                                                                                                    | H NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | H101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|              |                                         |                                                                                                                                              |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15:5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 41                                    | D : -                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | I- O 1 1                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ty/Proje     | ect Nam                                 |                                                                                                                                              |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date Bo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| a Cir        |                                         |                                                                                                                                              | NCP Carpa                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | T00'                                  | Iloviati -                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 01.0000.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|              |                                         |                                                                                                                                              | L! <b>4</b> !                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Surrace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Elev. (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1001                                  |                                 | 1 (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | gs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Borenole Dia. (cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|              |                                         |                                                                                                                                              |                                    | Cable Percussive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Doroonn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .+.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| y Local      | IOH FIAI                                | il Cool                                                                                                                                      | ulilates.                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Morton                                |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                      | quipinei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | IL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              |                                         |                                                                                                                                              |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                      | Dar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ndo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Γown/C       | ity/or Vi                               | llage:                                                                                                                                       | County:                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | l l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       | /Time                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                      | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | enth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (m bgs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Vest I       | Orayto                                  | n                                                                                                                                            |                                    | UB7 ODU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (m bgs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| /IPLE        |                                         |                                                                                                                                              |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| RECOVERY (%) | SPT N VALUE                             | DEPTH IN METERS                                                                                                                              |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                                 | nscs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GRAPHIC LOG                                                                                                                          | WELL DIAGRAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | OMMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|              |                                         | <del>-</del>                                                                                                                                 | MADE                               | GROUND: Compacted subb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ase.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ₩.₽                                                                                                                                  | · \( \forall \)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              |                                         | 1-                                                                                                                                           | Soft gre  Very de fine to coarse e | EL. Sand is fine to coarse, G<br>nded, fine to coarse grained<br>ous material, brick and cond<br>by very silty CLAY. (LANGLE<br>coarse, Gravel is sub-angula<br>grained. Gravel consists of o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ravel is sub-<br>d. Gravel cor<br>crete.<br>EY SILT MEI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | angular<br>nsists of<br>MBER)                                                                                                                                                                                                                                                                                                                                                                                                                                                               | and is                                | dy                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                | 1.6 gra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | m, m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | added water from asking potential vater strikes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|              | 58                                      | 3-                                                                                                                                           |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              | g Firm: C Grog Locat 1.483 own/C Vest I | g Firm: C Ground I g Location Plan 1.483 E: -0 Town/City/or Vi Vest Drayto IPLE  (%) NANDON 1.483 E: -0 Town/City/or Vi Vest Drayto IPLE  62 | y/Project Name:    Note            | NCP Carpating Firm: C Ground Investigations of Location Plant Coordinates:  1.483 E: -0.453  Town/City/or Village: County:  Vest Drayton  IPLE  SA JUNE OF THE OF T | NCP Carpark Heathrow   Grirm:   Drilling Method:   Cable Percussive   Ground Investigations   Cable Percussive   Cable Percus | NCP Carpark Heathrow g Firm: C Ground Investigations J Location Plant Coordinates:  LA83 E: -0.453  Cown/City/or Village: Vest Drayton  IPLE  MADE GROUND: Compacted subbase.  MADE GROUND: Dark brownish grey slightly or GRAVEL. Sand is fine to coarse, Gravel is subsub-angular to sub-rounced, fine to coarse grained. Gravel consists of chert and flir GRAVEL MEMBER)  Very dense light greyish brown very sandy GRAfine to coarse, Gravel consists of chert and flir GRAVEL MEMBER) | Date Borehole Star 2/8/21     g Firm: | Date Borehole Started:   2/8/21 | Date Borehole Started:   Date Borehole Start | yProject Name:  NCP Carpark Heathrow 2/8/21 2/8 g Firm: C Ground Investigations Cable Percussive 1_coation Plant Coordinates: 1_l483 | West Drayton  WADE GROUND: Compacted subbase.  MADE GROUND: Compacted subbase.  MADE GROUND: Compacted subbase.  MADE GROUND: Dark brownish grey slightly clayey very sandy GRAVEL. Sand is fine to coarse, Gravel consists of bituminous material, brick and concrete.  Soft grey very silty CLAY. (LANGLEY SILT MEMBER)  Date Borehole Started:  2/8/21  Date Borehole Started:  2/8/21  Date Borehole Started:  2/8/21  Date Borehole Complet  2/8/21  Date Borehole Complet | ## NOP Carpark Heathrow   Date Borehole Started:   Date Borehole Completed:   Page   P | Date Borehole Started:   Date Borehole Completed:   Project Project Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Project   Projec |

|                |              | ľ           |                 | BH NO. BH101  Page 2 of 2                                                                                  |      |                                         |              |          |  |  |  |
|----------------|--------------|-------------|-----------------|------------------------------------------------------------------------------------------------------------|------|-----------------------------------------|--------------|----------|--|--|--|
| AND TYPE       | RECOVERY (%) | SPT N VALUE | DEPTH IN METERS | LITHOLOGIC<br>DESCRIPTION                                                                                  | nscs | GRAPHIC LOG                             | WELL DIAGRAM | COMMENTS |  |  |  |
| 100            |              |             | -               | Firm greyish brown slightly silty CLAY. (WEATHERED LONDON CLAY FORMATION)                                  |      | × 7                                     |              |          |  |  |  |
| ulk            |              |             |                 | Firm becoming stiff dark grey slightly silty CLAY. Occasional blueish laminations. (LONDON CLAY FORMATION) |      | × = × = × = × = × = × = × = × = × = × = |              |          |  |  |  |
| <u></u>        |              |             | _               | blueish laminations. (LONDON CLAY FORMATION)                                                               |      | X                                       |              |          |  |  |  |
|                |              |             | 6-              |                                                                                                            |      | × →                                     |              |          |  |  |  |
| <u>-</u><br>РТ |              | 19          | -               |                                                                                                            |      | X                                       |              |          |  |  |  |
|                |              |             | _               |                                                                                                            |      | × ×                                     |              |          |  |  |  |
|                |              |             |                 |                                                                                                            |      |                                         |              |          |  |  |  |
|                |              |             | 7-              |                                                                                                            |      | × 2                                     |              |          |  |  |  |
|                |              |             | _               |                                                                                                            |      |                                         |              |          |  |  |  |
|                |              |             | _               |                                                                                                            |      |                                         |              |          |  |  |  |
| 00             |              |             |                 |                                                                                                            |      |                                         |              |          |  |  |  |
|                |              |             | 8-              |                                                                                                            |      | X                                       |              |          |  |  |  |
|                |              |             | _               |                                                                                                            |      |                                         |              |          |  |  |  |
|                |              |             |                 |                                                                                                            |      | × 7                                     |              |          |  |  |  |
|                |              |             | _               |                                                                                                            |      | X 7                                     |              |          |  |  |  |
|                |              |             | 9-              |                                                                                                            |      | X                                       |              |          |  |  |  |
| PT             |              | 24          | -               |                                                                                                            |      | × 7                                     |              |          |  |  |  |
|                |              |             |                 |                                                                                                            |      |                                         |              |          |  |  |  |
|                |              |             | _               |                                                                                                            |      |                                         |              |          |  |  |  |
| $\dashv$       |              |             | 10-             |                                                                                                            |      | × 7                                     |              |          |  |  |  |
| od             |              |             |                 |                                                                                                            |      | X                                       |              |          |  |  |  |
|                |              |             |                 |                                                                                                            |      |                                         |              |          |  |  |  |
|                |              |             |                 |                                                                                                            |      |                                         |              |          |  |  |  |
| 000            |              |             | 11-             |                                                                                                            |      |                                         |              |          |  |  |  |
|                |              |             |                 |                                                                                                            |      |                                         |              |          |  |  |  |

|                                 |              |             |                   |                                            |                                                                                                                                                                                                                                        | BOREH                                                                                                  | OLE LOG                                                                                                                            |                   |            |       | _           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |                                                            |
|---------------------------------|--------------|-------------|-------------------|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------|-------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------------------------------------------------|
|                                 |              |             | T                 |                                            |                                                                                                                                                                                                                                        |                                                                                                        |                                                                                                                                    |                   |            |       | E           | 3H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NO. E    | 3H102                                                      |
| Facility                        | /Proje       | ct Name     | e:                |                                            |                                                                                                                                                                                                                                        |                                                                                                        | Date Borehole Start                                                                                                                | ed:               | Date Bor   | ehole | e Comp      | leted:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          | t Number:                                                  |
| •                               | •            |             |                   | ICP Carpa                                  | rk Heathrow                                                                                                                                                                                                                            |                                                                                                        | 29/7/21                                                                                                                            |                   | 2          | 29/7  | 7/21        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 453      | 101.0000.000                                               |
| Drilling                        | Firm:        |             |                   | ioi ouipu                                  | Drilling Method:                                                                                                                                                                                                                       |                                                                                                        | Surface Elev. (m)                                                                                                                  | TOC EI            | levation ( |       |             | Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          | Borehole Dia. (ci                                          |
| CC                              | Gro          | und I       | nvest             | igations                                   | Cable Percu                                                                                                                                                                                                                            | ssive                                                                                                  |                                                                                                                                    |                   |            |       |             | 10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5        | ,                                                          |
|                                 |              |             |                   | dinates:                                   |                                                                                                                                                                                                                                        |                                                                                                        | Personnel                                                                                                                          |                   |            |       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | pment:   |                                                            |
| NI. 51                          | 400          | Γ. 0        | 454               |                                            |                                                                                                                                                                                                                                        |                                                                                                        | Logged By - Colin I                                                                                                                |                   |            |       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Dando    | . 4000                                                     |
|                                 |              | E: -0.      |                   | County:                                    |                                                                                                                                                                                                                                        |                                                                                                        | Water Level Observ                                                                                                                 |                   |            |       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Danuc    | 4000                                                       |
|                                 |              | •           | •                 |                                            |                                                                                                                                                                                                                                        |                                                                                                        | While Drilling:                                                                                                                    | Date/1            |            |       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | h (m bgs)                                                  |
|                                 |              | Drayto      | n                 |                                            | UB7 ODU                                                                                                                                                                                                                                |                                                                                                        | After Drilling:                                                                                                                    | Date/1            | Time       |       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Dept     | h (m bgs)                                                  |
| NUMBER<br>AND TYPE              | RECOVERY (%) | SPT N VALUE | DEPTH IN METERS   |                                            |                                                                                                                                                                                                                                        | THOLOGIC<br>SCRIPTION                                                                                  | I                                                                                                                                  |                   |            | nscs  | GRAPHIC LOG | WELL DIAGRAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | С        | COMMENTS                                                   |
|                                 |              |             |                   | MADE                                       | GROUND: Compact                                                                                                                                                                                                                        | ed subbase.                                                                                            | •                                                                                                                                  |                   |            |       |             | <b>V</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T.       |                                                            |
| Bulk  D D Bulk  Bulk  CPT  Sulk |              | 6 >50 >50   | 1— 1— 2— 3— 4— 4— | Soft light  Very de fine to c coarse GRAVE | GROUND: greyish be in a conded, fine to coarse ous material, brick a cy very silty CLAY. (In a greyish brown silty ense light greyish browns in the management of the coarse, Gravel is substant of the coarse, Gravel consist MEMBER) | earse, Grave grained. Grand concrete.  ANGLEY S  CLAY. (LAI  Own very san  D-angular to sists of chert | I is sub-angular tavel consists of lavel consists of large sub-angular tavel consists of large sub-rounded, find tand flint. (TAPL | EMBER and is e to |            |       |             | Image: Control of the contro | 1.8m, r  | er added water from<br>nasking potential<br>water strikes. |
| Bulk                            |              |             | _                 |                                            | coming stiff dark gre                                                                                                                                                                                                                  |                                                                                                        |                                                                                                                                    | onal              |            |       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0        |                                                            |
| uit                             |              |             |                   | blueish                                    | laminations. (LOND                                                                                                                                                                                                                     | ON CLAY F                                                                                              | OKIVIA I IUN)                                                                                                                      |                   |            |       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u> </u> |                                                            |
|                                 |              |             |                   |                                            |                                                                                                                                                                                                                                        |                                                                                                        |                                                                                                                                    |                   |            |       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |                                                            |
| Signati                         | ure:         |             |                   |                                            |                                                                                                                                                                                                                                        |                                                                                                        | COMPANIES                                                                                                                          |                   | \A/O ::    | D 4   | D0          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | _                                                          |
|                                 |              |             |                   |                                            |                                                                                                                                                                                                                                        | 20 R                                                                                                   | ed Lion Street, I                                                                                                                  | London            | า WC1      | K 4   | PS_         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | Fa                                                         |

TRC COMPANIES 20 Red Lion Street, London WC1R 4PS Signature: Fax

| <b>?</b>   |     | R                       | BOREHOLE LO               | OG<br>BH NO. BH102<br>Page 2 of 2     |
|------------|-----|-------------------------|---------------------------|---------------------------------------|
|            | (9) | SPINVALUE DEPTHINMETERS | LITHOLOGIC<br>DESCRIPTION | USCS GRAPHIC LOG WELL DIAGRAM         |
| SPT        | 1   | 13                      |                           |                                       |
| J100       |     | 6                       |                           |                                       |
| D          |     | 7                       |                           |                                       |
| D PT       | 2   | 22                      |                           |                                       |
| 100<br>D./ |     | ę                       |                           |                                       |
| D./        |     | 10                      |                           |                                       |
| PT         | 2   | 28                      |                           | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
|            |     | 11                      |                           |                                       |

| 7                    |              |             |                   |                                         |                                                                                                                          | BOREHO                                         | OLE LOG                                                       |                  |              |             |              |                                 |
|----------------------|--------------|-------------|-------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------|------------------|--------------|-------------|--------------|---------------------------------|
| 7                    |              |             | 7                 |                                         |                                                                                                                          |                                                |                                                               |                  |              | E           |              | NO. BH103 Page 1 of 2           |
| Facility             | /Projec      | t Name      | e:                |                                         |                                                                                                                          |                                                | Date Borehole Starte                                          | ed:              | Date Boreho  | ole Comp    |              | Project Number:                 |
|                      |              |             | N                 | ICP Carpar                              | k Heathrow                                                                                                               |                                                | 30/7/21                                                       |                  |              | 7/21        |              | 453101.0000.0000                |
| Drilling             |              |             |                   |                                         | Drilling Method:                                                                                                         |                                                | Surface Elev. (m)                                             | TOC E            | levation (m) |             |              | m bgs) Borehole Dia. (cm)       |
|                      |              |             |                   | igations<br>dinates:                    | Cable Percu                                                                                                              | issive                                         | Personnel                                                     |                  |              | Drilling    | 10.5         | mont:                           |
| Builing              | Localio      | UII FIAII   | il Coor           | uli lates.                              |                                                                                                                          |                                                | Logged By - Colin I                                           | Morton           |              | Drilling    |              |                                 |
| N: 51                |              |             |                   |                                         |                                                                                                                          |                                                | Driller - Andrew Lee                                          |                  |              |             |              | Dando 4000                      |
| Civil To             |              | -           | •                 | County:                                 |                                                                                                                          |                                                | Water Level Observ<br>While Drilling:                         | ations:<br>Date/ | Time         |             | $\nabla$     |                                 |
|                      |              | rayto       | n                 |                                         | UB7 ODU                                                                                                                  |                                                | After Drilling:                                               | Date/            | Time         |             | Ā            | Depth (m bgs) 3.1               |
| NUMBER<br>AND TYPE   | RECOVERY (%) | SPT N VALUE | DEPTH IN METERS   |                                         |                                                                                                                          | THOLOGIC<br>SCRIPTION                          |                                                               |                  | SOSO         | SRAPHIC LOG | WELL DIAGRAM | COMMENTS                        |
| Bulk—                | <u> </u>     | S           | -<br>-<br>-<br>1- | MADE G<br>GRAVEI<br>sub-rour<br>and con | GROUND: Compact<br>GROUND: Dark brown<br>L. Sand is fine to conded, fine to coarse<br>crete.<br>If y very silty CLAY. (L | wnish grey sl<br>parse, Gravel<br>grained. Gra | lightly clayey ver<br>lis sub-angular t<br>avel consists of b | 0                |              | ō           | <b>₩</b>     |                                 |
| Bulk NV2 D SPT/ Bulk |              | 59          | -<br>-<br>2-      | Very der                                | t greyish brown silty<br>nse light greyish bro<br>parse, Gravel is sub<br>grained. Gravel cons<br>L MEMBER)              | own very san<br>o-angular to s                 | dy GRAVEL. Sa<br>sub-rounded, fine                            | nd is            | R)           |             |              |                                 |
| CPT                  |              | 86          | 3-                |                                         |                                                                                                                          |                                                |                                                               |                  |              |             |              | Groundwater level after 30mins. |
| Bulk<br>Bulk<br>CPT  |              | 52          | 4                 |                                         |                                                                                                                          |                                                |                                                               |                  |              |             |              |                                 |
| Signati              | ure:         |             |                   |                                         |                                                                                                                          |                                                | COMPANIES ed Lion Street, I                                   | _ondoi           | n WC1R 4     | 4PS         |              | Fax                             |

TRC COMPANIES 20 Red Lion Street, London WC1R 4PS Signature: Fax

| SAMPLE                             | T <sub>1</sub> | 3                | BOREHOLE LOG                                                                                                                                                                          |      | <u> </u>    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NO. BH103 Page 2 of 2         |
|------------------------------------|----------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| NUMBER<br>AND TYPE<br>RECOVERY (%) | SPT N VALUE    | DEPTH IN METERS  | LITHOLOGIC<br>DESCRIPTION                                                                                                                                                             | nscs | GRAPHIC LOG | WELL DIAGRAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | COMMENTS                      |
| CPT Bulk  J100  D  SPT  SPT        | 21             | 6— 7— 7— 10— 11— | Firm greyish brown slightly silty CLAY. (WEATHERED LONDON CLAY FORMATION)  Firm becoming stiff dark grey slightly silty CLAY. Occasional blueish laminations. (LONDON CLAY FORMATION) |      |             | No.   No. | Groundwater encounter at 6.1m |

|                     |              |             | 7               |                   |                                                        |                                         |          |                 |                         | внı          | NO. E     | 3H201                          |
|---------------------|--------------|-------------|-----------------|-------------------|--------------------------------------------------------|-----------------------------------------|----------|-----------------|-------------------------|--------------|-----------|--------------------------------|
|                     |              |             |                 |                   |                                                        | Data Danahala Otam                      | 41.      | Data Baraka     | .1- 0                   |              | Page 1    |                                |
| Facility            | /Proje       |             |                 | C                 | C\\\                                                   | Date Borehole Start                     | ied:     | Date Boreho     |                         | pieted:      |           |                                |
| Drilling            | Firm:        |             | CP H            | eatnrow St        | upp GW monitoring Drilling Method:                     | 15-11-21<br>Surface Elev. (m)           | TOC      |                 | Total                   | Denth        |           | 60336.0001<br>Borehole Dia. (c |
| פווווווס            |              |             | Drilling        | a                 | Cable Percussive                                       | Surface Elev. (III)                     | 100      | Lievauoii (III) | I Otal                  | 6.0          | (iii bys) | Poletiole Dia. (C              |
| Borina              |              |             |                 | dinates:          | Capie Fercussive                                       | Personnel                               | 1        | <b></b>         | Drillin                 |              | pment:    |                                |
|                     |              |             |                 |                   |                                                        | Logged By - Nyem<br>Driller - Derick Wa |          | son             |                         | J 1'I        |           |                                |
| N: 51.4<br>Civil To |              |             |                 | County:           |                                                        | Water Level Observ                      |          |                 |                         |              |           |                                |
|                     | Sip          | •           | ŭ               | •                 | W+ D+ UD7 0DU                                          | While Drilling:                         |          | e/Time          |                         |              |           | h (m bgs)                      |
| SAMP                | _            | 5011        |                 |                   | West Drayton UB7 0DU                                   | After Drilling:                         | Date     | e/Time          |                         |              | Бері      | h (m bgs)                      |
| - T                 |              |             | S               |                   |                                                        |                                         |          |                 |                         |              |           |                                |
|                     | (9)          |             | IER:            |                   |                                                        |                                         |          |                 | (5)                     | Ş            |           |                                |
| اس                  | RECOVERY (%) | UE          | DEPTH IN METERS |                   | LITHOLOG<br>DESCRIPTION                                | IC<br>ON                                |          |                 | GRAPHIC LOG             | WELL DIAGRAM | C         | OMMENTS                        |
| NUMBER<br>AND TYPE  | VER          | SPT N VALUE | <u>Z</u><br>  I |                   | DESCRIPTION                                            | J14                                     |          |                 | 呈                       | DIA          |           |                                |
| <u> </u>            | 00=          | ΝĻ          | HH              |                   |                                                        |                                         |          | nscs            | 3AP.                    | EL           |           |                                |
| zá                  | 꿆            | SF          | ä               | MARE              | ODOLIND, O                                             | ma Cam-i-t- 5 ! !                       | <b>L</b> |                 | <u>ö</u>                |              |           |                                |
|                     |              |             |                 | MADE (            | GROUND: Compacted hardco<br>nt and Type 1 Gravel.      | re. Consists of dark                    | Iwora    | n               |                         | 7. 7.        | 1         |                                |
| NV/I                |              |             |                 | 211011, 1111      |                                                        |                                         |          |                 |                         |              | }         |                                |
|                     |              |             |                 |                   |                                                        |                                         |          |                 |                         | 7.           | <u> </u>  |                                |
|                     |              |             |                 |                   |                                                        |                                         |          |                 |                         |              |           |                                |
|                     |              |             | 1-              | MADE              | GROUND: dark brown silty gra                           | velly CLAY. Gravel is                   | s        |                 |                         |              |           |                                |
| SPT                 |              | 40          | _               | angular           | to rounded, fine to coarse grai                        | ned. Gravel consists                    | s of     |                 |                         |              |           |                                |
| _                   |              | 12          | ] _             | DIICK, III        | nt and sandstone. Frequent gr                          | averiiom 1.4M.                          |          |                 |                         |              |           |                                |
|                     |              |             | ] _             |                   |                                                        |                                         |          |                 |                         |              |           |                                |
|                     |              |             |                 | Very de           | nse light brownish orange sligh                        | ntly silty very gravelly                | SANI     | D.              | *****                   |              |           |                                |
| NV2                 |              |             | 2-              | Sand is           | fine to coarse, Gravel is angula                       | ar to rounded, fine to                  | o coar   | se              | % . %                   |              |           |                                |
| SPT                 |              |             |                 | grained<br>(TAPLC | . Gravel consists of flint, mudst<br>DW GRAVEL MEMBER) | one and sandstone.                      |          |                 | × 0 0 0 0               |              |           |                                |
| Щ                   |              | 50          |                 | ,                 | ,                                                      |                                         |          |                 | 00 X 00                 |              |           |                                |
|                     |              |             |                 |                   |                                                        |                                         |          |                 | *                       |              |           |                                |
|                     |              |             |                 |                   |                                                        |                                         |          |                 | %                       |              |           |                                |
| $\dashv$            |              |             | 3-              |                   |                                                        |                                         |          |                 | 00.00 V                 | 00 00        |           |                                |
| SPT                 |              | E0.         |                 |                   |                                                        |                                         |          |                 |                         |              |           |                                |
| Щ                   |              | 50          | ] ]             |                   |                                                        |                                         |          |                 | 8000                    |              |           |                                |
|                     |              |             |                 |                   |                                                        |                                         |          |                 | 00000<br>00000<br>00000 |              |           |                                |
|                     |              |             |                 |                   |                                                        |                                         |          |                 | % % %                   |              |           |                                |
|                     |              |             | 4-              |                   |                                                        |                                         |          |                 | % 0° 08                 |              |           |                                |
| SPT                 |              | 40          |                 | Firm ligh         | nt grey silty CLAY.                                    |                                         |          |                 | × ×                     |              |           |                                |
| "                   |              | 18          |                 | (LONĎ             | ON CLAY FORMATION)                                     |                                         |          |                 | × ×                     |              |           |                                |
|                     |              |             | 1 _             |                   |                                                        |                                         |          |                 | X X                     |              |           |                                |
|                     |              |             |                 |                   |                                                        |                                         |          |                 |                         |              |           |                                |
|                     |              |             | 5-              |                   |                                                        |                                         |          |                 | ×                       |              |           |                                |
| SPT                 |              |             | _               |                   |                                                        |                                         |          |                 | XXX                     |              |           |                                |
| ן   רו              |              | 15          |                 |                   |                                                        |                                         |          |                 | × ×                     |              |           |                                |
| $\dashv$            |              |             | 1 _             |                   |                                                        |                                         |          |                 | × ×                     |              |           |                                |
|                     |              |             |                 |                   |                                                        |                                         |          |                 |                         |              |           |                                |
|                     |              |             | 6-              |                   |                                                        |                                         |          |                 | × ×                     |              |           |                                |
|                     |              |             |                 |                   |                                                        |                                         |          |                 |                         |              |           |                                |
|                     |              |             |                 |                   |                                                        |                                         |          |                 |                         |              |           |                                |
|                     |              |             |                 |                   |                                                        |                                         |          |                 |                         |              |           |                                |
| Signatu             | ıre:         |             |                 |                   | Firm: TF                                               | RC Companies                            |          |                 |                         |              |           |                                |
| -                   |              |             |                 |                   |                                                        | - 1                                     |          |                 |                         |              |           | Fa                             |

|                |              | F           | 7               |              | BORE                                                                       | HOLE LOG                           |        |                  |             | BH N         | 10. E  | 3H202                    |
|----------------|--------------|-------------|-----------------|--------------|----------------------------------------------------------------------------|------------------------------------|--------|------------------|-------------|--------------|--------|--------------------------|
|                |              |             |                 |              |                                                                            |                                    |        |                  |             |              | Page 1 |                          |
| Facility/      | /Proje       | ct Nam      | ne:             |              |                                                                            | Date Borehole Start                | ted:   | Date Boreh       | ole Com     |              |        |                          |
|                |              |             | CP H            | eathrow Su   | upp GW monitoring                                                          | 15-11-21                           |        | 1                | 11-21       |              |        | 60336.0001               |
| Drilling       | Firm:        |             |                 |              | Drilling Method:                                                           | Surface Elev. (m)                  | TOC    | Elevation (m     | ) Total     |              | m bgs) | Borehole Dia. (          |
|                |              |             | Drillin         |              | Cable Percussive                                                           |                                    |        |                  |             | 6.0          |        |                          |
| Boring L       | Locati       | ion Pla     | nt Coor         | rdinates:    |                                                                            | Personnel<br>Logged By - Nyem      | h lohn | oon              | Drillir     | ng Equip     | ment:  |                          |
| N: 51.4        | 182          | E: -0.      | 454             |              |                                                                            | Driller - Derick Wa                |        | 5011             |             |              |        |                          |
| Civil To       | wn/Ci        | ity/or V    | 'illage:        | County:      |                                                                            | Water Level Observ                 |        |                  |             |              |        |                          |
|                | Sips         | son         |                 |              | West Drayton UB7 0DU                                                       | While Drilling:<br>After Drilling: |        | e/Time<br>e/Time |             |              |        | th (m bgs)<br>th (m bgs) |
| SAMPI          | _            | 0011        |                 |              | West Diayton OD7 ODO                                                       | 7 ttor Brining.                    | Butt   | 7 11110          |             |              | Вор    | ar (m bgo)               |
|                | RECOVERY (%) | SPT N VALUE | DEPTH IN METERS | MADE (       | LITHOLOG<br>DESCRIPTI<br>GROUND: Compacted hardco<br>nt and Type 1 Gravel. | ON                                 | browi  | n                | GRAPHIC LOG | WELL DIAGRAM | C      | COMMENTS                 |
| V <i>)</i> [   |              |             | -               | Firm da      | rk grey slightly silty CLAY.                                               |                                    |        |                  |             | Z            |        |                          |
|                |              |             | -               | ├_ (LANGL    | LEY SILT MEMBER)                                                           |                                    |        | /                |             | 7            |        |                          |
| $\blacksquare$ |              |             | 1-              | Firm ligh    | nt brownish orange silty CLAY.<br>LEY SILT MEMBER)                         |                                    |        |                  | × -×        | 4            |        |                          |
| РΤ             |              | 13          | -               | (LANGL       | LET SILT WEWDER)                                                           |                                    |        |                  | X           |              |        |                          |
| Щ              |              |             | -               | -            |                                                                            |                                    |        |                  | × 7         |              |        |                          |
|                |              |             | -               | -            |                                                                            |                                    |        |                  | × ×         |              |        |                          |
|                |              |             | -               | Very de      | nse light brownish orange sligh                                            | ntly silty sandy GRA\              | /EL.   |                  | 9 9 9 9     | 0            |        |                          |
|                |              |             | 2-              | Sand is      | fine to coarse, Gravel is angul.<br>Gravel consists of flint and sa        | ar to rounded, fine to             | o coar | se               | 0000        | 5            |        |                          |
| PT             |              | 50          | _               |              | )W GRAVEL MEMBER)                                                          | nustone.                           |        |                  | 0000        | ò            |        |                          |
| Щ              |              | 30          | -               |              |                                                                            |                                    |        |                  | 9000        | 200          |        |                          |
|                |              |             | _               | -            |                                                                            |                                    |        |                  | 00000       | 6            |        |                          |
|                |              |             | _               |              |                                                                            |                                    |        |                  | 0000        | 2            |        |                          |
|                |              |             | 3-              |              |                                                                            |                                    |        |                  | 8000        | ŝ            |        |                          |
| РТ             |              |             |                 |              |                                                                            |                                    |        |                  | 00000       |              |        |                          |
| <b>-</b>       |              | 50          |                 |              |                                                                            |                                    |        |                  | 0000        |              |        |                          |
|                |              |             | -               |              |                                                                            |                                    |        |                  | 00000       |              |        |                          |
|                |              |             | -               | -            |                                                                            |                                    |        |                  | 00000       |              |        |                          |
|                |              |             | -               | 1            |                                                                            |                                    |        |                  | 9 9 9 9     |              |        |                          |
| $\Box$         |              |             | 4-              |              |                                                                            |                                    |        |                  |             |              |        |                          |
| PT             |              | 50          | -               | -            |                                                                            |                                    |        |                  | 3666        |              |        |                          |
| Щ              |              |             | -               | -            |                                                                            |                                    |        |                  | 00000       |              |        |                          |
|                |              |             | -               | <u> </u><br> |                                                                            |                                    |        |                  | 0000        |              |        |                          |
|                |              |             | -               | -            |                                                                            |                                    |        |                  | 00000       |              |        |                          |
| $\dashv$       |              |             | 5-              | _            |                                                                            |                                    |        |                  | 00000       |              |        |                          |
| РΤ             |              | FO          | -               |              |                                                                            |                                    |        |                  | 00000       |              |        |                          |
| $\dashv$       |              | 50          | _               |              |                                                                            |                                    |        |                  | 0000        |              |        |                          |
|                |              |             | _               |              |                                                                            |                                    |        |                  | 92000       |              |        |                          |
| l <b>∨</b> 2⁄2 |              |             | _               | Firm ligh    | nt brownish orange silty CLAY.<br>ON CLAY FORMATION)                       |                                    |        |                  |             |              |        |                          |
|                |              |             | 6-              | (LOND)       | ON GLAT FURIVIATION)                                                       |                                    |        |                  |             |              |        |                          |
|                |              |             | 0_              |              |                                                                            |                                    |        |                  |             |              |        |                          |
|                |              |             | -               |              |                                                                            |                                    |        |                  |             |              |        |                          |
|                |              |             |                 | 1            |                                                                            |                                    |        |                  |             |              |        |                          |
| Signatu        | ire.         |             |                 |              | Firm: T                                                                    | RC Companies                       |        |                  |             |              |        |                          |
|                |              |             |                 |              | 1 11111.                                                                   | 10 Companies                       |        |                  |             |              |        | Fa                       |
|                |              |             |                 |              |                                                                            |                                    |        |                  |             | -            |        |                          |

| <b>↔</b> .                         | T,          | 7               |                                            | BORE                                                                                                                                                                                                   | HOLE LOG                                |          |                |             | BH N         | IO F   | BH203                  |
|------------------------------------|-------------|-----------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------|----------------|-------------|--------------|--------|------------------------|
|                                    |             |                 |                                            |                                                                                                                                                                                                        |                                         |          |                |             |              | Page 1 |                        |
| Facility/Pro                       | ject Nar    | ne:             |                                            |                                                                                                                                                                                                        | Date Borehole Start                     | ted:     | Date Boreh     | ole Con     |              |        |                        |
|                                    | N           | ICP H           | eathrow Su                                 | upp GW monitoring                                                                                                                                                                                      | 15-11-21                                |          | 15-            | 11-21       |              | 46     | 30336.0001             |
| Drilling Firn                      | n:          |                 |                                            | Drilling Method:                                                                                                                                                                                       | Surface Elev. (m)                       | TOC      | Elevation (m   | ) Total     | Depth (r     | m bgs) | Borehole Dia. (        |
|                                    | Direct      | Drillin         | g                                          | Cable Percussive                                                                                                                                                                                       |                                         |          |                |             | 6.0          |        |                        |
| Boring Loca                        | ation Pla   | ant Coor        | rdinates:                                  | 1                                                                                                                                                                                                      | Personnel                               |          |                | Drillir     | ng Equip     | ment:  |                        |
| N: 51.483                          | E: -0       | .453            |                                            |                                                                                                                                                                                                        | Logged By - Nyem<br>Driller - Derick Wa |          | son            |             |              |        |                        |
| Civil Town/                        |             |                 | County:                                    |                                                                                                                                                                                                        | Water Level Observ                      | vations: |                |             |              |        |                        |
| Sir                                | pson        |                 |                                            | West Drayton UB7 0DU                                                                                                                                                                                   | While Drilling:<br>After Drilling:      |          | /Time<br>/Time |             |              |        | n (m bgs)<br>n (m bgs) |
| SAMPLE                             |             |                 |                                            | West Diayton ODT ODO                                                                                                                                                                                   | 7 a.to. 2g.                             | 2410     |                |             |              | 2000   | . ( 290)               |
| NUMBER<br>AND TYPE<br>RECOVERY (%) | SPT N VALUE | DEPTH IN METERS |                                            | LITHOLOG<br>DESCRIPTI                                                                                                                                                                                  |                                         |          | nscs           | GRAPHIC LOG | WELL DIAGRAM | С      | OMMENTS                |
|                                    | "           |                 | MADE (                                     | GROUND: Compacted hardco                                                                                                                                                                               | re. Consists of dark                    | browr    |                |             | 7            |        |                        |
| NV∮                                |             | 1— 3—           | MADE ( is fine to grained.  MADE ( CLAY. ( | nt and Type 1 Gravel. GROUND: dark brown clayey of coarse, Gravel is angular to refer to the coarse, Gravel is angular to refer to the coarse, Gravel is angular to rounded, first of brick and flint. | ounded, fine to coars                   | se       |                |             |              |        |                        |
|                                    |             | 4-              | (LOND                                      | nt brownish orange silty CLAY.<br>ON CLAY FORMATION)                                                                                                                                                   |                                         |          |                | ×           |              |        |                        |
| $\dashv$                           |             | ┪ _             | Firm ligh                                  | nt grey silty CLAY.<br>ON CLAY FORMATION)                                                                                                                                                              |                                         |          |                |             |              |        |                        |
| PT                                 | 11          | _               | (23,15)                                    | 5 5E (1 / 51 (W) (11014)                                                                                                                                                                               |                                         |          |                | × -         |              |        |                        |
|                                    |             | 5-              |                                            |                                                                                                                                                                                                        |                                         |          |                | X           |              |        |                        |
|                                    |             | _               |                                            |                                                                                                                                                                                                        |                                         |          |                | *           |              |        |                        |
|                                    |             | [               |                                            |                                                                                                                                                                                                        |                                         |          |                | X           |              |        |                        |
| $\dashv$                           |             | -               | 1                                          |                                                                                                                                                                                                        |                                         |          |                | × 7         |              |        |                        |
| SPT                                | 13          | -               | 1                                          |                                                                                                                                                                                                        |                                         |          |                | <u></u>     |              |        |                        |
|                                    |             | _               | 1                                          |                                                                                                                                                                                                        |                                         |          |                | X-7         |              |        |                        |
|                                    |             | 6-              |                                            |                                                                                                                                                                                                        |                                         |          |                | Ť           | <b>Y</b> //A |        |                        |
|                                    |             | -               | -                                          |                                                                                                                                                                                                        |                                         |          |                |             |              |        |                        |
|                                    |             |                 |                                            |                                                                                                                                                                                                        |                                         |          |                |             |              |        |                        |
|                                    |             |                 |                                            |                                                                                                                                                                                                        |                                         |          |                |             |              |        |                        |
| Signature:                         |             |                 |                                            | Firm: TI                                                                                                                                                                                               | RC Companies                            |          |                |             |              |        | _                      |
|                                    |             |                 |                                            |                                                                                                                                                                                                        |                                         |          |                |             |              |        | F                      |

| A                  | \ <b>-</b>   |             |                 |                               |                                                                                         | BOREHO                          | OLE LOG                                 |                    |             |                                         |                                                  |         |                        |
|--------------------|--------------|-------------|-----------------|-------------------------------|-----------------------------------------------------------------------------------------|---------------------------------|-----------------------------------------|--------------------|-------------|-----------------------------------------|--------------------------------------------------|---------|------------------------|
| 7                  | 7            | I           | 7               |                               |                                                                                         |                                 |                                         |                    |             |                                         |                                                  |         | <b>BH204</b><br>1 of 1 |
| Facilit            | ty/Proje     | ect Nan     | ne:             |                               |                                                                                         |                                 | Date Borehole Start                     | ted:               | Date Boreh  | ole Com                                 |                                                  |         | ct Number:             |
|                    |              |             | ICP H           | eathrow Sเ                    | upp GW monitoring                                                                       |                                 | 15-11-21                                |                    |             | 11-21                                   |                                                  |         | 160336.000             |
| Drillin            | g Firm<br>-  |             |                 |                               | Drilling Method:                                                                        |                                 | Surface Elev. (m)                       | TOC E              | evation (m) | ) Total                                 |                                                  | (m bgs  | Borehole Di            |
| Boring             |              |             | Drillin         | g<br>rdinates:                | Cable Percu                                                                             | JSSIVE                          | Personnel                               |                    |             | Drillin                                 | 6.0                                              | pment:  |                        |
| N: 51              | 1.482        | E: -0.      | .454            | runates.                      |                                                                                         |                                 | Logged By - Nyem<br>Driller - Derick Wa |                    | on          | Dillilli                                | ig Equi                                          | pinont. |                        |
| Civil T            |              | -           | /illage:        | County:                       |                                                                                         |                                 | Water Level Observ<br>While Drilling:   | vations:<br>Date/1 | Γime        |                                         |                                                  | Dep     | th (m bgs)             |
| SAM                |              | son         | 1               |                               | West Drayton UB7                                                                        | 0DU                             | After Drilling:                         | Date/1             | Time        | T                                       |                                                  | Dep     | th (m bgs)             |
| SAIV               | IPLE         |             | S               |                               |                                                                                         |                                 |                                         |                    |             |                                         |                                                  |         |                        |
| NUMBER<br>AND TYPE | RECOVERY (%) | SPT N VALUE | DEPTH IN METERS |                               |                                                                                         | ITHOLOGIC<br>ESCRIPTION         |                                         |                    | nscs        | GRAPHICLOG                              | WELL DIAGRAM                                     | (       | COMMENT                |
| _ `                |              |             |                 |                               | GROUND: Compact                                                                         |                                 | Consists of dark                        | brown              |             |                                         | <del>                                     </del> | 3       |                        |
| ĮNVjl              |              |             | -               | MADE (<br>coarse,<br>Gravel o | nt and Type 1 Grave<br>GROUND: light brow<br>Gravel is angular to<br>consists of brick. | vn silty sandy<br>rounded, fine | to coarse graine                        | d.                 | 0           |                                         |                                                  | 1       |                        |
|                    |              |             | 1-              | MADE ( organic                | GROUND: light brow<br>matter                                                            | vnish orange s                  | silty CLAY.Frequ                        | ent                |             |                                         |                                                  |         |                        |
| SPT                |              | 1           | -               |                               |                                                                                         |                                 |                                         |                    |             |                                         |                                                  |         |                        |
|                    |              |             |                 |                               |                                                                                         |                                 |                                         |                    |             |                                         |                                                  |         |                        |
|                    |              |             | -<br>-<br>2-    |                               |                                                                                         |                                 |                                         |                    |             |                                         |                                                  |         |                        |
| SPT                |              | 1           | -               | 0-# 1                         |                                                                                         | OLAV.                           |                                         |                    |             |                                         |                                                  |         |                        |
|                    |              |             | -               | (LANGL                        | rk greyish black silty<br>LEY SILT MEMBER)                                              | )                               |                                         |                    |             | X X X                                   |                                                  |         |                        |
| SPT                |              | 30          | 3-              | (LANĞL                        | nt greenish orange sil<br>LEY SILT MEMBER                                               | )                               | adv. CDAVEL Ca                          | :                  |             | × - × - × - × - × - × - × - × - × - × - |                                                  |         |                        |
| NV2                |              | 30          | -               | fine to c                     | nse light brownish o<br>coarse, Gravel is ang<br>consists of flint and s                | ular to rounde<br>andstone.     | ed, fine to coarse                      | and is<br>graine   | d.          |                                         |                                                  |         |                        |
| FIAA               |              |             | -               | (TAPLC                        | OW GRAVEL MEMB                                                                          | BER)                            |                                         |                    |             | 00000                                   |                                                  |         |                        |
|                    |              |             | 4-              | <u>.</u>                      |                                                                                         |                                 |                                         |                    |             | 00000000000000000000000000000000000000  |                                                  |         |                        |
| SPT                |              | 47          |                 |                               | ht brownish orange s<br>ON CLAY FORMATI                                                 |                                 |                                         |                    |             | 20000                                   |                                                  |         |                        |
|                    |              |             | -               | LOND                          | ON CLAT FORWATI                                                                         | iON)                            |                                         |                    |             | X                                       |                                                  |         |                        |
|                    |              |             |                 | Firm ligh                     | ht grey silty CLAY.                                                                     |                                 |                                         |                    |             | × 7                                     |                                                  |         |                        |
| SPT                |              | 17          | - 5-<br>-<br>-  | (LOND)                        | ON CLAY FORMATI                                                                         | ION)                            |                                         |                    |             | × × ×                                   |                                                  |         |                        |
|                    |              |             | -               | _                             |                                                                                         |                                 |                                         |                    |             |                                         |                                                  |         |                        |
|                    |              |             | -               |                               |                                                                                         |                                 |                                         |                    |             | × 2                                     |                                                  |         |                        |
|                    |              |             | 6-              |                               |                                                                                         |                                 |                                         |                    |             |                                         |                                                  |         |                        |
|                    |              |             | -               |                               |                                                                                         |                                 |                                         |                    |             |                                         |                                                  |         |                        |
| Signa              | ture:        |             |                 |                               |                                                                                         | Firm: TRC                       | Companies                               |                    |             |                                         |                                                  |         |                        |
|                    |              |             |                 |                               |                                                                                         |                                 |                                         |                    |             |                                         |                                                  |         |                        |



**Annex D: Field Data** 

## **Ground Gas and Groundwater Monitoring Record Sheet**

Site:NCP Carpark, HeathrowVisit No:1of3Date:22.09.2021Operator:MDProject Manager:CM

|                  |         |          |      |        | GAS ( | CONCE            | NTRATI          | ONS             |                   |                |       |          | VOLA                 | ATILES                       |         | F          | LOW DATA                  |                       | WELL A                   | AND WATER DATA    | Comments                  |
|------------------|---------|----------|------|--------|-------|------------------|-----------------|-----------------|-------------------|----------------|-------|----------|----------------------|------------------------------|---------|------------|---------------------------|-----------------------|--------------------------|-------------------|---------------------------|
| Monitoring Point | Methane | e (%v/v) | %l   | LEL    |       | dioxide<br>5v/v) | Carbon n<br>(pp | nonoxide<br>mv) | Hydro<br>sulphide | ogen<br>(ppmv) | Oxyge | n (%v/v) | PID<br>Peak<br>(ppm) | Product<br>thickness<br>(mm) | Flow ra | ate (I/hr) | Differential              | Time for flow         | Water<br>level<br>(mbgl) | Depth of well (m) |                           |
|                  | Peak    | Steady   | Peak | Steady | Peak  | Steady           | Peak            | Steady          | Peak              | Steady         | Min.  | Steady   |                      |                              | Peak    | Steady     | borehole<br>Pressure (Pa) | to equalise<br>(secs) | (IIIbgi)                 |                   |                           |
| BH101            | 0.0     | 0.0      | NR   | NR     | 13.0  | 13.0             | 2               | 2               | 0                 | 0              | 0.1   | 0.1      | 1.2                  | ND                           | 0.2     | 0.2        | -0.03                     | 60                    | 4.31                     | 10.20             | purged 18 liters - bailer |
| BH102            | 0.5     | 0.5      | NR   | NR     | 15.6  | 15.6             | 2               | 2               | 1                 | 1              | 0.2   | 0.2      | 2.3                  | ND                           | 0.1     | 0.1        | 0.02                      | 60                    | 6.45                     | 10.00             | purged 18 liters - bailer |
| BH103            | 0.0     | 0.0      | NR   | NR     | 7.9   | 7.9              | 1               | 1               | 0                 | 0              | 7.2   | 7.2      | 1.1                  | ND                           | 0.2     | 0.2        | 0.00                      | 60                    | 5.16                     | 9.80              | purged 18 liters - bailer |
| WS102            | 0.0     | 0.0      | NR   | NR     | 15.3  | 15.1             | 1               | 1               | 0                 | 0              | 2.4   | 2.4      | 0.7                  | ND                           | 0.2     | 0.2        | 0.00                      | 60                    | dry                      | 2.00              |                           |
| WS107            | 0.0     | 0.0      | NR   | NR     | 8.9   | 8.9              | 1               | 1               | 0                 | 0              | 7.8   | 7.8      | 0.2                  | ND                           | 0.2     | 0.2        | 0.02                      | 60                    | dry                      | 3.50              |                           |
| Max              | 0.5     | 0.5      | ND   | ND     | 15.6  | 15.6             | 2               | 2               | 1                 | 1              | 7.8   | 7.8      | NR                   | ND                           | 0.2     | 0.2        | 0.0                       | 60                    | 6.45                     | 10.20             |                           |
| Min              | 0.0     | 0.0      | 0.0  | 0.0    | 7.9   | 7.9              | 1               | 1               | 0                 | 0              | 0.1   | 0.1      | NR                   | ND                           | 0.1     | 0.1        | 0.0                       | 60                    | DRY                      | 2.00              |                           |

ND - Not detected

NR - Not recorded

NA - Non applicable

| METEOROLOGICAL AND SITE INFORM | IATION: |      |       | (Select correct box | with X c | or enter data, as ap | plicable) |          |        |
|--------------------------------|---------|------|-------|---------------------|----------|----------------------|-----------|----------|--------|
| State of ground:               |         | Dry  | Х     | Moist               |          | Wet                  |           | Snow     | Frozei |
| Wind:                          |         | Calm | Х     | Light               |          | Moderate             |           | Strong   | <br>_  |
| Cloud cover:                   | Х       | None |       | Slight              |          | Cloudy               |           | Overcast |        |
| Precipitation:                 | Х       | None |       | Slight              |          | Moderate             |           | Heavy    |        |
| Time monitoring performed:     |         | -    | 10:00 | Start               |          | -                    | 13:00     | End      |        |
| Barometric pressure (mbar):    |         |      | 1026  | Start               |          | _                    | 1026      | End      |        |
| Pressure trend (Daily):        |         |      |       | Falling             | Х        | Steady               |           | Rising   |        |
| Source:                        |         |      |       |                     |          | -                    |           |          |        |
| Air Temperature (Deg. C):      |         |      | 20    | Before              |          |                      | 20        | After    |        |

### **INSTRUMENTATION TECHNICAL SPECIFICATIONS:**

Ground gas meter: GA5000

Gas Range: CH<sub>4</sub> 0 - 100% CO<sub>2</sub> 0 - 100% O<sub>2</sub> 0 - 25%

Gas Flow range: +100/-50 l/hour Differential Pressure: (+/-) 1000 Pa

Date of last calibration: Date of next calibration:

Ambient air check: CH<sub>4</sub> 0.0 CO<sub>2</sub> 0.0 O<sub>2</sub> 20.5

## **Ground Gas and Groundwater Monitoring Record Sheet**

| Site: | NCP Carpark, Heathrow | Visit No: | 2  | of | 3 |                  |    |
|-------|-----------------------|-----------|----|----|---|------------------|----|
| Date: | 06.10.2021            | Operator: | MD |    |   | Project Manager: | CM |

|                  |         |          |      |        | GAS ( | CONCE   | NTRATI   | ONS             |                   |                  |       |          | VOL                  | ATILES                       |         | F          | LOW DATA                  |                    | WELL                     | AND WATER DATA    | Comments |
|------------------|---------|----------|------|--------|-------|---------|----------|-----------------|-------------------|------------------|-------|----------|----------------------|------------------------------|---------|------------|---------------------------|--------------------|--------------------------|-------------------|----------|
| Monitoring Point | Methane | e (%v/v) | %l   | LEL    |       | dioxide | Carbon r | monoxide<br>mv) | Hydro<br>sulphide | ogen<br>e (ppmv) | Oxyge | n (%v/v) | PID<br>Peak<br>(ppm) | Product<br>thickness<br>(mm) | Flow ra | ate (I/hr) | Differential              | Time for flow      | Water<br>level<br>(mbgl) | Depth of well (m) |          |
|                  | Peak    | Steady   | Peak | Steady | Peak  | Steady  | Peak     | Steady          | Peak              | Steady           | Min.  | Steady   |                      |                              | Peak    | Steady     | borehole<br>Pressure (Pa) | to equalise (secs) | (mbgi)                   |                   |          |
| BH101            | 0.0     | 0.0      | NR   | NR     | 13.1  | 13.1    | 1        | 1               | 0                 | 0                | 0.8   | 0.8      | 0.0                  | ND                           | 0.1     | 0.1        | 0.00                      | 60                 | 4.09                     | 10.20             |          |
| BH102            | 0.2     | 0.2      | NR   | NR     | 14.5  | 14.5    | 1        | 1               | 2                 | 2                | 1.2   | 1.2      | 1.2                  | ND                           | 0.1     | 0.1        | 0.15                      | 60                 | 7.85                     | 10.00             |          |
| BH103            | 0.0     | 0.0      | NR   | NR     | 9.1   | 8.6     | 1        | 1               | 0                 | 0                | 7.9   | 8.1      | 0.3                  | ND                           | 0.1     | 0.1        | 0.03                      | 60                 | 5.00                     | 9.80              |          |
| WS102            | 0.0     | 0.0      | NR   | NR     | 15.7  | 15.7    | 1        | 1               | 0                 | 0                | 2.0   | 2.0      | 0.1                  | ND                           | 0.1     | 0.1        | 0.00                      | 60                 | dry                      | 2.00              |          |
| WS107            | 0.0     | 0.0      | NR   | NR     | 8.0   | 7.9     | 1        | 1               | 0                 | 0                | 8.2   | 8.2      | 0.0                  | ND                           | 0.1     | 0.1        | 0.03                      | 60                 | dry                      | 3.50              |          |
| Max              | 0.2     | 0.2      | ND   | ND     | 15.7  | 15.7    | 1        | 1               | 2                 | 2                | 8.2   | 8.2      | NR                   | ND                           | 0.1     | 0.1        | 0.2                       | 60                 | 7.85                     | 10.20             |          |
| Min              | 0.0     | 0.0      | 0.0  | 0.0    | 8.0   | 7.9     | 1        | 1               | 0                 | 0                | 0.8   | 0.8      | NR                   | ND                           | 0.1     | 0.1        | 0.0                       | 60                 | DRY                      | 2.00              |          |

ND - Not detected

NR - Not recorded

NA - Non applicable

| METEOROLOGICAL AND SITE INFORM | IATION | :    |       | (Select correct bo | x with X | or enter data, as ap | plicable) |          |        |
|--------------------------------|--------|------|-------|--------------------|----------|----------------------|-----------|----------|--------|
| State of ground:               |        | Dry  | Х     | Moist              |          | Wet                  |           | Snow     | Frozen |
| Wind:                          |        | Calm | Х     | Light              |          | Moderate             |           | Strong   |        |
| Cloud cover:                   | Х      | None |       | Slight             |          | Cloudy               |           | Overcast |        |
| Precipitation:                 | Х      | None |       | Slight             |          | Moderate             |           | Heavy    |        |
| Time monitoring performed:     |        | _    | 13:00 | Start              |          | _                    | 15:00     | End      |        |
| Barometric pressure (mbar):    |        |      | 1017  | Start              |          | _                    | 1017      | End      |        |
| Pressure trend (Daily):        |        |      |       | Falling            | Х        | Steady               |           | Rising   |        |
| Source:                        |        |      |       | _                  |          | _                    |           |          |        |
| Air Temperature (Deg. C):      |        |      | 20    | Before             |          |                      | 20        | After    |        |

## **INSTRUMENTATION TECHNICAL SPECIFICATIONS:**

Ground gas meter: GA5000

Gas Range: CH<sub>4</sub> 0 - 100% CO<sub>2</sub> 0 - 100% O<sub>2</sub> 0 - 25%

Gas Flow range: +100/-50 l/hour
Differential Pressure: (+/-) 1000 Pa

Date of last calibration:
Date of next calibration:

Ambient air check: CH<sub>4</sub> 0.0 CO<sub>2</sub> 0.0 O<sub>2</sub> 20.5

## **Ground Gas and Groundwater Monitoring Record Sheet**

Site:NCP Carpark, HeathrowVisit No:3of3Date:13.10.2021Operator:MDProject Manager:CM

|                  |         |          |      |        | GAS  | CONCE              | NTRAT | ONS             |      |                  |       |          | VOL                  | ATILES                       |         | F          | LOW DATA                  |                    | WELL A             | AND WATER DATA    | Comments |
|------------------|---------|----------|------|--------|------|--------------------|-------|-----------------|------|------------------|-------|----------|----------------------|------------------------------|---------|------------|---------------------------|--------------------|--------------------|-------------------|----------|
| Monitoring Point | Methane | : (%v/v) | %l   | LEL    |      | n dioxide<br>5v/v) |       | monoxide<br>mv) |      | ogen<br>e (ppmv) | Oxyge | n (%v/v) | PID<br>Peak<br>(ppm) | Product<br>thickness<br>(mm) | Flow ra | ate (I/hr) | Differential              | Time for flow      | Water level (mbgl) | Depth of well (m) |          |
|                  | Peak    | Steady   | Peak | Steady | Peak | Steady             | Peak  | Steady          | Peak | Steady           | Min.  | Steady   |                      |                              | Peak    | Steady     | borehole<br>Pressure (Pa) | to equalise (secs) | (mbgi)             |                   |          |
| BH101            | 0.0     | 0.0      | NR   | NR     | 13.2 | 13.2               | 1     | 1               | 0    | 0                | 0.5   | 0.5      | 0.2                  | ND                           | 0.1     | 0.1        | -0.03                     | 60                 | 4.10               | 10.20             |          |
| BH102            | 0.5     | 0.5      | NR   | NR     | 15.3 | 15.3               | 1     | 1               | 0    | 0                | 0.2   | 0.2      | 0.8                  | ND                           | 0.2     | 0.2        | -0.09                     | 60                 | 7.64               | 10.00             |          |
| BH103            | 0.0     | 0.0      | NR   | NR     | 8.5  | 8.5                | 0     | 0               | 0    | 0                | 7.6   | 7.6      | 0.4                  | ND                           | 0.2     | 0.2        | 0.00                      | 60                 | 4.99               | 9.80              |          |
| WS102            | 0.0     | 0.0      | NR   | NR     | 13.7 | 13.7               | 0     | 0               | 0    | 0                | 1.8   | 1.8      | 0.3                  | ND                           | 0.1     | 0.1        | 0.03                      | 60                 | dry                | 2.00              |          |
| WS107            | 0.0     | 0.0      | NR   | NR     | 7.6  | 7.6                | 0     | 0               | 0    | 0                | 8.9   | 8.9      | 0.3                  | ND                           | 0.2     | 0.2        | 0.03                      | 60                 | dry                | 3.50              |          |
| Max              | 0.5     | 0.5      | ND   | ND     | 15.3 | 15.3               | 1     | 1               | 0    | 0                | 8.9   | 8.9      | NR                   | ND                           | 0.2     | 0.2        | 0.0                       | 60                 | 7.64               | 10.20             |          |
| Min              | 0.0     | 0.0      | 0.0  | 0.0    | 7.6  | 7.6                | 0     | 0               | 0    | 0                | 0.2   | 0.2      | NR                   | ND                           | 0.1     | 0.1        | -0.1                      | 60                 | DRY                | 2.00              |          |

ND - Not detected
NR - Not recorded
NA - Non applicable

| ATION | :    |               | (Select correct box                 | with X o                                                                            | r enter data, as app                                                                  | olicable)                                                                                                                             |                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------|------|---------------|-------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Х     | Dry  |               | Moist                               |                                                                                     | Wet                                                                                   |                                                                                                                                       | Snow                                                                                                                                               | Frozen                                                                                                                                                                                                                                                                                                                                                                                              |
|       | Calm | Х             | Light                               |                                                                                     | Moderate                                                                              |                                                                                                                                       | Strong                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                     |
| Х     | None |               | Slight                              |                                                                                     | Cloudy                                                                                |                                                                                                                                       | Overcast                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                     |
| Χ     | None |               | Slight                              |                                                                                     | Moderate                                                                              |                                                                                                                                       | Heavy                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                     |
|       | _    | 10:00         | Start                               |                                                                                     | -                                                                                     | 12:00                                                                                                                                 | End                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                     |
|       |      | 1025          | Start                               |                                                                                     |                                                                                       | 1025                                                                                                                                  | End                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                     |
|       |      |               | Falling                             | Х                                                                                   | Steady                                                                                |                                                                                                                                       | Rising                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                     |
|       |      |               |                                     |                                                                                     | -                                                                                     |                                                                                                                                       |                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                     |
|       |      | 18            | Before                              |                                                                                     |                                                                                       | 18                                                                                                                                    | After                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                     |
|       | X    | x Dry<br>Calm | x Dry Calm X None X None 10:00 1025 | x Dry Moist Calm x Light x None Slight X None Slight 10:00 Start 1025 Start Falling | x Dry Moist Calm x Light x None Slight X None Slight 10:00 Start 1025 Start Falling X | X Dry Moist Wet   Calm X Light Moderate   X None Slight Cloudy   X None Slight Moderate   10:00 Start   1025 Start   Falling X Steady | X Dry Moist Wet   Calm X Light Moderate   X None Slight Cloudy   X None Slight Moderate   10:00 Start 10:00   Start Start 10:25   Falling X Steady | X       Dry       Moist       Wet       Snow         Calm       X       Light       Moderate       Strong         X       None       Slight       Cloudy       Overcast         X       None       Slight       Moderate       Heavy         10:00       Start       12:00       End         1025       Start       Tolous       Tolous       End         Falling       X       Steady       Rising |

### **INSTRUMENTATION TECHNICAL SPECIFICATIONS:**

Ground gas meter: GA5000

Gas Range: CH<sub>4</sub> 0 - 100% CO<sub>2</sub> 0 - 100% O<sub>2</sub> 0 - 25%

Gas Flow range: +100/-50 l/hour
Differential Pressure: (+/-) 1000 Pa

Date of last calibration:
Date of next calibration:

Ambient air check: CH<sub>4</sub> 0.0 CO<sub>2</sub> 0.0 O<sub>2</sub> 20.5



| Project:   |        | NCP Heathrow |    |  |  |  |  |  |  |  |  |
|------------|--------|--------------|----|--|--|--|--|--|--|--|--|
| Ioh Number | 460336 | Fngineer:    | NI |  |  |  |  |  |  |  |  |

| Date:    | 16&17.11.21 |
|----------|-------------|
| Weather: |             |

|       | Date/    | Pressure | Well<br>Pressure<br>(Pa) | Flow Rate<br>(I/h) | Time<br>(sec) |   | LEL<br>(%) | CO2<br>(% v/v) | O2<br>(% v/v) | H2S (ppr | CO (ppm | Hex. (%) | PID cf | VOC (pp | Depth to Water (m) | Depth to base (m) | Comments (all readings from ground level, note datum height if different) |
|-------|----------|----------|--------------------------|--------------------|---------------|---|------------|----------------|---------------|----------|---------|----------|--------|---------|--------------------|-------------------|---------------------------------------------------------------------------|
|       |          |          | Peak:993                 | Peak:-4.9          | 30            | 0 | 0          | 10.7           | 4.7           | 0        | 0       | 0.004    | 1      |         |                    |                   |                                                                           |
|       |          |          |                          |                    | 60            | 0 | 0          | 10.8           | 4.6           | 0        | 0       | 0.004    | 1      |         |                    |                   |                                                                           |
|       |          |          |                          |                    | 120           | 0 | 0          | 10.8           | 4.5           | 0        | 0       | 0.005    | 1      |         |                    |                   |                                                                           |
|       |          |          | Steady:992               | Steady:-4.9        | 180           | 0 | 0          | 11             | 4.3           | 0        | 0       | 0.005    | 1      |         |                    |                   |                                                                           |
|       | 16.11.21 |          |                          |                    | 240           | 0 | 0          | 11.3           | 4.1           | 0        | 0       | 0.005    | 1      |         |                    |                   |                                                                           |
| WS102 | 10:38    | 1020     |                          |                    | 300           | 0 | 0          | 11.6           | 3.9           | 0        | 0       | 0.005    | 1      |         | Dry                | 2.04              |                                                                           |
|       |          |          | Peak:996                 | Peak:-4.3          | 30            | 0 | 0          | 6.4            | 9.7           | 0        | 0       | 0.005    | 1      |         |                    |                   |                                                                           |
|       |          |          |                          |                    | 60            | 0 | 0          | 6.5            | 9.5           | 0        | 0       | 0.005    | 1      |         |                    |                   |                                                                           |
|       |          |          |                          |                    | 120           | 0 | 0          | 6.5            | 9.5           | 0        | 0       | 0.005    | 1      |         |                    |                   |                                                                           |
|       |          |          | Steady:995               | Steady:-4.2        | 180           | 0 | 0          | 6.6            | 9.4           | 0        | 0       | 0.005    | 1      |         |                    |                   |                                                                           |
|       | 16.11.21 |          |                          |                    | 240           |   | 0          |                |               |          | 0       |          | 1      |         |                    |                   |                                                                           |
| WS107 | 11:18    | 1019     |                          |                    | 300           | 0 | 0          | 6.8            | 8.9           | 0        | 0       | 0.004    | 1      |         | Dry                | 3.57              |                                                                           |
|       |          |          | Peak:988                 | Peak:-5.5          | 30            | 0 | 0          | 4.5            | 13.7          | 0        | 0       | 0.003    | 1      |         |                    |                   |                                                                           |
|       |          |          |                          |                    | 60            | 0 | 0          | 4.8            | 13.1          | 0        | 0       | 0.004    | 1      |         |                    |                   |                                                                           |
|       |          |          |                          |                    | 120           | 0 | 0          | 5              | 12.7          | 0        | 0       | 0.004    | 1      |         |                    |                   |                                                                           |
|       |          |          | Steady:990               | Steady:-5.5        | 180           | 0 | 0          | 5.5            | 12.3          | 0        | 0       | 0.005    | 1      |         |                    |                   |                                                                           |
|       | 16.11.21 |          |                          |                    | 240           |   |            |                | 11.6          |          |         |          | 1      |         |                    |                   |                                                                           |
| BH101 | 10:19    | 1022     |                          |                    | 300           | 0 | 0          | 6.6            | 10.9          | 0        | 0       | 0.005    | 1      |         | 4.17               | 10.52             |                                                                           |
|       |          |          | Peak:1000                | Peak:-4.3          | 30            | 0 | 0          | 8.7            | 5.1           | 0        | 0       | 0.029    | 1      |         |                    |                   |                                                                           |
|       |          |          |                          |                    | 60            | 0 | 0          | 8.7            |               |          | 0       | 0.028    | 1      |         |                    |                   |                                                                           |
|       |          |          |                          |                    | 120           | 0 | -          |                |               |          |         |          | 1      |         |                    |                   |                                                                           |
|       |          |          | Steady:997               | Steady:-4.2        | 180           | 0 | 0          | 9.1            | 4.6           | 0        | 0       | 0.029    | 1      |         |                    |                   |                                                                           |
|       | 16.11.21 |          |                          |                    | 240           |   | 0          |                |               |          |         |          | 1      |         |                    |                   |                                                                           |
| BH102 | 10:49    | 1020     |                          |                    | 300           | 0 | 0          | 9.9            | 3.5           | 0        | 0       | 0.0281   |        |         | 9.39               | 10.32             |                                                                           |

Notes:

Ambient Concentration
CH4
CO2
O2
H2S
CO

Previous weather conditions, Atmosphic pressure trend and rate, flooding, soil moisture, water draw in tube, wind direction/strength, condition of monitoring point, missing/open tap, datum level, vegetation stress, odours, bubbles, etc.

| QA Checklist:                                 |  |
|-----------------------------------------------|--|
| Weather conditions logged for previous 24 hrs |  |
| Gas monitor calibrated                        |  |
| All filters in place                          |  |
| Flow reading stable and zeroed                |  |

| Instrument Details:        | Serial No. | Hyder/other ref. |
|----------------------------|------------|------------------|
| Landfill Gas Analyser      |            |                  |
| PID                        |            |                  |
| Dip meter/ interface probe |            |                  |

| Page | of |  |
|------|----|--|
|      |    |  |

| <b>*</b> | TRC |
|----------|-----|
|----------|-----|

| Project: | Date: |  |
|----------|-------|--|
|          |       |  |

| Monitoring<br>Point<br>Reference | Date/<br>Time | Atmos.<br>Pressure<br>(mbar) | Well<br>Pressure<br>(Pa) | Flow Rate<br>(I/h) | Time<br>(sec) | CH4<br>(% v/v) | LEL<br>(%) | CO2<br>(% v/v) | O2<br>(% v/v) | H2S<br>(ppm) | CO<br>(ppm) | Hex.<br>(%) | PID cf | VOC<br>(ppm) | Depth to water (m) | Depth to base (m) | Comments (all readings from ground level, note datum height if different) |
|----------------------------------|---------------|------------------------------|--------------------------|--------------------|---------------|----------------|------------|----------------|---------------|--------------|-------------|-------------|--------|--------------|--------------------|-------------------|---------------------------------------------------------------------------|
|                                  |               |                              | Peak:996                 | Peak:-4.4          | 30            | 0              | 0          | 0.6            | 19            | 0            | 0           |             | 1      |              |                    |                   |                                                                           |
|                                  |               |                              |                          |                    | 60            | 0              | 0          |                |               | 0            | 0           |             | 1      |              |                    |                   |                                                                           |
|                                  |               |                              |                          |                    | 120           | 0              | 0          |                |               | 0            |             |             | 1      |              |                    |                   |                                                                           |
|                                  |               |                              | Steady:997               | Steady:-4.2        | 180           | 0              | 0          |                |               | 0            |             |             | 1      |              |                    |                   |                                                                           |
|                                  | 16.11.21      |                              |                          |                    | 240           | 0              | 0          |                |               | 0            |             |             | 1      |              |                    |                   |                                                                           |
| BH103                            | 11:07         | 1020                         | Peak:997                 | Peak:-3.9          | 300           | 0              | 0          |                |               | 0            |             |             | 1      |              | 5.06               | 9.48              |                                                                           |
|                                  |               |                              | reak.557                 | <u>FEBR5.5</u>     | 30            | 0              | 0          |                |               | 0            |             |             | 1      |              |                    |                   |                                                                           |
|                                  |               |                              |                          |                    | 60            | 0              | 0          |                |               | 0            | 10          |             | 1      | 1 1          |                    |                   |                                                                           |
|                                  |               |                              | Steady:997               | Steady:-3.9        | 120<br>180    | 0              | 0          |                |               | 0            |             |             | 1      |              |                    |                   |                                                                           |
|                                  | 16.11.21      |                              |                          |                    | 240           | 0              | 0          |                |               | 0            |             |             | 1      |              |                    |                   |                                                                           |
| BH201                            | 11:47         | 1017                         |                          |                    | 300           | 0              | 0          |                |               | 0            |             |             | 1      |              | 3.84               | 6.08              |                                                                           |
| B11201                           | 11.47         | 1017                         | Peak:988                 | Peak:-5.5          | 30            | 0              | 0          |                |               | 0            |             |             | 1      |              | 3.04               | 0.08              |                                                                           |
|                                  |               |                              |                          |                    | 60            | 0              | 0          |                |               | 0            |             |             | 1      |              |                    |                   |                                                                           |
|                                  |               |                              |                          |                    | 120           | 0              | 0          |                |               | 0            | 10          |             | 1      |              |                    |                   |                                                                           |
|                                  |               |                              | Steady: 987              | Steady: -5.5       | 180           | 0              | 0          |                |               | 0            |             |             | 1      |              |                    |                   |                                                                           |
|                                  | 17.11.21      |                              |                          |                    | 240           | 0              | 0          |                |               | 0            | 10          |             | 1      |              |                    |                   |                                                                           |
| BH202                            | 07:35         | 1020                         |                          |                    | 300           | 0              | 0          | 3              | 7             | 0            | 10          | 0.002       | 1      |              | 4.57               | 6.11              |                                                                           |
|                                  |               |                              | Peak:1000                | Peak:-3.9          | 30            | 0              | 0          | 0.5            | 19.5          | 0            | 0           | 0.005       | 1      |              |                    |                   |                                                                           |
|                                  |               |                              |                          |                    | 60            | 0              | 0          | 0.4            | 19.5          | 0            | 0           | 0.005       | 1      |              |                    |                   |                                                                           |
|                                  |               |                              |                          |                    | 120           | 0              | 0          |                | 19.5          | 0            |             |             | 1      |              |                    |                   |                                                                           |
|                                  |               |                              | Steady:999               | Steady:-3.9        | 180           | 0              | 0          |                |               | 0            |             |             | 1      |              |                    |                   |                                                                           |
|                                  | 16.11.21      |                              |                          |                    | 240           | 0              | 0          |                |               | 0            |             |             | 1      |              |                    |                   |                                                                           |
| BH203                            | 11:30         | 1020                         |                          |                    | 300           | 0              | 0          |                |               | 0            |             |             | 1      |              | Dry                | 5.12              |                                                                           |
|                                  |               |                              | Peak:993                 | Peak:-5.2          | 30            | 0              | 0          |                |               | 0            |             |             | 1      |              |                    |                   |                                                                           |
| 1                                |               |                              |                          |                    | 60            | 0              | 0          | _              |               | 0            |             |             | 1      |              |                    |                   |                                                                           |
|                                  |               |                              | Steady:993               | Steady:-4.9        | 120           | 0              | 0          |                |               | 0            |             |             | 1      |              |                    |                   |                                                                           |
|                                  | 17.11.21      |                              |                          |                    | 180<br>240    | 0              | 0          |                |               | 0            |             |             | 1      |              |                    |                   |                                                                           |
| BH204                            | 11:39         | 1021                         |                          |                    | 300           | 0              | 0          |                |               | 0            |             |             | 1      |              | 4.21               | 6.22              |                                                                           |
| ВП204                            | 11.59         | 1021                         | Peak:                    | Peak:              | 300           | U              | U          | 0.4            | 10.1          | U            | 0           | 0.005       |        |              | 4.21               | 0.22              |                                                                           |
|                                  |               |                              |                          |                    |               |                |            |                |               |              |             |             |        |              |                    |                   |                                                                           |
|                                  |               |                              |                          |                    |               |                |            |                |               |              |             |             |        |              |                    |                   |                                                                           |
|                                  |               |                              | Steady:                  | Steady:            |               |                |            |                |               |              |             |             |        |              |                    |                   |                                                                           |
|                                  |               |                              |                          |                    |               |                |            |                |               |              |             |             |        |              |                    |                   |                                                                           |
| 1                                |               |                              |                          |                    |               |                |            |                |               |              |             |             |        |              |                    |                   |                                                                           |

| _ |       |
|---|-------|
| N | atac: |
|   |       |

Previous weather conditions, Atmosphic pressure trend and rate, flooding, soil moisture, water draw in tube, wind direction/strength, condition of monitoring point, missing/open tap, datum level, vegetation stress, odours, bubbles, etc.

Page \_\_\_ of \_\_\_

|                                     |                      |                        |                       | Groundwater Sampling Data Form                                                                                                         |                              |                    |              |              |              |                |              |  |  |  |
|-------------------------------------|----------------------|------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------|--------------|--------------|--------------|----------------|--------------|--|--|--|
|                                     | Proj                 | ect Nan                | ne:                   | NCP Heathrow                                                                                                                           |                              |                    |              |              |              |                |              |  |  |  |
|                                     | Proje                | ct Num                 | ber:                  |                                                                                                                                        |                              |                    |              |              |              |                |              |  |  |  |
| Project                             | Sam                  | pling Da               | ate:                  | 16&17.                                                                                                                                 | 11.21                        |                    | Sam          | pled by      | : Nyem       | ıh             |              |  |  |  |
| Information                         | W                    | /eather:               |                       |                                                                                                                                        |                              |                    |              |              |              |                |              |  |  |  |
|                                     | Well Notes           | - e.g. C<br>ess, safe  |                       |                                                                                                                                        |                              |                    |              |              |              |                |              |  |  |  |
|                                     | Quality I<br>Used:   | Meter                  | YS                    | YSI                                                                                                                                    |                              |                    |              |              |              |                |              |  |  |  |
|                                     | Water (<br>Last      | Quality I<br>Calibrat  |                       |                                                                                                                                        |                              |                    |              |              |              |                |              |  |  |  |
|                                     | Dissolved<br>last    | l oxygei<br>calibrate  |                       |                                                                                                                                        |                              |                    |              |              |              |                |              |  |  |  |
| Monitoring<br>Information           | Wate                 |                        | Meter Us<br>licable): | sed (tick                                                                                                                              | (                            |                    |              |              |              |                |              |  |  |  |
|                                     | Interface<br>probe   | Х                      | Dip<br>Mete           |                                                                                                                                        |                              |                    |              |              |              |                |              |  |  |  |
|                                     |                      |                        |                       |                                                                                                                                        | Dissolve                     |                    |              |              |              | 0.3 mg/l       |              |  |  |  |
|                                     | Typica<br>Stabilisat | al Param<br>tion Crite |                       | S                                                                                                                                      | pecific Cor                  | nductivity<br>p.H  | / (Sp.Con    | d)           |              | 3%<br>0.1 unit |              |  |  |  |
|                                     |                      | low Sam                |                       | Oxy                                                                                                                                    | ygen Redu                    |                    | tential (O   | RP)          |              | 10mV           |              |  |  |  |
|                                     |                      |                        |                       |                                                                                                                                        |                              |                    |              |              | separate g   | guidance       |              |  |  |  |
|                                     |                      |                        |                       |                                                                                                                                        |                              |                    |              |              |              |                |              |  |  |  |
| Well location                       | BH101                |                        |                       |                                                                                                                                        |                              |                    |              |              |              |                |              |  |  |  |
| Measurement datum:                  |                      |                        |                       | ent datum used below and <u>always include the offset to ground level.</u> If ticked o GL will be 0m. See figure above for definitions |                              |                    |              |              |              |                |              |  |  |  |
| Top of Cover<br>(TOC)               |                      |                        | evel (GL)             | Х                                                                                                                                      | Top of F                     | Pipework<br>P) (m) |              |              |              |                |              |  |  |  |
| Purge Start Time:                   |                      |                        | Time                  | Temp                                                                                                                                   | Sp.Cond                      | D.O.               | pН           | ORP          | Depth to     | Corr.<br>REDOX | Notes / Flow |  |  |  |
| Well Diameter (mm)                  |                      |                        | (HH:MM)               | (oC)                                                                                                                                   | (μS/cm)                      | (mg/l)             | (units)      | (mV)         | Water (m)    | (mV)*          | (ml/min)     |  |  |  |
| Well Material                       |                      |                        | 14:50                 | 15.1                                                                                                                                   | 607.6                        | 7.35               | 6.61         | 16.2         | 4.22         |                |              |  |  |  |
| Static Water Level (m)              | 4.22                 | 2                      | 14:53<br>14:56        | 15.5<br>15.4                                                                                                                           | 614<br>622                   | 3.63               | 6.51<br>6.53 | 11.5<br>8.2  | 4.22<br>4.22 |                |              |  |  |  |
| LNAPL Present?                      | Y N                  |                        | 14:59                 | 15.3                                                                                                                                   | 625                          | 4.05               | 6.55         | 7.7          | 4.22         |                |              |  |  |  |
| LNAPL Level (m)                     |                      |                        | 15:02                 | 15.3                                                                                                                                   | 628                          | 4.22               | 6.57         | 10.2         | 4.22         | 218.7          |              |  |  |  |
| Well Headspace<br>Reading (PID/FID) |                      |                        | 15:05<br>15:08        | 15.3<br>15.3                                                                                                                           | 627<br>630                   | 4.07               | 6.56<br>6.58 | 11.5<br>12.5 | 4.22<br>4.22 | 220<br>221     |              |  |  |  |
| Purge Method                        | Low Flow Other:      |                        |                       |                                                                                                                                        |                              |                    |              |              |              |                |              |  |  |  |
| Sampling Method                     |                      | Other:                 |                       |                                                                                                                                        |                              |                    |              |              |              |                |              |  |  |  |
| Pump Intake Depth (m)               | 6                    |                        | o                     |                                                                                                                                        |                              | , ,                |              |              |              |                |              |  |  |  |
| Depth to Base (m)                   | 10.5                 | 5                      |                       |                                                                                                                                        | g. oil/colou<br>not monitore |                    | No odou      | ır           |              |                |              |  |  |  |
| DNAPL Present?                      | Y                    | N                      | Sam                   | ple Conta                                                                                                                              | iners Obtai                  | ned                |              |              |              |                |              |  |  |  |
| DNAPL Level (m)                     |                      |                        | Sa                    | ample Col                                                                                                                              | llection Tim                 | е                  |              |              |              |                |              |  |  |  |

# Groundwater Sampling Data Form

| Well location                       | BH102                  |           | Not able to be sampled, <1m groundwater present                                                                                               |              |                              |                    |               |                  |                       |                         |                       |  |
|-------------------------------------|------------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------|--------------------|---------------|------------------|-----------------------|-------------------------|-----------------------|--|
| Measurement<br>datum:               |                        |           |                                                                                                                                               |              | used belov<br>e 0m. See      |                    |               |                  | offset to grous       | und level. I            | fticked               |  |
| Top of Cover<br>(TOC)               |                        | Ground Le | evel (GL)                                                                                                                                     |              |                              | Pipework<br>P) (m) |               | Offs             | et to GL<br>(m):      |                         |                       |  |
| Purge Start Time:                   |                        |           | Time<br>(HH:MM)                                                                                                                               | Temp<br>(oC) | Sp.Cond<br>(µS/cm)           | D.O.<br>(mg/l)     | pH<br>(units) | ORP<br>(mV)      | Depth to<br>Water (m) | Corr.<br>REDOX          | Notes / Flow (ml/min) |  |
| Well Diameter (mm)                  |                        |           | ()                                                                                                                                            | (55)         | (μο,σ)                       | (9,.)              | (41.116)      | (,               | Trate: ()             | (mV)*                   | ()                    |  |
| Well Material                       |                        |           |                                                                                                                                               |              |                              |                    |               |                  |                       |                         |                       |  |
| Static Water Level (m)              |                        |           |                                                                                                                                               |              |                              |                    |               |                  |                       |                         |                       |  |
| LNAPL Present?                      | Y                      | V         |                                                                                                                                               |              |                              |                    |               |                  |                       |                         |                       |  |
| LNAPL Level (m)                     |                        |           |                                                                                                                                               |              |                              |                    |               |                  |                       |                         |                       |  |
| Well Headspace<br>Reading (PID/FID) |                        |           |                                                                                                                                               |              |                              |                    |               |                  |                       |                         |                       |  |
| Purge Method                        | Low Flow Other:        |           |                                                                                                                                               |              |                              |                    |               |                  |                       |                         |                       |  |
| Sampling Method                     | Peristaltic            | Other:    |                                                                                                                                               |              |                              |                    |               |                  |                       |                         |                       |  |
| Campling Method                     | Bladder                |           |                                                                                                                                               |              |                              |                    |               |                  |                       |                         |                       |  |
| Pump Intake Depth (m)               |                        |           | Sampling                                                                                                                                      | Notes (e     | g. oil/colour                | /odour)            |               |                  |                       |                         |                       |  |
| Depth to Base (m)                   |                        |           |                                                                                                                                               |              | ot monitore                  |                    |               |                  |                       |                         |                       |  |
| DNAPL Present?                      | Y                      | N         | Sam                                                                                                                                           | ple Conta    | iners Obtai                  | ned                |               |                  |                       |                         |                       |  |
| DNAPL Level (m)                     |                        |           | Sa                                                                                                                                            | ample Col    | lection Time                 | e                  |               |                  |                       |                         |                       |  |
|                                     |                        |           |                                                                                                                                               |              |                              |                    |               |                  |                       |                         |                       |  |
| Well location                       | BH103                  |           |                                                                                                                                               |              |                              |                    |               |                  |                       |                         |                       |  |
| Measurement<br>datum:               | Notes: Ti              |           | asurement datum used below and always include the offset to ground level. If ticked offset to GL will be 0m. See figure above for definitions |              |                              |                    |               |                  |                       |                         |                       |  |
| Top of Cover<br>(TOC)               |                        | Ground Le | Top of Pinework                                                                                                                               |              |                              | _                  |               | et to GL<br>(m): |                       |                         |                       |  |
| ()                                  |                        |           |                                                                                                                                               |              | (                            | , (,               |               |                  | ().                   | Corr                    |                       |  |
| Purge Start Time:                   |                        |           | Time<br>(HH:MM)                                                                                                                               | Temp<br>(oC) | Sp.Cond<br>(μS/cm)           | D.O.<br>(mg/l)     | pH<br>(units) | ORP<br>(mV)      | Depth to<br>Water (m) | Corr.<br>REDOX<br>(mV)* | Notes / Flow (ml/min) |  |
| Well Diameter (mm) Well Material    |                        |           | 13:58                                                                                                                                         | 14           | 703                          | 7.51               | 6.67          | 52.3             | 5.06                  | ()                      |                       |  |
| Static Water Level                  |                        |           | 14:01                                                                                                                                         | 14.3         | 713                          | 2.3                | 6.6           | -20.8            | 5.06                  |                         |                       |  |
| (m)                                 | 5.                     | 06        | 14:04                                                                                                                                         | 14.5         | 666                          | 2.11               | 6.46          | -16.9            | 5.06                  |                         |                       |  |
| LNAPL Present?                      | Y I                    | N         | 14:07                                                                                                                                         | 14.6         | 658                          | 1.92               | 6.44          | -19.5            | 5.06                  | 194.5                   |                       |  |
| LNAPL Level (m)                     |                        |           | 14:10                                                                                                                                         | 14.6         | 660                          | 1.9                | 6.45          | -20.8            | 5.06                  | 193.2                   |                       |  |
| Well Headspace<br>Reading (PID/FID) |                        |           | 14:13                                                                                                                                         | 12           | 662                          | 1.86               | 6.45          | -18.5            | 5.06                  | 195.5                   |                       |  |
| Purge Method                        | Low Flow<br>Other:     |           |                                                                                                                                               |              |                              |                    |               |                  |                       |                         |                       |  |
| Sampling Method                     | Peristaltic<br>Bladder | Other:    |                                                                                                                                               |              |                              |                    |               |                  |                       |                         |                       |  |
| Pump Intake Depth (m)               |                        | 7         |                                                                                                                                               |              |                              |                    |               |                  |                       |                         |                       |  |
| Depth to Base (m)                   | 9.                     | 65        |                                                                                                                                               |              | g. oil/colour<br>ot monitore |                    | No odour      |                  |                       |                         |                       |  |
| DNAPL Present?                      | Y                      | N         | Sam                                                                                                                                           | ple Conta    | iners Obtai                  | ned                |               |                  |                       |                         |                       |  |
| DNAPL Level (m)                     |                        |           | Sa                                                                                                                                            | ample Col    | lection Time                 | e                  |               |                  |                       |                         | _                     |  |

|                                     |                                                                                                                                                                                          |                         |                               | Gro                                                                 | oundw              | ater S         | Sampl                                | ling D                        | ata Fo                | rm                      |                       |  |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------|---------------------------------------------------------------------|--------------------|----------------|--------------------------------------|-------------------------------|-----------------------|-------------------------|-----------------------|--|
|                                     | Project Name:                                                                                                                                                                            |                         |                               | NCP Heathrow                                                        |                    |                |                                      |                               |                       |                         |                       |  |
| Project<br>Information              | Project Number:                                                                                                                                                                          |                         |                               | 460336.0001                                                         |                    |                |                                      |                               |                       |                         |                       |  |
|                                     | Sampling Date:                                                                                                                                                                           |                         |                               | 17/11/2021                                                          |                    |                | Sampled by: NJ                       |                               |                       |                         |                       |  |
|                                     | Weather:                                                                                                                                                                                 |                         |                               |                                                                     |                    |                |                                      |                               |                       |                         |                       |  |
|                                     | Well Notes - e.g. Condition, access, safety:                                                                                                                                             |                         |                               |                                                                     |                    |                |                                      |                               |                       |                         |                       |  |
| Monitoring<br>Information           | Water Quality Meter<br>Used:                                                                                                                                                             |                         |                               |                                                                     |                    |                |                                      |                               |                       | — — Top of Cov          |                       |  |
|                                     | Water Quality Mete<br>Last Calibrated:                                                                                                                                                   |                         |                               |                                                                     |                    |                |                                      |                               |                       |                         |                       |  |
|                                     |                                                                                                                                                                                          | ed oxyge<br>st calibrat |                               |                                                                     |                    |                |                                      | *                             |                       | Depth to Vi             | later (DTW)           |  |
|                                     | Wa                                                                                                                                                                                       |                         | Meter Used (tick<br>licable): |                                                                     |                    |                |                                      |                               |                       |                         |                       |  |
|                                     | Interface<br>probe                                                                                                                                                                       | nterface<br>probe       |                               | p<br>ter                                                            |                    |                |                                      |                               |                       |                         | ase (DTB)             |  |
|                                     | _                                                                                                                                                                                        |                         |                               | Dissolved Oxygen (D.O.) 0.3 mg/l Specific Conductivity (Sp.Cond) 3% |                    |                |                                      |                               |                       |                         |                       |  |
|                                     | Typical Parameter Stabilisation Criteria for                                                                                                                                             |                         |                               |                                                                     |                    |                |                                      | (Sp.Cond) 3%<br>0.1 unit      |                       |                         |                       |  |
|                                     | Low-                                                                                                                                                                                     | -Flow Sam               | pling                         | Oxygen Reduction Pot                                                |                    |                |                                      | tential (ORP) 10mV            |                       |                         |                       |  |
|                                     |                                                                                                                                                                                          |                         |                               |                                                                     | * F                | or REDO        | OX correction, see separate guidance |                               |                       |                         |                       |  |
|                                     |                                                                                                                                                                                          |                         |                               |                                                                     |                    |                |                                      |                               |                       |                         |                       |  |
| Well location                       | BH201                                                                                                                                                                                    |                         |                               |                                                                     |                    |                |                                      |                               |                       |                         |                       |  |
| Measurement                         | Notes: Tick the measurement datum used below and <u>always include the offset to ground level.</u> If tick 'Ground Level', the offset to GL will be 0m. See figure above for definitions |                         |                               |                                                                     |                    |                |                                      |                               | f ticked              |                         |                       |  |
| datum:<br>Top of Cover              | 'Ground Level', the                                                                                                                                                                      |                         |                               |                                                                     |                    | _              |                                      |                               |                       |                         |                       |  |
| (TOC)                               | Ground Le                                                                                                                                                                                |                         | evel (GL)                     | Top of Pipework<br>(TOP) (m)                                        |                    |                | TOC to GL (m):                       |                               |                       |                         |                       |  |
| Purge Start Time:                   |                                                                                                                                                                                          |                         | Time<br>(HH:MM)               | Temp<br>(oC)                                                        | Sp.Cond<br>(µS/cm) | D.O.<br>(mg/l) | pH<br>(units)                        | ORP<br>(mV)                   | Depth to<br>Water (m) | Corr.<br>REDOX<br>(mV)* | Notes / Flow (ml/min) |  |
| Well Diameter (mm)<br>Well Material |                                                                                                                                                                                          |                         | 09:49                         | 13.5                                                                | 789                | 32.42          | 7.02                                 | 128.1                         | 3.78                  | ()                      |                       |  |
| Static Water Level                  | 2.70                                                                                                                                                                                     |                         | 09:52                         | 14                                                                  | 759                | 3.8            | 6.97                                 | 22.2                          | 3.78                  |                         |                       |  |
| (m)                                 | 3.78                                                                                                                                                                                     |                         | 09:55                         | 14.1                                                                | 742                | 4.1            | 6.85                                 | 8.1                           | 3.78                  |                         |                       |  |
| LNAPL Present?                      | Y N                                                                                                                                                                                      |                         | 09:58                         | 14                                                                  | 743                | 4.9            | 6.89                                 | 9.1                           | 3.78                  |                         |                       |  |
| LNAPL Level (m) Well Headspace      |                                                                                                                                                                                          |                         | 10:01<br>10:04                | 13.9<br>13.9                                                        | 741<br>740         | 6.02<br>6.41   | 6.98                                 | 9.7<br>9.3                    | 3.78<br>3.78          |                         | _                     |  |
| Reading (PID/FID)                   |                                                                                                                                                                                          |                         | 10:04                         | 13.9                                                                | 740                | 6.48           | 7.01                                 | 7.8                           | 3.78                  |                         |                       |  |
| Purge Method                        | Low Flow                                                                                                                                                                                 |                         | 10:10                         | 13.9                                                                | 739                | 6.88           | 7.02                                 | 6.8                           | 3.78                  | 220.8                   |                       |  |
|                                     | Other:                                                                                                                                                                                   | <u> </u>                | 10:13                         | 13.9                                                                | 739                | 6.97           | 7.02                                 | 5                             | 3.78                  | 219                     |                       |  |
| Sampling Method                     | Peristaltic<br>Bladder                                                                                                                                                                   | Other:                  | 10:16                         | 13.8                                                                | 739                | 7.11           | 7.02                                 | 2                             | 3.78                  | 216                     |                       |  |
| Pump Intake Depth<br>(m)            | 5                                                                                                                                                                                        |                         | Sampling                      | Sampling Notes (e.g. oil/colour/odour),                             |                    |                |                                      | No odour, slight brown colour |                       |                         |                       |  |
| Depth to Base (m)                   | 6.04                                                                                                                                                                                     |                         |                               | Reasons if not monitored                                            |                    |                |                                      |                               |                       |                         |                       |  |
| DNAPL Present?                      | Y                                                                                                                                                                                        | N                       | Sam                           | ple Conta                                                           | ainers Obtai       | ned            |                                      |                               |                       |                         |                       |  |
| DNAPL Level (m)                     |                                                                                                                                                                                          |                         | S                             | Sample Collection Time                                              |                    |                |                                      |                               |                       |                         |                       |  |

#### **Groundwater Sampling Data Form** Well location BH202 Measurement Notes: Tick the measurement datum used below and always include the offset to ground level. If ticked 'Ground Level', the offset to GL will be 0m. See figure above for definitions datum: Top of Cover Top of Pipework Offset to GL Ground Level (GL) (TOC) (TOP) (m) (m): Corr. Purge Start Time: рН Time Temp Sp.Cond D.O. ORP Depth to Notes / Flow REDOX (HH:MM) (oC) (µS/cm) (mg/l) (units) (mV) Water (m) (ml/min) (mV)\* Well Diameter (mm 08:27 719 5.72 6.55 164 Well Material 13.5 4.57 Static Water Level 08:30 14.5 750 2 6.53 87.7 4.57 4.57 08:33 (m) 14.1 746 3.7 6.62 51.8 4.57 LNAPL Present? Ν 08:36 14.1 746 3.99 6.65 32.2 4.57 LNAPL Level (m) 08:39 14.2 747 3.57 4.57 236.2 6.62 22.2 Well Headspace 08:42 14.3 748 3.62 6.63 17.6 4.57 231.6 Reading (PID/FID) 08:45 14.4 747 3.67 6.65 14.8 4.57 228.8 Low Flow Purge Method Other: Peristaltic Other: Sampling Method Bladder Pump Intake Depth 5 (m) Sampling Notes (e.g. oil/colour/odour), No odour Depth to Base (m) Reasons if not monitored 6.05 DNAPL Present? N Sample Containers Obtained DNAPL Level (m) Sample Collection Time Well location Dry Measurement Notes: Tick the measurement datum used below and always include the offset to ground level. If ticked datum: 'Ground Level', the offset to GL will be 0m. See figure above for definitions Top of Cover Top of Pipework Offset to GL Ground Level (GL) (TOC) (TOP) (m) (m): Corr. Purge Start Time: ORP Sp.Cond D.O. Depth to Notes / Flow Time Temp рΗ REDOX (HH:MM) (units) (oC) (µS/cm) (mg/l) (mV) Water (m) (ml/min) (mV)\* Nell Diameter (mm Well Material Static Water Level (m) LNAPL Present? Ν LNAPL Level (m) Well Headspace Reading (PID/FID) Low Flow Purge Method Other: Peristaltio Other: Sampling Method Bladder Pump Intake Depth (m) Sampling Notes (e.g. oil/colour/odour), Reasons if not monitored Depth to Base (m) Sample Containers Obtained **DNAPL Present?** DNAPL Level (m) Sample Collection Time



**Annex E: Laboratory Chemical Data** 





Colin Morton TRC Companies Ltd 20 Red Lion Street, London WC1R 4PQ

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

**t:** 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

15/09/2021

e: cmorton@trccompanies.com

### **Analytical Report Number: 21-99340**

Project / Site name: West Drayton, UB7 ODU Samples received on: 03/08/2021

Your job number: 460336 0000 0000 Samples instructed on/

Analysis started on:

Your order number: 460336 Analysis completed by: 23/09/2021

Report Issue Number: 1 Report issued on: 23/09/2021

Samples Analysed: 4 soil samples

Signed: A. Cherwinska

Agnieszka Czerwińska

Technical Reviewer (Reporting Team)

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.





Your Order No: 460336

| Lab Sample Number                                               |          |                    |                         | 2010597       | 2010598       | 2010599       | 2010600       |
|-----------------------------------------------------------------|----------|--------------------|-------------------------|---------------|---------------|---------------|---------------|
| Sample Reference                                                |          |                    |                         | BH101         | BH101         | BH103         | BH103         |
| Sample Number                                                   |          |                    |                         | None Supplied | None Supplied | None Supplied | None Supplied |
| Depth (m)                                                       |          |                    |                         | 0.40          | 1.80          | 0.30          | 1.30          |
| Date Sampled                                                    |          |                    |                         | 02/08/2021    | 02/08/2021    | 30/07/2021    | 30/07/2021    |
| Time Taken                                                      |          |                    |                         | None Supplied | None Supplied | None Supplied | None Supplied |
| Analytical Parameter<br>(Soil Analysis)                         | Units    | Limit of detection | Accreditation<br>Status |               |               |               |               |
| Stone Content                                                   | %        | 0.1                | NONE                    | < 0.1         | < 0.1         | < 0.1         | < 0.1         |
| Moisture Content                                                | %        | 0.01               | NONE                    | 14            | 12            | 6.5           | 11            |
| Total mass of sample received                                   | kg       | 0.001              | NONE                    | 1.0           | 1.0           | 1.0           | 1.0           |
| Asbestos in Soil                                                | Туре     | N/A                | ISO 17025               | Not-detected  | _             | Not-detected  | <u> </u>      |
| , 550000 111 5011                                               | <u> </u> |                    |                         | Not-detected  |               | Not-detected  | _             |
| General Inorganics                                              |          |                    |                         |               |               |               |               |
| pH - Automated                                                  | pH Units | N/A                | MCERTS                  | 7.0           | 8.1           | 9.1           | 8.5           |
| Constituting the second                                         |          |                    |                         |               |               |               |               |
| Speciated PAHs Naphthalene                                      | mg/kg    | 0.05               | MCERTS                  | < 0.05        | < 0.05        | < 0.05        | < 0.05        |
| Acenaphthylene                                                  | mg/kg    | 0.05               | MCERTS                  | < 0.05        | < 0.05        | 0.28          | < 0.05        |
| Acenaphthene                                                    | mg/kg    | 0.05               | MCERTS                  | < 0.05        | < 0.05        | 1.1           | < 0.05        |
| Fluorene                                                        | mg/kg    | 0.05               | MCERTS                  | < 0.05        | < 0.05        | 1.4           | < 0.05        |
| Phenanthrene                                                    | mg/kg    | 0.05               | MCERTS                  | 1.4           | 0.84          | 14            | 0.35          |
| Anthracene                                                      | mg/kg    | 0.05               | MCERTS                  | 0.36          | < 0.05        | 3.5           | < 0.05        |
| Fluoranthene                                                    | mg/kg    | 0.05               | MCERTS                  | 3.7           | 0.87          | 30            | 0.80          |
| Pyrene                                                          | mg/kg    | 0.05               | MCERTS                  | 3.3           | 0.60          | 21            | 0.65          |
| Benzo(a)anthracene                                              | mg/kg    | 0.05               | MCERTS                  | 2.3           | 0.36          | 13            | 0.59          |
| Chrysene                                                        | mg/kg    | 0.05               | MCERTS                  | 1.8           | 0.35          | 10            | 0.36          |
| Benzo(b)fluoranthene                                            | mg/kg    | 0.05               | MCERTS                  | 3.5           | 0.39          | 14            | 0.51          |
| Benzo(k)fluoranthene                                            | mg/kg    | 0.05               | MCERTS                  | 0.79          | 0.14          | 5.2           | 0.33          |
| Benzo(a)pyrene                                                  | mg/kg    | 0.05               | MCERTS                  | 2.3           | 0.30          | 11            | 0.53          |
| Indeno(1,2,3-cd)pyrene                                          | mg/kg    | 0.05               | MCERTS                  | 1.5           | < 0.05        | 7.7           | 0.31          |
| Dibenz(a,h)anthracene                                           | mg/kg    | 0.05               | MCERTS                  | 0.50          | < 0.05        | 2.3           | < 0.05        |
| Benzo(ghi)perylene                                              | mg/kg    | 0.05               | MCERTS                  | 1.8           | < 0.05        | 8.3           | 0.31          |
| Total PAH                                                       |          |                    |                         |               |               |               |               |
| Speciated Total EPA-16 PAHs                                     | mg/kg    | 0.8                | MCERTS                  | 23.3          | 3.85          | 143           | 4.74          |
|                                                                 |          |                    |                         |               |               |               |               |
| Heavy Metals / Metalloids  Arsenic (agua regia extractable)     | mg/kg    | 1                  | MCERTS                  | 14            | 20            | 15            | 11            |
| Boron (water soluble)                                           | mg/kg    | 0.2                | MCERTS                  | 0.8           | 0.3           | < 0.2         | 0.4           |
| Cadmium (aqua regia extractable)                                | mg/kg    | 0.2                | MCERTS                  | 1.4           | < 0.2         | 1.1           | < 0.2         |
| , , <del>,</del> ,                                              | mg/kg    | 4                  | MCERTS                  | < 4.0         | < 4.0         | < 4.0         | < 4.0         |
| Chromium (hexavalent) Chromium (III)                            | mg/kg    | 1                  | NONE                    | 34            | 29            | < 4.0<br>14   | 29            |
| Chromium (aqua regia extractable)                               | mg/kg    | 1                  | MCERTS                  | 35            | 29            | 14            | 29            |
| Copper (aqua regia extractable)                                 | mg/kg    | 1                  | MCERTS                  | 31            | 18            | 23            | 15            |
| Lead (aqua regia extractable)                                   | mg/kg    | 1                  | MCERTS                  | 230           | 36            | 93            | 20            |
| Mercury (aqua regia extractable)                                | mg/kg    | 0.3                | MCERTS                  | 1.1           | < 0.3         | < 0.3         | < 0.3         |
| Nickel (aqua regia extractable)                                 | mg/kg    | 1                  | MCERTS                  | 1.1           | < 0.3<br>26   | < 0.3<br>15   | < 0.3<br>21   |
| , , ,                                                           | mg/kg    | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| Selenium (aqua regia extractable) Zinc (aqua regia extractable) | mg/kg    | 1                  | MCERTS                  | 110           | 52            | 160           | 83            |





Your Order No: 460336

| Lab Sample Number                                                                              |                         |                    |                         | 2010597          | 2010598          | 2010599        | 2010600          |
|------------------------------------------------------------------------------------------------|-------------------------|--------------------|-------------------------|------------------|------------------|----------------|------------------|
| Sample Reference                                                                               |                         |                    |                         | BH101            | BH101            | BH103          | BH103            |
| Sample Number                                                                                  |                         |                    |                         | None Supplied    | None Supplied    | None Supplied  | None Supplied    |
| Depth (m)                                                                                      |                         |                    |                         | 0.40             | 1.80             | 0.30           | 1.30             |
| Date Sampled                                                                                   |                         |                    |                         | 02/08/2021       | 02/08/2021       | 30/07/2021     | 30/07/2021       |
| Time Taken                                                                                     |                         |                    |                         | None Supplied    | None Supplied    | None Supplied  | None Supplied    |
| Analytical Parameter<br>(Soil Analysis)                                                        | Units                   | Limit of detection | Accreditation<br>Status |                  |                  |                |                  |
| Monoaromatics & Oxygenates                                                                     | <del>-</del>            | -                  | <u>-</u>                | -                | -                |                |                  |
| Benzene                                                                                        | μg/kg                   | 1                  | MCERTS                  | < 1.0            | < 1.0            | < 1.0          | < 1.0            |
| Toluene                                                                                        | μg/kg                   | 1                  | MCERTS                  | < 1.0            | < 1.0            | < 1.0          | < 1.0            |
| Ethylbenzene                                                                                   | μg/kg                   | 1                  | MCERTS                  | < 1.0            | < 1.0            | < 1.0          | < 1.0            |
| p & m-xylene                                                                                   | μg/kg                   | 1                  | MCERTS                  | < 1.0            | < 1.0            | < 1.0          | < 1.0            |
| o-xylene                                                                                       | μg/kg                   | 1                  | MCERTS                  | < 1.0            | < 1.0            | < 1.0          | < 1.0            |
| MTBE (Methyl Tertiary Butyl Ether)                                                             | μg/kg                   | 1                  | MCERTS                  | < 1.0            | < 1.0            | < 1.0          | < 1.0            |
| Petroleum Hydrocarbons TPH-CWG - Aliphatic >EC5 - EC6                                          | mg/kg                   | 0.001              | MCERTS                  | < 0.001          | < 0.001          | < 0.001        | < 0.001          |
| TPH-CWG - Aliphatic > EC6 - EC8                                                                | mg/kg                   | 0.001              | MCERTS                  | < 0.001          | < 0.001          | < 0.001        | < 0.001          |
| TPH-CWG - Aliphatic >EC8 - EC10                                                                | mg/kg                   | 0.001              | MCERTS                  | < 0.001          | < 0.001          | < 0.001        | < 0.001          |
| TPH-CWG - Aliphatic >EC10 - EC12                                                               | mg/kg                   | 1                  | MCERTS                  | < 1.0            | < 1.0            | < 1.0          | < 1.0            |
| TPH-CWG - Aliphatic >EC12 - EC16                                                               | mg/kg                   | 2                  | MCERTS                  | < 2.0            | < 2.0            | < 2.0          | < 2.0            |
| TPH-CWG - Aliphatic >EC16 - EC21                                                               | mg/kg                   | 8                  | MCERTS                  | < 8.0            | < 8.0            | < 8.0          | < 8.0            |
| TPH-CWG - Aliphatic >EC21 - EC35                                                               | mg/kg                   | 8                  | MCERTS                  | < 8.0            | < 8.0            | 60             | < 8.0            |
| TPH-CWG - Aliphatic (EC5 - EC35)                                                               | mg/kg                   | 10                 | MCERTS                  | < 10             | < 10             | 66             | < 10             |
|                                                                                                |                         |                    |                         |                  |                  |                |                  |
| TPH-CWG - Aromatic >EC5 - EC7                                                                  | mg/kg                   | 0.001              | MCERTS                  | < 0.001          | < 0.001          | < 0.001        | < 0.001          |
|                                                                                                | mg/kg                   | 0.001              | MCERTS                  | < 0.001          | < 0.001          | < 0.001        | < 0.001          |
| TPH-CWG - Aromatic >EC7 - EC8                                                                  | ilig/kg                 |                    |                         |                  |                  |                |                  |
| TPH-CWG - Aromatic >EC7 - EC8 TPH-CWG - Aromatic >EC8 - EC10                                   | mg/kg                   | 0.001              | MCERTS                  | < 0.001          | < 0.001          | < 0.001        | < 0.001          |
|                                                                                                |                         | 0.001              | MCERTS<br>MCERTS        | < 0.001<br>< 1.0 | < 0.001<br>< 1.0 | < 0.001<br>1.4 | < 0.001<br>< 1.0 |
| TPH-CWG - Aromatic >EC8 - EC10                                                                 | mg/kg                   |                    |                         |                  |                  |                |                  |
| TPH-CWG - Aromatic >EC8 - EC10<br>TPH-CWG - Aromatic >EC10 - EC12                              | mg/kg                   | 1                  | MCERTS                  | < 1.0            | < 1.0            | 1.4            | < 1.0            |
| TPH-CWG - Aromatic >EC8 - EC10 TPH-CWG - Aromatic >EC10 - EC12 TPH-CWG - Aromatic >EC12 - EC16 | mg/kg<br>mg/kg<br>mg/kg | 1 2                | MCERTS<br>MCERTS        | < 1.0<br>< 2.0   | < 1.0<br>< 2.0   | 1.4<br>14      | < 1.0<br>< 2.0   |

U/S = Unsuitable Sample I/S = Insufficient Sample





\* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

| Lab Sample<br>Number | Sample<br>Reference | Sample<br>Number | Depth (m) | Sample Description *                            |
|----------------------|---------------------|------------------|-----------|-------------------------------------------------|
| 2010597              | BH101               | None Supplied    | 0.4       | Brown clay and loam with gravel and vegetation. |
| 2010598              | BH101               | None Supplied    | 1.8       | Brown clay and sand with gravel.                |
| 2010599              | BH103               | None Supplied    | 0.3       | Brown clay and sand with gravel.                |
| 2010600              | BH103               | None Supplied    | 1.3       | Brown clay and sand with gravel.                |





Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

| Analytical Test Name                             | Analytical Method Description                                                                                                                          | Analytical Method Reference                                                             | Method<br>number | Wet / Dry<br>Analysis | Accreditation<br>Status |
|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------|-----------------------|-------------------------|
| Metals in soil by ICP-OES                        | Determination of metals in soil by aqua-regia digestion followed by ICP-OES.                                                                           | In-house method based on MEWAM 2006<br>Methods for the Determination of Metals in Soil. | L038-PL          | D                     | MCERTS                  |
| Asbestos identification in soil                  | Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.                                  | In house method based on HSG 248                                                        | A001-PL          | D                     | ISO 17025               |
| Boron, water soluble, in soil                    | Determination of water soluble boron in soil by hot water extract followed by ICP-OES.                                                                 | In-house method based on Second Site Properties version 3                               | L038-PL          | D                     | MCERTS                  |
| Hexavalent chromium in soil                      | Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.  | In-house method                                                                         | L080-PL          | w                     | MCERTS                  |
| Moisture Content                                 | Moisture content, determined gravimetrically. (30 oC)                                                                                                  | In house method.                                                                        | L019-UK/PL       | w                     | NONE                    |
| Speciated EPA-16 PAHs in soil                    | Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards. |                                                                                         | L064-PL          | D                     | MCERTS                  |
| pH in soil (automated)                           | Determination of pH in soil by addition of water followed by automated electrometric measurement.                                                      | In house method.                                                                        | L099-PL          | D                     | MCERTS                  |
| Stones content of soil                           | Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.                            | In-house method based on British Standard<br>Methods and MCERTS requirements.           | L019-UK/PL       | D                     | NONE                    |
| BTEX and MTBE in soil (Monoaromatics)            | Determination of BTEX in soil by headspace GC-MS.                                                                                                      | In-house method based on USEPA8260                                                      | L073B-PL         | w                     | MCERTS                  |
| Cr (III) in soil                                 | In-house method by calculation from total Cr and Cr VI.                                                                                                | In-house method by calculation                                                          | L080-PL          | w                     | NONE                    |
| TPHCWG (Soil)                                    | Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.                                                                              | In-house method with silica gel split/clean up.                                         | L088/76-PL       | w                     | MCERTS                  |
| D.O. for Gravimetric Quant if Screen/ID positive | Dependent option for Gravimetric Quant if Screen/ID positive scheduled.                                                                                | In house asbestos methods A001 & A006.                                                  | A006-PL          | D                     | NONE                    |

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

### **Sample Deviation Report**



Analytical Report Number: 21-99340 Project / Site name: West Drayton, UB7 ODU

| Sample ID | Other ID      | Sample<br>Type | nple Lab Sample Sample Test Name  Number Deviation |   | Test Ref                              | Test<br>Deviation |   |
|-----------|---------------|----------------|----------------------------------------------------|---|---------------------------------------|-------------------|---|
| BH101     | None Supplied | S              | 2010597                                            | С | Hexavalent chromium in soil           | L080-PL           | С |
| BH101     | None Supplied | S              | 2010597                                            | С | BTEX and MTBE in soil (Monoaromatics) | L073B-PL          | С |
| BH101     | None Supplied | S              | 2010597                                            | С | Cr (III) in soil                      | L080-PL           | С |
| BH101     | None Supplied | S              | 2010597                                            | С | Speciated EPA-16 PAHs in soil         | L064-PL           | С |
| BH101     | None Supplied | S              | 2010597                                            | С | TPHCWG (Soil)                         | L088/76-PL        | С |
| BH101     | None Supplied | S              | 2010597                                            | С | pH in soil (automated)                | L099-PL           | С |
| BH101     | None Supplied | S              | 2010598                                            | С | Hexavalent chromium in soil           | L080-PL           | С |
| BH101     | None Supplied | S              | 2010598                                            | С | BTEX and MTBE in soil (Monoaromatics) | L073B-PL          | С |
| BH101     | None Supplied | S              | 2010598                                            | С | Cr (III) in soil                      | L080-PL           | С |
| BH101     | None Supplied | S              | 2010598                                            | С | Speciated EPA-16 PAHs in soil         | L064-PL           | С |
| BH101     | None Supplied | S              | 2010598                                            | С | TPHCWG (Soil)                         | L088/76-PL        | С |
| BH101     | None Supplied | S              | 2010598                                            | С | pH in soil (automated)                | L099-PL           | С |
| BH103     | None Supplied | S              | 2010599                                            | С | Hexavalent chromium in soil           | L080-PL           | С |
| BH103     | None Supplied | S              | 2010599                                            | С | BTEX and MTBE in soil (Monoaromatics) | L073B-PL          | С |
| BH103     | None Supplied | S              | 2010599                                            | С | Cr (III) in soil                      | L080-PL           | С |
| BH103     | None Supplied | S              | 2010599                                            | С | Speciated EPA-16 PAHs in soil         | L064-PL           | С |
| BH103     | None Supplied | S              | 2010599                                            | С | TPHCWG (Soil)                         | L088/76-PL        | С |
| BH103     | None Supplied | S              | 2010599                                            | С | pH in soil (automated)                | L099-PL           | С |
| BH103     | None Supplied | S              | 2010600                                            | С | Hexavalent chromium in soil           | L080-PL           | С |
| BH103     | None Supplied | S              | 2010600                                            | С | BTEX and MTBE in soil (Monoaromatics) | L073B-PL          | С |
| BH103     | None Supplied | S              | 2010600                                            | С | Cr (III) in soil                      | L080-PL           | С |
| BH103     | None Supplied | S              | 2010600                                            | С | Speciated EPA-16 PAHs in soil         | L064-PL           | С |
| BH103     | None Supplied | S              | 2010600                                            | С | TPHCWG (Soil)                         | L088/76-PL        | С |
| BH103     | None Supplied | S              | 2010600                                            | С | pH in soil (automated)                | L099-PL           | С |

Page 6 of 6





**Colin Morton**TRC Companies Ltd
20 Red Lion Street, London

WC1R 4PQ

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

**t:** 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

e: cmorton@trccompanies.com

## **Analytical Report Number: 21-90131**

Replaces Analytical Report Number: 21-90131, issue no. 1 Report format change.

Project / Site name: West Drayton UB7 0DU Samples received on: 30/07/2021

**Your job number:** 453101 0000 0000 **Samples instructed on/** 30/07/2021

Analysis started on:

Your order number: Analysis completed by: 10/08/2021

**Report Issue Number:** 2 **Report issued on:** 21/10/2021

Samples Analysed: 10 soil samples

Signed: Keroline Harel

Karolina Marek

PL Head of Reporting Team

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.





| Lab Sample Number                             |          |                    |                         | 1957038       | 1957039       | 1957040       | 1957041       | 1957042       |
|-----------------------------------------------|----------|--------------------|-------------------------|---------------|---------------|---------------|---------------|---------------|
| Sample Reference                              |          |                    |                         | WS102         | WS102         | WS103         | WS103         | WS105         |
| Sample Number                                 |          |                    |                         | ENV1          | ENV2          | ENV1          | ENV2          | ENV1          |
| Depth (m)                                     |          |                    |                         | 0.20          | 1.20          | 0.35          | 1.00          | 0.30          |
| Date Sampled                                  |          |                    |                         | 29/07/2021    | 29/07/2021    | 29/07/2021    | 29/07/2021    | 29/07/2021    |
| Time Taken                                    |          |                    |                         | None Supplied |
| Analytical Parameter<br>(Soil Analysis)       | Units    | Limit of detection | Accreditation<br>Status |               |               |               |               |               |
| Stone Content                                 | %        | 0.1                | NONE                    | < 0.1         | < 0.1         | < 0.1         | < 0.1         | < 0.1         |
| Moisture Content                              | %        | 0.01               | NONE                    | 5.6           | 12            | 5.3           | 12            | 15            |
| Total mass of sample received                 | kg       | 0.001              | NONE                    | 1.2           | 1.0           | 2.0           | 1.7           | 1.0           |
|                                               |          |                    |                         |               |               |               |               |               |
| Asbestos in Soil Screen / Identification Name | Туре     | N/A                | ISO 17025               | -             | -             | -             | -             | Chrysotile    |
| Asbestos in Soil                              | Type     | N/A                | ISO 17025               | Not-detected  | -             | Not-detected  | -             | Detected      |
| Asbestos Quantification (Stage 2)             | %        | 0.001              | ISO 17025               | -             | -             | -             | -             | 0.935         |
| Asbestos Quantification Total                 | %        | 0.001              | ISO 17025               | -             | -             | -             | -             | 0.935         |
| General Inorganics                            |          |                    |                         |               |               |               |               |               |
| pH - Automated                                | pH Units | N/A                | MCERTS                  | 9.7           | 8.5           | 8.8           | 7.9           | 8.8           |
|                                               |          |                    |                         |               |               | L             |               |               |
| Speciated PAHs                                |          |                    |                         |               |               |               |               |               |
| Naphthalene                                   | mg/kg    | 0.05               | MCERTS                  | < 0.05        | < 0.05        | < 0.05        | < 0.05        | 0.35          |
| Acenaphthylene                                | mg/kg    | 0.05               | MCERTS                  | 0.37          | < 0.05        | 7.1           | < 0.05        | < 0.05        |
| Acenaphthene                                  | mg/kg    | 0.05               | MCERTS                  | 2.6           | < 0.05        | 57            | < 0.05        | 0.50          |
| Fluorene                                      | mg/kg    | 0.05               | MCERTS                  | 2.5           | 0.22          | 75            | < 0.05        | 0.43          |
| Phenanthrene                                  | mg/kg    | 0.05               | MCERTS                  | 19            | 0.88          | 390           | < 0.05        | 4.3           |
| Anthracene                                    | mg/kg    | 0.05               | MCERTS                  | 3.9           | 0.26          | 170           | < 0.05        | 0.83          |
| Fluoranthene                                  | mg/kg    | 0.05               | MCERTS                  | 29            | 1.2           | 610           | < 0.05        | 5.3           |
| Pyrene                                        | mg/kg    | 0.05               | MCERTS                  | 22            | 0.99          | 470           | < 0.05        | 4.7           |
| Benzo(a)anthracene                            | mg/kg    | 0.05               | MCERTS                  | 16            | 0.76          | 270           | < 0.05        | 3.4           |
| Chrysene                                      | mg/kg    | 0.05               | MCERTS                  | 12            | 0.60          | 280           | < 0.05        | 2.5           |
| Benzo(b)fluoranthene                          | mg/kg    | 0.05               | MCERTS                  | 22            | 1.0           | 300           | < 0.05        | 3.6           |
| Benzo(k)fluoranthene                          | mg/kg    | 0.05               | MCERTS                  | 5.0           | 0.28          | 140           | < 0.05        | 1.5           |
| Benzo(a)pyrene                                | mg/kg    | 0.05               | MCERTS                  | 14            | 0.73          | 250           | < 0.05        | 2.9           |
| Indeno(1,2,3-cd)pyrene                        | mg/kg    | 0.05               | MCERTS                  | 7.9           | 0.43          | 120           | < 0.05        | 1.6           |
| Dibenz(a,h)anthracene                         | mg/kg    | 0.05               | MCERTS                  | 2.2           | < 0.05        | 35            | < 0.05        | 0.47          |
| Benzo(ghi)perylene                            | mg/kg    | 0.05               | MCERTS                  | 8.9           | 0.50          | 130           | < 0.05        | 1.9           |
| Total PAH                                     |          |                    |                         | -             |               |               |               |               |
| Speciated Total EPA-16 PAHs                   | mg/kg    | 0.8                | MCERTS                  | 167           | 7.90          | 3290          | < 0.80        | 34.1          |
| Heavy Metals / Metalloids                     |          |                    |                         |               |               |               |               |               |
| Arsenic (aqua regia extractable)              | mg/kg    | 1                  | MCERTS                  | 13            | 14            | 7.5           | 11            | 18            |
| Boron (water soluble)                         | mg/kg    | 0.2                | MCERTS                  | 0.5           | 0.5           | 0.3           | 0.3           | 0.3           |
| Cadmium (aqua regia extractable)              | mg/kg    | 0.2                | MCERTS                  | 1.7           | < 0.2         | 1.1           | < 0.2         | < 0.2         |
| Chromium (hexavalent)                         | mg/kg    | 4                  | MCERTS                  | < 4.0         | < 4.0         | < 4.0         | < 4.0         | < 4.0         |
| Chromium (III)                                | mg/kg    | 1                  | NONE                    | 24            | 35            | 19            | 25            | 22            |
| Chromium (aqua regia extractable)             | mg/kg    | 1                  | MCERTS                  | 24            | 35            | 19            | 25            | 22            |
| Copper (aqua regia extractable)               | mg/kg    | 1                  | MCERTS                  | 69            | 17            | 60            | 20            | 72            |
| Lead (aqua regia extractable)                 | mg/kg    | 1                  | MCERTS                  | 190           | 15            | 98            | 19            | 450           |
| Mercury (aqua regia extractable)              | mg/kg    | 0.3                | MCERTS                  | < 0.3         | < 0.3         | < 0.3         | < 0.3         | < 0.3         |
| Nickel (aqua regia extractable)               | mg/kg    | 1                  | MCERTS                  | 27            | 49            | 24            | 19            | 27            |
| Selenium (aqua regia extractable)             | mg/kg    | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | 2.0           | < 1.0         |
| Zinc (aqua regia extractable)                 | mg/kg    | 1                  | MCERTS                  | 260           | 81            | 190           | 56            | 200           |





| Lab Carrella Nerrobari                  |           |                    |                         | 1057020       | 1057020       | 1057040       | 1057041       | 1057042       |
|-----------------------------------------|-----------|--------------------|-------------------------|---------------|---------------|---------------|---------------|---------------|
| Lab Sample Number                       |           |                    |                         | 1957038       | 1957039       | 1957040       | 1957041       | 1957042       |
| Sample Reference                        |           |                    |                         | WS102         | WS102         | WS103         | WS103         | WS105         |
| Sample Number                           |           |                    |                         | ENV1          | ENV2          | ENV1          | ENV2          | ENV1          |
| Depth (m)                               |           |                    |                         | 0.20          | 1.20          | 0.35          | 1.00          | 0.30          |
| Date Sampled Time Taken                 |           |                    |                         | 29/07/2021    | 29/07/2021    | 29/07/2021    | 29/07/2021    | 29/07/2021    |
| rime raken                              |           | _                  | 1                       | None Supplied |
| Analytical Parameter<br>(Soil Analysis) | Units     | Limit of detection | Accreditation<br>Status |               |               |               |               |               |
| Monoaromatics & Oxygenates              | -         |                    |                         |               |               |               |               |               |
| Benzene                                 | μg/kg     | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| Toluene                                 | μg/kg     | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| Ethylbenzene                            | μg/kg     | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| p & m-xylene                            | μg/kg     | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| o-xylene                                | μg/kg     | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| MTBE (Methyl Tertiary Butyl Ether)      | μg/kg     | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| ( 11 ) 11 )                             | -         |                    | ı                       | . =           |               |               | . =           |               |
| Petroleum Hydrocarbons                  |           |                    |                         |               |               |               |               |               |
| TPH-CWG - Aliphatic >EC5 - EC6          | mg/kg     | 0.001              | MCERTS                  | < 0.001       | < 0.001       | < 0.001       | < 0.001       | < 0.001       |
| TPH-CWG - Aliphatic > EC6 - EC8         | mg/kg     | 0.001              | MCERTS                  | < 0.001       | < 0.001       | < 0.001       | < 0.001       | < 0.001       |
| TPH-CWG - Aliphatic > EC8 - EC10        | mg/kg     | 0.001              | MCERTS                  | < 0.001       | < 0.001       | < 0.001       | < 0.001       | < 0.001       |
| TPH-CWG - Aliphatic > EC10 - EC12       | mg/kg     | 1                  | MCERTS                  | < 1.0         | < 1.0         | 60            | < 1.0         | < 1.0         |
| TPH-CWG - Aliphatic >EC12 - EC16        | mg/kg     | 2                  | MCERTS                  | < 2.0         | < 2.0         | 140           | < 2.0         | < 2.0         |
| TPH-CWG - Aliphatic >EC16 - EC21        | mg/kg     | 8                  | MCERTS                  | < 8.0         | < 8.0         | 200           | < 8.0         | < 8.0         |
| TPH-CWG - Aliphatic >EC21 - EC35        | mg/kg     | 8                  | MCERTS                  | 34            | < 8.0         | 680           | < 8.0         | < 8.0         |
| TPH-CWG - Aliphatic (EC5 - EC35)        | mg/kg     | 10                 | MCERTS                  | 37            | < 10          | 1100          | < 10          | < 10          |
|                                         | -         |                    |                         |               | -             |               | -             | -             |
| TPH-CWG - Aromatic >EC5 - EC7           | mg/kg     | 0.001              | MCERTS                  | < 0.001       | < 0.001       | < 0.001       | < 0.001       | < 0.001       |
| TPH-CWG - Aromatic >EC7 - EC8           | mg/kg     | 0.001              | MCERTS                  | < 0.001       | < 0.001       | < 0.001       | < 0.001       | < 0.001       |
| TPH-CWG - Aromatic >EC8 - EC10          | mg/kg     | 0.001              | MCERTS                  | < 0.001       | < 0.001       | < 0.001       | < 0.001       | < 0.001       |
| TPH-CWG - Aromatic >EC10 - EC12         | mg/kg     | 1                  | MCERTS                  | < 1.0         | < 1.0         | 16            | < 1.0         | < 1.0         |
| TPH-CWG - Aromatic >EC12 - EC16         | mg/kg     | 2                  | MCERTS                  | 14            | < 2.0         | 250           | < 2.0         | < 2.0         |
| TPH-CWG - Aromatic >EC16 - EC21         | mg/kg     | 10                 | MCERTS                  | 76            | < 10          | 550           | < 10          | 15            |
| TPH-CWG - Aromatic >EC21 - EC35         | mg/kg     | 10                 | MCERTS                  | 170           | 23            | 2800          | < 10          | 28            |
| TPH-CWG - Aromatic (EC5 - EC35)         | mg/kg     | 10                 | MCERTS                  | 260           | 30            | 3700          | < 10          | 43            |
|                                         |           |                    |                         |               |               |               |               |               |
| VOCs                                    |           |                    |                         |               |               |               |               |               |
| Chloromethane                           | μg/kg     | 1                  | ISO 17025               | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| Chloroethane                            | μg/kg     | 1                  | NONE                    | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| Bromomethane                            | μg/kg     | 1                  | ISO 17025               | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| Vinyl Chloride                          | μg/kg     | 1                  | NONE                    | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| Trichlorofluoromethane                  | μg/kg     | 1                  | NONE                    | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| 1,1-Dichloroethene                      | μg/kg     | 1                  | NONE                    | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| 1,1,2-Trichloro 1,2,2-Trifluoroethane   | μg/kg     | 1                  | ISO 17025               | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| Cis-1,2-dichloroethene                  | μg/kg     | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| MTBE (Methyl Tertiary Butyl Ether)      | μg/kg     | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| 1,1-Dichloroethane                      | μg/kg<br> | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| 2,2-Dichloropropane                     | μg/kg<br> | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| Trichloromethane                        | μg/kg<br> | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| 1,1,1-Trichloroethane                   | μg/kg<br> | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| 1,2-Dichloroethane                      | μg/kg<br> | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| 1,1-Dichloropropene                     | μg/kg<br> | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| Trans-1,2-dichloroethene                | μg/kg<br> | 1                  | NONE                    | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| Benzene                                 | μg/kg<br> | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| Tetrachloromethane                      | μg/kg<br> | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| 1,2-Dichloropropane                     | μg/kg     | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| Trichloroethene                         | μg/kg     | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| Dibromomethane                          | μg/kg     | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| Bromodichloromethane                    | μg/kg     | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| Cis-1,3-dichloropropene                 | μg/kg     | 1                  | ISO 17025               | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| Trans-1,3-dichloropropene               | μg/kg     | 1                  | ISO 17025               | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| Toluene                                 | μg/kg     | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |





| Lab Sample Number                       |       |                    |                         | 1957038       | 1957039       | 1957040       | 1957041       | 1957042       |
|-----------------------------------------|-------|--------------------|-------------------------|---------------|---------------|---------------|---------------|---------------|
| Sample Reference                        |       |                    |                         | WS102         | WS102         | WS103         | WS103         | WS105         |
| Sample Number                           |       |                    |                         | ENV1          | ENV2          | ENV1          | ENV2          | ENV1          |
| Depth (m)                               |       |                    |                         | 0.20          | 1.20          | 0.35          | 1.00          | 0.30          |
| Date Sampled                            |       |                    |                         | 29/07/2021    | 29/07/2021    | 29/07/2021    | 29/07/2021    | 29/07/2021    |
| Time Taken                              |       |                    |                         | None Supplied |
| Analytical Parameter<br>(Soil Analysis) | Units | Limit of detection | Accreditation<br>Status |               |               |               |               |               |
| 1,1,2-Trichloroethane                   | μg/kg | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| 1,3-Dichloropropane                     | μg/kg | 1                  | ISO 17025               | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| Dibromochloromethane                    | μg/kg | 1                  | ISO 17025               | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| Tetrachloroethene                       | μg/kg | 1                  | NONE                    | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| 1,2-Dibromoethane                       | μg/kg | 1                  | ISO 17025               | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| Chlorobenzene                           | μg/kg | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| 1,1,1,2-Tetrachloroethane               | μg/kg | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| Ethylbenzene                            | μg/kg | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| p & m-Xylene                            | μg/kg | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| Styrene                                 | μg/kg | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| Tribromomethane                         | μg/kg | 1                  | NONE                    | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| o-Xylene                                | μg/kg | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| 1,1,2,2-Tetrachloroethane               | μg/kg | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| Isopropylbenzene                        | μg/kg | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| Bromobenzene                            | μg/kg | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| n-Propylbenzene                         | μg/kg | 1                  | ISO 17025               | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| 2-Chlorotoluene                         | μg/kg | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| 4-Chlorotoluene                         | μg/kg | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| 1,3,5-Trimethylbenzene                  | μg/kg | 1                  | ISO 17025               | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| tert-Butylbenzene                       | μg/kg | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| 1,2,4-Trimethylbenzene                  | μg/kg | 1                  | ISO 17025               | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| sec-Butylbenzene                        | μg/kg | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| 1,3-Dichlorobenzene                     | μg/kg | 1                  | ISO 17025               | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| p-Isopropyltoluene                      | μg/kg | 1                  | ISO 17025               | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| 1,2-Dichlorobenzene                     | μg/kg | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| 1,4-Dichlorobenzene                     | μg/kg | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| Butylbenzene                            | μg/kg | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| 1,2-Dibromo-3-chloropropane             | μg/kg | 1                  | ISO 17025               | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| 1,2,4-Trichlorobenzene                  | μg/kg | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| Hexachlorobutadiene                     | μg/kg | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| 1,2,3-Trichlorobenzene                  | μg/kg | 1                  | ISO 17025               | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |

U/S = Unsuitable Sample I/S = Insufficient Sample





| Lab Camula Number                                                 |          |                    |                         | 1057042       | 1057044       | 1057045       | 1057046       | 1057047       |
|-------------------------------------------------------------------|----------|--------------------|-------------------------|---------------|---------------|---------------|---------------|---------------|
| Lab Sample Number                                                 |          |                    |                         | 1957043       | 1957044       | 1957045       | 1957046       | 1957047       |
| Sample Reference                                                  |          |                    |                         | WS105         | WS106         | WS106         | WS107         | WS107         |
| Sample Number                                                     |          |                    |                         | ENV2          | ENV1          | ENV2          | ENV1          | ENV2          |
| Depth (m)                                                         |          |                    |                         | 1.00          | 0.40          | 1.80          | 0.50          | 1.10          |
| Date Sampled                                                      |          |                    |                         | 29/07/2021    | 29/07/2021    | 29/07/2021    | 29/07/2021    | 29/07/2021    |
| Time Taken                                                        |          |                    |                         | None Supplied |
| Analytical Parameter<br>(Soil Analysis)                           | Units    | Limit of detection | Accreditation<br>Status |               |               |               |               |               |
| Stone Content                                                     | %        | 0.1                | NONE                    | < 0.1         | < 0.1         | < 0.1         | < 0.1         | < 0.1         |
| Moisture Content                                                  | %        | 0.01               | NONE                    | 15            | 12            | 11            | 11            | 13            |
| Total mass of sample received                                     | kg       | 0.001              | NONE                    | 0.80          | 1.1           | 1.3           | 1.0           | 1.2           |
|                                                                   |          |                    |                         |               |               |               |               |               |
| Asbestos in Soil Screen / Identification Name                     | Type     | N/A                | ISO 17025               | -             | -             | -             | -             | -             |
| Asbestos in Soil                                                  | Туре     | N/A                | ISO 17025               | -             | Not-detected  | -             | Not-detected  | -             |
| Asbestos Quantification (Stage 2)                                 | %        | 0.001              | ISO 17025               | -             | -             | -             | -             | -             |
| Asbestos Quantification Total                                     | %        | 0.001              | ISO 17025               | -             | -             | -             | -             | -             |
| General Inorganics                                                |          |                    |                         |               |               |               |               |               |
| pH - Automated                                                    | pH Units | N/A                | MCERTS                  | 7.8           | 8.3           | 8.7           | 8.7           | 7.2           |
|                                                                   |          |                    |                         |               |               |               |               |               |
| Speciated PAHs                                                    |          |                    |                         |               |               |               |               |               |
| Naphthalene                                                       | mg/kg    | 0.05               | MCERTS                  | < 0.05        | < 0.05        | < 0.05        | 0.49          | < 0.05        |
| Acenaphthylene                                                    | mg/kg    | 0.05               | MCERTS                  | < 0.05        | < 0.05        | < 0.05        | 0.48          | < 0.05        |
| Acenaphthene                                                      | mg/kg    | 0.05               | MCERTS                  | < 0.05        | < 0.05        | < 0.05        | 0.94          | < 0.05        |
| Fluorene                                                          | mg/kg    | 0.05               | MCERTS                  | < 0.05        | < 0.05        | < 0.05        | 1.3           | < 0.05        |
| Phenanthrene                                                      | mg/kg    | 0.05               | MCERTS                  | < 0.05        | 1.7           | < 0.05        | 14            | < 0.05        |
| Anthracene                                                        | mg/kg    | 0.05               | MCERTS                  | < 0.05        | 0.39          | < 0.05        | 3.7           | < 0.05        |
| Fluoranthene                                                      | mg/kg    | 0.05               | MCERTS                  | < 0.05        | 5.8           | < 0.05        | 23            | < 0.05        |
| Pyrene                                                            | mg/kg    | 0.05               | MCERTS                  | < 0.05        | 5.5           | < 0.05        | 21            | < 0.05        |
| Benzo(a)anthracene                                                | mg/kg    | 0.05               | MCERTS                  | < 0.05        | 3.8           | < 0.05        | 13            | < 0.05        |
| Chrysene                                                          | mg/kg    | 0.05               | MCERTS                  | < 0.05        | 3.9           | < 0.05        | 8.9           | < 0.05        |
| Benzo(b)fluoranthene                                              | mg/kg    | 0.05               | MCERTS                  | < 0.05        | 5.1           | < 0.05        | 15            | < 0.05        |
| Benzo(k)fluoranthene                                              | mg/kg    | 0.05               | MCERTS                  | < 0.05        | 2.5           | < 0.05        | 3.8           | < 0.05        |
| Benzo(a)pyrene                                                    | mg/kg    | 0.05               | MCERTS                  | < 0.05        | 4.7           | < 0.05        | 12            | < 0.05        |
| Indeno(1,2,3-cd)pyrene                                            | mg/kg    | 0.05               | MCERTS                  | < 0.05        | 2.5           | < 0.05        | 5.3           | < 0.05        |
| Dibenz(a,h)anthracene                                             | mg/kg    | 0.05               | MCERTS                  | < 0.05        | 0.68          | < 0.05        | 1.5           | < 0.05        |
| Benzo(ghi)perylene                                                | mg/kg    | 0.05               | MCERTS                  | < 0.05        | 2.9           | < 0.05        | 6.2           | < 0.05        |
| W AFT I TO                                                        |          |                    |                         |               |               | ×             |               |               |
| Total PAH                                                         |          |                    |                         |               |               |               |               |               |
| Speciated Total EPA-16 PAHs                                       | mg/kg    | 0.8                | MCERTS                  | < 0.80        | 39.4          | < 0.80        | 129           | < 0.80        |
|                                                                   |          | 1                  |                         |               |               |               |               |               |
| Heavy Metals / Metalloids                                         |          |                    |                         |               |               |               |               |               |
| Arsenic (aqua regia extractable)                                  | mg/kg    | 1                  | MCERTS                  | 15            | 10            | 17            | 23            | 15            |
| Boron (water soluble)                                             | mg/kg    | 0.2                | MCERTS                  | 0.9           | 1.8           | 1.2           | 1.5           | 1.0           |
| Cadmium (aqua regia extractable)                                  | mg/kg    | 0.2                | MCERTS                  | < 0.2         | 0.8           | < 0.2         | < 0.2         | < 0.2         |
| Chromium (hexavalent)                                             | mg/kg    | 4                  | MCERTS                  | < 4.0         | < 4.0         | < 4.0         | < 4.0         | < 4.0         |
| Chromium (III)                                                    | mg/kg    | 1                  | NONE                    | 37            | 30            | 32            | 29            | 37            |
| Chromium (aqua regia extractable)                                 | mg/kg    | 1                  | MCERTS                  | 37            | 30            | 32            | 29            | 37            |
| Copper (aqua regia extractable)                                   | mg/kg    | 1                  | MCERTS                  | 24            | 36            | 16            | 51            | 21            |
| Lead (aqua regia extractable)                                     | mg/kg    | 1                  | MCERTS                  | 19            | 75            | 17            | 580           | 28            |
| Mercury (aqua regia extractable)                                  | mg/kg    | 0.3                | MCERTS                  | < 0.3         | < 0.3         | < 0.3         | < 0.3         | < 0.3         |
|                                                                   | mg/kg    | 1                  | MCERTS                  | 33            | 19            | 31            | 26            | 42            |
| Nickel (aqua regia extractable)                                   |          |                    |                         |               |               |               |               |               |
| Nickel (aqua regia extractable) Selenium (aqua regia extractable) | mg/kg    | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |





| Lab Sample Number                                               |                |                    |                         | 1957043       | 1957044       | 1957045       | 1957046       | 1957047       |
|-----------------------------------------------------------------|----------------|--------------------|-------------------------|---------------|---------------|---------------|---------------|---------------|
| Sample Reference                                                |                |                    |                         | WS105         | WS106         | WS106         | WS107         | WS107         |
| Sample Number                                                   |                |                    |                         | ENV2          | ENV1          | ENV2          | ENV1          | ENV2          |
| Depth (m)                                                       |                |                    |                         | 1.00          | 0.40          | 1.80          | 0.50          | 1.10          |
| Date Sampled                                                    |                |                    |                         | 29/07/2021    | 29/07/2021    | 29/07/2021    | 29/07/2021    | 29/07/2021    |
| Time Taken                                                      |                |                    |                         | None Supplied |
| Analytical Parameter<br>(Soil Analysis)                         | Units          | Limit of detection | Accreditation<br>Status |               |               |               |               |               |
| Monoaromatics & Oxygenates                                      |                |                    |                         |               | -             |               |               | •             |
| Benzene                                                         | μg/kg          | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| Toluene                                                         | μg/kg          | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| Ethylbenzene                                                    | μg/kg          | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| p & m-xylene                                                    | μg/kg          | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| o-xylene                                                        | μg/kg          | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| MTBE (Methyl Tertiary Butyl Ether)                              | μg/kg          | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
|                                                                 |                |                    |                         |               |               |               |               |               |
| Petroleum Hydrocarbons                                          |                |                    |                         |               |               |               |               |               |
| TPH-CWG - Aliphatic >EC5 - EC6                                  | mg/kg          | 0.001              | MCERTS                  | < 0.001       | < 0.001       | < 0.001       | < 0.001       | < 0.001       |
| TPH-CWG - Aliphatic >EC6 - EC8                                  | mg/kg          | 0.001              | MCERTS                  | < 0.001       | < 0.001       | < 0.001       | < 0.001       | < 0.001       |
| TPH-CWG - Aliphatic >EC8 - EC10                                 | mg/kg          | 0.001              | MCERTS                  | < 0.001       | < 0.001       | < 0.001       | < 0.001       | < 0.001       |
| TPH-CWG - Aliphatic >EC10 - EC12                                | mg/kg          | 1                  | MCERTS                  | 1.2           | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| TPH-CWG - Aliphatic >EC12 - EC16                                | mg/kg          | 2                  | MCERTS                  | < 2.0         | < 2.0         | < 2.0         | < 2.0         | < 2.0         |
| TPH-CWG - Aliphatic >EC16 - EC21                                | mg/kg          | 8                  | MCERTS                  | < 8.0         | < 8.0         | < 8.0         | < 8.0         | < 8.0         |
| TPH-CWG - Aliphatic >EC21 - EC35                                | mg/kg          | 8                  | MCERTS                  | < 8.0         | < 8.0         | < 8.0         | 29            | < 8.0         |
| TPH-CWG - Aliphatic (EC5 - EC35)                                | mg/kg          | 10                 | MCERTS                  | < 10          | < 10          | < 10          | 31            | < 10          |
|                                                                 |                | 1                  |                         |               |               |               |               |               |
| TPH-CWG - Aromatic >EC5 - EC7                                   | mg/kg          | 0.001              | MCERTS                  | < 0.001       | < 0.001       | < 0.001       | < 0.001       | < 0.001       |
| TPH-CWG - Aromatic >EC7 - EC8                                   | mg/kg          | 0.001              | MCERTS                  | < 0.001       | < 0.001       | < 0.001       | < 0.001       | < 0.001       |
| TPH-CWG - Aromatic >EC8 - EC10                                  | mg/kg          | 0.001              | MCERTS                  | < 0.001       | < 0.001       | < 0.001       | < 0.001       | < 0.001       |
| TPH-CWG - Aromatic >EC10 - EC12                                 | mg/kg          | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| TPH-CWG - Aromatic >EC12 - EC16                                 | mg/kg          | 10                 | MCERTS<br>MCERTS        | < 2.0         | < 2.0         | < 2.0         | 12            | < 2.0         |
| TPH-CWG - Aromatic > EC16 - EC21                                | mg/kg<br>mg/kg | 10                 | MCERTS                  | < 10          | < 10          | < 10          | 70            | < 10          |
| TPH-CWG - Aromatic >EC21 - EC35 TPH-CWG - Aromatic (EC5 - EC35) | mg/kg          | 10                 | MCERTS                  | < 10<br>< 10  | 30<br>39      | < 10<br>< 10  | 150<br>230    | < 10<br>< 10  |
| TFTI-CWG - ATOMATIC (ECS - ECS3)                                | 9/9            |                    | TIGERTIG                | < 10          | 39            | < 10          | 230           | < 10          |
| VOCs                                                            |                |                    |                         |               |               |               |               |               |
| Chloromethane                                                   | μg/kg          | 1                  | ISO 17025               | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| Chloroethane                                                    | μg/kg          | 1                  | NONE                    | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| Bromomethane                                                    | μg/kg          | 1                  | ISO 17025               | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| Vinyl Chloride                                                  | μg/kg          | 1                  | NONE                    | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| Trichlorofluoromethane                                          | μg/kg          | 1                  | NONE                    | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| 1,1-Dichloroethene                                              | μg/kg          | 1                  | NONE                    | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| 1,1,2-Trichloro 1,2,2-Trifluoroethane                           | μg/kg          | 1                  | ISO 17025               | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| Cis-1,2-dichloroethene                                          | μg/kg          | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| MTBE (Methyl Tertiary Butyl Ether)                              | μg/kg          | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| 1,1-Dichloroethane                                              | μg/kg          | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| 2,2-Dichloropropane                                             | μg/kg          | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| Trichloromethane                                                | μg/kg          | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| 1,1,1-Trichloroethane                                           | μg/kg          | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| 1,2-Dichloroethane                                              | μg/kg          | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| 1,1-Dichloropropene                                             | μg/kg<br>      | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| Trans-1,2-dichloroethene                                        | μg/kg<br>"     | 1                  | NONE                    | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| Benzene                                                         | μg/kg<br>"     | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| Tetrachloromethane                                              | μg/kg<br>"     | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| 1,2-Dichloropropane                                             | μg/kg          | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| Trichloroethene                                                 | μg/kg          | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| Dibromomethane                                                  | μg/kg          | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| Bromodichloromethane                                            | μg/kg          | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| Cis-1,3-dichloropropene                                         | μg/kg<br>μα/kg | 1                  | ISO 17025<br>ISO 17025  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| Trans-1,3-dichloropropene                                       | μg/kg          | 1                  |                         | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| Toluene                                                         | μg/kg          | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |





| Lab Sample Number                       |       |                    |                         | 1957043       | 1957044       | 1957045       | 1957046       | 1957047       |
|-----------------------------------------|-------|--------------------|-------------------------|---------------|---------------|---------------|---------------|---------------|
| Sample Reference                        |       |                    |                         | WS105         | WS106         | WS106         | WS107         | WS107         |
| Sample Number                           |       |                    |                         | ENV2          | ENV1          | ENV2          | ENV1          | ENV2          |
| Depth (m)                               |       |                    |                         | 1.00          | 0.40          | 1.80          | 0.50          | 1.10          |
| Date Sampled                            |       |                    |                         | 29/07/2021    | 29/07/2021    | 29/07/2021    | 29/07/2021    | 29/07/2021    |
| Time Taken                              |       |                    |                         | None Supplied |
| Analytical Parameter<br>(Soil Analysis) | Units | Limit of detection | Accreditation<br>Status |               |               |               |               |               |
| 1,1,2-Trichloroethane                   | μg/kg | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| 1,3-Dichloropropane                     | μg/kg | 1                  | ISO 17025               | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| Dibromochloromethane                    | μg/kg | 1                  | ISO 17025               | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| Tetrachloroethene                       | μg/kg | 1                  | NONE                    | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| 1,2-Dibromoethane                       | μg/kg | 1                  | ISO 17025               | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| Chlorobenzene                           | μg/kg | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| 1,1,1,2-Tetrachloroethane               | μg/kg | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| Ethylbenzene                            | μg/kg | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| p & m-Xylene                            | μg/kg | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| Styrene                                 | μg/kg | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| Tribromomethane                         | μg/kg | 1                  | NONE                    | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| o-Xylene                                | μg/kg | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| 1,1,2,2-Tetrachloroethane               | μg/kg | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| Isopropylbenzene                        | μg/kg | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| Bromobenzene                            | μg/kg | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| n-Propylbenzene                         | μg/kg | 1                  | ISO 17025               | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| 2-Chlorotoluene                         | μg/kg | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| 4-Chlorotoluene                         | μg/kg | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| 1,3,5-Trimethylbenzene                  | μg/kg | 1                  | ISO 17025               | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| tert-Butylbenzene                       | μg/kg | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| 1,2,4-Trimethylbenzene                  | μg/kg | 1                  | ISO 17025               | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| sec-Butylbenzene                        | μg/kg | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| 1,3-Dichlorobenzene                     | μg/kg | 1                  | ISO 17025               | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| p-Isopropyltoluene                      | μg/kg | 1                  | ISO 17025               | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| 1,2-Dichlorobenzene                     | μg/kg | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| 1,4-Dichlorobenzene                     | μg/kg | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| Butylbenzene                            | μg/kg | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| 1,2-Dibromo-3-chloropropane             | μg/kg | 1                  | ISO 17025               | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| 1,2,4-Trichlorobenzene                  | μg/kg | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| Hexachlorobutadiene                     | μg/kg | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| 1,2,3-Trichlorobenzene                  | μg/kg | 1                  | ISO 17025               | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |

U/S = Unsuitable Sample I/S = Insufficient Sample





Analytical Report Number: 21-90131

Project / Site name: West Drayton UB7 0DU

Your Order No:

# **Certificate of Analysis - Asbestos Quantification**

#### Methods:

### **Qualitative Analysis**

The samples were analysed qualitatively for asbestos by polarising light and dispersion staining as described by the Health and Safety Executive in HSG 248.

### **Quantitative Analysis**

The analysis was carried out using our documented in-house method A006-PL based on HSE Contract Research Report No: 83/1996: Development and Validation of an analytical method to determine the amount of asbestos in soils and loose aggregates (Davies et al, 1996) and HSG 248. Our method includes initial examination of the entire representative sample, then fractionation and detailed analysis of each fraction, with quantification by hand picking and weighing.

The limit of detection (reporting limit) of this method is 0.001 %.

The method has been validated using samples of at least 100 g, results for samples smaller than this should be interpreted with caution.

Both Qualitative and Quantitative Analyses are UKAS accredited.

| Sample<br>Number | Sample ID | Sample<br>Depth<br>(m) | Sample<br>Weight<br>(g) | Asbestos Containing<br>Material Types<br>Detected (ACM) | PLM Results | Asbestos by hand picking/weighing (%) | Total %<br>Asbestos in<br>Sample |
|------------------|-----------|------------------------|-------------------------|---------------------------------------------------------|-------------|---------------------------------------|----------------------------------|
| 1957042          | WS105     | 0.30                   | 151                     | Hard/Cement Type<br>Material                            | Chrysotile  | 0.935                                 | 0.935                            |

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.





\* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

| Lab Sample<br>Number | Sample<br>Reference | Sample<br>Number | Depth (m) | Sample Description *                            |
|----------------------|---------------------|------------------|-----------|-------------------------------------------------|
| 1957038              | WS102               | ENV1             | 0.2       | Brown gravelly loam with vegetation.            |
| 1957039              | WS102               | ENV2             | 1.2       | Brown clay and loam with gravel and vegetation. |
| 1957040              | WS103               | ENV1             | 0.35      | Brown loam and clay with gravel.                |
| 1957041              | WS103               | ENV2             | 1         | Brown loam and clay with gravel and vegetation. |
| 1957042              | WS105               | ENV1             | 0.3       | Brown gravelly loam.                            |
| 1957043              | WS105               | ENV2             | 1         | Brown loam and clay with gravel.                |
| 1957044              | WS106               | ENV1             | 0.4       | Brown loam and clay with gravel and vegetation. |
| 1957045              | WS106               | ENV2             | 1.8       | Brown loam and clay with gravel.                |
| 1957046              | WS107               | ENV1             | 0.5       | Brown gravelly loam.                            |
| 1957047              | WS107               | ENV2             | 1.1       | Brown loam and clay with gravel.                |





Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

| Analytical Test Name                             | Analytical Method Description                                                                                                                          | Analytical Method Reference                                                             | Method<br>number | Wet / Dry<br>Analysis | Accreditation<br>Status |
|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------|-----------------------|-------------------------|
| Metals in soil by ICP-OES                        | Determination of metals in soil by aqua-regia digestion followed by ICP-OES.                                                                           | In-house method based on MEWAM 2006<br>Methods for the Determination of Metals in Soil. | L038-PL          | D                     | MCERTS                  |
| Asbestos identification in soil                  | Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.                                  | In house method based on HSG 248                                                        | A001-PL          | D                     | ISO 17025               |
| Boron, water soluble, in soil                    | Determination of water soluble boron in soil by hot water extract followed by ICP-OES.                                                                 | In-house method based on Second Site Properties version 3                               | L038-PL          | D                     | MCERTS                  |
| Hexavalent chromium in soil                      | Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.  | In-house method                                                                         | L080-PL          | W                     | MCERTS                  |
| Moisture Content                                 | Moisture content, determined gravimetrically. (30 oC)                                                                                                  | In house method.                                                                        | L019-UK/PL       | W                     | NONE                    |
| Speciated EPA-16 PAHs in soil                    | Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards. | In-house method based on USEPA 8270                                                     | L064-PL          | D                     | MCERTS                  |
| pH in soil (automated)                           | Determination of pH in soil by addition of water followed by automated electrometric measurement.                                                      | In house method.                                                                        | L099-PL          | D                     | MCERTS                  |
| Stones content of soil                           | Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.                            | In-house method based on British Standard<br>Methods and MCERTS requirements.           | L019-UK/PL       | D                     | NONE                    |
| Volatile organic compounds in soil               | Determination of volatile organic compounds in soil by headspace GC-MS.                                                                                | In-house method based on USEPA8260                                                      | L073B-PL         | W                     | MCERTS                  |
| BTEX and MTBE in soil (Monoaromatics)            | Determination of BTEX in soil by headspace GC-MS.                                                                                                      | In-house method based on USEPA8260                                                      | L073B-PL         | W                     | MCERTS                  |
| Cr (III) in soil                                 | In-house method by calculation from total Cr and Cr VI.                                                                                                | In-house method by calculation                                                          | L080-PL          | W                     | NONE                    |
| TPHCWG (Soil)                                    | Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.                                                                              | In-house method with silica gel split/clean up.                                         | L088/76-PL       | W                     | MCERTS                  |
| Asbestos Quantification - Gravimetric            | Asbestos quantification by gravimetric method - in house method based on references.                                                                   | HSE Report No: 83/1996, HSG 248, HSG 264 & SCA Blue Book (draft).                       | A006-PL          | D                     | ISO 17025               |
| D.O. for Gravimetric Quant if Screen/ID positive | Dependent option for Gravimetric Quant if Screen/ID positive scheduled.                                                                                | In house asbestos methods A001 & A006.                                                  | A006-PL          | D                     | NONE                    |

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

### **Sample Deviation Report**



Analytical Report Number : 21-90131 Project / Site name: West Drayton UB7 0DU

| Sample ID | Other ID | Sample<br>Type | Lab Sample<br>Number | Sample<br>Deviation | Test Name                             | Test Ref   | Test<br>Deviation |
|-----------|----------|----------------|----------------------|---------------------|---------------------------------------|------------|-------------------|
| WS105     | ENV2     | S              | 1957043              | b                   | BTEX and MTBE in soil (Monoaromatics) | L073B-PL   | b                 |
| WS105     | ENV2     | S              | 1957043              | b                   | Speciated EPA-16 PAHs in soil         | L064-PL    | b                 |
| WS105     | ENV2     | S              | 1957043              | b                   | TPHCWG (Soil)                         | L088/76-PL | b                 |
| WS105     | ENV2     | S              | 1957043              | b                   | Volatile organic compounds in soil    | L073B-PL   | b                 |





### **Nyemh Johnson**

TRC Companies Ltd 2 John Street London WC1N 2ES i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

**t:** 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

e: nyemh.johnson@trccompanies.com

# **Analytical Report Number: 21-23501**

**Project / Site name:** NCP Heathrow **Samples received on:** 17/11/2021

Your job number: 460336.0001 Samples instructed on/ 18/11/2021

Analysis started on:

Your order number: Analysis completed by: 24/11/2021

**Report Issue Number:** 1 **Report issued on:** 24/11/2021

Samples Analysed: 4 soil samples

Signed: R. Calruinska

Agnieszka Czerwińska

Technical Reviewer (Reporting Team)

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.





| Lab Sample Number                             |          |                    |                         | 2085615       | 2085616       | 2085617       | 2085618       |
|-----------------------------------------------|----------|--------------------|-------------------------|---------------|---------------|---------------|---------------|
| Sample Reference                              |          |                    |                         | BH204         | BH202         | BH201         | BH203         |
| Sample Number                                 |          |                    |                         | 01            | 01            | 01            | 02            |
| Depth (m)                                     |          |                    |                         | 0.30          | 0.20          | 0.30          | 3.00          |
| Date Sampled                                  |          |                    |                         | 16/11/2021    | 15/11/2021    | 15/11/2021    | 15/11/2021    |
| Time Taken                                    |          |                    |                         | None Supplied | None Supplied | None Supplied | None Supplied |
| Time Tuken                                    |          | -                  |                         | топе Заррнеа  | None Supplied | None Supplied | None Supplied |
| Analytical Parameter<br>(Soil Analysis)       | Units    | Limit of detection | Accreditation<br>Status |               |               |               |               |
| Stone Content                                 | %        | 0.1                | NONE                    | 73            | 36            | < 0.1         | 31            |
| Moisture Content                              | %        | 0.01               | NONE                    | 4.4           | 9.7           | 9.0           | 10            |
| Total mass of sample received                 | kg       | 0.001              | NONE                    | 1.0           | 1.0           | 1.0           | 1.0           |
|                                               |          |                    |                         |               |               |               |               |
| Asbestos in Soil Screen / Identification Name | Туре     | N/A                | ISO 17025               | -             | -             | Amosite       | -             |
| Asbestos in Soil                              | Туре     | N/A                | ISO 17025               | Not-detected  | Not-detected  | Detected      | Not-detected  |
| Asbestos Quantification (Stage 2)             | %        | 0.001              | ISO 17025               | -             | -             | < 0.001       | -             |
| Asbestos Quantification Total                 | %        | 0.001              | ISO 17025               | -             | -             | < 0.001       | -             |
| General Inorganics                            |          |                    |                         | -             |               |               |               |
| pH - Automated                                | pH Units | N/A                | MCERTS                  | 9.2           | 9.2           | 8.0           | 8.3           |
|                                               |          |                    |                         |               |               |               |               |
| Speciated PAHs                                |          |                    |                         |               |               |               |               |
| Naphthalene                                   | mg/kg    | 0.05               | MCERTS                  | < 0.05        | < 0.05        | < 0.05        | < 0.05        |
| Acenaphthylene                                | mg/kg    | 0.05               | MCERTS                  | 1.0           | 1.0           | 0.78          | < 0.05        |
| Acenaphthene                                  | mg/kg    | 0.05               | MCERTS                  | 7.9           | 9.8           | 1.3           | < 0.05        |
| Fluorene                                      | mg/kg    | 0.05               | MCERTS                  | 6.7           | 9.3           | 1.6           | < 0.05        |
| Phenanthrene                                  | mg/kg    | 0.05               | MCERTS                  | 78            | 79            | 19            | 1.6           |
| Anthracene                                    | mg/kg    | 0.05               | MCERTS                  | 25            | 20            | 9.9           | 0.61          |
| Fluoranthene                                  | mg/kg    | 0.05               | MCERTS                  | 89            | 100           | 61            | 4.3           |
| Pyrene                                        | mg/kg    | 0.05               | MCERTS                  | 78            | 75            | 44            | 3.5           |
| Benzo(a)anthracene                            | mg/kg    | 0.05               | MCERTS                  | 41            | 55            | 33            | 1.8           |
| Chrysene                                      | mg/kg    | 0.05               | MCERTS                  | 32            | 46            | 26            | 1.4           |
| Benzo(b)fluoranthene                          | mg/kg    | 0.05               | MCERTS                  | 36            | 64            | 46            | 2.1           |
| Benzo(k)fluoranthene                          | mg/kg    | 0.05               | MCERTS                  | 16            | 24            | 9.5           | 0.68          |
| Benzo(a)pyrene                                | mg/kg    | 0.05               | MCERTS                  | 31            | 47            | 29            | 1.4           |
| Indeno(1,2,3-cd)pyrene                        | mg/kg    | 0.05               | MCERTS                  | 17            | 31            | 22            | 1.1           |
| Dibenz(a,h)anthracene                         | mg/kg    | 0.05               | MCERTS                  | 5.5           | 8.9           | 6.5           | 0.33          |
| Benzo(ghi)perylene                            | mg/kg    | 0.05               | MCERTS                  | 18            | 30            | 22            | 1.1           |
| (3.1.)81.0.10                                 | 5. 5     |                    | ı                       | 10            | 50            |               | 4.1           |
| Total PAH                                     |          |                    |                         |               |               |               |               |
| Speciated Total EPA-16 PAHs                   | mg/kg    | 0.8                | MCERTS                  | 479           | 602           | 332           | 20.0          |
| opeciated Total ETA TOTALIS                   | 319      |                    |                         | 7/3           | UUZ           | 332           | 20.0          |
| Heavy Metals / Metalloids                     |          |                    |                         |               |               |               |               |
| Arsenic (aqua regia extractable)              | mg/kg    | 1                  | MCERTS                  | 9.5           | 12            | 10            | 15            |
| Boron (water soluble)                         | mg/kg    | 0.2                | MCERTS                  | 0.4           | 0.6           | 0.6           | 0.6           |
| Cadmium (aqua regia extractable)              | mg/kg    | 0.2                | MCERTS                  | 0.7           | 1.5           | 1.3           | < 0.2         |
| Chromium (hexavalent)                         | mg/kg    | 4                  | MCERTS                  | < 4.0         | < 4.0         | < 4.0         | < 4.0         |
| Chromium (III)                                | mg/kg    | 1                  | NONE                    | 12            | 31            | 19            | 29            |
| Chromium (aqua regia extractable)             | mg/kg    | 1                  | MCERTS                  | 12            | 31            | 19            | 29            |
| Copper (aqua regia extractable)               | mg/kg    | 1                  | MCERTS                  | 15            | 110           | 42            | 18            |
| Lead (aqua regia extractable)                 | mg/kg    | 1                  | MCERTS                  | 260           | 110           | 140           | 40            |
| Mercury (aqua regia extractable)              | mg/kg    | 0.3                | MCERTS                  | < 0.3         | < 0.3         | < 0.3         | < 0.3         |
| Nickel (aqua regia extractable)               | mg/kg    | 1                  | MCERTS                  | 11            | 37            | 19            | 26            |
| Selenium (aqua regia extractable)             | mg/kg    | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| Zinc (aqua regia extractable)                 | mg/kg    | 1                  | MCERTS                  | 140           | 300           | 210           | 72            |





| Lab Sample Number                                                 |       |                    |                         | 2085615       | 2085616        | 2085617        | 2085618        |
|-------------------------------------------------------------------|-------|--------------------|-------------------------|---------------|----------------|----------------|----------------|
| Sample Reference                                                  |       |                    |                         | BH204         | BH202          | BH201          | BH203          |
| Sample Number                                                     |       |                    |                         | 01            | 01             | 01             | 02             |
| Depth (m)                                                         |       | 0.30               | 0.20                    | 0.30          | 3.00           |                |                |
| Date Sampled                                                      |       |                    | 16/11/2021              | 15/11/2021    | 15/11/2021     | 15/11/2021     |                |
| Time Taken                                                        |       |                    |                         | None Supplied | None Supplied  | None Supplied  | None Supplied  |
| Analytical Parameter<br>(Soil Analysis)                           | Units | Limit of detection | Accreditation<br>Status |               |                |                |                |
| Monoaromatics & Oxygenates                                        |       |                    |                         |               |                |                |                |
| Benzene                                                           | μg/kg | 1                  | MCERTS                  | < 1.0         | < 1.0          | < 1.0          | < 1.0          |
| Toluene                                                           | μg/kg | 1                  | MCERTS                  | < 1.0         | < 1.0          | < 1.0          | < 1.0          |
| Ethylbenzene                                                      | μg/kg | 1                  | MCERTS                  | < 1.0         | < 1.0          | < 1.0          | < 1.0          |
| p & m-xylene                                                      | μg/kg | 1                  | MCERTS                  | < 1.0         | < 1.0          | < 1.0          | < 1.0          |
| o-xylene                                                          | μg/kg | 1                  | MCERTS                  | < 1.0         | < 1.0          | < 1.0          | < 1.0          |
| MTBE (Methyl Tertiary Butyl Ether)                                | μg/kg | 1                  | MCERTS                  | < 1.0         | < 1.0          | < 1.0          | < 1.0          |
| Petroleum Hydrocarbons                                            | mg/kg | 0.001              | MCERTS                  | . 0.001       | . 0.001        | . 0.001        | . 0.001        |
| TPH-CWG - Aliphatic >EC5 - EC6                                    | mg/kg | 0.001              | MCERTS                  | < 0.001       | < 0.001        | < 0.001        | < 0.001        |
| TPH-CWG - Aliphatic > EC6 - EC8                                   | mg/kg | 0.001              | MCERTS                  | < 0.001       | < 0.001        | < 0.001        | < 0.001        |
| TPH-CWG - Aliphatic > EC8 - EC10                                  | mg/kg | 1                  | MCERTS                  | < 0.001       | < 0.001        | < 0.001        | < 0.001        |
| TPH-CWG - Aliphatic > EC10 - EC12                                 | mg/kg | 2                  | MCERTS                  | < 1.0<br>7.2  | < 1.0          | < 1.0          | < 1.0          |
| TPH-CWG - Aliphatic >EC12 - EC16 TPH-CWG - Aliphatic >EC16 - EC21 | mg/kg | 8                  | MCERTS                  | 23            | < 2.0<br>< 8.0 | < 2.0<br>< 8.0 | < 2.0<br>< 8.0 |
| TPH-CWG - Aliphatic >EC21 - EC35                                  | mg/kg | 8                  | MCERTS                  | 83            | < 8.0          | < 8.0          | < 8.0<br>< 8.0 |
| TPH-CWG - Aliphatic (EC5 - EC35)                                  | mg/kg | 10                 | MCERTS                  | 110           | < 10           | < 10           | < 8.0<br>< 10  |
| TFTI-CWG - Aliphatic (LC3 - LC33)                                 | 3, 3  |                    |                         | 110           | < 10           | < 10           | < 10           |
| TPH-CWG - Aromatic >EC5 - EC7                                     | mg/kg | 0.001              | MCERTS                  | < 0.001       | < 0.001        | < 0.001        | < 0.001        |
| TPH-CWG - Aromatic >EC7 - EC8                                     | mg/kg | 0.001              | MCERTS                  | < 0.001       | < 0.001        | < 0.001        | < 0.001        |
| TPH-CWG - Aromatic >EC8 - EC10                                    | mg/kg | 0.001              | MCERTS                  | < 0.001       | < 0.001        | < 0.001        | < 0.001        |
| TPH-CWG - Aromatic >EC10 - EC12                                   | mg/kg | 1                  | MCERTS                  | < 1.0         | < 1.0          | 7.8            | < 1.0          |
| TPH-CWG - Aromatic >EC12 - EC16                                   | mg/kg | 2                  | MCERTS                  | 42            | 35             | 26             | < 2.0          |
| TPH-CWG - Aromatic >EC16 - EC21                                   | mg/kg | 10                 | MCERTS                  | 280           | 270            | 230            | < 10           |
| TPH-CWG - Aromatic > EC21 - EC35                                  | mg/kg | 10                 | MCERTS                  | 410           | 460            | 500            | 20             |
| TPH-CWG - Aromatic (EC5 - EC35)                                   | mg/kg | 10                 | MCERTS                  | 720           | 770            | 760            | 28             |

 $\label{eq:U/S} \text{U/S} = \text{Unsuitable Sample} \qquad \text{I/S} = \ \text{Insufficient Sample}$ 





Your Order No:

# **Certificate of Analysis - Asbestos Quantification**

#### **Methods:**

### **Qualitative Analysis**

The samples were analysed qualitatively for asbestos by polarising light and dispersion staining as described by the Health and Safety Executive in HSG 248.

### **Quantitative Analysis**

The analysis was carried out using our documented in-house method A006-PL based on HSE Contract Research Report No: 83/1996: Development and Validation of an analytical method to determine the amount of asbestos in soils and loose aggregates (Davies et al, 1996) and HSG 248. Our method includes initial examination of the entire representative sample, then fractionation and detailed analysis of each fraction, with quantification by hand picking and weighing.

The limit of detection (reporting limit) of this method is 0.001 %.

The method has been validated using samples of at least 100 g, results for samples smaller than this should be interpreted with caution.

Both Qualitative and Quantitative Analyses are UKAS accredited.

| Sample<br>Number | Sample ID | Sample<br>Depth<br>(m) | Sample<br>Weight<br>(g) | Asbestos Containing<br>Material Types<br>Detected (ACM) | PLM Results | Asbestos by hand picking/weighing (%) | Total %<br>Asbestos in<br>Sample |
|------------------|-----------|------------------------|-------------------------|---------------------------------------------------------|-------------|---------------------------------------|----------------------------------|
| 2085617          | BH201     | 0.30                   | 138                     | Loose Fibres                                            | Amosite     | < 0.001                               | < 0.001                          |

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.





\* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

| Lab Sample<br>Number | Sample<br>Reference | Sample<br>Number | Depth (m) | Sample Description *                              |
|----------------------|---------------------|------------------|-----------|---------------------------------------------------|
| 2085615              | BH204               | 1                | 0.3       | Brown clay and loam with stones.                  |
| 2085616              | BH202               | 1                | 0.2       | Brown loam and gravel with vegetation and stones. |
| 2085617              | BH201               | 1                | 0.3       | Brown clay and loam with gravel and vegetation.   |
| 2085618              | BH203               | 2                | 3         | Brown clay and loam with gravel and stones.       |





Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

| Analytical Test Name                             | Analytical Method Description                                                                                                                          | Analytical Method Reference                                                             | Method<br>number | Wet / Dry<br>Analysis | Accreditation<br>Status |
|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------|-----------------------|-------------------------|
| Metals in soil by ICP-OES                        | Determination of metals in soil by aqua-regia digestion followed by ICP-OES.                                                                           | In-house method based on MEWAM 2006<br>Methods for the Determination of Metals in Soil. | L038-PL          | D                     | MCERTS                  |
| Asbestos identification in soil                  | Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.                                  | In house method based on HSG 248                                                        | A001-PL          | D                     | ISO 17025               |
| Boron, water soluble, in soil                    | Determination of water soluble boron in soil by hot water extract followed by ICP-OES.                                                                 | In-house method based on Second Site Properties version 3                               | L038-PL          | D                     | MCERTS                  |
| Hexavalent chromium in soil                      | Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.  | In-house method                                                                         | L080-PL          | W                     | MCERTS                  |
| Moisture Content                                 | Moisture content, determined gravimetrically. (30 oC)                                                                                                  | In house method.                                                                        | L019-UK/PL       | W                     | NONE                    |
| Speciated EPA-16 PAHs in soil                    | Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards. |                                                                                         | L064-PL          | D                     | MCERTS                  |
| pH in soil (automated)                           | Determination of pH in soil by addition of water followed by automated electrometric measurement.                                                      | In house method.                                                                        | L099-PL          | D                     | MCERTS                  |
| Stones content of soil                           | Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.                            | In-house method based on British Standard<br>Methods and MCERTS requirements.           | L019-UK/PL       | D                     | NONE                    |
| BTEX and MTBE in soil (Monoaromatics)            | Determination of BTEX in soil by headspace GC-MS.                                                                                                      | In-house method based on USEPA8260                                                      | L073B-PL         | W                     | MCERTS                  |
| Cr (III) in soil                                 | In-house method by calculation from total Cr and Cr VI.                                                                                                | In-house method by calculation                                                          | L080-PL          | W                     | NONE                    |
| TPHCWG (Soil)                                    | Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.                                                                              | In-house method with silica gel split/clean up.                                         | L088/76-PL       | w                     | MCERTS                  |
| Asbestos Quantification - Gravimetric            | Asbestos quantification by gravimetric method - in house method based on references.                                                                   | HSE Report No: 83/1996, HSG 248, HSG 264 & SCA Blue Book (draft).                       | A006-PL          | D                     | ISO 17025               |
| D.O. for Gravimetric Quant if Screen/ID positive | Dependent option for Gravimetric Quant if Screen/ID positive scheduled.                                                                                | In house asbestos methods A001 & A006.                                                  | A006-PL          | D                     | NONE                    |

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.





**Nyemh Johnson** 

TRC Companies Ltd 2 John Street London WC1N 2ES

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, **WD18 8YS** 

t: 01923 225404

**f:** 01923 237404

e: reception@i2analytical.com

e: nyemh.johnson@trccompanies.com

### **Analytical Report Number: 21-23474**

**Project / Site name:** NCP Heathrow Samples received on: 17/11/2021

Your job number: 460336.001 Samples instructed on/ 17/11/2021

Analysis started on:

Your order number: Analysis completed by: 23/11/2021

**Report Issue Number:** Report issued on: 23/11/2021

Samples Analysed: 5 water samples

Signed: M. Cherwinska

Agnieszka Czerwińska Technical Reviewer (Reporting Team) For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.





| Lab Sample Number                       |              |                    |                         | 2085526          | 2085527          | 2085528          | 2085529          | 2085530          |
|-----------------------------------------|--------------|--------------------|-------------------------|------------------|------------------|------------------|------------------|------------------|
| Sample Reference                        |              |                    |                         | BH101            | BH103            | BH201            | BH202            | BH204            |
| Sample Number                           |              |                    |                         | None Supplied    |
| Depth (m)                               |              |                    |                         | None Supplied    |
| Date Sampled                            |              |                    |                         | 16/11/2021       | 16/11/2021       | 17/11/2021       | 17/11/2021       | 17/11/2021       |
| Time Taken                              |              |                    |                         | None Supplied    |
|                                         |              | Ē                  |                         |                  |                  |                  |                  |                  |
|                                         |              | Ħ.                 | Accreditation<br>Status |                  |                  |                  |                  |                  |
| Analytical Parameter                    | Units        | of de              | edir                    |                  |                  |                  |                  |                  |
| (Water Analysis)                        | ß            | ě                  | us                      |                  |                  |                  |                  |                  |
|                                         |              | Limit of detection | 9                       |                  |                  |                  |                  |                  |
| <u> </u>                                |              |                    |                         |                  |                  |                  |                  |                  |
| General Inorganics                      |              |                    |                         |                  |                  |                  |                  |                  |
| pH                                      | pH Units     | N/A                | ISO 17025               | 6.8              | 6.6              | 7.2              | 6.8              | 7.7              |
| Sulphate as SO4                         | mg/l         | 0.045              | ISO 17025               | 47.0             | 50.3             | 70.6             | 76.9             | 72.4             |
|                                         |              |                    |                         |                  |                  |                  |                  |                  |
| Speciated PAHs                          | n            | 0.01               | 100 17025               |                  | . 6.24           |                  | . 6.24           |                  |
| Naphthalene                             | μg/l         | 0.01               | ISO 17025               | < 0.01           | < 0.01           | < 0.01           | < 0.01           | < 0.01           |
| Acenaphthylene                          | μg/l         | 0.01               | ISO 17025               | < 0.01           | < 0.01           | < 0.01           | < 0.01           | < 0.01           |
| Acenaphthene                            | μg/l         | 0.01               | ISO 17025               | < 0.01           | < 0.01           | < 0.01           | < 0.01           | < 0.01           |
| Fluorene                                | μg/l         | 0.01               | ISO 17025<br>ISO 17025  | < 0.01           | < 0.01           | < 0.01           | < 0.01           | < 0.01           |
| Phenanthrene                            | μg/l         |                    |                         | < 0.01           | < 0.01           | < 0.01           | < 0.01           | < 0.01           |
| Anthracene                              | μg/l<br>μg/l | 0.01               | ISO 17025<br>ISO 17025  | < 0.01           | < 0.01           | < 0.01           | < 0.01           | < 0.01           |
| Fluoranthene                            | _            | 0.01               | ISO 17025               | < 0.01           | < 0.01           | < 0.01           | < 0.01           | < 0.01           |
| Pyrene Ponze(a)anthracene               | μg/l<br>μg/l | 0.01               | ISO 17025               | < 0.01<br>< 0.01 | < 0.01           | < 0.01           | < 0.01           | < 0.01           |
| Benzo(a)anthracene<br>Chrysene          | µg/l         | 0.01               | ISO 17025               | < 0.01           | < 0.01<br>< 0.01 | < 0.01<br>< 0.01 | < 0.01<br>< 0.01 | < 0.01<br>< 0.01 |
| Benzo(b)fluoranthene                    | µg/l         | 0.01               | ISO 17025               | < 0.01           | < 0.01           | < 0.01           | < 0.01           | < 0.01           |
| Benzo(k)fluoranthene                    | µg/l         | 0.01               | ISO 17025               | < 0.01           | < 0.01           | < 0.01           | < 0.01           | < 0.01           |
| Benzo(a)pyrene                          | µg/l         | 0.01               | ISO 17025               | < 0.01           | < 0.01           | < 0.01           | < 0.01           | < 0.01           |
| Indeno(1,2,3-cd)pyrene                  | µg/l         | 0.01               | ISO 17025               | < 0.01           | < 0.01           | < 0.01           | < 0.01           | < 0.01           |
| Dibenz(a,h)anthracene                   | µg/l         | 0.01               | ISO 17025               | < 0.01           | < 0.01           | < 0.01           | < 0.01           | < 0.01           |
| Benzo(ghi)perylene                      | μg/l         | 0.01               | ISO 17025               | < 0.01           | < 0.01           | < 0.01           | < 0.01           | < 0.01           |
|                                         |              |                    |                         |                  |                  |                  |                  | L L              |
| Total PAH                               |              |                    |                         |                  |                  |                  |                  |                  |
| Total EPA-16 PAHs                       | μg/l         | 0.16               | ISO 17025               | < 0.16           | < 0.16           | < 0.16           | < 0.16           | < 0.16           |
|                                         |              |                    |                         |                  |                  |                  |                  |                  |
| Heavy Metals / Metalloids               |              | - 10               | 1700 17005              |                  |                  |                  |                  | 1                |
| Boron (dissolved)                       | μg/l<br>     | 10                 | ISO 17025               | 140              | 160              | 170              | 150              | 100              |
| Chromium (hexavalent)                   | μg/l         | 5                  | ISO 17025<br>NONE       | < 5.0            | < 5.0            | < 5.0            | < 5.0            | < 5.0            |
| Chromium (III)                          | μg/l         | 1                  | NONE                    | 3.0              | 3.1              | 2.6              | 2.9              | 1.6              |
| Arsenic (dissolved)                     | ua/l         | 0.15               | ISO 17025               | 0.05             | 0.22             | 0.35             | 0.40             | 1 20             |
|                                         | μg/l<br>μg/l | 0.15               | ISO 17025               | 0.95             | 0.32             | 0.35             | 0.49             | 1.20             |
| Cadmium (dissolved)                     | μg/I<br>μg/I | 0.02               | ISO 17025               | 0.08<br>3.0      | 0.02<br>3.1      | 0.06             | 0.05<br>2.9      | < 0.02           |
| Chromium (dissolved) Copper (dissolved) | μg/I         | 0.2                | ISO 17025               | 3.0              | 4.8              | 2.6<br>3.2       | 2.9              | 1.6<br>1.2       |
| Lead (dissolved)                        | μg/I         | 0.3                | ISO 17025               | < 0.2            | < 0.2            | < 0.2            | < 0.2            | < 0.2            |
| Mercury (dissolved)                     | µg/l         | 0.05               | ISO 17025               | < 0.2            | < 0.2            | < 0.2            | < 0.2            | < 0.2            |
| Nickel (dissolved)                      | µg/l         | 0.5                | ISO 17025               | 5.1              | 3.0              | 6.0              | 4.0              | 2.6              |
| Selenium (dissolved)                    | µg/l         | 0.6                | ISO 17025               | 1.2              | 1.2              | 0.7              | 0.6              | < 0.6            |
| Zinc (dissolved)                        | µg/l         | 0.5                | ISO 17025               | 10               | 10               | 7.0              | 5.2              | 3.7              |
|                                         |              |                    |                         |                  | -10              | 7.0              | 5.2              | 5.,              |
| Monoaromatics & Oxygenates              |              |                    |                         |                  |                  |                  |                  |                  |
|                                         |              |                    |                         |                  |                  | . 1.0            | < 1.0            | < 1.0            |
| Benzene                                 | μg/l         | 1                  | ISO 17025               | < 1.0            | < 1.0            | < 1.0            | < 1.0            |                  |
| •                                       | µg/l<br>µg/l | 1                  | ISO 17025<br>ISO 17025  | < 1.0<br>< 1.0   | < 1.0            | < 1.0            | < 1.0            | < 1.0            |
| Benzene                                 |              |                    |                         |                  |                  |                  |                  |                  |
| Benzene<br>Toluene                      | μg/l         | 1                  | ISO 17025               | < 1.0            | < 1.0            | < 1.0            | < 1.0            | < 1.0            |
| Benzene<br>Toluene<br>Ethylbenzene      | μg/l<br>μg/l | 1                  | ISO 17025<br>ISO 17025  | < 1.0<br>< 1.0   |





| Lab Sample Number                        |       |                    |                         | 2085526       | 2085527       | 2085528       | 2085529       | 2085530       |
|------------------------------------------|-------|--------------------|-------------------------|---------------|---------------|---------------|---------------|---------------|
| Sample Reference                         |       |                    |                         | BH101         | BH103         | BH201         | BH202         | BH204         |
| Sample Number                            |       |                    |                         | None Supplied |
| Depth (m)                                |       |                    |                         | None Supplied |
| Date Sampled                             |       |                    |                         | 16/11/2021    | 16/11/2021    | 17/11/2021    | 17/11/2021    | 17/11/2021    |
| Time Taken                               |       |                    |                         | None Supplied |
| Analytical Parameter<br>(Water Analysis) | Units | Limit of detection | Accreditation<br>Status |               |               |               |               |               |
| Petroleum Hydrocarbons                   |       |                    |                         |               |               |               |               |               |
| TPH-CWG - Aliphatic >C5 - C6             | μg/l  | 1                  | ISO 17025               | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| TPH-CWG - Aliphatic >C6 - C8             | μg/l  | 1                  | ISO 17025               | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| TPH-CWG - Aliphatic >C8 - C10            | μg/l  | 1                  | ISO 17025               | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| TPH-CWG - Aliphatic >C10 - C12           | μg/l  | 10                 | NONE                    | < 10          | < 10          | < 10          | < 10          | < 10          |
| TPH-CWG - Aliphatic >C12 - C16           | μg/l  | 10                 | NONE                    | < 10          | < 10          | < 10          | < 10          | < 10          |
| TPH-CWG - Aliphatic >C16 - C21           | μg/l  | 10                 | NONE                    | < 10          | < 10          | < 10          | < 10          | < 10          |
| TPH-CWG - Aliphatic >C21 - C35           | μg/l  | 10                 | NONE                    | < 10          | < 10          | < 10          | < 10          | < 10          |
| TPH-CWG - Aliphatic (C5 - C35)           | µg/l  | 10                 | NONE                    | < 10          | < 10          | < 10          | < 10          | < 10          |
| TPH-CWG - Aromatic >C5 - C7              | μg/l  | 1                  | ISO 17025               | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| TPH-CWG - Aromatic >C7 - C8              | μq/l  | 1                  | ISO 17025               | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| TPH-CWG - Aromatic > C8 - C10            | μg/l  | 1                  | ISO 17025               | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| TPH-CWG - Aromatic >C10 - C12            | μg/l  | 10                 | NONE                    | < 10          | < 10          | < 10          | < 10          | < 10          |
| TPH-CWG - Aromatic >C12 - C16            | μg/l  | 10                 | NONE                    | < 10          | < 10          | < 10          | < 10          | < 10          |
| TPH-CWG - Aromatic >C16 - C21            | μg/l  | 10                 | NONE                    | < 10          | < 10          | < 10          | < 10          | < 10          |
| TPH-CWG - Aromatic >C21 - C35            | μg/l  | 10                 | NONE                    | < 10          | < 10          | < 10          | < 10          | < 10          |
| TPH-CWG - Aromatic (C5 - C35)            | μg/l  | 10                 | NONE                    | < 10          | < 10          | < 10          | < 10          | < 10          |

 $\label{eq:US} \mbox{U/S} = \mbox{Unsuitable Sample} \hspace{0.5cm} \mbox{I/S} = \hspace{0.5cm} \mbox{Insufficient Sample}$ 





Water matrix abbreviations:
Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

| Analytical Test Name                      | Analytical Method Description                                                                                                                                                       | Analytical Method Reference                                                                                     | Method<br>number | Wet / Dry<br>Analysis | Accreditation<br>Status |
|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------|-----------------------|-------------------------|
| Metals in water by ICP-MS (dissolved)     | Determination of metals in water by acidification<br>followed by ICP-MS. Accredited Matrices: SW, GW, PW<br>except B=SW,GW, Hg=SW,PW, Al=SW,PW.                                     | In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS. | L012-PL          | w                     | ISO 17025               |
| Boron in water                            | Determination of boron in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW                                                                                 | In-house method based on MEWAM                                                                                  | L039-PL          | W                     | ISO 17025               |
| Hexavalent chromium in water              | Determination of hexavalent chromium in water by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.                                                          | In-house method by continuous flow analyser.<br>Accredited Matrices SW, GW, PW.                                 | L080-PL          | w                     | ISO 17025               |
| Speciated EPA-16 PAHs in water            | Determination of PAH compounds in water by extraction<br>in dichloromethane followed by GC-MS with the use of<br>surrogate and internal standards. Accredited matrices:<br>SW PW GW | In-house method based on USEPA 8270                                                                             | L102B-PL         | W                     | ISO 17025               |
| Sulphate in water                         | Determination of sulphate in water after filtration by<br>acidification followed by ICP-OES. Accredited Matrices<br>SW, GW, PW.                                                     | In-house method based on MEWAM 2006<br>Methods for the Determination of Metals in Soil.                         | L039-PL          | w                     | ISO 17025               |
| TPHCWG (Waters)                           | Determination of dichloromethane extractable<br>hydrocarbons in water by GC-MS, speciation by<br>interpretation.                                                                    | In-house method                                                                                                 | L070-PL          | W                     | NONE                    |
| BTEX and MTBE in water<br>(Monoaromatics) | Determination of BTEX and MTBE in water by headspace<br>GC-MS. Accredited matrices: SW PW GW                                                                                        | In-house method based on USEPA8260                                                                              | L073B-PL         | W                     | ISO 17025               |
| Cr (III) in water                         | In-house method by calculation from total Cr and Cr VI.                                                                                                                             | In-house method by calculation                                                                                  | L080-PL          | W                     | NONE                    |
| pH at 20oC in water (automated)           | Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW                                                                                            | In house method.                                                                                                | L099-PL          | W                     | ISO 17025               |

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.





**Martin Dorfling** 

TRC Companies Ltd 20 Red Lion Street, London WC1R 4PQ i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

**t:** 01923 225404

**f:** 01923 223404

e: reception@i2analytical.com

e: mdorfling@trcsolutions.com

### **Analytical Report Number: 21-11919**

Project / Site name:NCP Fightpath, HeathrowSamples received on:23/09/2021

Your job number: 460336 Samples instructed on/ 23/09/2021

Analysis started on:

Your order number: 460336 Analysis completed by: 01/10/2021

**Report Issue Number:** 1 **Report issued on:** 01/10/2021

**Samples Analysed:** 3 water samples

Signed: A. Cherwinska

Agnieszka Czerwińska Technical Reviewer (Reporting Team)

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are: soils - 4 weeks from reporting leachates - 2 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.





Analytical Report Number: 21-11919 Project / Site name: NCP Fightpath, Heathrow

| Sample Number   Sample Numbe   | Your Order No: 460336                 |         |         |           |               |               |               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------|---------|-----------|---------------|---------------|---------------|
| None Supplied   None Supplie   | Lab Sample Number                     |         |         |           | 2021454       | 2021455       | 2021456       |
| None Supplied   None Supplie   |                                       |         |         |           |               |               |               |
| Date Sampled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sample Number                         |         |         |           |               |               | None Supplied |
| None Supplied   None Supplie   | Depth (m)                             |         |         |           | None Supplied | None Supplied | None Supplied |
| Analytical Parameter (Water Analysis)  Pi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Date Sampled                          |         |         |           | 22/09/2021    | 22/09/2021    | 22/09/2021    |
| PH Units   PM Units    | Time Taken                            |         |         |           | None Supplied | None Supplied | None Supplied |
| PH Units   PM Units    |                                       |         | F       | >         |               |               |               |
| PH Units   PM Units    | Analytical Parameter                  | _       | it<br>o | လ် ငိုင်  |               |               |               |
| PH Units   PM Units    |                                       | Jnit    | f de    | tat.      |               |               |               |
| PH Units   PM Units    | (Water Analysis)                      | v       | tec     | atio      |               |               |               |
| PH Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |         | iġ      | 5         |               |               |               |
| PH Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |         |         |           |               |               |               |
| Suphate as SO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | General Inorganics                    | Lannasa | NI/A    | 100 17025 |               |               |               |
| Speciated PAHS   Spec   | •                                     |         |         |           |               |               |               |
| Naphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sulphate as SO4                       | mg/i    | 0.045   | 150 17025 | 49.2          | 172           | 58.3          |
| Naphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Speciated PAHs                        |         |         |           |               |               |               |
| Acenaphthylene         μg/l         0.01         ISO 17025         < 0.01         < 0.01         < 0.01           Acenaphthene         μg/l         0.01         150 17025         < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       | µq/l    | 0.01    | ISO 17025 | 2.82          | 2.38          | 3.29          |
| Acenaphthene   µg/l   0.01   ISO 17025   < 0.01   < 0.01   < 0.01   < 0.01     Fluorene   µg/l   0.01   ISO 17025   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01     Fluorene   µg/l   0.01   ISO 17025   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01     Anthracene   µg/l   0.01   ISO 17025   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.0 | · ·                                   |         |         |           |               |               |               |
| Fluorene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | • •                                   |         | 0.01    | ISO 17025 |               |               |               |
| Phenanthrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |         |         |           |               |               |               |
| Anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |         |         |           |               |               |               |
| Fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |         | 0.01    | ISO 17025 |               |               |               |
| Pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |         |         |           |               |               |               |
| Berizo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |         |         |           |               |               |               |
| Chrysene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                                     |         |         |           |               |               |               |
| Benzo(b)  fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | • •                                   |         |         |           |               |               |               |
| Benzo(k)fluoranthene   pg/l   0.01   ISO 17025   < 0.01   < 0.01   < 0.01   < 0.01   Benzo(k)fluoranthene   pg/l   0.01   ISO 17025   < 0.01   < 0.01   < 0.01   < 0.01     < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ·                                     |         |         | ISO 17025 |               |               |               |
| Benzo(a)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |         | 0.01    | ISO 17025 |               |               |               |
| Indeno(1,2,3-cd)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |         |         |           |               |               |               |
| Dibenz(a,h)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |         |         |           |               |               |               |
| Benzo(ghi)perylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |         |         |           |               |               |               |
| Total PAH  Total EPA-16 PAHs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |         |         |           |               |               |               |
| Heavy Metals / Metalloids   Heavy Metals / Heavy Metals / Heavy Metals / Heavy Metals / Metalloids   Heavy Metals / Heavy Metal    |                                       | •       |         |           |               |               |               |
| Heavy Metals / Metalloids           Boron (dissolved)         μg/l         10         ISO 17025         150         1200         170           Chromium (hexavalent)         μg/l         5         ISO 17025         < 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Total PAH                             |         | 0.10    |           |               |               |               |
| Boron (dissolved)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Total EPA-16 PAHs                     | μg/I    | 0.16    | ISO 1/025 | 2.82          | 2.38          | 3.29          |
| Boron (dissolved)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Heavy Metals / Metalloids             |         |         |           |               |               |               |
| Chromium (hexavalent)         μg/l         5         ISO 17025         < 5.0         < 5.0         < 5.0           Chromium (III)         μg/l         1         NONE         3.1         8.6         6.7           Arsenic (dissolved)         μg/l         0.15         ISO 17025         1.10         2.34         0.36           Cadmium (dissolved)         μg/l         0.02         ISO 17025         0.09         0.03         0.05           Chromium (dissolved)         μg/l         0.2         ISO 17025         0.09         0.03         0.05           Chromium (dissolved)         μg/l         0.2         ISO 17025         0.09         0.03         0.05           Chromium (dissolved)         μg/l         0.2         ISO 17025         2.4         1.0         1.2           Lead (dissolved)         μg/l         0.2         ISO 17025         2.4         1.0         1.2           Lead (dissolved)         μg/l         0.05         ISO 17025         < 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       | μg/l    | 10      | ISO 17025 | 150           | 1200          | 170           |
| Chromium (III)         μg/l         1         NONE         3.1         8.6         6.7           Arsenic (dissolved)         μg/l         0.15         ISO 17025         1.10         2.34         0.36           Cadmium (dissolved)         μg/l         0.02         ISO 17025         0.09         0.03         0.05           Chromium (dissolved)         μg/l         0.2         ISO 17025         3.1         8.6         6.7           Copper (dissolved)         μg/l         0.2         ISO 17025         2.4         1.0         1.2           Lead (dissolved)         μg/l         0.5         ISO 17025         < 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       | μg/l    | 5       | ISO 17025 | < 5.0         | < 5.0         | < 5.0         |
| Cadmium (dissolved)         μg/l         0.02         150 17025         0.09         0.03         0.05           Chromium (dissolved)         μg/l         0.2         150 17025         3.1         8.6         6.7           Copper (dissolved)         μg/l         0.5         150 17025         2.4         1.0         1.2           Lead (dissolved)         μg/l         0.2         150 17025         < 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | μg/l    | 1       | NONE      |               |               |               |
| Cadmium (dissolved)         μg/l         0.02         150 17025         0.09         0.03         0.05           Chromium (dissolved)         μg/l         0.2         150 17025         3.1         8.6         6.7           Copper (dissolved)         μg/l         0.5         150 17025         2.4         1.0         1.2           Lead (dissolved)         μg/l         0.2         150 17025         < 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | •       | •       |           |               |               |               |
| Chromium (dissolved)  µg/l 0.2 ISO 17025 3.1 8.6 6.7  Copper (dissolved)  µg/l 0.5 ISO 17025 2.4 1.0 1.2  Lead (dissolved)  µg/l 0.2 ISO 17025 2.4 1.0 1.2  Lead (dissolved)  µg/l 0.2 ISO 17025 2.4 1.0 1.2  Lead (dissolved)  µg/l 0.5 ISO 17025 2.0.2 < 0.2 < 0.2  Percury (dissolved)  µg/l 0.5 ISO 17025 2.0.05  Percury (dissolved)  µg/l 0.6 ISO 17025 2.7 1 6.7  Selenium (dissolved)  µg/l 0.7 ISO 17025 2.8 1.9 7.1 6.7  Selenium (dissolved)  µg/l 0.8 ISO 17025 2.9 1.0 7.1 6.7  Selenium (dissolved)  µg/l 0.9 T.1 6.7  Selenium (dissolved)  µg/l 0.1 ISO 17025 2.0 1.0 7.1 6.7  Selenium (dissolved)  µg/l 0.2 ISO 17025 2.0 1.0 7.1 6.7  Selenium (dissolved)  µg/l 0.5 ISO 17025 2.0 1.0 2.0 5  ISO 17025 2.0 1.0 2.0 2.0  Percury (dissolved)  µg/l 1 ISO 17025 2.0 1.0 2.0 2.0  Percury (dissolved)  µg/l 1 ISO 17025 2.0 1.0 2.0 2.0  Percury (dissolved)  Percury (dissolved)  µg/l 1 ISO 17025 2.0 1.0 2.0 2.0  Percury (dissolved)  Percury (d | Arsenic (dissolved)                   | μg/l    | 0.15    | ISO 17025 | 1.10          | 2.34          | 0.36          |
| Pag/l   0.5   ISO 17025   2.4   1.0   1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Cadmium (dissolved)                   | μg/l    | 0.02    | ISO 17025 | 0.09          | 0.03          | 0.05          |
| Lead (dissolved)         μg/l         0.2         150 17025         < 0.2         < 0.2         < 0.2           Mercury (dissolved)         μg/l         0.05         150 17025         < 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Chromium (dissolved)                  | μg/l    | 0.2     | ISO 17025 | 3.1           | 8.6           | 6.7           |
| Mercury (dissolved)   μg/l   0.05   ISO 17025   < 0.05   < 0.05   < 0.05   < 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Copper (dissolved)                    | μg/l    | 0.5     | ISO 17025 | 2.4           | 1.0           | 1.2           |
| Nickel (dissolved)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Lead (dissolved)                      | μg/l    | 0.2     | ISO 17025 | < 0.2         | < 0.2         | < 0.2         |
| Pag/l   0.6   ISO 17025   0.7   3.8   0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mercury (dissolved)                   | μg/l    | 0.05    | ISO 17025 | < 0.05        | < 0.05        | < 0.05        |
| Pg/l   0.5   150 17025   5.1   5.7   11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Nickel (dissolved)                    | μg/l    | 0.5     |           | 4.9           | 7.1           | 6.7           |
| Monoaromatics & Oxygenates         µg/l         1         ISO 17025         < 1.0         < 1.0         < 1.0           Benzene         µg/l         1         ISO 17025         < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Selenium (dissolved)                  | μg/l    |         |           | 0.7           | 3.8           | 0.9           |
| Benzene         µg/l         1         ISO 17025         < 1.0         < 1.0         < 1.0           Toluene         µg/l         1         ISO 17025         < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Zinc (dissolved)                      | µg/I    | 0.5     | ISO 17025 | 5.1           | 5.7           | 11            |
| Benzene         µg/l         1         ISO 17025         < 1.0         < 1.0         < 1.0           Toluene         µg/l         1         ISO 17025         < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Monoaromatics & Oyuganatas            |         |         |           |               |               |               |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       | µq/I    | 1       | ISO 17025 | < 1.0         | < 1.0         | < 1.0         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |         |         |           |               |               |               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |         |         |           |               |               |               |
| 0-xylene μg/l 1 ISO 17025 < 1.0 < 1.0 < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |         |         |           |               |               |               |
| 10"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | · · · · · · · · · · · · · · · · · · · |         |         |           |               |               |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MTBE (Methyl Tertiary Butyl Ether)    |         |         |           | < 1.0         | < 1.0         | < 1.0         |





Analytical Report Number: 21-11919 Project / Site name: NCP Fightpath, Heathrow

#### Your Order No: 460336

| Your Order No: 460336                    |               |                    |                         |               |               |               |
|------------------------------------------|---------------|--------------------|-------------------------|---------------|---------------|---------------|
| Lab Sample Number                        | 2021454       | 2021455            | 2021456                 |               |               |               |
| Sample Reference                         | BH101         | BH102              | BH103                   |               |               |               |
| Sample Number                            | None Supplied | None Supplied      | None Supplied           |               |               |               |
| Depth (m)                                | None Supplied | None Supplied      | None Supplied           |               |               |               |
| Date Sampled                             |               |                    |                         | 22/09/2021    | 22/09/2021    | 22/09/2021    |
| Time Taken                               |               |                    |                         | None Supplied | None Supplied | None Supplied |
| Analytical Parameter<br>(Water Analysis) | Units         | Limit of detection | Accreditation<br>Status |               |               |               |
| Petroleum Hydrocarbons                   |               |                    |                         |               |               |               |
| TPH-CWG - Aliphatic >C5 - C6             | μg/l          | 1                  | ISO 17025               | < 1.0         | < 1.0         | < 1.0         |
| TPH-CWG - Aliphatic >C6 - C8             | μg/l          | 1                  | ISO 17025               | < 1.0         | < 1.0         | < 1.0         |
| TPH-CWG - Aliphatic >C8 - C10            | μg/l          | 1                  | ISO 17025               | < 1.0         | < 1.0         | < 1.0         |
| TPH-CWG - Aliphatic >C10 - C12           | μg/l          | 10                 | NONE                    | 3300          | 2300          | 3800          |
| TPH-CWG - Aliphatic >C12 - C16           | μg/l          | 10                 | NONE                    | 400           | 270           | 420           |
| TPH-CWG - Aliphatic >C16 - C21           | μg/l          | 10                 | NONE                    | < 10          | < 10          | < 10          |
| TPH-CWG - Aliphatic >C21 - C35           | μg/l          | 10                 | NONE                    | < 10          | < 10          | < 10          |
| TPH-CWG - Aliphatic (C5 - C35)           | μg/l          | 10                 | NONE                    | 3700          | 2500          | 4300          |
| TPH-CWG - Aromatic >C5 - C7              | μg/l          | 1                  | ISO 17025               | < 1.0         | < 1.0         | < 1.0         |
| TPH-CWG - Aromatic >C7 - C8              | μg/l          | 1                  | ISO 17025               | < 1.0         | < 1.0         | < 1.0         |
| TPH-CWG - Aromatic >C8 - C10             | μg/l          | 1                  | ISO 17025               | < 1.0         | < 1.0         | < 1.0         |
| TPH-CWG - Aromatic >C10 - C12            | μg/l          | 10                 | NONE                    | 990           | 660           | 990           |
| TPH-CWG - Aromatic >C12 - C16            | μg/l          | 10                 | NONE                    | 200           | 150           | 230           |
| TPH-CWG - Aromatic >C16 - C21            | μg/l          | 10                 | NONE                    | < 10          | < 10          | < 10          |
| TPH-CWG - Aromatic >C21 - C35            | μg/l          | 10                 | NONE                    | < 10          | < 10          | < 10          |
| TPH-CWG - Aromatic (C5 - C35)            | μg/l          | 10                 | NONE                    | 1200          | 810           | 1200          |

 $\label{eq:US} \mbox{U/S} = \mbox{Unsuitable Sample} \hspace{0.5cm} \mbox{I/S} = \hspace{0.5cm} \mbox{Insufficient Sample}$ 





Analytical Report Number: 21-11919 Project / Site name: NCP Fightpath, Heathrow

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

| Analytical Test Name                      | Analytical Method Description                                                                                                                                                       | Analytical Method Reference                                                                                     | Method<br>number | Wet / Dry<br>Analysis | Accreditation<br>Status |
|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------|-----------------------|-------------------------|
| Metals in water by ICP-MS (dissolved)     | Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW.                                           | In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS. | L012-PL          | W                     | ISO 17025               |
| Boron in water                            | Determination of boron in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW                                                                                 | In-house method based on MEWAM                                                                                  | L039-PL          | W                     | ISO 17025               |
| Hexavalent chromium in water              | Determination of hexavalent chromium in water by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.                                                          | In-house method by continuous flow analyser.<br>Accredited Matrices SW, GW, PW.                                 | L080-PL          | W                     | ISO 17025               |
| Speciated EPA-16 PAHs in water            | Determination of PAH compounds in water by extraction<br>in dichloromethane followed by GC-MS with the use of<br>surrogate and internal standards. Accredited matrices:<br>SW PW GW | In-house method based on USEPA 8270                                                                             | L102B-PL         | W                     | ISO 17025               |
| Sulphate in water                         | Determination of sulphate in water after filtration by<br>acidification followed by ICP-OES. Accredited Matrices<br>SW, GW, PW.                                                     | In-house method based on MEWAM 2006<br>Methods for the Determination of Metals in Soil.                         | L039-PL          | W                     | ISO 17025               |
| TPHCWG (Waters)                           | Determination of dichloromethane extractable<br>hydrocarbons in water by GC-MS, speciation by<br>interpretation.                                                                    | In-house method                                                                                                 | L070-PL          | W                     | NONE                    |
| BTEX and MTBE in water<br>(Monoaromatics) | Determination of BTEX and MTBE in water by headspace<br>GC-MS. Accredited matrices: SW PW GW                                                                                        | In-house method based on USEPA8260                                                                              | L073B-PL         | W                     | ISO 17025               |
| Cr (III) in water                         | In-house method by calculation from total Cr and Cr VI.                                                                                                                             | In-house method by calculation                                                                                  | L080-PL          | W                     | NONE                    |
| pH at 20oC in water (automated)           | Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW                                                                                            | In house method.                                                                                                | L099-PL          | W                     | ISO 17025               |

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.



**Annex F: Screened Data** 

| TRC Environmental - Chemical As<br>Contract Engineer            | sessment       | Record            |                   |                   |                |                  |                   |                  | Colin Morto       | nn.               |                   |                  |                   |                   |                |                   |  |
|-----------------------------------------------------------------|----------------|-------------------|-------------------|-------------------|----------------|------------------|-------------------|------------------|-------------------|-------------------|-------------------|------------------|-------------------|-------------------|----------------|-------------------|--|
| Project/Site Name                                               |                |                   |                   |                   |                |                  |                   |                  | Carpark, H        |                   |                   |                  |                   |                   |                |                   |  |
| Project Number                                                  |                |                   |                   |                   |                |                  |                   | 460              | 366.0000.         | 0000              |                   |                  |                   |                   |                |                   |  |
|                                                                 |                |                   |                   |                   |                | ,                |                   |                  |                   |                   |                   |                  |                   |                   |                |                   |  |
| Sample Reference Depth                                          |                |                   | WS102             | WS102             | WS103          | WS103            | WS105             | WS105            | WS106             | WS106             | WS107             | WS107            | BH101             | BH101             | BH103          | BH103             |  |
| Date Sampled                                                    |                |                   | 0.2<br>29/07/2021 | 1.2<br>29/07/2021 | 0.35           | 29/07/2021       | 0.3<br>29/07/2021 | 1<br>29/07/2021  | 0.4<br>29/07/2021 | 1.8<br>29/07/2021 | 0.5<br>29/07/2021 | 1.1 29/07/2021   | 0.4 02/08/2021    | 1.8               | 0.3            | 1.3<br>30/07/2021 |  |
| Time Taken                                                      |                |                   |                   |                   |                |                  |                   |                  |                   |                   |                   |                  |                   |                   |                |                   |  |
|                                                                 |                |                   | •                 | •                 | •              |                  | •                 | •                | •                 |                   |                   |                  | •                 | •                 | •              |                   |  |
| Analytical Parameter                                            | Units          | C4SL              |                   |                   |                |                  |                   |                  |                   |                   |                   |                  |                   |                   |                |                   |  |
| (Soil Analysis) Stone Content                                   | %              |                   | < 0.1             | < 0.1             | < 0.1          | < 0.1            | < 0.1             | < 0.1            | < 0.1             | < 0.1             | < 0.1             | < 0.1            | < 0.1             | < 0.1             | < 0.1          | < 0.1             |  |
| Moisture Content                                                | %              |                   | 5.6               | 12                | 5.3            | 12               | 15                | 15               | 12                | 11                | 11                | 13               | 14                | 12                | 6.5            | 11                |  |
|                                                                 | •              |                   | •                 |                   |                |                  | '                 |                  |                   | •                 |                   |                  |                   | '                 | '              |                   |  |
| Speciated PAHs                                                  |                |                   |                   |                   |                |                  |                   |                  |                   |                   |                   |                  |                   |                   |                |                   |  |
| Naphthalene                                                     | mg/kg          | 190               | < 0.05            | < 0.05            | < 0.05         | < 0.05           | 0.35              | < 0.05           | < 0.05            | < 0.05            | 0.49              | < 0.05           | < 0.05            | < 0.05            | < 0.05         | < 0.05            |  |
| Acenaphthylene<br>Acenaphthene                                  | mg/kg<br>mg/kg | 83000<br>84000    | 0.37<br>2.6       | < 0.05<br>< 0.05  | 7.1<br>57      | < 0.05<br>< 0.05 | < 0.05<br>0.5     | < 0.05<br>< 0.05 | < 0.05<br>< 0.05  | < 0.05<br>< 0.05  | 0.48<br>0.94      | < 0.05<br>< 0.05 | < 0.05<br>< 0.05  | < 0.05<br>< 0.05  | 0.28           | < 0.05<br>< 0.05  |  |
| Fluorene                                                        | mg/kg          | 63000             | 2.5               | 0.22              | 75             | < 0.05           | 0.43              | < 0.05           | < 0.05            | < 0.05            | 1.3               | < 0.05           | < 0.05            | < 0.05            | 1.4            | < 0.05            |  |
| Phenanthrene                                                    | mg/kg          | 22000             | 19                | 0.88              | 390            | < 0.05           | 4.3               | < 0.05           | 1.7               | < 0.05            | 14                | < 0.05           | 1.4               | 0.84              | 14             | 0.35              |  |
| Anthracene                                                      | mg/kg          | 520000            | 3.9               | 0.26              | 170            | < 0.05           | 0.83              | < 0.05           | 0.39              | < 0.05            | 3.7               | < 0.05           | 0.36              | < 0.05            | 3.5            | < 0.05            |  |
| Fluoranthene                                                    | mg/kg          | 23000             | 29                | 1.2               | 610            | < 0.05           | 5.3               | < 0.05           | 5.8               | < 0.05            | 23                | < 0.05           | 3.7               | 0.87              | 30             | 0.8               |  |
| Pyrene<br>Benzo(a)anthracene                                    | mg/kg<br>mg/kg | 54000<br>170      | 22<br>16          | 0.99<br>0.76      | 470<br>270     | < 0.05<br>< 0.05 | 3.4               | < 0.05<br>< 0.05 | 5.5<br>3.8        | < 0.05<br>< 0.05  | 21<br>13          | < 0.05<br>< 0.05 | 3.3<br>2.3        | 0.6               | 21<br>13       | 0.65              |  |
| Chrysene                                                        | mg/kg          | 350               | 12                | 0.76              | 280            | < 0.05           | 2.5               | < 0.05           | 3.9               | < 0.05            | 8.9               | < 0.05           | 1.8               | 0.35              | 10             | 0.36              |  |
| Benzo(b)fluoranthene                                            | mg/kg          | 44                | 22                | 1                 | 300            | < 0.05           | 3.6               | < 0.05           | 5.1               | < 0.05            | 15                | < 0.05           | 3.5               | 0.39              | 14             | 0.51              |  |
| Benzo(k)fluoranthene                                            | mg/kg          | 1200              | 5                 | 0.28              | 140            | < 0.05           | 1.5               | < 0.05           | 2.5               | < 0.05            | 3.8               | < 0.05           | 0.79              | 0.14              | 5.2            | 0.33              |  |
| Benzo(a)pyrene<br>ndeno(1,2,3-cd)pyrene                         | mg/kg          | 36<br>500         | 14<br>7.9         | 0.73<br>0.43      | 250<br>120     | < 0.05<br>< 0.05 | 2.9<br>1.6        | < 0.05<br>< 0.05 | 4.7<br>2.5        | < 0.05<br>< 0.05  | 12<br>5.3         | < 0.05<br>< 0.05 | 2.3<br>1.5        | <b>0.3</b> < 0.05 | 7.7            | 0.53<br>0.31      |  |
| ndeno(1,2,3-cd)pyrene<br>Dibenz(a,h)anthracene                  | mg/kg<br>mg/kg | 3.5               | 2.2               | < 0.05            | 35             | < 0.05           | 0.47              | < 0.05           | 0.68              | < 0.05            | 1.5               | < 0.05           | 0.5               | < 0.05            | 2.3            | < 0.05            |  |
| Benzo(ghi)perylene                                              | mg/kg          | 3900              | 8.9               | 0.5               | 130            | < 0.05           | 1.9               | < 0.05           | 2.9               | < 0.05            | 6.2               | < 0.05           | 1.8               | < 0.05            | 8.3            | 0.31              |  |
| Total PAH                                                       | •              |                   |                   |                   |                |                  |                   |                  |                   |                   |                   |                  |                   |                   |                |                   |  |
| Speciated Total EPA-16 PAHs                                     | mg/kg          | N/A               | 167               | 7.9               | 3290           | < 0.80           | 34.1              | < 0.80           | 39.4              | < 0.80            | 129               | < 0.80           | 23.3              | 3.85              | 143            | 4.74              |  |
| Lacros Matela / Matella de                                      |                |                   |                   |                   |                |                  |                   |                  |                   |                   |                   |                  |                   |                   |                |                   |  |
| Heavy Metals / Metalloids Arsenic                               | mg/kg          | 640               | 13                | 14                | 7.5            | 11               | 18                | 15               | 10                | 17                | 23                | 15               | 14                | 20                | 15             | 11                |  |
| Boron                                                           | mg/kg          | 240000            | 0.5               | 0.5               | 0.3            | 0.3              | 0.3               | 0.9              | 1.8               | 1.2               | 1.5               | 1                | 0.8               | 0.3               | < 0.2          | 0.4               |  |
| Cadmium                                                         | mg/kg          | 190               | 1.7               | < 0.2             | 1.1            | < 0.2            | < 0.2             | < 0.2            | 0.8               | < 0.2             | < 0.2             | < 0.2            | 1.4               | < 0.2             | 1.1            | < 0.2             |  |
| Chromium (hexavalent)                                           | mg/kg          | 33                | < 4.0             | < 4.0             | < 4.0          | < 4.0            | < 4.0             | < 4.0            | < 4.0             | < 4.0             | < 4.0             | < 4.0            | < 4.0             | < 4.0             | < 4.0          | < 4.0             |  |
| Chromium (III)<br>Copper                                        | mg/kg<br>mg/kg | 8600<br>68000     | 24<br>69          | 35<br>17          | 19<br>60       | 25<br>20         | 72                | 37<br>24         | 30<br>36          | 32<br>16          | 29<br>51          | 37<br>21         | 34<br>31          | 29<br>18          | 14             | 29<br>15          |  |
| _ead                                                            | mg/kg          | 2300              | 190               | 15                | 98             | 19               | 450               | 19               | 75                | 17                | 580               | 28               | 230               | 36                | 93             | 20                |  |
| Elemental Mercury                                               | mg/kg          | 58                | < 0.3             | < 0.3             | < 0.3          | < 0.3            | < 0.3             | < 0.3            | < 0.3             | < 0.3             | < 0.3             | < 0.3            | 1.1               | < 0.3             | < 0.3          | < 0.3             |  |
| norganic Mercury                                                | mg/kg          | 1100              | 0                 | 0                 | 0              | 0                | 0                 | 0                | 0                 | 0                 | 0                 | 0                | 0                 | 0                 | 0              | 0                 |  |
| Methyl Mercury                                                  | mg/kg          | 320<br>980        | 0<br>27           | 0<br>49           | 0<br>24        | 0<br>19          | 27                | 33               | 0<br>19           | 31                | 0<br>26           | 0<br>42          | 0<br>18           | 0<br>26           | 0<br>15        | 0<br>21           |  |
| Selenium                                                        | mg/kg<br>mg/kg | 12000             | < 1.0             | < 1.0             | < 1.0          | 2                | < 1.0             | < 1.0            | < 1.0             | < 1.0             | < 1.0             | < 1.0            | < 1.0             | < 1.0             | < 1.0          | < 1.0             |  |
| Zinc                                                            | mg/kg          | 730000            | 260               | 81                | 190            | 56               | 200               | 60               | 120               | 49                | 330               | 60               | 110               | 52                | 160            | 83                |  |
|                                                                 |                |                   |                   |                   |                |                  |                   |                  |                   |                   |                   |                  |                   |                   |                |                   |  |
| Monoaromatics                                                   | 1              |                   |                   |                   |                |                  |                   |                  |                   |                   |                   |                  |                   | 1                 | 1              |                   |  |
| Benzene<br>Toluene                                              | μg/kg<br>μg/kg | 27000<br>56000000 | < 1.0<br>< 1.0    | < 1.0<br>< 1.0    | < 1.0<br>< 1.0 | < 1.0<br>< 1.0   | < 1.0<br>< 1.0    | < 1.0<br>< 1.0   | < 1.0<br>< 1.0    | < 1.0<br>< 1.0    | < 1.0<br>< 1.0    | < 1.0<br>< 1.0   | < 1.0<br>< 1.0    | < 1.0<br>< 1.0    | < 1.0<br>< 1.0 | < 1.0<br>< 1.0    |  |
| Ethylbenzene                                                    | μg/kg<br>μg/kg | 5700000           | < 1.0             | < 1.0             | < 1.0          | < 1.0            | < 1.0             | < 1.0            | < 1.0             | < 1.0             | < 1.0             | < 1.0            | < 1.0             | < 1.0             | < 1.0          | < 1.0             |  |
| o & m-xylene                                                    | μg/kg          | 5900000           | < 1.0             | < 1.0             | < 1.0          | < 1.0            | < 1.0             | < 1.0            | < 1.0             | < 1.0             | < 1.0             | < 1.0            | < 1.0             | < 1.0             | < 1.0          | < 1.0             |  |
| o-xylene                                                        | μg/kg          | 6600000           | < 1.0             | < 1.0             | < 1.0          | < 1.0            | < 1.0             | < 1.0            | < 1.0             | < 1.0             | < 1.0             | < 1.0            | < 1.0             | < 1.0             | < 1.0          | < 1.0             |  |
| MTBE (Methyl Tertiary Butyl Ether)                              | μg/kg          | 7900000           | < 1.0             | < 1.0             | < 1.0          | < 1.0            | < 1.0             | < 1.0            | < 1.0             | < 1.0             | < 1.0             | < 1.0            | < 1.0             | < 1.0             | < 1.0          | < 1.0             |  |
| Petroleum Hydrocarbons                                          |                |                   |                   |                   |                |                  |                   |                  |                   |                   |                   |                  |                   |                   |                |                   |  |
| TPH-CWG - Aliphatic >EC5 - EC6                                  | mg/kg          | 3200              | < 0.001           | < 0.001           | < 0.001        | < 0.001          | < 0.001           | < 0.001          | < 0.001           | < 0.001           | < 0.001           | < 0.001          | < 0.001           | < 0.001           | < 0.001        | < 0.001           |  |
| TPH-CWG - Aliphatic >EC6 - EC8                                  | mg/kg          | 7800              | < 0.001           | < 0.001           | < 0.001        | < 0.001          | < 0.001           | < 0.001          | < 0.001           | < 0.001           | < 0.001           | < 0.001          | < 0.001           | < 0.001           | < 0.001        | < 0.001           |  |
| TPH-CWG - Aliphatic >EC8 - EC10                                 | mg/kg          | 2000              | < 0.001           | < 0.001           | < 0.001        | < 0.001          | < 0.001           | < 0.001          | < 0.001           | < 0.001           | < 0.001           | < 0.001          | < 0.001           | < 0.001           | < 0.001        | < 0.001           |  |
| PH-CWG - Aliphatic >EC10 - EC12 PH-CWG - Aliphatic >EC12 - EC16 | mg/kg<br>mg/kg | 9700<br>59000     | < 1.0<br>< 2.0    | < 1.0<br>< 2.0    | 60<br>140      | < 1.0<br>< 2.0   | < 1.0<br>< 2.0    | <b>1.2</b> < 2.0 | < 1.0<br>< 2.0    | < 1.0<br>< 2.0    | < 1.0<br>< 2.0    | < 1.0<br>< 2.0   | < 1.0<br>< 2.0    | < 1.0<br>< 2.0    | < 1.0<br>< 2.0 | < 1.0<br>< 2.0    |  |
| PH-CWG - Aliphatic >EC16 - EC21                                 | mg/kg<br>mg/kg | 1600000           | < 2.0             | < 2.0             | 200            | < 2.0            | < 2.0             | < 2.0            | < 2.0             | < 2.0             | < 8.0             | < 2.0            | < 2.0             | < 2.0             | < 8.0          | < 2.0             |  |
| PH-CWG - Aliphatic >EC21 - EC35                                 | mg/kg          | 1600000           | 34                | < 8.0             | 680            | < 8.0            | < 8.0             | < 8.0            | < 8.0             | < 8.0             | 29                | < 8.0            | < 8.0             | < 8.0             | 60             | < 8.0             |  |
| PH-CWG - Aliphatic (EC5 - EC35)                                 | mg/kg          | N/A               | 37                | < 10              | 1100           | < 10             | < 10              | < 10             | < 10              | < 10              | 31                | < 10             | < 10              | < 10              | 66             | < 10              |  |
| etualerius Hrisline eeule                                       |                |                   |                   |                   |                |                  |                   |                  |                   |                   |                   |                  |                   |                   |                |                   |  |
| PH-CWG - Aromatic >EC5 - EC7                                    | ma/l-=         | 26000             | < 0.001           | < 0.001           | < 0.001        | < 0.001          | < 0.001           | < 0.001          | < 0.001           | < 0.001           | < 0.001           | < 0.001          | < 0.001           | < 0.001           | < 0.001        | < 0.001           |  |
| PH-CWG - Aromatic >EC5 - EC7 PH-CWG - Aromatic >EC7 - EC8       | mg/kg<br>mg/kg | 56000<br>56000    | < 0.001           | < 0.001           | < 0.001        | < 0.001          | < 0.001           | < 0.001          | < 0.001           | < 0.001           | < 0.001           | < 0.001          | < 0.001           | < 0.001           | < 0.001        | < 0.001           |  |
| PH-CWG - Aromatic >EC8 - EC10                                   | mg/kg          | 3500              | < 0.001           | < 0.001           | < 0.001        | < 0.001          | < 0.001           | < 0.001          | < 0.001           | < 0.001           | < 0.001           | < 0.001          | < 0.001           | < 0.001           | < 0.001        | < 0.001           |  |
| TPH-CWG - Aromatic >EC10 - EC12                                 | mg/kg          | 16000             | < 1.0             | < 1.0             | 16             | < 1.0            | < 1.0             | < 1.0            | < 1.0             | < 1.0             | < 1.0             | < 1.0            | < 1.0             | < 1.0             | 1.4            | < 1.0             |  |
| TPH-CWG - Aromatic >EC12 - EC16                                 | mg/kg          | 36000             | 14                | < 2.0             | 250            | < 2.0            | < 2.0             | < 2.0            | < 2.0             | < 2.0             | 12                | < 2.0            | < 2.0             | < 2.0             | 14             | < 2.0             |  |
| TPH-CWG - Aromatic >EC16 - EC21 TPH-CWG - Aromatic >EC21 - EC35 | mg/kg<br>mg/kg | 28000<br>28000    | 76<br>170         | < 10<br>23        | 550<br>2800    | < 10<br>< 10     | 15<br>28          | < 10<br>< 10     | < 10<br><b>30</b> | < 10<br>< 10      | 70<br>150         | < 10<br>< 10     | < 10<br><b>51</b> | < 10<br>< 10      | 260<br>530     | < 10<br><b>17</b> |  |
| FPH-CWG - Aromatic (EC5 - EC35)                                 | mg/kg          | N/A               | 260               | 30                | 3700           | < 10             | 43                | < 10             | 39                | < 10              | 230               | < 10             | 60                | < 10              | 800            | 20                |  |
| <del></del>                                                     | <del></del>    | •                 | -                 |                   |                |                  |                   |                  |                   |                   |                   |                  |                   |                   |                |                   |  |

| Contract Engineer                                                                                            | _                    | RC Companies Ltd - G             | oundwater Assessi  | nent ked         | ora (DWS)        |                   | Colin Mortor    | `              |
|--------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------|--------------------|------------------|------------------|-------------------|-----------------|----------------|
| Project/Site Name                                                                                            |                      |                                  |                    |                  |                  |                   | Carpark, Hea    |                |
| Project Number                                                                                               |                      |                                  |                    |                  |                  | 46                | 0366.0000.0     | 000            |
| Sample Reference                                                                                             |                      |                                  |                    |                  |                  | BH101             | BH102           | BH103          |
| Depth                                                                                                        |                      |                                  |                    |                  |                  | -<br>PU101        | -<br>-          | -<br>BH103     |
| Date Sampled<br>Time Taken                                                                                   |                      |                                  |                    |                  |                  | 22/09/2021        | 22/09/2021      | 22/09/202      |
|                                                                                                              |                      |                                  |                    |                  |                  |                   |                 |                |
| Determinand                                                                                                  | Unit                 | Source                           | Screening Criteria | Min              | Max              | Į                 |                 |                |
| General Inorganics                                                                                           |                      |                                  | 1 1                |                  |                  |                   |                 |                |
| pH<br>Electrical Conductivity at 20 °C                                                                       | Units<br>μS/cm       | N/A<br>N/A                       | N/A<br>N/A         | 6.70             | 6.90             | 6.7               | 6.9             | 6.9            |
| Total Cyanide                                                                                                | μg/I                 | N/A                              | N/A                | -                | -                | -                 |                 | -              |
| Complex Cyanide<br>Free Cyanide                                                                              | μg/I<br>μg/I         | N/A<br>N/A                       | N/A<br>N/A         | -                | -                | -                 | -               | -              |
| Thiocyanate as SCN                                                                                           | μg/I                 | N/A                              | N/A                | -                | -                | -                 | -               | -              |
| Sulphate as SO <sub>4</sub> Sulphate as SO <sub>4</sub>                                                      | μg/l<br>mg/l         | N/A<br>N/A                       | N/A<br>N/A         | 49.20            | 172.00           | 49.2              | 172             | 58.3           |
| Total Sulphur                                                                                                | µg/I                 | N/A                              | N/A                | - 49.20          | -                | 49.2              |                 | - 30.3         |
| Sulphide                                                                                                     | μg/I                 | N/A                              | N/A                | -                | -                | -                 | -               | -              |
| Chloride<br>Ammonium as NH <sub>4</sub>                                                                      | mg/l<br>μg/l         | US EPA<br>N/A                    | 250<br>N/A         | -                | -                | -                 | -               | -              |
| Dissolved Organic Carbon (DOC)                                                                               | mg/l                 | N/A                              | N/A                | -                | -                | -                 | -               | -              |
| Total Suspended Solids                                                                                       | mg/l                 | N/A                              | N/A                | -                | -                | -                 | -               | -              |
| Phenols by HPLC                                                                                              |                      |                                  |                    |                  |                  |                   |                 |                |
| Catechol<br>Resorcinol                                                                                       | μg/I                 | N/A<br>N/A                       | N/A<br>N/A         | -                | -                |                   | -               | -              |
| Resorcinol Ethylphenol & Dimethylphenol                                                                      | μg/l<br>μg/l         | N/A<br>N/A                       | N/A<br>N/A         | -                |                  |                   | -               | -              |
| Cresols                                                                                                      | μg/I                 | N/A                              | N/A                | -                | -                | -                 | -               | -              |
| Naphthols<br>Isopropylphenol                                                                                 | μg/l<br>μg/l         | N/A<br>N/A                       | N/A<br>N/A         | -                | -                | -                 | -               | -              |
| Phenol                                                                                                       | μg/I                 | N/A                              | N/A                | -                | -                | -                 | -               | -              |
| Trimethylphenol                                                                                              | μg/I                 | N/A                              | N/A                | -                | -                |                   | -               | -              |
| Total Phenols                                                                                                |                      |                                  |                    |                  |                  |                   |                 |                |
| Total Phenois (HPLC)                                                                                         | μg/I                 | N/A                              | N/A                | <0.16            | <0.16            | 0                 | 0               | 0              |
| Speciated PAHs                                                                                               |                      |                                  |                    |                  |                  |                   |                 |                |
| Naphthalene (aq)<br>Acenaphthene (aq)                                                                        | ug/I                 | DWI 17<br>DWI 17                 | 0.1                | <0.16            | <0.16<br><0.01   | 2.82<br>< 0.01    | 2.38<br>< 0.01  | 3.29<br>< 0.01 |
| Acenaphthylene (aq)                                                                                          | ug/l<br>ug/l         | DWI 17                           | 0.1                | <0.01            | <0.01            | < 0.01            | < 0.01          | < 0.01         |
| Fluoranthene (aq)                                                                                            | ug/l                 | DWI 17                           | 0.1                | <0.01            | <0.01            | < 0.01            | < 0.01          | < 0.01         |
| Anthracene (aq)<br>Phenanthrene (aq)                                                                         | ug/l<br>ug/l         | DWI 17<br>DWI 17                 | 0.1                | <0.01            | <0.01<br><0.01   | < 0.01            | < 0.01          | < 0.01         |
| Fluorene (aq)                                                                                                | ug/I                 | DWI 17                           | 0.1                | <0.01            | <0.01            | < 0.01            | < 0.01          | < 0.01         |
| Chrysene (aq)                                                                                                | ug/l                 | DWI 17                           | 0.1<br>0.01        | <0.01            | <0.01            | < 0.01            | < 0.01          | < 0.01         |
| Pyrene (aq)<br>Benzo(a)anthracene (aq)                                                                       | ug/l<br>ug/l         | DWI 17<br>DWI 17                 | 0.01               | <0.01            | <0.01<br><0.01   | < 0.01            | < 0.01          | < 0.01         |
| Benzo(b)fluoranthene (aq)                                                                                    | ug/l                 | DWI 17                           | 0.1                | <0.01            | <0.01            | < 0.01            | < 0.01          | < 0.01         |
| Benzo(k)fluoranthene (aq) Benzo(a)pyrene (aq)                                                                | ug/l<br>ug/l         | DWI 17                           | 0.1                | <0.01            | <0.01            | < 0.01            | < 0.01          | < 0.01         |
| Dibenzo(a,h)anthracene (aq)                                                                                  | ug/I                 | DWI 17                           | 0.1                | <0.01            | <0.01            | < 0.01            | < 0.01          | < 0.01         |
| Benzo(g,h,i)perylene (aq)                                                                                    | ug/l                 | DWI 17                           | 0.1                | <0.01            | <0.01            | < 0.01            | < 0.01          | < 0.01         |
| Indeno(1,2,3-cd)pyrene (aq) Total EPA-16 PAHs                                                                | ug/l<br>ug/l         | DWI 17<br>DWI 17                 | 0.1                | <0.01            | <0.01            | < 0.01            | < 0.01          | < 0.01<br>3.29 |
|                                                                                                              |                      |                                  | •                  |                  |                  |                   |                 |                |
| Heavy Metals / Metalloids Arsenic (dissolved)                                                                | ug/l                 | WSR 18                           | 10                 | 0.36             | 2.34             | 1.1               | 2.34            | 0.36           |
| Boron (dissolved)                                                                                            | ug/l                 | WSR 18                           | 1,000              | 150.00           | 1200.00          | 150               | 1200            | 170            |
| Cadmium (dissolved) Chromium (hexavalent)                                                                    | ug/l<br>ug/l         | WSR 18<br>WHO CICAD / US EPA RfD | 5.4                | 0.03<br><5.0     | 0.09<br><5.0     | <b>0.09</b> < 5.0 | 0.03<br>< 5.0   | 0.05<br>< 5.0  |
| Chromium (dissolved)                                                                                         | ug/l                 | WSR 18                           | 50                 | 3.10             | 8.60             | 3.1               | 8.6             | 6.7            |
| Copper (dissolved)                                                                                           | ug/l                 | WSR 18                           | 2,000              | 1.00             | 2.40             | 2.4               | 1               | 1.2<br>< 0.2   |
| Lead (dissolved) Mercury (dissolved)                                                                         | ug/l<br>ug/l         | WSR 18<br>WSR 18                 | 10                 | <0.2             | 0.00<br><0.05    | < 0.2<br>< 0.05   | < 0.2<br>< 0.05 | < 0.2          |
| Nickel (dissolved)                                                                                           | ug/l                 | WSR 18                           | 20                 | 4.90             | 7.10             | 4.9               | 7.1             | 6.7            |
| Selenium (dissolved) Zinc (dissolved)                                                                        | ug/l<br>ug/l         | WSR 18<br>US EPA                 | 10<br>5000         | 0.70<br>5.10     | 3.80<br>11.00    | 0.7<br>5.1        | 3.8<br>5.7      | 0.9            |
|                                                                                                              | -8/-                 |                                  | 1                  |                  |                  |                   |                 |                |
| Monoaromatics<br>Benzene                                                                                     | ug/l                 | PHG 17                           | 10                 | <1.0             | <1.0             | < 1.0             | < 1.0           | < 1.0          |
| Toluene                                                                                                      | ug/l                 | PHG 17                           | 700                | <1.0             | <1.0             | < 1.0             | < 1.0           | < 1.0          |
| Ethylbenzene                                                                                                 | ug/l                 | PHG 17                           | 300<br>500         | <1.0             | <1.0             | < 1.0             | < 1.0           | <1.0           |
| p & m-xylene<br>o-xylene                                                                                     | ug/l<br>ug/l         | PHG 17<br>PHG 17                 | 500                | <1.0             | <1.0             | < 1.0<br>< 1.0    | < 1.0<br>< 1.0  | < 1.0          |
| MTBE                                                                                                         | ug/l                 | N/A                              | N/A                | <1.0             | <1.0             | < 1.0             | < 1.0           | < 1.0          |
| Petroleum Hydrocarbons                                                                                       |                      |                                  |                    |                  |                  |                   |                 |                |
| Aliphatic >C5 - C6                                                                                           | ug/l                 | PHG 17                           | 15000              | <1.0             | <1.0             | < 1.0             | < 1.0           | < 1.0          |
| Aliphatic >C6 - C8<br>Aliphatic >C8 - C10                                                                    | ug/l<br>ug/l         | PHG 17<br>PHG 17                 | 15000<br>300       | <1.0             | <1.0<br><1.0     | < 1.0<br>< 1.0    | < 1.0<br>< 1.0  | < 1.0<br>< 1.0 |
| Aliphatic >C10 - C12                                                                                         | ug/l                 | PHG 17                           | 300                | 2300.00          | 3800.00          | 3300              | 2300            | 3800           |
| Aliphatic >C12 - C16<br>Aliphatic >C16 - C21                                                                 | ug/I<br>ug/I         | PHG 17<br>N/A                    | 300<br>N/A         | 270.00<br><10    | 420.00<br><10    | <b>400</b> < 10   | 270<br>< 10     | 420<br>< 10    |
| Aliphatic >C21 - C35                                                                                         | ug/I                 | N/A<br>N/A                       | N/A<br>N/A         | <10              | <10              | < 10              | < 10            | < 10           |
| Aliphatic (C5 - C35)                                                                                         | ug/l                 | N/A                              | N/A                | 2500.00          | 4300.00          | 3700              | 2500            | 4300           |
| Petroleum Hydrocarbons                                                                                       |                      |                                  |                    |                  |                  |                   |                 |                |
|                                                                                                              | ug/l                 | PHG 17                           | 10                 | <1.0             | <1.0             | < 1.0             | < 1.0           | < 1.0          |
|                                                                                                              | ug/l                 | PHG 17                           | 700                | <1.0             | <1.0<br><1.0     | < 1.0<br>< 1.0    | < 1.0<br>< 1.0  | < 1.0<br>< 1.0 |
| Aromatic >C7 - C8                                                                                            |                      | DUC 17                           | 500                |                  |                  |                   |                 |                |
| Aromatic >C7 - C8<br>Aromatic >C8 - C10                                                                      | ug/l                 | PHG 17<br>PHG 17                 | 500<br>90          | <1.0<br>660.00   | 990.00           | 990               | 660             | 990            |
| Aromatic >C5 - C7  Aromatic >C7 - C8  Aromatic >C10  Aromatic >C10  Aromatic >C10 - C12  Aromatic >C12 - C16 | ug/l<br>ug/l<br>ug/l | PHG 17<br>PHG 17                 | 90<br>90           | 660.00<br>150.00 | 990.00<br>230.00 | 990<br>200        | 660<br>150      | 990<br>230     |
| Aromatic >C7 - C8<br>Aromatic >C8 - C10<br>Aromatic >C10 - C12                                               | ug/l<br>ug/l         | PHG 17                           | 90                 | 660.00           | 990.00           | 990               | 660             | 990            |

|                                                          | TPC Companies | Itd Groundw          | ator Assassment Ros  | ord (SoRR/       | A Commor                                         | rcial)           |                |                 |  |  |
|----------------------------------------------------------|---------------|----------------------|----------------------|------------------|--------------------------------------------------|------------------|----------------|-----------------|--|--|
| Contract Engineer                                        | TRC Companies | Lta - Grounaw        | ater Assessment Rec  | uru (SUBRA       | 4 Commer                                         | Colin Morton     |                |                 |  |  |
| Project/Site Name                                        |               |                      |                      | lightpath, He    |                                                  |                  |                |                 |  |  |
| Project Number                                           |               |                      |                      |                  |                                                  | 46               | 0336.0000.0    | 000             |  |  |
| Sample Reference                                         |               |                      |                      |                  |                                                  | BH101            | BH102          | BH103           |  |  |
| Depth                                                    |               |                      |                      |                  |                                                  | -                | -              | -               |  |  |
| Date Sampled                                             |               |                      |                      |                  |                                                  | 22/09/2021       | 22/09/2021     | 22/09/2021      |  |  |
| Time Taken                                               |               |                      |                      |                  |                                                  | -                | -              | -               |  |  |
| Determinand                                              | Unit          | Source               | Screening Criteria   | Min              | Max                                              |                  |                |                 |  |  |
| General Inorganics                                       |               |                      |                      |                  |                                                  |                  |                |                 |  |  |
| рН                                                       | Units         | N/A                  | N/A                  | 6.70             | 6.90                                             | 6.7              | 6.9            | 6.9             |  |  |
| Electrical Conductivity at 20 °C Total Cyanide           | μS/cm<br>μg/l | N/A<br>N/A           | N/A<br>N/A           | -                | -                                                | -                | -              | -               |  |  |
| Complex Cyanide                                          | μg/I          | N/A                  | N/A                  | -                | -                                                | -                | -              | -               |  |  |
| Free Cyanide                                             | μg/I          | N/A                  | N/A                  | -                | -                                                | -                | -              | -               |  |  |
| Thiocyanate as SCN Sulphate as SO <sub>4</sub>           | µg/I<br>µg/I  | N/A<br>N/A           | N/A<br>N/A           | -                | -                                                | -                | -              | -               |  |  |
| Sulphate as SO <sub>4</sub>                              | mg/I          | N/A                  | N/A                  | 49.20            | 172.00                                           | 49.2             | 172            | 58.3            |  |  |
| Total Sulphur                                            | μg/I          | N/A                  | N/A                  | -                | -                                                | -                | -              | -               |  |  |
| Sulphide<br>Chloride                                     | μg/l<br>mg/l  | N/A<br>N/A           | N/A<br>N/A           | -                | -                                                | -                | -              | -               |  |  |
| Ammonium as NH <sub>4</sub>                              | μg/I          | N/A                  | N/A                  | -                | -                                                | -                | -              | -               |  |  |
| Dissolved Organic Carbon (DOC)                           | mg/I          | N/A                  | N/A                  | -                | -                                                | -                | -              | -               |  |  |
| Total Suspended Solids                                   | mg/l          | N/A                  | N/A                  | -                |                                                  |                  | -              | -               |  |  |
| Phenols by HPLC                                          |               |                      |                      |                  |                                                  |                  |                |                 |  |  |
| Catechol                                                 | μg/l          | N/A                  | N/A                  | -                | -                                                | -                | -              | -               |  |  |
| Resorcinol Ethylphenol & Dimethylphenol                  | µg/I<br>µg/I  | N/A<br>N/A           | N/A<br>N/A           | -                | <del>                                     </del> | -                | -              | -               |  |  |
| Cresols                                                  | μg/I<br>μg/I  | N/A<br>N/A           | N/A                  | -                | -                                                | -                | -              | -               |  |  |
| Naphthols                                                | μg/I          | N/A                  | N/A                  | -                | -                                                | -                | -              | -               |  |  |
| Isopropylphenol                                          | μg/I          | N/A                  | N/A                  | -                | -                                                | -                | -              | -               |  |  |
| Phenol<br>Trimethylphenol                                | μg/I<br>μg/I  | N/A<br>N/A           | N/A<br>N/A           | -                | -                                                | -                | -              | -               |  |  |
|                                                          |               |                      |                      |                  |                                                  |                  |                |                 |  |  |
| Total Phenois                                            |               |                      | 1                    |                  |                                                  |                  |                |                 |  |  |
| Total Phenois (HPLC)                                     | μg/l          | N/A                  | N/A                  | <0.16            | <0.16                                            | 0                | 0              | 0               |  |  |
| Speciated PAHs                                           |               |                      |                      |                  |                                                  |                  |                |                 |  |  |
| Naphthalene (aq)                                         | ug/l          | SOBRA 17             | 23000                | 2.38             | 3.29                                             | 2.82             | 2.38           | 3.29            |  |  |
| Acenaphthene (aq) Acenaphthylene (aq)                    | ug/l<br>ug/l  | SOBRA 17<br>SOBRA 17 | 15000000<br>20000000 | <0.01            | <0.01                                            | < 0.01           | < 0.01         | < 0.01          |  |  |
| Fluoranthene (aq)                                        | ug/I          | N/A                  | N/A                  | <0.01            | <0.01                                            | < 0.01           | < 0.01         | < 0.01          |  |  |
| Anthracene (aq)                                          | ug/l          | N/A                  | N/A                  | <0.01            | <0.01                                            | < 0.01           | < 0.01         | < 0.01          |  |  |
| Phenanthrene (aq)                                        | ug/l          | N/A                  | N/A                  | <0.01            | <0.01                                            | < 0.01           | < 0.01         | < 0.01          |  |  |
| Fluorene (aq)<br>Chrysene (aq)                           | ug/l<br>ug/l  | SOBRA 17<br>N/A      | 18000000<br>N/A      | <0.01            | <0.01                                            | < 0.01           | < 0.01         | < 0.01          |  |  |
| Pyrene (aq)                                              | ug/l          | N/A                  | N/A                  | <0.01            | <0.01                                            | < 0.01           | < 0.01         | < 0.01          |  |  |
| Benzo(a)anthracene (aq)                                  | ug/l          | N/A                  | N/A                  | <0.01            | <0.01                                            | < 0.01           | < 0.01         | < 0.01          |  |  |
| Benzo(b)fluoranthene (aq) Benzo(k)fluoranthene (aq)      | ug/l<br>ug/l  | N/A<br>N/A           | N/A<br>N/A           | <0.01            | <0.01                                            | < 0.01<br>< 0.01 | < 0.01         | < 0.01          |  |  |
| Benzo(a)pyrene (aq)                                      | ug/I          | N/A                  | N/A                  | <0.01            | <0.01                                            | < 0.01           | < 0.01         | < 0.01          |  |  |
| Dibenzo(a,h)anthracene (aq)                              | ug/l          | N/A                  | N/A                  | <0.01            | <0.01                                            | < 0.01           | < 0.01         | < 0.01          |  |  |
| Benzo(g,h,i)perylene (aq)<br>Indeno(1,2,3-cd)pyrene (aq) | ug/l<br>ug/l  | N/A<br>N/A           | N/A<br>N/A           | <0.01            | <0.01                                            | < 0.01           | < 0.01         | < 0.01          |  |  |
| Total EPA-16 PAHs                                        | ug/I          | N/A                  | N/A                  | 2.38             | 3.29                                             | 2.82             | 2.38           | 3.29            |  |  |
|                                                          |               |                      | •                    | •                |                                                  |                  |                |                 |  |  |
| Heavy Metals / Metalloids<br>Arsenic (dissolved)         | I n           | **/*                 | 1/4                  |                  |                                                  | 1.1              | 1 224          | 0.36            |  |  |
| Boron (dissolved)                                        | ug/l<br>ug/l  | N/A<br>N/A           | N/A<br>N/A           | 0.36<br>150.00   | 2.34<br>1200.00                                  | 150              | 2.34<br>1200   | 0.36<br>170     |  |  |
| Cadmium (dissolved)                                      | ug/l          | N/A                  | N/A                  | 0.03             | 0.09                                             | 0.09             | 0.03           | 0.05            |  |  |
| Chromium (hexavalent)                                    | ug/l          | N/A                  | N/A                  | <5.0             | <5.0                                             | < 5.0            | < 5.0          | < 5.0           |  |  |
| Chromium (dissolved) Copper (dissolved)                  | ug/l<br>ug/l  | N/A<br>N/A           | N/A<br>N/A           | 3.10<br>1.00     | 8.60<br>2.40                                     | 3.1<br>2.4       | 8.6            | 6.7<br>1.2      |  |  |
| Lead (dissolved)                                         | ug/I          | N/A                  | N/A                  | <0.2             | 0.00                                             | < 0.2            | < 0.2          | < 0.2           |  |  |
| Mercury (dissolved)                                      | ug/l          | N/A                  | N/A                  | <0.05            | <0.05                                            | < 0.05           | < 0.05         | < 0.05          |  |  |
| Nickel (dissolved) Selenium (dissolved)                  | ug/l<br>ug/l  | N/A<br>N/A           | N/A<br>N/A           | 4.90<br>0.70     | 7.10<br>3.80                                     | 4.9<br>0.7       | 7.1            | 6.7<br>0.9      |  |  |
| Zinc (dissolved)                                         | ug/l          | N/A                  | N/A                  | 5.10             | 11.00                                            | 5.1              | 5.7            | 11              |  |  |
|                                                          |               |                      |                      |                  |                                                  |                  |                |                 |  |  |
| Monoaromatics Benzene                                    | ug/l          | SOBRA 17             | 20000                | <1.0             | <1.0                                             | < 1.0            | < 1.0          | < 1.0           |  |  |
| Toluene                                                  | ug/I          | SOBRA 17             | 230000               | <1.0             | <1.0                                             | < 1.0            | < 1.0          | < 1.0           |  |  |
| Ethylbenzene                                             | ug/l          | SOBRA 17             | 960000               | <1.0             | <1.0                                             | < 1.0            | < 1.0          | < 1.0           |  |  |
| p & m-xylene                                             | ug/l          | SOBRA 17             | 94000                | <1.0             | <1.0                                             | < 1.0            | < 1.0          | < 1.0           |  |  |
| o-xylene<br>MTBE                                         | ug/l<br>ug/l  | SOBRA 17<br>SOBRA 17 | 1100000<br>7800000   | <1.0             | <1.0                                             | < 1.0<br>< 1.0   | < 1.0          | < 1.0<br>< 1.0  |  |  |
| <u></u>                                                  | -87           |                      |                      |                  | !                                                |                  |                |                 |  |  |
| Petroleum Hydrocarbons                                   |               |                      | 400000               |                  |                                                  |                  |                |                 |  |  |
| Aliphatic >C5 - C6<br>Aliphatic >C6 - C8                 | ug/l<br>ug/l  | SOBRA 17<br>SOBRA 17 | 190000<br>150000     | <1.0             | <1.0                                             | < 1.0<br>< 1.0   | < 1.0<br>< 1.0 | < 1.0           |  |  |
| Aliphatic >C8 - C10                                      | ug/I          | SOBRA 17             | 5700                 | <1.0             | <1.0                                             | < 1.0            | < 1.0          | < 1.0           |  |  |
| Aliphatic >C10 - C12                                     | ug/l          | SOBRA 17             | 3600                 | 2300.00          | 3800.00                                          | 3300             | 2300           | 3800            |  |  |
| Aliphatic >C12 - C16<br>Aliphatic >C16 - C21             | ug/l<br>ug/l  | N/A<br>N/A           | N/A<br>N/A           | 270.00<br><10    | 420.00<br><10                                    | 400<br>< 10      | 270<br>< 10    | <b>420</b> < 10 |  |  |
| Aliphatic >C16 - C21 Aliphatic >C21 - C35                | ug/I          | N/A<br>N/A           | N/A                  | <10              | <10                                              | < 10             | < 10           | < 10            |  |  |
| Aliphatic (C5 - C35)                                     | ug/I          | N/A                  | N/A                  | 2500.00          | 4300.00                                          | 3700             | 2500           | 4300            |  |  |
| Detrolous Hudro                                          |               |                      |                      |                  |                                                  |                  |                |                 |  |  |
| Petroleum Hydrocarbons Aromatic >C5 - C7                 | ug/I          | SOBRA 17             | 20000000             | <1.0             | <1.0                                             | < 1.0            | < 1.0          | < 1.0           |  |  |
| Aromatic >C7 - C8                                        | ug/I          | SOBRA 17             | 21000000             | <1.0             | <1.0                                             | < 1.0            | < 1.0          | < 1.0           |  |  |
| Aromatic >C8 - C10                                       | ug/I          | SOBRA 17             | 190000               | <1.0             | <1.0                                             | < 1.0            | < 1.0          | < 1.0           |  |  |
| Aromatic >C10 - C12<br>Aromatic >C12 - C16               | ug/l<br>ug/l  | SOBRA 17<br>SOBRA 17 | 660000<br>3700000    | 660.00<br>150.00 | 990.00<br>230.00                                 | 990<br>200       | 660<br>150     | 990<br>230      |  |  |
| Aromatic >C12 - C16 Aromatic >C16 - C21                  | ug/I          | N/A                  | N/A                  | <10              | <10                                              | < 10             | < 10           | < 10            |  |  |
| Aromatic >C21 - C35                                      | ug/l          | N/A                  | N/A                  | <10              | <10                                              | < 10             | < 10           | < 10            |  |  |
| Total >C5 - C35                                          | ug/I          | N/A                  | N/A                  | 810.00           | 1200.00                                          | 1200             | 810            | 1200            |  |  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                                                    | TRC Compa                                          | anies Ltd - C                                | hemical /                                    | Assessment Reco                           | ord                                       |                                     |                                           |                                      |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------|----------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------|-------------------------------------------|--------------------------------------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         | Contract Enginee                                   | r                                                  |                                              |                                              |                                           |                                           | Nyemh .                             |                                           |                                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         | Project/Site Nam Project Number                    |                                                    |                                              |                                              | -                                         |                                           | NCP He<br>460336.0                  | 001.0000                                  |                                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                                                    |                                                    |                                              |                                              |                                           |                                           |                                     |                                           |                                      |  |
| Sample Reference<br>Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                                                    |                                                    |                                              |                                              | BH101<br>None Supplied                    | BH103<br>None Supplied                    | BH201<br>None Supplied              | BH202<br>None Supplied                    | BH204<br>None Supplied               |  |
| Date Sampled<br>Fime Taken                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |                                                    |                                                    |                                              |                                              | 16/11/2021<br>None Supplied               | 16/11/2021                                | 17/11/2021<br>None Supplied         | 17/11/2021<br>None Supplied               | 17/11/2021<br>None Supplied          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 1                                     |                                                    |                                                    | 1                                            |                                              | None supplied                             | None Supplied                             | None supplied                       | None Supplied                             | None supplied                        |  |
| Determinand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Unit                                    | Source                                             | Screening Criteria                                 | Min                                          | Max                                          | ļ.                                        |                                           |                                     |                                           |                                      |  |
| General Inorganics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Units                                   | N/A                                                | N/A                                                | 6.60                                         | 7.70                                         | 6.8                                       | 6.6                                       | 7.2                                 | 6.8                                       | 7.7                                  |  |
| lectrical Conductivity at 20 °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | μS/cm                                   | N/A                                                | N/A                                                | 0                                            | 0                                            | 0                                         | 0                                         | 0                                   | 0                                         | 0                                    |  |
| otal Cyanide<br>omplex Cyanide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | µg/I<br>µg/I                            | N/A<br>N/A                                         | N/A<br>N/A                                         | 0.00                                         | 0.00                                         | 0                                         | 0                                         | 0                                   | 0                                         | 0                                    |  |
| ree Cyanide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | μg/l                                    | N/A                                                | N/A                                                | 0.00                                         | 0.00                                         | 0                                         | 0                                         | 0                                   | 0                                         | 0                                    |  |
| hiocyanate as SCN<br>ulphate as SO <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | µg/I<br>µg/I                            | N/A<br>N/A                                         | N/A<br>N/A                                         | 0.00                                         | 0.00                                         | 0                                         | 0                                         | 0                                   | 0                                         | 0                                    |  |
| ulphate as SO <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/l                                    | N/A                                                | N/A                                                | 47.00                                        | 76.90                                        | 47                                        | 50.3                                      | 70.6                                | 76.9                                      | 72.4                                 |  |
| otal Sulphur<br>ulphide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | µg/I<br>µg/I                            | N/A<br>N/A                                         | N/A<br>N/A                                         | 0.00                                         | 0.00                                         | 0                                         | 0                                         | 0                                   | 0                                         | 0                                    |  |
| hloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mg/l                                    | US EPA                                             | 250                                                | 0.00                                         | 0.00                                         | 0                                         | 0                                         | 0                                   | 0                                         | 0                                    |  |
| mmonium as NH <sub>4</sub><br>issolved Organic Carbon (DOC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | μg/l<br>mg/l                            | N/A<br>N/A                                         | N/A<br>N/A                                         | 0.00                                         | 0.00                                         | 0                                         | 0                                         | 0                                   | 0                                         | 0                                    |  |
| otal Suspended Solids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mg/l                                    | N/A                                                | N/A                                                | 0                                            | 0                                            | 0                                         | 0                                         | 0                                   | 0                                         | 0                                    |  |
| henols by HPLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                                    |                                                    |                                              |                                              |                                           |                                           |                                     |                                           |                                      |  |
| atechol<br>esorcinol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | μg/l                                    | N/A<br>N/A                                         | N/A<br>N/A                                         | 0.00                                         | 0.00                                         | 0                                         | 0                                         | 0                                   | 0                                         | 0                                    |  |
| thylphenol & Dimethylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | µg/I<br>µg/I                            | N/A<br>N/A                                         | N/A<br>N/A                                         | 0.00                                         | 0.00                                         | 0                                         | 0                                         | 0                                   | 0                                         | 0                                    |  |
| resols<br>aphthols                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | μg/I<br>μg/I                            | N/A<br>N/A                                         | N/A<br>N/A                                         | 0.00                                         | 0.00                                         | 0                                         | 0                                         | 0                                   | 0                                         | 0                                    |  |
| sopropylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | μg/I<br>μg/I                            | N/A<br>N/A                                         | N/A                                                | 0.00                                         | 0.00                                         | 0                                         | 0                                         | 0                                   | 0                                         | 0                                    |  |
| henol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | μg/l                                    | N/A<br>N/A                                         | N/A<br>N/A                                         | 0.00                                         | 0.00                                         | 0                                         | 0                                         | 0                                   | 0                                         | 0                                    |  |
| rimethylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | μg/l                                    | N/A                                                | N/A                                                | 0.00                                         | 0.00                                         | L U                                       | U                                         | U                                   | U                                         | U                                    |  |
| otal Phenols<br>otal Phenols (HPLC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | μg/l                                    | N/A                                                | N/A                                                | 0.00                                         | 0.00                                         | 0                                         | 0                                         | 0                                   | 0                                         | 0                                    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0                                     |                                                    | ,                                                  |                                              |                                              |                                           |                                           |                                     |                                           |                                      |  |
| peciated PAHs<br>aphthalene (aq)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ug/l                                    | DWI 17                                             | 0.1                                                | 0.00                                         | 0.00                                         | < 0.01                                    | < 0.01                                    | < 0.01                              | < 0.01                                    | < 0.01                               |  |
| cenaphthene (aq)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ug/l                                    | DWI 17                                             | 0.1                                                | 0.00                                         | 0.00                                         | < 0.01                                    | < 0.01                                    | < 0.01                              | < 0.01                                    | < 0.01                               |  |
| cenaphthylene (aq)<br>luoranthene (aq)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ug/l<br>ug/l                            | DWI 17<br>DWI 17                                   | 0.1                                                | 0.00                                         | 0.00                                         | < 0.01<br>< 0.01                          | < 0.01                                    | < 0.01                              | < 0.01                                    | < 0.01<br>< 0.01                     |  |
| nthracene (aq)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ug/l                                    | DWI 17                                             | 0.1                                                | 0.00                                         | 0.00                                         | < 0.01                                    | < 0.01                                    | < 0.01                              | < 0.01                                    | < 0.01                               |  |
| henanthrene (aq)<br>luorene (aq)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ug/l<br>ug/l                            | DWI 17<br>DWI 17                                   | 0.1                                                | 0.00                                         | 0.00                                         | < 0.01<br>< 0.01                          | < 0.01                                    | < 0.01                              | < 0.01                                    | < 0.01<br>< 0.01                     |  |
| hrysene (aq)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ug/l                                    | DWI 17                                             | 0.1                                                | 0.00                                         | 0.00                                         | < 0.01                                    | < 0.01                                    | < 0.01                              | < 0.01                                    | < 0.01                               |  |
| yrene (aq)<br>enzo(a)anthracene (aq)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ug/l<br>ug/l                            | DWI 17<br>DWI 17                                   | 0.01                                               | 0.00                                         | 0.00                                         | < 0.01                                    | < 0.01                                    | < 0.01                              | < 0.01                                    | < 0.01                               |  |
| enzo(b)fluoranthene (aq)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ug/l                                    | DWI 17                                             | 0.1                                                | 0.00                                         | 0.00                                         | < 0.01                                    | < 0.01                                    | < 0.01                              | < 0.01                                    | < 0.01                               |  |
| enzo(k)fluoranthene (aq)<br>enzo(a)pyrene (aq)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ug/l<br>ug/l                            | DWI 17<br>DWI 17                                   | 0.1                                                | 0.00                                         | 0.00                                         | < 0.01<br>< 0.01                          | < 0.01                                    | < 0.01                              | < 0.01                                    | < 0.01                               |  |
| ibenzo(a,h)anthracene (aq)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ug/I                                    | DWI 17                                             | 0.1                                                | 0.00                                         | 0.00                                         | < 0.01                                    | < 0.01                                    | < 0.01                              | < 0.01                                    | < 0.01                               |  |
| enzo(g,h,i)perylene (aq)<br>ndeno(1,2,3-cd)pyrene (aq)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ug/l<br>ug/l                            | DWI 17<br>DWI 17                                   | 0.1                                                | 0.00                                         | 0.00                                         | < 0.01<br>< 0.01                          | < 0.01                                    | < 0.01                              | < 0.01                                    | < 0.01                               |  |
| otal EPA-16 PAHs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ug/I                                    | DWI 17                                             | 0.1                                                | 0.00                                         | 0.00                                         | < 0.16                                    | < 0.16                                    | < 0.16                              | < 0.16                                    | < 0.16                               |  |
| eavy Metals / Metalloids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         | -                                                  |                                                    |                                              |                                              |                                           |                                           |                                     |                                           |                                      |  |
| rsenic (dissolved)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ug/l                                    | WSR 18                                             | 10                                                 | 0.32                                         | 1.20                                         | 0.95                                      | 0.32                                      | 0.35                                | 0.49                                      | 1.2                                  |  |
| oron (dissolved)<br>admium (dissolved)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ug/l<br>ug/l                            | WSR 18<br>WSR 18                                   | 1,000                                              | 0.02                                         | 170.00                                       | 140<br>0.08                               | 160<br>0.02                               | 170<br>0.06                         | 150<br>0.05                               | 100<br>< 0.02                        |  |
| nromium (hexavalent)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         | /HO CICAD / US EPA Rfi                             | 5.4                                                | 0.00                                         | 0.00                                         | < 5.0                                     | < 5.0                                     | < 5.0                               | < 5.0                                     | < 5.0                                |  |
| promium (dissolved)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ug/l<br>ug/l                            | WSR 18<br>WSR 18                                   | 50<br>2,000                                        | 1.60<br>1.20                                 | 3.10<br>4.80                                 | 3 3.6                                     | 3.1<br>4.8                                | 2.6<br>3.2                          | 2.9                                       | 1.6                                  |  |
| ead (dissolved)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ug/l                                    | WSR 18                                             | 10                                                 | 0.00                                         | 0.00                                         | < 0.2                                     | < 0.2                                     | < 0.2                               | < 0.2                                     | < 0.2                                |  |
| Mercury (dissolved)<br>lickel (dissolved)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ug/l<br>ug/l                            | WSR 18<br>WSR 18                                   | 20                                                 | 0.00<br>2.60                                 | 6.00                                         | < 0.05<br><b>5.1</b>                      | < 0.05                                    | < 0.05                              | < 0.05<br>4                               | < 0.05                               |  |
| elenium (dissolved)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ug/l                                    | WSR 18                                             | 10                                                 | 0.60                                         | 1.20                                         | 1.2                                       | 1.2                                       | 0.7                                 | 0.6                                       | < 0.6                                |  |
| nc (dissolved)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ug/l                                    | US EPA                                             | 5000                                               | 3.70                                         | 10.00                                        | 10                                        | 10                                        | 7                                   | 5.2                                       | 3.7                                  |  |
| lonoaromatics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | //                                      | PHG 17                                             | 10                                                 | 0.00                                         | 0.00                                         | < 1.0                                     | < 1.0                                     | < 1.0                               | < 1.0                                     | -10                                  |  |
| enzene<br>oluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ug/l<br>ug/l                            | PHG 17                                             | 10<br>700                                          | 0.00                                         | 0.00                                         | < 1.0                                     | < 1.0                                     | <1.0                                | < 1.0                                     | < 1.0<br>< 1.0                       |  |
| thylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ug/l                                    | PHG 17                                             | 300                                                | 0.00                                         | 0.00                                         | < 1.0                                     | < 1.0                                     | < 1.0                               | < 1.0                                     | < 1.0                                |  |
| & m-xylene<br>-xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ug/l<br>ug/l                            | PHG 17<br>PHG 17                                   | 500<br>500                                         | 0.00                                         | 0.00                                         | < 1.0<br>< 1.0                            | < 1.0<br>< 1.0                            | < 1.0<br>< 1.0                      | < 1.0<br>< 1.0                            | < 1.0<br>< 1.0                       |  |
| TBE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ug/l                                    | N/A                                                | N/A                                                | 0.00                                         | 0.00                                         | < 1.0                                     | < 1.0                                     | < 1.0                               | < 1.0                                     | < 1.0                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                                                    |                                                    |                                              |                                              |                                           |                                           |                                     |                                           |                                      |  |
| etroleum Hydrocarbons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ug/l                                    | PHG 17                                             | 15000                                              | 0.00                                         | 0.00                                         | < 1.0<br>< 1.0                            | < 1.0<br>< 1.0                            | <1.0<br><1.0                        | < 1.0<br>< 1.0                            | <1.0<br><1.0                         |  |
| iphatic >C5 - C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         | PHG 17<br>PHG 17                                   | 15000<br>300                                       | 0.00                                         | 0.00                                         | < 1.0<br>< 1.0                            | < 1.0                                     | <1.0<br><1.0                        | < 1.0                                     | < 1.0                                |  |
| iphatic >C5 - C6<br>iphatic >C6 - C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ug/l<br>ug/l                            |                                                    | 300                                                | 0.00                                         | 0.00                                         | < 10                                      | < 10                                      | < 10                                | < 10                                      | <10                                  |  |
| iphatic >C5 - C6<br>iphatic >C6 - C8<br>iphatic >C8 - C10<br>iphatic >C10 - C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ug/l<br>ug/l                            | PHG 17                                             |                                                    | 0.00                                         | 0.00                                         | < 10<br>< 10                              | < 10<br>< 10                              | < 10<br>< 10                        | < 10<br>< 10                              | < 10<br>< 10                         |  |
| iphatic >C5 - C6<br>iphatic >C6 - C8<br>iphatic >C8 - C10<br>iphatic >C10 - C12<br>iphatic >C12 - C16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ug/l                                    | PHG 17<br>PHG 17<br>N/A                            | 300<br>N/A                                         | 0.00                                         |                                              |                                           |                                           |                                     |                                           | < 10                                 |  |
| iphatic > C5 - C6 iphatic > C6 - C8 iphatic > C8 - C10 iphatic > C8 - C10 iphatic > C10 - C12 iphatic > C10 - C12 iphatic > C10 - C12 iphatic > C16 - C21 iphatic > C16 - C21 iphatic > C21 - C35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ug/l<br>ug/l<br>ug/l<br>ug/l<br>ug/l    | PHG 17<br>N/A<br>N/A                               | N/A<br>N/A                                         | 0.00                                         | 0.00                                         | < 10                                      | < 10                                      | < 10                                | < 10                                      |                                      |  |
| iphatic > C5 - C6 iphatic > C6 - C8 iphatic > C8 - C10 iphatic > C10 - C12 iphatic > C12 - C16 iphatic > C12 - C16 iphatic > C16 - C21 iphatic > C16 - C21 iphatic > C21 - C35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ug/l<br>ug/l<br>ug/l<br>ug/l            | PHG 17<br>N/A                                      | N/A                                                | _                                            |                                              | < 10<br>< 10                              | < 10<br>< 10                              | <10                                 | < 10                                      | < 10                                 |  |
| iphatic > C5 - C6 iphatic > C6 - C8 iphatic > C6 - C8 iphatic > C10 iphatic > C10 - C12 iphatic > C10 - C12 iphatic > C12 - C16 iphatic > C16 - C21 iphatic > C16 - C21 iphatic > C16 - C21 iphatic > C25 iphatic > C35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ug/l<br>ug/l<br>ug/l<br>ug/l<br>ug/l    | PHG 17<br>N/A<br>N/A<br>N/A                        | N/A<br>N/A<br>N/A                                  | 0.00                                         | 0.00                                         | < 10                                      | < 10                                      | < 10                                | < 10                                      | < 10                                 |  |
| liphatic > C5 - C6 liphatic > C5 - C6 liphatic > C6 - C8 liphatic > C10 liphatic > C10 - C12 liphatic > C12 - C12 liphatic > C12 - C12 liphatic > C16 - C21 liphatic > C16 - C21 liphatic > C16 - C35 liphatic (C5 - C35)  etroleum Hydrocarbons romatic > C5 - C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ug/l<br>ug/l<br>ug/l<br>ug/l<br>ug/l    | PHG 17<br>N/A<br>N/A                               | N/A<br>N/A                                         | 0.00                                         | 0.00                                         |                                           |                                           |                                     |                                           |                                      |  |
| etroleum Hydrocarbons liphatic x 25 - C6 liphatic x 26 - C8 liphatic x 26 - C10 liphatic x 20 - C10 liphatic x 20 - C12 liphatic x 212 - C16 liphatic x 212 - C16 liphatic x 212 - C16 liphatic x 214 - C21 liphatic x 216 - C22 liphatic x 25 - C35)  etroleum Hydrocarbons romatic x 27 - C8 romatic x 26 - C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l | PHG 17 N/A N/A N/A N/A PHG 17 PHG 17 PHG 17        | N/A<br>N/A<br>N/A<br>10<br>700<br>500              | 0.00<br>0.00<br>0.00<br>0.00<br>0.00         | 0.00<br>0.00<br>0.00<br>0.00<br>0.00         | < 1.0<br>< 1.0<br>< 1.0<br>< 1.0          | < 1.0<br>< 1.0<br>< 1.0<br>< 1.0          | <1.0<br><1.0<br><1.0<br><1.0        | < 1.0<br>< 1.0<br>< 1.0<br>< 1.0          | <1.0<br><1.0<br><1.0<br><1.0         |  |
| liphatic > C5 - C6       liphatic > C5 - C8       liphatic > C6 - C8       liphatic > C10 - C12       liphatic > C10 - C12       liphatic > C12 - C16       liphatic > C12 - C16       liphatic > C12 - C35       liphatic > C21 - C35       liphatic > C25 - C35       cetroleum Hydrocarbons   conditic > C7 - C8       conditic > C7 - C8       conditic > C10 - C12       cond | ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l | PHG 17 N/A N/A N/A N/A PHG 17 PHG 17 PHG 17 PHG 17 | N/A<br>N/A<br>N/A<br>N/A<br>10<br>700<br>500<br>90 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | < 1.0<br>< 1.0<br>< 1.0<br>< 1.0<br>< 1.0 | < 1.0<br>< 1.0<br>< 1.0<br>< 1.0<br>< 1.0 | <1.0<br><1.0<br><1.0<br><1.0<br><10 | < 1.0<br>< 1.0<br>< 1.0<br>< 1.0<br>< 1.0 | <1.0<br><1.0<br><1.0<br><1.0<br><1.0 |  |
| liphatic > C5 - C6   liphatic > C5 - C8   liphatic > C6 - C8   liphatic > C6 - C8   liphatic > C10   liphatic > C10 - C12   liphatic > C10 - C12   liphatic > C12 - C16   liphatic > C12 - C16   liphatic > C12 - C35   liphatic > C21 - C35   liphatic (C5 - C35)   liphatic (C5 - C35)   liphatic > C5 - C7   compatic > C5 - C7   compatic > C7 - C8   compatic > C8 - C10   c   C1 | ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l | PHG 17 N/A N/A N/A N/A PHG 17 PHG 17 PHG 17        | N/A<br>N/A<br>N/A<br>10<br>700<br>500              | 0.00<br>0.00<br>0.00<br>0.00<br>0.00         | 0.00<br>0.00<br>0.00<br>0.00<br>0.00         | < 1.0<br>< 1.0<br>< 1.0<br>< 1.0          | < 1.0<br>< 1.0<br>< 1.0<br>< 1.0          | <1.0<br><1.0<br><1.0<br><1.0        | < 1.0<br>< 1.0<br>< 1.0<br>< 1.0          | <1.0<br><1.0<br><1.0<br><1.0         |  |

| Project / Site Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17/11/2021 17/11/2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project Number   Sample Reference   Sample Reference   Sample Reference   Sample Reference   Sample   Sample | Heathrow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Sample Reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .0001.0000  BH202 BH204 None Supplied None Supplied 17/11/2021 17/11/2021 None Supplied None Supplied  6.8 7.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | None Supplied         None Supplied           17/11/2021         17/11/2021           None Supplied         None Supplied                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | None Supplied         None Supplied           17/11/2021         17/11/2021           None Supplied         None Supplied                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Date Sampled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | None Supplied None Supplied  6.8 7.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Determinand   Unit   Source   Screening Criteria   Min   Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.8 7.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Comparison   Co |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| pH         Units         N/A         N/A         6.60         7.70         6.8         6.6         7.2           Electrical Conductivity at 20 °C         μβ/m         N/A         N/A         0         0         0         0         0         0           Total Cyanide         μβ/l         N/A         N/A         0.00         0.00         0         0         0         0           Complex Cyanide         μβ/l         N/A         N/A         0.00         0.00         0         0         0         0           Thiocyanate as SCN         μβ/l         N/A         N/A         0.00         0.00         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Electrical Conductivity at 20 °C         μS/cm         N/A         N/A         0         0         0         0         0           Total Cyanide         μg/l         N/A         N/A         0.00         0.00         0         0         0           Complex Cyanide         μg/l         N/A         N/A         0.00         0.00         0         0         0           Free Cyanide         μg/l         N/A         N/A         0.00         0.00         0         0         0           Thiocyanate as SCN         μg/l         N/A         N/A         0.00         0.00         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Total Cyanide         μg/l         N/A         N/A         0.00         0.00         0         0         0           Complex Cyanide         μg/l         N/A         N/A         0.00         0.00         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Free Cyanide μg/l N/A N/A 0.00 0.00 0 0 0 Thiocyanate as SCN μg/l N/A N/A 0.00 0.00 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Thiocyanate as SCN μg/l N/A N/A 0.00 0.00 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Sulphate as SO <sub>4</sub> µg/l N/A N/A 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Sulphate as SO <sub>4</sub> mg/l N/A N/A 47.00 76.90 47 50.3 70.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 76.9 72.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Total Sulphur μg/1 N/A N/A 0 0 0 0 0 0 0 Sulphide μg/1 N/A N/A 0.00 0.00 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Chloride mg/I N/A N/A 0.00 0.00 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Ammonium as NH <sub>4</sub> µg/l N/A N/A 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Dissolved Organic Carbon (DOC)         mg/l         N/A         N/A         0.00         0.00         0         0         0           Total Suspended Solids         mg/l         N/A         N/A         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Total Juspended Johns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| PhenoIs by HPLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Catechol         μg/l         N/A         N/A         0.00         0.00         0         0           Resorcinol         μg/l         N/A         N/A         0.00         0.00         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Ethylphenol & Dimethylphenol μg/l N/A N/A 0.00 0.00 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Cresols μg/l N/A N/A 0.00 0.00 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Naphthols         μg/l         N/A         N/A         0.00         0.00         0         0         0           Isopropylphenol         μg/l         N/A         N/A         0.00         0.00         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Phenol   μg/l   N/A   N/A   0.00   0.00   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Trimethylphenol μg/l N/A N/A 0.00 0.00 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Total Phenois                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Total Phenois (HPLC) μg/l N/A N/A 0.00 0.00 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Speciated PAHs         ug/l         SOBRA 17         23000         0.00         < 0.01         < 0.01         < 0.01         < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.01 < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Acenaphthene (aq) ug/l SOBRA 17 1500000 0.00 0.00 < 0.01 < 0.01 < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | < 0.01 < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Acenaphthylene (aq) ug/l SOBRA 17 20000000 0.00 0.00 < 0.01 < 0.01 < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | < 0.01 < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Fluoranthene (aq) ug/l N/A N/A 0.00 0.00 <0.01 <0.01 <0.01 Anthracene (aq) ug/l N/A N/A 0.00 0.00 <0.01 <0.01 <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.01 < 0.01<br>< 0.01 < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Phenanthrene (aq) ug/l N/A N/A 0.00 0.00 <0.01 <0.01 <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 0.01 < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Fluorene (aq) ug/l SOBRA 17 18000000 0.00 0.00 <0.01 <0.01 <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 0.01 < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Chrysene (aq)         ug/l         N/A         N/A         0.00         0.00         < 0.01         < 0.01         < 0.01           Pyrene (aq)         ug/l         N/A         N/A         0.00         0.00         < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.01 < 0.01<br>< 0.01 < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Benzo(a)anthracene (aq) ug/l N/A N/A 0.00 0.00 <0.01 <0.01 <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 0.01 < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Benzo(b)fluoranthene (aq) ug/l N/A N/A 0.00 0.00 <0.01 <0.01 <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 0.01 < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Benzo(k)fluoranthene (aq)         ug/l         N/A         N/A         0.00         0.00         < 0.01         < 0.01         < 0.01           Benzo(a)pyrene (aq)         ug/l         N/A         N/A         0.00         0.00         < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 0.01 < 0.01<br>< 0.01 < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Benzo(a)pyrene (aq)         ug/l         N/A         N/A         0.00         0.00         < 0.01         < 0.01         < 0.01           Dibenzo(a,h)anthracene (aq)         ug/l         N/A         N/A         0.00         0.00         < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.01 < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Benzo(g,h,i)perylene (aq) ug/l N/A N/A 0.00 0.00 < 0.01 < 0.01 < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | < 0.01 < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Indeno(1,2,3-cd)pyrene (aq) ug/l N/A N/A 0.00 0.00 <0.01 <0.01 <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 0.01 < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Total EPA-16 PAHs ug/l N/A N/A 0.00 0.00 < 0.16 < 0.16 < 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.16 < 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Heavy Metals / Metalloids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Arsenic (dissolved)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.49 1.2<br>150 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Boron (dissolved) ug/l N/A N/A 100.00 1700 140 160 170  Cadmium (dissolved) ug/l N/A N/A 0.02 0.08 0.08 0.02 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.05 < 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Chromium (hexavalent) ug/l N/A N/A 0.00 0.00 < 5.0 < 5.0 < 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < 5.0 < 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Chromium (dissolved) ug/l N/A N/A 1.60 3.10 3 3.1 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.9 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Copper (dissolved)         ug/l         N/A         N/A         1.20         4.80         3.6         4.8         3.2           Lead (dissolved)         ug/l         N/A         N/A         0.00         0.00         < 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.3 1.2<br>< 0.2 < 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Mercury (dissolved) ug/l N/A N/A 0.00 0.00 < 0.05 < 0.05 < 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 0.05 < 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Nickel (dissolved) ug/l N/A N/A 2.60 6.00 5.1 3 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Selenium (dissolved)         ug/l         N/A         N/A         0.60         1.20         1.2         1.2         0.7           Zinc (dissolved)         ug/l         N/A         N/A         3.70         10.00         10         10         7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.6 < 0.6<br>5.2 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Monoaromatics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 210 210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 1.0 < 1.0<br>< 1.0 < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Benzene ug/l SOBRA 17 20000 0.00 0.00 < 1.0 < 1.0 < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Benzene         ug/l         SOBRA 17         20000         0.00         0.00         < 1.0         < 1.0         < 1.0           Toluene         ug/l         SOBRA 17         230000         0.00         0.00         < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <1.0 <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Benzene         ug/l         SOBRA 17         20000         0.00         0.00         <1.0         <1.0         <1.0           Toluene         ug/l         SOBRA 17         230000         0.00         0.00         <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <1.0 <1.0<br><1.0 <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Benzene         ug/l         SOBRA 17         20000         0.00         0.00         < 1.0         < 1.0         < 1.0           Toluene         ug/l         SOBRA 17         230000         0.00         0.00         < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < 1.0 < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Benzene         ug/l         SOBRA 17         20000         0.00         0.00         <1.0         <1.0         <1.0           Toluene         ug/l         SOBRA 17         230000         0.00         0.00         <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Benzene         ug/l         SOBRA 17         20000         0.00         0.00         < 1.0         < 1.0         < 1.0           Toluene         ug/l         SOBRA 17         230000         0.00         0.00         < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Benzene   Ug/l   SOBRA 17   20000   0.00   0.00   <1.0   <1.0   <1.0   <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <10 <10 <10<br><10 <10 <10<br><10 <10<br><10 <10<br><10 <10<br><10 <10<br><10 <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Benzene   ug/l   SOBRA 17   20000   0.00   0.00   <1.0   <1.0   <1.0   <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <10 <10 <10<br><10 <10 <10<br><10 <10<br><10 <10<br><10 <10<br><10 <10<br><10 <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Benzene   ug/l   SOBRA 17   20000   0.00   0.00   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0   <1.0  | <10 <10 <10<br><10 <10 <10<br><10 <10<br><10<br><10 <10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10       |
| Benzene   ug/l   SOBRA 17   20000   0.00   0.00   <1.0   <1.0   <1.0   <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <10 <10 <10<br><10 <10 <10<br><10 <10<br><10<br><10 <10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><1 |
| Benzene   ug/l   SOBRA 17   20000   0.00   0.00   <1.0   <1.0   <1.0   <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <10 <10 <10<br><10 <10 <10<br><10 <10<br><10<br><10 <10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10       |
| Benzene         ug/l         SOBRA 17         20000         0.00         0.00         <1.0         <1.0         <1.0           Tofluene         ug/l         SOBRA 17         230000         0.00         0.00         <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Benzene         ug/l         SOBRA 17         20000         0.00         0.00         < 1.0         < 1.0         < 1.0           Toluene         ug/l         SOBRA 17         230000         0.00         0.00         < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <10 <10 <10 <10 <10 <10 <10 <10 <10 <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Benzene         ug/l         SOBRA 17         20000         0.00         0.00         < 1.0         < 1.0         < 1.0           Tolluene         ug/l         SOBRA 17         230000         0.00         0.00         < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <10 <10 <10 <10 <10 <10 <10 <10 <10 <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Benzene   ug/l   SOBRA 17   20000   0.00   0.00   <1.0   <1.0   <1.0   <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <10 <10 <10 <10 <10 <10 <10 <10 <10 <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Benzene   Ug/I   SOBRA 17   200000   0.00   0.00   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10 | <10 <10 <10 <10 <10 <10 <10 <10 <10 <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Benzene         ug/l         SOBRA 17         20000         0.00         0.00         < 1.0         < 1.0         < 1.0           Toluene         ug/l         SOBRA 17         230000         0.00         0.00         < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <10 <10 <10 <10 <10 <10 <10 <10 <10 <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Benzene   ug/l   SOBRA 17   20000   0.00   0.00   <1.0   <1.0   <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <10 <10 <10<br><10 <10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><10<br><1                               |



**Annex G: Laboratory Geotechnical Data** 



### LABORATORY REPORT



4043

Contract Number: PSL21/7376

Report Date: 28 September 2021

Client's Reference: 435101

Client Name: TRC Companies Ltd

20 Red Lion Street

London WC1R 4PQ

For the attention of: Troy Randall

Contract Title: NCP Car Park, Heathrow

Date Received: 14/9/2021 Date Commenced: 14/9/2021 Date Completed: 28/9/2021

Notes: Opinions and Interpretations are outside the UKAS Accreditation

A copy of the Laboratory Schedule of accredited tests as issued by UKAS is attached to this report. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced other than in full, without the prior written approval of the laboratory.

#### Checked and Approved Signatories:

A Watkins R Berriman S Royle

(Director) (Quality Manager) (Laboratory Manager)

EH#

L Knight S Eyre T Watkins
(Assistant Laboratory Manager) (Senior Technician) (Senior Technician)

Page 1 of

5 – 7 Hexthorpe Road, Hexthorpe,

Doncaster DN4 0AR tel: +44 (0)844 815 6641 fax: +44 (0)844 815 6642

e-mail: rberriman@prosoils.co.uk awatkins@prosoils.co.uk

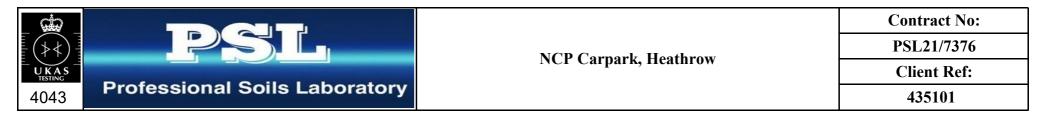
### **SUMMARY OF LABORATORY SOIL DESCRIPTIONS**

| Hole<br>Number | Sample<br>Number | Sample<br>Type | Top<br>Depth<br>m | Base<br>Depth<br>m | Description of Sample                          |  |
|----------------|------------------|----------------|-------------------|--------------------|------------------------------------------------|--|
| BH101          |                  | В              | 2.50              |                    | Brown very sandy GRAVEL.                       |  |
| BH101          |                  | U100           | 5.00              |                    | Stiff brown slightly gravelly sandy CLAY.      |  |
| BH101          |                  | D              | 5.50              |                    | Brown slightly sandy CLAY.                     |  |
| BH101          |                  | U100           | 10.00             |                    | Stiff brown slightly sandy CLAY.               |  |
| BH102          |                  | В              | 1.40              |                    | Brown gravelly sandy CLAY.                     |  |
| BH102          |                  | В              | 3.00              |                    | Brown very sandy GRAVEL.                       |  |
| BH102          |                  | D              | 5.00              |                    | Brown slightly gravelly slightly sandy CLAY.   |  |
| BH102          |                  | U100           | 9.00              |                    | Stiff brown slightly sandy CLAY.               |  |
| BH103          |                  | D              | 1.50              |                    | Brown gravelly sandy CLAY.                     |  |
| BH103          |                  | В              | 3.50              |                    | Brown slightly sandy GRAVEL.                   |  |
| BH103          |                  | U100           | 6.50              |                    | Firm brown slightly gravelly sandy CLAY.       |  |
| BH103          |                  | D              | 7.50              |                    | Brown slightly sandy CLAY.                     |  |
| BH103          |                  | U100           | 9.00              |                    | Stiff brown slightly sandy CLAY.               |  |
| WS101          |                  | D              | 1.30              |                    | Brown very gravelly very sandy CLAY.           |  |
| WS104          |                  | D              | 1.20              |                    | Brown slightly gravelly sandy CLAY.            |  |
| WS104          |                  | D              | 1.80              |                    | Brown very sandy clayey silty GRAVEL.          |  |
| WS107          |                  | D              | 1.30              |                    | Brown slightly gravelly sandy CLAY.            |  |
| WS107          |                  | В              | 2.10              |                    | Brown very sandy slightly clayey silty GRAVEL. |  |
|                |                  |                |                   |                    |                                                |  |





| Contract No: |  |  |
|--------------|--|--|
| PSL21/7376   |  |  |
| Client Ref:  |  |  |
| 435101       |  |  |


### **SUMMARY OF SOIL CLASSIFICATION TESTS**

(BS1377: PART 2: 1990)

| Hole<br>Number | Sample<br>Number | Sample<br>Type | Top<br>Depth | Base<br>Depth | Moisture<br>Content<br>% | Linear<br>Shrinkage<br>% | Particle<br>Density<br>Mg/m <sup>3</sup> | Liquid<br>Limit<br>% | Plastic<br>Limit<br>% | Plasticity<br>Index<br>% | Passing<br>.425mm<br>% | Remarks                    |
|----------------|------------------|----------------|--------------|---------------|--------------------------|--------------------------|------------------------------------------|----------------------|-----------------------|--------------------------|------------------------|----------------------------|
|                |                  |                | m            | m             | Clause 3.2               | Clause 6.5               | Clause 8.2                               | Clause 4.3/4         | Clause 5.3            | Clause 5.4               |                        |                            |
| BH101          |                  | D              | 5.50         |               | 28                       |                          |                                          | 57                   | 25                    | 32                       | 100                    | High Plasticity CH         |
| BH102          |                  | В              | 1.40         |               | 23                       |                          |                                          | 41                   | 19                    | 22                       | 87                     | Intermediate Plasticity CI |
| BH102          |                  | D              | 5.00         |               | 26                       |                          |                                          | 60                   | 26                    | 34                       | 95                     | High Plasticity CH         |
| BH103          |                  | D              | 1.50         |               | 14                       |                          |                                          | 33                   | 17                    | 16                       | 87                     | Low Plasticity CL          |
| BH103          |                  | D              | 7.50         |               | 29                       |                          |                                          | 67                   | 28                    | 39                       | 100                    | High Plasticity CH         |
| WS101          |                  | D              | 1.30         |               | 12                       |                          |                                          | 35                   | 18                    | 17                       | 69                     | Intermediate Plasticity CI |
| WS104          |                  | D              | 1.20         |               | 23                       |                          |                                          | 43                   | 20                    | 23                       | 94                     | Intermediate Plasticity CI |
| WS107          |                  | D              | 1.30         |               | 23                       |                          |                                          | 47                   | 22                    | 25                       | 97                     | Intermediate Plasticity CI |
|                |                  |                |              |               |                          |                          |                                          |                      |                       |                          |                        |                            |
|                |                  |                |              |               |                          |                          |                                          |                      |                       |                          |                        |                            |
|                |                  |                |              |               |                          |                          |                                          |                      |                       |                          |                        |                            |
|                |                  |                |              |               |                          |                          |                                          |                      |                       |                          |                        |                            |
|                |                  |                |              |               |                          |                          |                                          |                      |                       |                          |                        |                            |
|                |                  |                |              |               |                          |                          |                                          |                      |                       |                          |                        |                            |
|                |                  |                |              |               |                          |                          |                                          |                      |                       |                          |                        |                            |
|                |                  |                |              |               |                          |                          |                                          |                      |                       |                          |                        |                            |
|                |                  |                |              |               |                          |                          |                                          |                      |                       |                          |                        |                            |
|                |                  |                |              |               |                          |                          |                                          |                      |                       |                          |                        |                            |
|                |                  |                |              |               |                          |                          |                                          |                      |                       |                          |                        |                            |

**SYMBOLS:** NP: Non Plastic

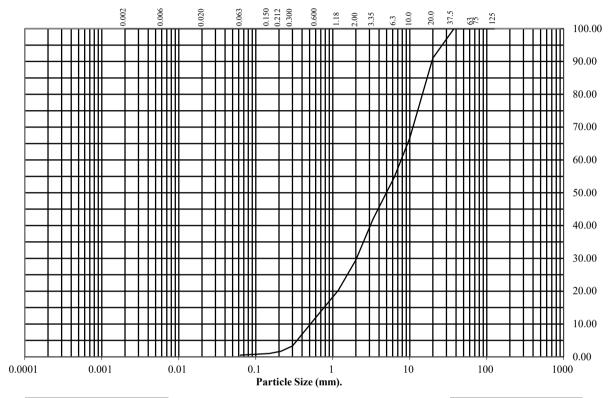
<sup>\*:</sup> Liquid Limit and Plastic Limit Wet Sieved.



### PLASTICITY CHART FOR CASAGRANDE CLASSIFICATION.






| Contract No: |
|--------------|
| PSL21/7376   |
| Client Ref:  |
| 435101       |

**BS1377 : Part 2 : 1990** Wet Sieve, Clause 9.2

Hole Number: BH101 Top Depth (m): 2.50

Sample Number: Base Depth(m):

Sample Type: B



| BS Test    | Percentage |
|------------|------------|
| Sieve (mm) | Passing    |
| 125        | 100        |
| 75         | 100        |
| 63         | 100        |
| 37.5       | 100        |
| 20         | 91         |
| 10         | 67         |
| 6.3        | 55         |
| 3.35       | 42         |
| 2          | 30         |
| 1.18       | 20         |
| 0.6        | 12         |
| 0.3        | 3          |
| 0.212      | 2          |
| 0.15       | 1          |
| 0.063      | 1          |

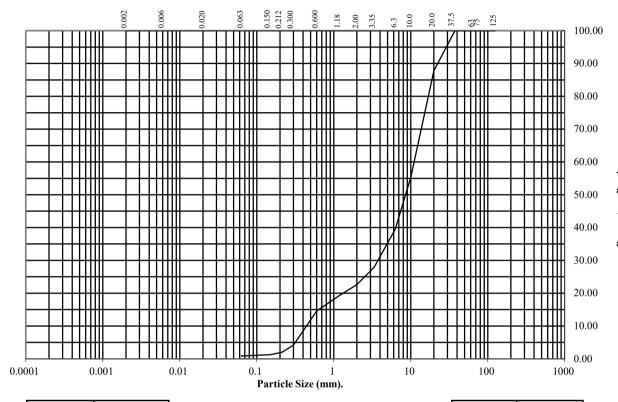
| Soil                                   | Total              |
|----------------------------------------|--------------------|
| Fraction                               | Percentage         |
| Cobbles<br>Gravel<br>Sand<br>Silt/Clay | 0<br>70<br>29<br>1 |

Remarks:

See Summary of Soil Descriptions






| <b>Contract No:</b> |
|---------------------|
| PSL21/7376          |
| Client Ref:         |
| 435101              |

**BS1377 : Part 2 : 1990** Wet Sieve, Clause 9.2

Hole Number: BH102 Top Depth (m): 3.00

Sample Number: Base Depth(m):

Sample Type: B



| BS Test    | Percentage |
|------------|------------|
| Sieve (mm) | Passing    |
| 125        | 100        |
| 75         | 100        |
| 63         | 100        |
| 37.5       | 100        |
| 20         | 88         |
| 10         | 55         |
| 6.3        | 40         |
| 3.35       | 28         |
| 2          | 23         |
| 1.18       | 19         |
| 0.6        | 15         |
| 0.3        | 4          |
| 0.212      | 2          |
| 0.15       | 1          |
| 0.063      | 1          |

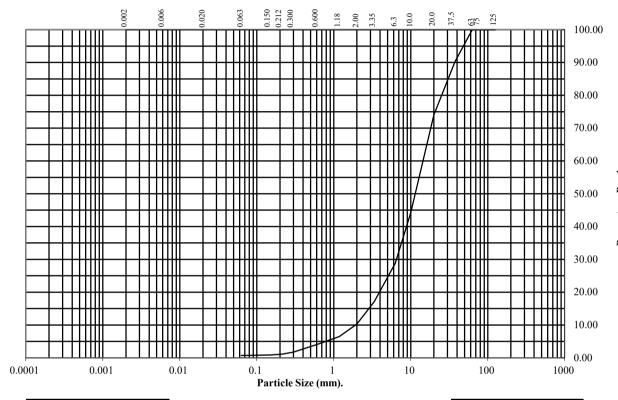
| Soil                                   | Total              |
|----------------------------------------|--------------------|
| Fraction                               | Percentage         |
| Cobbles<br>Gravel<br>Sand<br>Silt/Clay | 0<br>77<br>22<br>1 |

Remarks:

See Summary of Soil Descriptions






| <b>Contract No:</b> |
|---------------------|
| PSL21/7376          |
| Client Ref:         |
| 435101              |

**BS1377 : Part 2 : 1990** Wet Sieve, Clause 9.2

Hole Number: BH103 Top Depth (m): 3.50

Sample Number: Base Depth(m):

Sample Type: B



| BS Test    | Percentage |
|------------|------------|
| Sieve (mm) | Passing    |
| 125        | 100        |
| 75         | 100        |
| 63         | 100        |
| 37.5       | 90         |
| 20         | 74         |
| 10         | 44         |
| 6.3        | 29         |
| 3.35       | 17         |
| 2          | 10         |
| 1.18       | 6          |
| 0.6        | 4          |
| 0.3        | 2          |
| 0.212      | 1          |
| 0.15       | 1          |
| 0.063      | 1          |

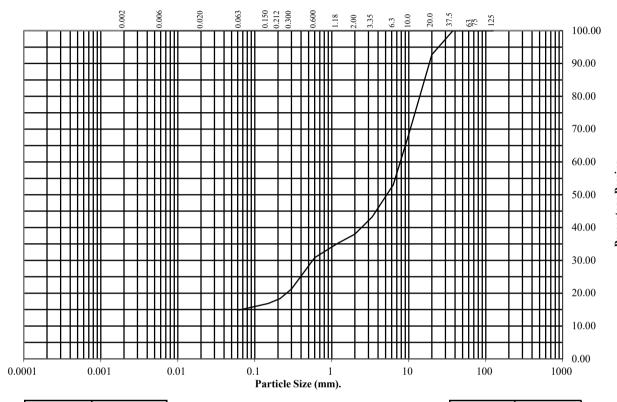
| Soil                                   | Total        |
|----------------------------------------|--------------|
| Fraction                               | Percentage   |
| Cobbles<br>Gravel<br>Sand<br>Silt/Clay | 0<br>90<br>9 |

Remarks:

See Summary of Soil Descriptions






| Contract No: |
|--------------|
| PSL21/7376   |
| Client Ref:  |
| 435101       |

**BS1377 : Part 2 : 1990** Wet Sieve, Clause 9.2

Hole Number: WS104 Top Depth (m): 1.80

Sample Number: Base Depth(m):

Sample Type: D



| BS Test    | Percentage |
|------------|------------|
| Sieve (mm) | Passing    |
| 125        | 100        |
| 75         | 100        |
| 63         | 100        |
| 37.5       | 100        |
| 20         | 93         |
| 10         | 68         |
| 6.3        | 53         |
| 3.35       | 43         |
| 2          | 38         |
| 1.18       | 35         |
| 0.6        | 31         |
| 0.3        | 21         |
| 0.212      | 18         |
| 0.15       | 17         |
| 0.063      | 15         |

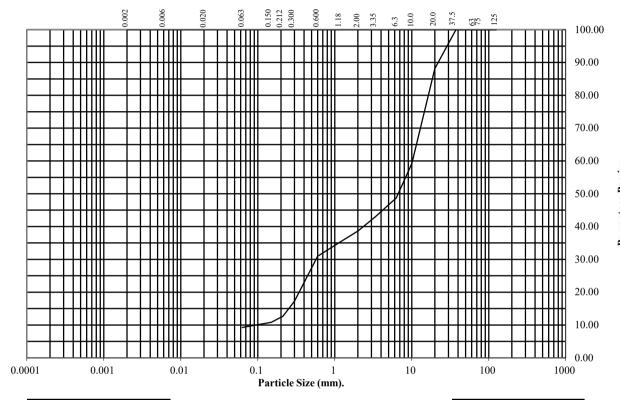
| Soil                                   | Total               |
|----------------------------------------|---------------------|
| Fraction                               | Percentage          |
| Cobbles<br>Gravel<br>Sand<br>Silt/Clay | 0<br>62<br>23<br>15 |

Remarks:

See Summary of Soil Descriptions






| <b>Contract No:</b> |
|---------------------|
| PSL21/7376          |
| Client Ref:         |
| 435101              |

**BS1377 : Part 2 : 1990**Wet Sieve, Clause 9.2

Hole Number: WS107 Top Depth (m): 2.10

Sample Number: Base Depth(m):

Sample Type: B



| BS Test    | Percentage |
|------------|------------|
| Sieve (mm) | Passing    |
| 125        | 100        |
| 75         | 100        |
| 63         | 100        |
| 37.5       | 100        |
| 20         | 88         |
| 10         | 59         |
| 6.3        | 49         |
| 3.35       | 43         |
| 2          | 39         |
| 1.18       | 35         |
| 0.6        | 31         |
| 0.3        | 17         |
| 0.212      | 13         |
| 0.15       | 11         |
| 0.063      | 9          |

| Soil                                   | Total              |
|----------------------------------------|--------------------|
| Fraction                               | Percentage         |
| Cobbles<br>Gravel<br>Sand<br>Silt/Clay | 0<br>61<br>30<br>9 |

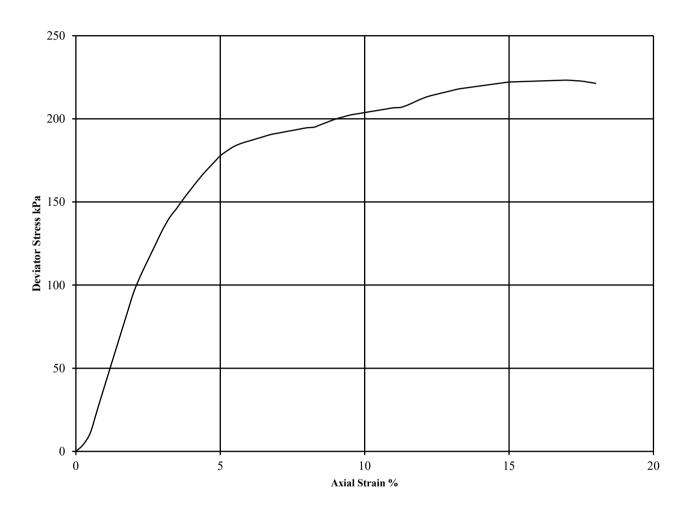
Remarks:

See Summary of Soil Descriptions





NCP Carpark, Heathrow


### WITHOUT MEASUREMENT OF PORE PRESSURE

BS1377: Part7: 1990: Clause 9

Hole Number: BH101 Top Depth (m): 5.00

Sample Number: Base Depth (m):

Sample Type U100



| Diamet   | er (mm): | 102     | Height  | (mm):      | 204                       | Test:                                  | UU Multistage |         | UU Multistage                     |  | Remarks |
|----------|----------|---------|---------|------------|---------------------------|----------------------------------------|---------------|---------|-----------------------------------|--|---------|
|          | Moisture | Bulk    | Dry     | Cell       | Corr. Max.                | Shear                                  | Failure       | Mode    | Undisturbed Sample                |  |         |
| Specimen | Content  | Density | Density | Pressure   | Deviator                  | Strength                               | Strain        | of      | Sample taken from top of tube     |  |         |
|          | (%)      | (Mg/m3) | (Mg/m3) | (kPa)      | Stress                    | Cu                                     | (%)           | Failure | Rate of strain = 2 %/min          |  |         |
|          |          |         |         |            | (kPa)                     | (kPa)                                  |               |         | Latex Membrane used 0.2 mm thick  |  |         |
|          |          |         |         | $\theta_3$ | $(\theta_1 - \theta_3)_f$ | $^{1}/_{2}(\theta_{1}-\theta_{3})_{f}$ |               |         | Membrane Correction applied (kPa) |  |         |
| 1        | 24       | 2.09    | 1.68    | 50         | 195                       | 97                                     | 8.3           |         | 0.36 0.35 0.34                    |  |         |
|          |          |         |         | 100        | 207                       | 103                                    | 11.3          |         | See summary of soil descriptions  |  |         |
|          |          |         |         | 200        | 223                       | 112                                    | 17.0          | Plastic |                                   |  |         |





NCP Carpark, Heathrow

### WITHOUT MEASUREMENT OF PORE PRESSURE

BS1377: Part7: 1990: Clause 9

Hole Number: BH101 Top Depth (m): 10.00

Sample Number: Base Depth (m):

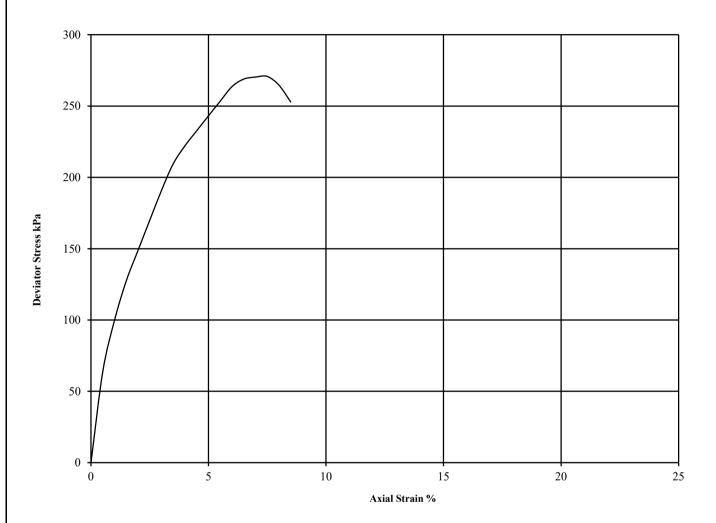
Sample Type U100



| Diamet   | er (mm): | 102     | Height  | (mm):      | 204                       | Test:                                  | UU Multistage |         | Remarks                           |  |  |
|----------|----------|---------|---------|------------|---------------------------|----------------------------------------|---------------|---------|-----------------------------------|--|--|
|          | Moisture | Bulk    | Dry     | Cell       | Corr. Max.                | Shear                                  | Failure       | Mode    | Undisturbed Sample                |  |  |
| Specimen | Content  | Density | Density | Pressure   | Deviator                  | Strength                               | Strain        | of      | Sample taken from top of tube     |  |  |
|          | (%)      | (Mg/m3) | (Mg/m3) | (kPa)      | Stress                    | Cu                                     | (%)           | Failure | Rate of strain = 2 %/min          |  |  |
|          |          |         |         |            | (kPa)                     | (kPa)                                  |               |         | Latex Membrane used 0.2 mm thick  |  |  |
|          |          |         |         | $\theta_3$ | $(\theta_1 - \theta_3)_f$ | $^{1}/_{2}(\theta_{1}-\theta_{3})_{f}$ |               |         | Membrane Correction applied (kPa) |  |  |
| 1        | 27       | 2.02    | 1.60    | 100        | 210                       | 105                                    | 4.3           |         | 0.36 0.36 0.36                    |  |  |
| _        |          |         |         | 200        | 219                       | 110                                    | 6.3           |         | See summary of soil descriptions  |  |  |
|          |          |         |         | 400        | 235                       | 118                                    | 8.5           | Plastic |                                   |  |  |



NCP Carpark, Heathrow


### WITHOUT MEASUREMENT OF PORE PRESSURE

BS1377: Part7: 1990: Clause 8

Hole Number: BH102 Top Depth (m): 9.00

Sample Number: Base Depth (m):

Sample Type U100

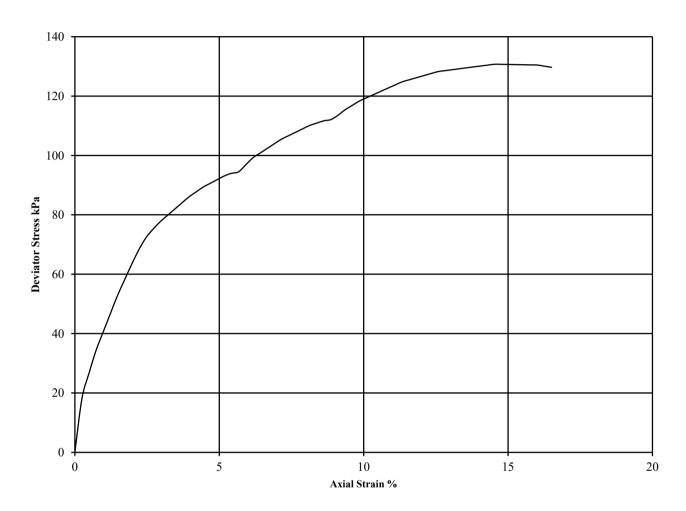


| Diamete  | er (mm): | 102     | Height  | (mm):      | 204                       | Test:                                  | UU Single Stage |         | Remarks:                         |  |
|----------|----------|---------|---------|------------|---------------------------|----------------------------------------|-----------------|---------|----------------------------------|--|
| Specimen | Moisture | Bulk    | Dry     | Cell       | Corr. Max.                | Shear                                  | Failure Mode    |         | Undisturbed Sample               |  |
|          | Content  | Density | Density | Pressure   | Deviator                  | Strength                               | Strain          | of      | Sample taken from top of tube    |  |
|          | (%)      | (Mg/m3) | (Mg/m3) | (kPa)      | Stress                    | Cu                                     | (%)             | Failure | Rate of strain = 2 %/min         |  |
|          |          |         |         |            | (kPa)                     | (kPa)                                  |                 |         | Latex Membrane used 0.2 mm thic  |  |
|          |          |         |         | $\theta_3$ | $(\theta_1 - \theta_3)_f$ | $^{1}/_{2}(\theta_{1}-\theta_{3})_{f}$ |                 |         | Correction applied 0.36          |  |
| 1        | 30       | 2.02    | 1.56    | 90         | 271                       | 135                                    | 7.5             | Brittle | See summary of soil descriptions |  |

<sup>\*</sup> Single stage test due to early brittle failure



NCP Carpark, Heathrow


### WITHOUT MEASUREMENT OF PORE PRESSURE

BS1377: Part7: 1990: Clause 9

Hole Number: BH103 Top Depth (m): 6.50

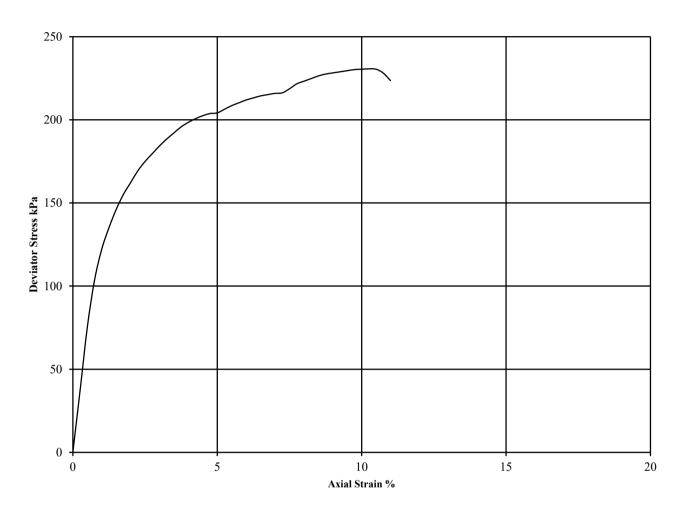
Sample Number: Base Depth (m):

Sample Type U100



| Diamet   | ameter (mm): 102 |         | 2 Height (mm): |            | 207                       | Test:                                  | UU Multistage |         | Remarks                           |  |  |
|----------|------------------|---------|----------------|------------|---------------------------|----------------------------------------|---------------|---------|-----------------------------------|--|--|
|          | Moisture         | Bulk    | Dry            | Cell       | Corr. Max.                | Shear                                  | Failure       | Mode    | Undisturbed Sample                |  |  |
| Specimen | Content          | Density | Density        | Pressure   | Deviator                  | Strength                               | Strain        | of      | Sample taken from top of tube     |  |  |
|          | (%)              | (Mg/m3) | (Mg/m3)        | (kPa)      | Stress                    | Cu                                     | (%)           | Failure | Rate of strain = 2 %/min          |  |  |
|          |                  |         |                |            | (kPa)                     | (kPa)                                  |               |         | Latex Membrane used 0.2 mm thic   |  |  |
|          |                  |         |                | $\theta_3$ | $(\theta_1 - \theta_3)_f$ | $^{1}/_{2}(\theta_{1}-\theta_{3})_{f}$ |               |         | Membrane Correction applied (kPa) |  |  |
| 1        | 25               | 2.03    | 1.63           | 70         | 94                        | 47                                     | 5.7           |         | 0.36 0.36 0.34                    |  |  |
|          |                  |         |                | 140        | 112                       | 56                                     | 8.9           |         | See summary of soil descriptions  |  |  |
|          |                  |         |                | 280        | 131                       | 65                                     | 14.5          | Plastic |                                   |  |  |




### WITHOUT MEASUREMENT OF PORE PRESSURE

BS1377: Part7: 1990: Clause 9

Hole Number: BH103 Top Depth (m): 9.00

Sample Number: Base Depth (m):

Sample Type U100



| Diamet   | er (mm): | 102     | Height  | (mm):      | 204                       | Test:                                  | UU Mı   | UU Multistage Remarks |                                   |
|----------|----------|---------|---------|------------|---------------------------|----------------------------------------|---------|-----------------------|-----------------------------------|
|          | Moisture | Bulk    | Dry     | Cell       | Corr. Max.                | Shear                                  | Failure | Mode                  | Undisturbed Sample                |
| Specimen | Content  | Density | Density | Pressure   | Deviator                  | Strength                               | Strain  | of                    | Sample taken from top of tube     |
|          | (%)      | (Mg/m3) | (Mg/m3) | (kPa)      | Stress                    | Cu                                     | (%)     | Failure               | Rate of strain = 2 %/min          |
|          |          |         |         |            | (kPa)                     | (kPa)                                  |         |                       | Latex Membrane used 0.2 mm thick  |
|          |          |         |         | $\theta_3$ | $(\theta_1 - \theta_3)_f$ | $^{1}/_{2}(\theta_{1}-\theta_{3})_{f}$ |         |                       | Membrane Correction applied (kPa) |
| 1        | 26       | 2.04    | 1.61    | 90         | 204                       | 102                                    | 5.0     |                       | 0.36 0.36 0.35                    |
| _        |          |         |         | 180        | 216                       | 108                                    | 7.3     |                       | See summary of soil descriptions  |
|          |          |         | ·       | 360        | 231                       | 115                                    | 10.3    | Plastic               |                                   |





NCP Carpark, Heathrow





#### ANALYTICAL TEST REPORT

Contract no: 100735

Contract name: NCP Carpark, Heathrow

Client reference: PSL21/7376

Clients name: Professional Soils Laboratory

Clients address: 5/7 Hexthorpe Road

Doncaster DN4 0AR

Samples received: 23 September 2021

**Analysis started:** 23 September 2021

Analysis completed: 30 September 2021

**Report issued:** 30 September 2021

Notes: Opinions and interpretations expressed herein are outside the UKAS accreditation scope.

Unless otherwise stated, Chemtech Environmental Ltd was not responsible for sampling.

All testing carried out at Unit 6 Parkhead, Stanley, DH9 7YB, except for subcontracted testing.

Methods, procedures and performance data are available on request.

Results reported herein relate only to the material supplied to the laboratory. This report shall not be reproduced except in full, without prior written approval. Samples will be disposed of 6 weeks from initial receipt unless otherwise instructed.

**Key:** U UKAS accredited test

M MCERTS & UKAS accredited test

\$ Test carried out by an approved subcontractor

I/S Insufficient sample to carry out test N/S Sample not suitable for testing

Approved by:

Rachael Burton

Customer Support Squad Leader

### **SOILS**

| Lab number                    |                    | 100735-1              | 100735-2   | 100735-3   | 100735-4   | 100735-5   | 100735-6 |      |
|-------------------------------|--------------------|-----------------------|------------|------------|------------|------------|----------|------|
| Sample id                     |                    | BH101                 | BH102      | BH103      | BH103      | WS101      | WS102    |      |
| Depth (m)                     |                    | 5.50                  | 9.50       | 6.10       | 10.00      | 0.60       | 1.60     |      |
| Date sampled                  | 02/08/2021         | 29/07/2021            | 30/07/2021 | 29/07/2021 | 29/07/2021 | 29/07/2021 |          |      |
| Test                          | Method             | Units                 |            |            |            |            |          |      |
| рН                            | CE004 <sup>U</sup> | units                 | 8.4        | 8.4        | 7.3        | 7.5        | 7.1      | 8.2  |
| Magnesium (2:1 water soluble) | CE061              | mg/l Mg               | 12         | 18         | 5.6        | 41         | 11       | 3.6  |
| Chloride (2:1 water soluble)  | CE049 <sup>U</sup> | mg/l Cl               | 5.3        | 3.6        | 4.8        | 3.1        | 4.2      | 9.3  |
| Nitrate (2:1 water soluble)   | CE049 <sup>U</sup> | mg/l NO <sub>3</sub>  | <1         | <1         | <1         | <1         | 3.4      | 13   |
| Sulphate (2:1 water soluble)  | CE061              | mg/l SO <sub>4</sub>  | 188        | 208        | 66         | 811        | 400      | 83   |
| Sulphate (total)              | CE062              | mg/kg SO <sub>4</sub> | 599        | 689        | 208        | 2061       | 929      | 434  |
| Sulphur (total)               | CE119              | mg/kg S               | 3011       | 3114       | 708        | 32683      | 2856     | 302  |
| Sulphur (total)               | CE119              | % w/w S               | 0.30       | 0.31       | 0.07       | 3.27       | 0.29     | 0.03 |

### **SOILS**

| Lab number                    | 100735-7           | 100735-8              | 100735-9   |      |       |
|-------------------------------|--------------------|-----------------------|------------|------|-------|
| Sample id                     | WS104              | WS106                 | WS107      |      |       |
| Depth (m)                     | 0.75               | 2.00                  | 3.50       |      |       |
| Date sampled                  | 29/07/2021         | 29/07/2021            | 29/07/2021 |      |       |
| Test                          | Method             | Units                 |            |      |       |
| рН                            | CE004 <sup>U</sup> | units                 | 7.5        | 8.6  | 8.3   |
| Magnesium (2:1 water soluble) | CE061              | mg/l Mg               | 6.9        | 2.9  | 1.2   |
| Chloride (2:1 water soluble)  | CE049 <sup>U</sup> | mg/l Cl               | 6.0        | 3.6  | 1.1   |
| Nitrate (2:1 water soluble)   | CE049 <sup>U</sup> | mg/I NO <sub>3</sub>  | 47         | 2.4  | 11    |
| Sulphate (2:1 water soluble)  | CE061              | mg/l SO <sub>4</sub>  | 148        | 30   | <10   |
| Sulphate (total)              | CE062              | mg/kg SO <sub>4</sub> | 440        | 245  | <100  |
| Sulphur (total)               | CE119              | mg/kg S               | 197        | 197  | <100  |
| Sulphur (total)               | CE119              | % w/w S               | 0.02       | 0.02 | <0.01 |

### **METHOD DETAILS**

| METHOD | SOILS                         | METHOD SUMMARY              | SAMPLE      | STATUS | LOD  | UNITS                 |
|--------|-------------------------------|-----------------------------|-------------|--------|------|-----------------------|
| CE004  | рН                            | Based on BS 1377, pH Meter  | As received | U      | -    | units                 |
| CE061  | Magnesium (2:1 water soluble) | Aqueous extraction, ICP-OES | Dry         |        | 1    | mg/l Mg               |
| CE049  | Chloride (2:1 water soluble)  | Aqueous extraction, IC-COND | Dry         | U      | 1    | mg/l Cl               |
| CE049  | Nitrate (2:1 water soluble)   | Aqueous extraction, IC-COND | Dry         | U      | 1    | mg/I NO <sub>3</sub>  |
| CE061  | Sulphate (2:1 water soluble)  | Aqueous extraction, ICP-OES | Dry         |        | 10   | mg/l SO <sub>4</sub>  |
| CE062  | Sulphate (total)              | Acid extraction, ICP-OES    | Dry         |        | 100  | mg/kg SO <sub>4</sub> |
| CE119  | Sulphur (total)               | Acid extraction, ICP-OES    | Dry         |        | 100  | mg/kg S               |
| CE119  | Sulphur (total)               | Acid extraction, ICP-OES    | Dry         |        | 0.01 | % w/w S               |

### **DEVIATING SAMPLE INFORMATION**

#### **Comments**

Sample deviation is determined in accordance with the UKAS note "Guidance on Deviating Samples" and based on reference standards and laboratory trials.

For samples identified as deviating, test result(s) may be compromised and may not be representative of the sample at the time of sampling.

Chemtech Environmental Ltd cannot be held responsible for the integrity of sample(s) received if Chemtech Environmental Ltd did not undertake the sampling. Such samples may be deviating.

Key

N No (not deviating sample)
Y Yes (deviating sample)
NSD Sampling date not provided

NST Sampling time not provided (waters only)

EHT Sample exceeded holding time(s)

IC Sample not received in appropriate containers HP Headspace present in sample container

NCF Sample not chemically fixed (where appropriate)


OR Other (specify)

| Lab ref  | Sample id | Depth (m) | Deviating | Tests (Reason for deviation) |
|----------|-----------|-----------|-----------|------------------------------|
| 100735-1 | BH101     | 5.50      | Υ         | All (EHT)                    |
| 100735-2 | BH102     | 9.50      | Y         | All (EHT)                    |
| 100735-3 | BH103     | 6.10      | Υ         | All (EHT)                    |
| 100735-4 | BH103     | 10.00     | Y         | All (EHT)                    |
| 100735-5 | WS101     | 0.60      | Υ         | All (EHT)                    |
| 100735-6 | WS102     | 1.60      | Y         | All (EHT)                    |
| 100735-7 | WS104     | 0.75      | Y         | All (EHT)                    |
| 100735-8 | WS106     | 2.00      | Υ         | All (EHT)                    |
| 100735-9 | WS107     | 3.50      | Υ         | All (EHT)                    |



## Further Background Information







## **Bridge Industrial**

## **BRIDGE POINT HEATHROW**

**Scoping Note** 





## **Bridge Industrial**

### **BRIDGE POINT HEATHROW**

### **Scoping Note**

TYPE OF DOCUMENT (VERSION) CONFIDENTIAL

PROJECT NO. 70088897

OUR REF. NO. 70088897.01

**DATE: SEPTEMBER 2021** 

#### **WSP**

Three White Rose Office Park Millshaw Park Lane Leeds LS11 0DL

Phone: +44 113 395 6200

Fax: +44 113 395 6201

WSP.com



## **QUALITY CONTROL**

| Issue/revision | First issue           | Revision 1 | Revision 2 | Revision 3 |
|----------------|-----------------------|------------|------------|------------|
| Remarks        |                       |            |            |            |
| Date           |                       |            |            |            |
| Prepared by    | J Wood / S<br>Boynton |            |            |            |
| Signature      |                       |            |            |            |
| Checked by     | B Handley             |            |            |            |
| Signature      |                       |            |            |            |
| Authorised by  | D Meehan              |            |            |            |
| Signature      |                       |            |            |            |
| Project number | 70088897              |            |            |            |
| Report number  |                       |            |            |            |
| File reference |                       |            |            |            |



## **CONTENTS**

| 1   | INTRODUCTION                                                                 | 1  |
|-----|------------------------------------------------------------------------------|----|
| 1.1 | PREAMBLE                                                                     | 1  |
| 1.2 | PLANNING HISTORY                                                             | 1  |
| 1.3 | REPORT STRUCTURE                                                             | 1  |
| 2   | POLICY ANALYSIS                                                              | 2  |
| 2.2 | NATIONAL PLANNING POLICY FRAMEWORK                                           | 2  |
| 2.3 | NATIONAL PLANNING PRACTICE GUIDANCE                                          | 2  |
| 2.4 | HILLINGDON LOCAL PLAN PART 1: STRATEGIC POLICIES (NOVEMBER 2012)             | 2  |
| 2.5 | HILLINGDON LOCAL PLAN PART 2: DEVELOPMENT MANAGEMENT POLICIES (JANUARY 2020) | 2  |
| 2.6 | MAYOR'S TRANSPORT STRATEGY 2018                                              | 3  |
| 3   | EXISTING CONDITIONS                                                          | 4  |
| 3.1 | SITE LOCATION                                                                | 4  |
| 3.2 | EXISTING SITE                                                                | 5  |
| 3.3 | LOCAL HIGHWAY NETWORK                                                        | 5  |
| 3.4 | HIGHWAY SAFETY                                                               | 6  |
| 4   | SUSTAINABLE TRANSPORT PROVISION                                              | 8  |
| 4.1 | INTRODUCTION                                                                 | 8  |
| 4.2 | WALKING AND CYCLING                                                          | 8  |
| 4.3 | EXISTING PUBLIC TRANSPORT PROVISION                                          | 9  |
| 5   | PROPOSED DEVELOPMENT                                                         | 14 |
| 5.2 | DEVELOPMENT ACCESS                                                           | 15 |

BRIDGE POINT HEATHROW

Project No.: 70088897 | Our Ref No.: 70088897.01 Bridge Industrial



| 5.3 | PARKING PROVISION                                   | 15 |
|-----|-----------------------------------------------------|----|
| 6   | TRIP GENERATION AND IMPACT                          | 16 |
| 6.1 | METHODOLOGY                                         | 16 |
| 6.2 | EXISTING TRIP GENERATION                            | 16 |
| 6.3 | FORECAST TRIP GENERATION (WAREHOUSING - COMMERICAL) | 17 |
| 6.4 | NET IMPACT                                          | 19 |
| 7   | CONCLUSION                                          | 20 |

BRIDGE POINT HEATHROW Project No.: 70088897 | Our Ref No.: 70088897.01 Bridge Industrial



### 1 INTRODUCTION

#### 1.1 PREAMBLE

- 1.1.1 WSP has been appointed by Bridge Industrial to prepare a scoping note prior to the submission of a full planning application for the change of use of the existing surface level Heathrow Flightpath NCP car park off Bath Road, north of Heathrow Airport, to warehousing and storage under Use Class B2/B8 with associated office space (E(g)(ii)&(iii))). The proposal is for some 8,562m² of this use.
- 1.1.2 This scoping note aims to agree the scope of the transport report which will be prepared to support the planning application including policy to be considered, sustainable transport provision, development access, and trip rates to be used. It is considered a Transport Statement (TS) is appropriate for considering the impact of the development rather than a full Transport Assessment (TA) due to the net impact of trips on the highway network which are unlikely to be severe and it considered there will be no need for junction modelling as part of the application.
- 1.1.3 The site is located within the London Borough of Hillingdon who act as Local Planning Authority (LPA) and the Local Highway Authority (LHA). Transport for London (TFL) are responsible many areas of the transport network in London including rail networks, buses, taxis, principal roads, cycling provision, trams and river services. National Highways (NH) is responsible for the Strategic Road Network (SRN) such as the M4, however, it is anticipated the impact of the proposals on the SRN will be negligible.
- 1.1.4 It is considered the application site is ideally located for a development of this nature due to its proximity to the SRN and Heathrow Airport which provide the opportunity for the site to accommodate both road and air freight.

#### 1.2 PLANNING HISTORY

- 1.2.1 The NCP car park was granted planning permission in June 2021 with provision of a new vehicular access to the car park via A4 Bath Road to the south of the site (Planning reference 41632/APP/2021/1301). The junction comprises a left-in/left-out priority arrangement from the site frontage onto the A4 with a break proposed in the bus lane on the A4 to ensure safe access and egress from the site.
- 1.2.2 As part of this planning application the appropriateness of this access will be reviewed by undertaking swept path analysis with revisions proposed to the access where required, however, it is considered this access should be suitable with only potential for minor changes.

#### 1.3 REPORT STRUCTURE

- 1.3.1 The structure of this scoping note is as follows:
  - Section 2 outlines policy which will be considered as part of the TS;
  - Section 3 describes the existing conditions including the local highway network;
  - Section 4 outlines the sustainable transport connections from the site:
  - Section 5 provides an overview of the development proposals at this stage in the application process;
  - Section 6 proposed trip rates to be used for the application and considered likely trip generation;
  - Section 7 summarises this scoping note.



### 2 POLICY ANALYSIS

2.1.1 As part of the full planning application a detailed review of national and local planning policy will be undertaken, however, for the purpose of this scoping note the policy to be reviewed and key points have been outlined below.

#### 2.2 NATIONAL PLANNING POLICY FRAMEWORK

- Safe and sustainable access can be achieved to the development;
- Sustainable transport will be available to the development with the proposals encouraging sustainable transport where possible;
- The development will be designed to enable to safe movement of all users including pedestrians, cyclists and delivery vehicles;
- The proposals won't result in a residual cumulative impact on the highway network which could be considered severe.

#### 2.3 NATIONAL PLANNING PRACTICE GUIDANCE

- A full TS will be submitted as part of the planning application to consider the impact of the proposals;
- The trip generation of the proposals and cumulative impact will be considered as part of a full TS;
- A review of PIC data will be undertaken as part of the planning application to consider the impact of the proposals on highway safety;
- The need for any further mitigation on the highway network will be considered as part of a full TS.

# 2.4 HILLINGDON LOCAL PLAN PART 1: STRATEGIC POLICIES (NOVEMBER 2012)

- The plan sets out the need to use the presence of Heathrow airport to prosper;
- The development will be highly accessible by sustainable transport reducing its environmental impact;
- The development will help meet the quota of providing 9,000 new jobs in the borough which would be conveniently accessible from throughout London;
- Further improvements to public transport set out in the plan would further enhance the accessibility of the site.

# 2.5 HILLINGDON LOCAL PLAN PART 2: DEVELOPMENT MANAGEMENT POLICIES (JANUARY 2020)

- The proposals will accord with policy DMT1 Managing Transport impacts by ensuring the development can be conveniently accessed by public transport as well as being inclusive for pedestrians and cyclists;
- Policy DM2 Highway Impacts will be considered in the TS to ensure the impacts of the proposals on the surrounding highway network are minimised;
- The level of vehicle parking will be detailed in the full TS in accordance with Policy DMT6;
- The development is ideally located for freight development due to its proximity to the SRN as set out in Policy DMT7.

BRIDGE POINT HEATHROW
Project No.: 70088897 | Our Ref No.: 70088897.01
Bridge Industrial



#### 2.6 MAYOR'S TRANSPORT STRATEGY 2018

- The transport strategy sets out the need to deliver a London-wide cycle network with new, high-quality and safe routes, this route would connect to Heathrow airport providing convenient access to the development;
- Policies 15 and 16 set out the need to reduce freight in the city centre while improving freight on the city's SRN, the proposal is ideally located to support this;
- The Elizabeth Line will also be open within the lifespan of the strategy which will serve Heathrow airport, further improving the accessibility of the development.



### 3 EXISTING CONDITIONS

#### 3.1 SITE LOCATION

- 3.1.1 The site is located within the London Borough of Hillington and strategically located north of Heathrow Airport and is within proximity of both the M4 and M25. The site is located in the Village of Sipson and is bound to east by the M4 and to the south by the A4 Bath Road with residential properties to the west with what are understood to be unoccupied buildings to the north.
- 3.1.2 A map showing the site in relation to the wider context of the area is shown in **Figure 3-1**.
- 3.1.3 The site benefits from excellent access to the following strategic locations:
  - Heathrow Cargo Terminal 13 Minute Drive 8.5km;
  - Heathrow Terminals 2 & 3 (including underground and rail stations) 4-minute drive 1.7km;
  - M4 Junction 4 6-minute drive 3.3km;
  - M25 Junction 14 8-minute drive 5.0km;
  - Heathrow Terminal 5 (including underground and rail stations) 8-minute drive 4.6km; and
  - Heathrow Terminal 4 (including underground and rail stations) 11 minutes' drive 6.7km.

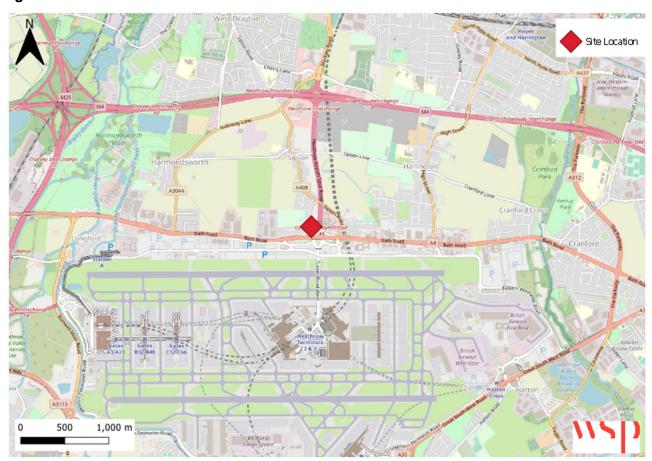



Figure 3-1 - Site Location - Wider Context

Project No.: 70088897 | Our Ref No.: 70088897.01

Bridge Industrial



#### 3.2 EXISTING SITE

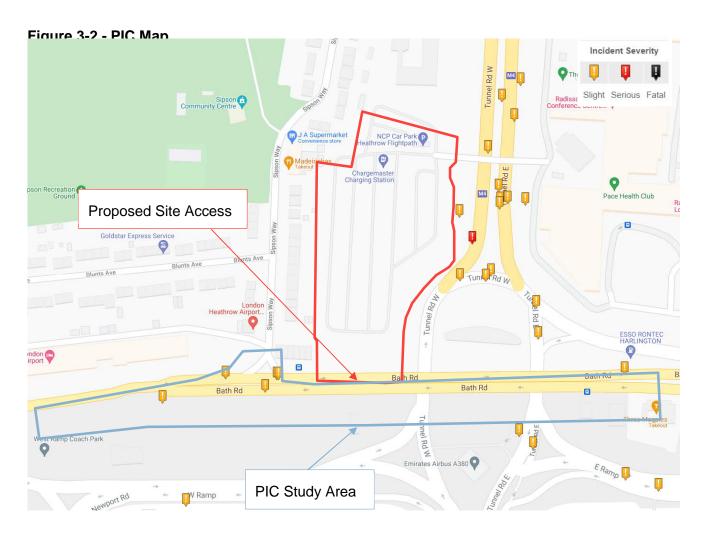
- 3.2.1 The existing site is occupied via the Heathrow Flightpath NCP car park intended to serve terminals two and three of Heathrow airport. Under the existing car park layout access is achieved from the northeast of the site, via a bridge over the M4 which is accessed to the rear of the Park Inn Radisson Hotel.
- 3.2.2 As previously discussed, the car park was granted planning permission for a new access to be provided from the A4 Bath Road in June 2021. The junction comprises a left-in/left-out priority arrangement from the site frontage onto the A4 with a break proposed in the bus lane on the A4 to ensure safe access and egress from the site.
- 3.2.3 The car park provides 630 parking bays including 4 disabled bays and EV parking. The car park is open 24 hours a day with access to the car park is controlled by automatic barrier with staff also present on site.
- 3.2.4 A shuttle bus operates between the site and terminals 2 and 3 of Heathrow airport every 20 minutes between 04:00 and 23:40.

#### 3.3 LOCAL HIGHWAY NETWORK

#### A4 BATH ROAD

- 3.3.1 The A4 Bath Road, located to the south of the site, is a dual carriageway with proposed access and egress arrangements to and from the site taken from the eastbound carriageway when the new access is developed. The westbound carriageway can conveniently be accessed via the Nene Road Roundabout located 400m east of the proposed site access.
- 3.3.2 Within the vicinity of the site Bath Road is a 50-mph dual carriageway. The eastbound direction has a bus, taxi, motorcycle and cycle lane which operates at all times and one general traffic lane; the total width of this carriageway is circa 6.7m. The westbound direction is a dual carriageway open to all traffic and has a total width of circa 6.7m.
- 3.3.3 The A4 benefits from shared space footways between Stanwell Moor Road and Henley's Roundabout which covers the site frontage; this is a long-distance continuous route between the site and key destinations. Within the frontage of the site the shared space footway is circa 2.5m on the northern side of Bath Road and circa 2.0m on the southern side of Bath Road.
- 3.3.4 To the west of the site a priority cycle crossing is provided at the Sipson Way / Bath Road junction. This allows cycles to cross the Sipson Way / Bath Road junction and also cross the A4 Bath Road via a central refuge which is circa 2.0m in length.
- 3.3.5 The A4 in its entirety links Central London to Bath and Bristol however the majority of traffic is carried by the nearby M4 which lies to the north of the site.




#### **M4**

- 3.3.6 To the east of the site there is an interchange between the A4 and the M4 spur road; this links the Heathrow Airport tunnel to the M4.
- 3.3.7 The M4 spur is circa 1.5km in length and interchanges with the M4 at Junction 4 (Heathrow Interchange). The southbound carriageway has a bus lane located in the offside lane, 3 lanes for general traffic and a hard shoulder on the nearside lane. The northbound carriageway has three lanes plus a hard shoulder; this widens to five lanes at the stop line located at the Heathrow Interchange junction.
- 3.3.8 The M4 in its entirety runs from London to South Wales via the Severn Bridge and runs roughly parallel to the A4 between London and Bristol.

#### 3.4 HIGHWAY SAFETY

- 3.4.1 As part of the full planning application, Personal Injury Collision (PIC) data will be obtained from the LHA if required, however, a preliminary review of highway safety have been undertaken using the free online service Crashmap for the years 2016 2020. The collisions recorded are shown in Figure 3-2 below.
- 3.4.2 Based on analysis of the accident data there are no accident hotspots within the study area and therefore there is not considered to be an underlying road safety risk within the vicinity of the site. The PIC records clearly demonstrate that the average frequency of incidents is low and there are no accident hotspots near the site. The local highway network does not require mitigation measures to be implemented as part of the proposed redevelopment in planning terms.





Bridge Industrial



### 4 SUSTAINABLE TRANSPORT PROVISION

#### 4.1 INTRODUCTION

- 4.1.1 Central and Local Government objectives aim to ensure that new developments are provided in sustainable locations, where the need to travel is minimised and the use of alternative modes of travel to the private car can be maximised.
- 4.1.2 The development is located immediately north of Heathrow airport and, therefore, benefits from a range of sustainable transport provision which provides connections to the area from destinations throughout London. As the proposals are developed, provision will be made to ensure sustainable transport is encouraged to the site (i.e. through the provision of showers/changing facilities).

#### 4.2 WALKING AND CYCLING

#### **WALKING**

- 4.2.1 Walking has traditionally been recognised as a significant mode of travel when accessing local services and has the greatest potential to substitute for short car-borne trips (i.e. those which involve journeys of less than 2km). In addition, walking can easily be integrated within all forms of transport for journeys further afield, as part of a multi-modal journey. This is consistent with advice contained in the Institution of Highways and Transportation published 'Guidelines for Providing for Journeys on Foot', which sets out suggested maximum walking distances to/from new developments for commuting and other journeys.
- 4.2.2 The site is in walking distance of a range of services and amenities which will benefit future employees of the proposed development. The development is in walking distance of numerous food outlets including restaurants and takeaways reducing car trips which will be made by the employees at the development on breaks. The site is also immediately east of 'J A Supermarket" which will provide access to a range of daily provisions which may be required without the need for private vehicular trips.
- 4.2.3 The site is also located to a number of residential properties in the villages of Sipson and Harlington which have the potential to provide a proportion of the workforce at the proposed development reducing vehicle trips generated by commuters. Green space and recreational grounds are also available in these villages which will provide local space for employees at the development to spend their breaks and encourage a culture of sustainability at the development.
- 4.2.4 As discussed in Section 3 the surrounding pedestrian infrastructure is of a high-quality to encourage journeys to the site on foot, suitable infrastructure is also proposed at the development to ensure the proposals encourage pedestrian journeys to the development.

#### 4.2.5 CYCLING

- 4.2.6 Cycling is also a convenient way to travel and there is a network of road routes available to cyclists within the vicinity of the application site, providing linkage to public transport hubs and facilities.
- 4.2.7 Cycling has traditionally been recognised as a significant mode of travel which has the potential to substitute for short car-borne trips (i.e. particularly those which involve journeys of less than 5km) and can often form part of longer multi- modal trips involving public transport.

BRIDGE POINT HEATHROW

Project No.: 70088807 | Our Pof |

Project No.: 70088897 | Our Ref No.: 70088897.01 Bridge Industrial

CONFIDENTIAL | WSP September 2021 Page 8 of 20



- 4.2.8 This is consistent with advice contained within the DfT, published 'Local Transport Note 2/08' which reaffirms that a 5km catchment represents an acceptable maximum distance, with 8km forming a preferred maximum distance. As such, the public transport hubs and residential areas are highlighted as falling within an acceptable walking distance of the site must also be considered accessible by cycle.
- 4.2.9 The site is in comfortable cycling distance of a range of destinations including Drayton Garden Village, Harmondsworth and Cranford. Public transport hubs are also within cycling distance including Heathrow T2 & 3, Heathrow T5 and Hayes & Harlington train station further enhancing the accessibly of the site.
- 4.2.10 Direct cycle access to Terminal 2 & 3 will be provided in the first quarter of 2023 where segregated cycle lanes will be provided via a tunnel parallel to the existing traffic tunnel (Tunnel Road).
- 4.2.11 As previously discussed, a shared-use facility is provided along Bath Road which will provide a safe route to the development for cyclists. Additionally, the development will provide appropriate cycle infrastructure and parking to ensure the site can be safely navigated by bicycle.

#### 4.3 EXISTING PUBLIC TRANSPORT PROVISION

- 4.3.1 With regards to public transport provision at new developments, the Institution of Highways and Transportation publication 'Planning for Public Transport in Development' states:
  - "The maximum walking distance to a bus stop should not exceed 400m and preferably be no more than 300m. These distances are quoted for guidance and should not be followed slavishly if that would lead to complex or indirect bus routes." (Executive Summary)
  - "The Department of the Environment has recommended that residents should not have to walk more than 400m (¼ mile) to their nearest bus stop. These standards should be treated as guidance, to be achieved where possible by services that operate at regular frequencies along direct routes. It is more important to provide services that are easy for passengers to understand and attractive to use than to achieve slavish adherence to some arbitrary criteria for walking distance. Residential areas in particular need sensible routes that do not spoil the quality of the place." (Paragraph 5.18)
  - "New developments should be located so that public transport trips involve a walking distance of less than 400m from the nearest bus stop or 800m from the nearest railway station." (Paragraph 5.21)



4.3.2 The application site is well located in terms of its proximity to public transport routes, including bus and rail services which operate within the immediate vicinity of the application site and local area. Further details relating to these provisions are set out below.

## **BUS SERVICES**

- 4.3.3 Due to the proximity of the site to Heathrow Airport there are numerous bus services available within walking distance of the site which provide routes to a number of destinations throughout London and surrounding towns and villages.
- 4.3.4 The nearest bus stops to the site are located immediately to the south of the development on Bath Road, with a layby, shelter, seating and timetable information available for eastbound and westbound services; buses travelling east on Bath Road also benefit from a bus lane. A number of other stops are also in walking distance of the site with stops of a similar high-quality.
- **4.3.5** The bus services available are summarised in **Table 4-1** below.



| Table 4-1 – Summary<br>of nearby Bus<br>Services | Route                                                    | Mon – Sat Frequency          | Sunday Frequency      |  |
|--------------------------------------------------|----------------------------------------------------------|------------------------------|-----------------------|--|
| 4 (non-TFL bus)                                  | Heathrow Central Bus<br>Station - Maidenhead             | 30 minutes                   | 60 minutes            |  |
| 7 (non-TFL bus)                                  | Kennedy Park Shops -<br>Heathrow, Central Bus<br>Station | 4 per day (overnight)        | 4 per day (overnight) |  |
| 8 (non-TFL bus)                                  | Slough Bus Station -<br>Heathrow, Central Bus<br>Station | 1 per day (early<br>morning) | 2 per day (overnight) |  |
| 81                                               | Hounslow – Colnbrook<br>– Slough                         | 12 minutes                   | 12-15 minutes         |  |
| 105                                              | Heathrow – Southall -<br>Greenford                       | 15 minutes                   | 15 minutes            |  |
| 111                                              | Heathrow – Hounslow<br>– Kingston                        | 10 minutes                   | 12-15 minutes         |  |
| 278                                              | Heathrow – Hayes –<br>Ruislip                            | 15 minutes                   | 20 minutes            |  |
| 285                                              | Heathrow – Feltham –<br>Kingston                         | 10 – 15 minutes              | 12 minutes            |  |
| 423                                              | Heathrow (Terminal 5)  – Beavers Farm - Hounslow         | 20 minutes                   | 30 minutes            |  |
| N140                                             | Heathrow-Harrow-<br>Harrow Weald                         | 30 minutes                   | 30 minutes            |  |
| U3                                               | Heathrow – West<br>Drayton – Uxbridge                    | 12 - 20 minutes              | 20 minutes            |  |
| 555 (non-TFL bus)                                | London Heathrow<br>Airport - Whiteley<br>Village         | 60 minutes                   | 60 minutes            |  |



| N9  | Heathrow (Terminal 5)- Hammersmith - Aldwych | 30-60 minutes | 60 minutes |
|-----|----------------------------------------------|---------------|------------|
| 222 | Hounslow – West<br>Drayton – Uxbridge        | 10 minutes    | 12 minutes |

- 4.3.6 As shown by **Table 4-1** regular services are available to the site from a range of destinations including Heathrow Airport, allowing for rail and underground connections, as well as Kingston, Hounslow and Hayes
- 4.3.7 The majority of these services are available to the nearest bus stops to the site on Bath Road with a service available from these stops approximately every 2-3 minutes. The number and frequency of these services ensure that bus journeys to the site have the potential to provide a primary mode of travel for future employees at the development.
- 4.3.8 Further bus services are available at the Heathrow Terminal 2&3 interchange approximately 2km south of the site, this is beyond the walking distance to bus services set out in the CIHT guidance, however, it may be a viable distance for some employees of the development. In addition to further local services, National Express services are available to destinations throughout the UK.

## **ACCESS BY RAIL**

- 4.3.9 The nearest railway stations to the site are the Heathrow Terminal 2&3 national rail and underground stations approximately 2km south of the site, although this is beyond the 800m walking distance to railway stations set out in the CIHT guidance previously discussed it may be a viable distance for some future employees of the development. Particularly since the rail station can be accessed via a non-stop bus service and by cycling.
- 4.3.10 Heathrow Terminal 2 & 3 Railway Station provides access to the Heathrow Express which provides a fast, non-stop route to London Paddington from where a range of destinations throughout the UK are subsequently available. Tickets for the Heathrow Express are available to buy in the station with help available from staff as required. Step free access is also available throughout the station, ensuring the services can be accessed by all members of the public.
- 4.3.11 Heathrow Terminal 2 & 3 Railway Station is also served by TFL Rail Services which provides a direct route to Paddington via Hayes & Harlington, Southall, Hanwell, West Ealing, Ealing Broadway, Acton Main Line every 30 minutes. This service will form part of the Elizabeth Line when it launches; this new railway will extend the current route from Paddington to Shenfield via Stratford and to Abbey Wood via Canary Wharf.
- 4.3.12 The underground station at Terminal 2 & 3 provides access to the Piccadilly line which provides access to numerous destinations throughout London including; Hammersmith, Kensington, Leicester Square, Kings Cross/St. Pancras and Finsbury Park. Alternative underground lines are also subsequently accessible from stops on the Piccadilly Line providing access to further destinations throughout London.

Project No.: 70088897 | Our Ref No.: 70088897.01

Bridge Industrial



## PUBLIC TRANSPORT ACCESSIBLITY LEVEL

- 4.3.13 To further consider the accessibility of the site the Public Transport Accessibility Level (PTAL) has been reviewed using the TfL WebCAT tool. The PTAL is a detailed and accurate measure of a point to the public transport network in London which considers walk access time and service availability. Each area is a 100m square which receives a grade between 0 and 6b where 0 is poor access to public transport and 6b is excellent access.
- 4.3.14 The grade received reflects the following:
  - Walking time from the point-of interest to the public transport access points;
  - The reliability of the service modes available;
  - The number of services available within the catchment; and
  - The level of service at the public transport access points i.e. average waiting time.
- 4.3.15 The 2021 forecast year has been reviewed in the TfL WebCAT tool which shows the proposed site has a PTAL of 4 which is above average. The tool also shows the area around the Terminal 2 and 3 interchange has a grade varying between 6A and 6B which are the highest grades available.
- 4.3.16 Based on the PTAL score it is clear the proposed development will benefit from a high-quality public transport network which will be able to facilitate trips to the development by sustainable transport modes.

BRIDGE POINT HEATHROW
Project No.: 70088897 | Our Ref No.: 70088897.01
Bridge Industrial



## 5 PROPOSED DEVELOPMENT

5.1.1 **Figure 5-1** shows the preliminary site layout which consists of the four-industry storage and distribution units with associated office & Mezzanine space plus car parking and new access arrangements. The layout will be revised throughout the application proposals to ensure all concerns of the LHA are addressed.

Figure 5-1 - Proposed Site Layout





## 5.2 DEVELOPMENT ACCESS

5.2.1 As previously mentioned, the existing NCP car park was granted planning permission in June 2021 for the provision of a new vehicular access to the car park via A4 Bath Road to the south of the site (Planning reference 41632/APP/2021/1301). The junction comprises a left-in/left-out priority arrangement from the site frontage onto the A4 with a break proposed in the bus lane on the A4 to ensure safe access and egress from the site. As part of the application process, swept path analysis of this access will be undertaken to consider its appropriateness for the development, with revisions to the access proposed as necessary, however, at this stage it is considered the current design should be appropriate and only minor changes will be necessary.

## 5.3 PARKING PROVISION

- 5.3.1 At this stage, 56 parking spaces are proposed at the development, including 6 disabled bays. Parking standards set out in the LBH Local Plan Part 2 set out that 1 space should be provided per 50-100sqm of floorspace. Under the approximate 8,562sqm currently proposed this would equate to a maximum of between 85 171 parking bays. The proposed provision is clearly well below this maximum threshold which is possible due to highly accessible nature which will enable a high proportion of trips to be undertaken by public transport and other sustainable modes. The standards also set out 10% of bays should be disabled bays, the 6 disabled bays currently proposed meets this threshold.
- 5.3.2 The parking proposed as part of the development will be detailed in the full TS and will include the quantum of disabled bays, electric vehicles spaces and cycle parking proposed. The final level of parking provided will be agreed with the LHA and will be based on the parking standards for the borough as well as the applicant knowledge from developing similar sites through the UK.

BRIDGE POINT HEATHROW
Project No.: 70088897 | Our Ref No.: 70088897.01
Bridge Industrial



## 6 TRIP GENERATION AND IMPACT

## 6.1 METHODOLOGY

- 6.1.1 As discussed previously, the site has extant consent in place. As part of the application for the new site access, a TS was prepared that set out the existing vehicle movement to the site based on traffic surveys undertaken between 2<sup>nd</sup> and 8<sup>th</sup> July 2019.
- 6.1.2 The forecast traffic generation from the proposed use is compared against this extant trip generation. This nett approach is consistent with advice provided by the DfT guidance that acknowledges the appropriateness of quantifying/appraising the trips generated by an existing site or those which might realistically be generated by any extant planning consent or permitted uses.
- 6.1.3 Furthermore, Section 38(6) of the Planning and Compulsory Purchase Act 2004 also requires that applications be determined in accordance with the development plan unless other material considerations indicate otherwise. In the general note on this section in the Encyclopaedia of Planning Law, Paragraph 9(8) discusses material considerations and reference is made to the planning history of the site, stating that "an existing planning permission may be a material consideration in determining an application...the planning authority are entitled, and indeed obliged, to have regard to the "fall-back" position, i.e. what the applicant could do without any fresh planning permission."
- 6.1.4 The trip generation associated with the car park and permitted access from Bath Lane should, therefore, be considered as a legitimate planning "fall-back" position, the details of which are set out below and should be considered as part of a full planning application.

## 6.2 EXISTING TRIP GENERATION

- 6.2.1 Within the TS agreed with LBH for the extant planning consent the existing trips to the site were set out. The existing trips were based on traffic surveys undertaken on the existing access bridge between 2<sup>nd</sup> and 8<sup>th</sup> July 2019. Surveys were also undertaken on Bath Road to determine the network peak times of 09:00 10:00 and 18:00 19:00.
- 6.2.2 The TS did not consider how a more prominent access to the car park on Bath Road may increase traffic flows to the car park, or, how traffic generation to the car park may be higher at certain times of the year, such as during peak holiday times in the school holidays. For the purpose of providing a fall-back position the arrivals and departures to the car park are set out in Table 6-1 below, the raw data is not available in the TS to determine the number of trips generated at the car park through the day.
- 6.2.3 It is considered this data will be appropriate for use in the full TS to set out a "fall-back" position against which the impact of the development can be considered.



Table 6-1 – Existing Car Park Trips

|                 | Network AM Peak (8:00-9:00) |           |         | Network PM Peak (18:00-19:00) |            |         |
|-----------------|-----------------------------|-----------|---------|-------------------------------|------------|---------|
|                 | Arrival                     | Departure | Two-way | Arrival                       | Departures | Two-Way |
| All<br>Vehicles | 10                          | 9         | 19      | 4                             | 7          | 11      |

6.2.4 As shown in the Table above, the car park generates approximately 19 two-way trips in the AM Peak and 11 two-way trips in the network PM Peak. Due to the nature of the car park it is likely the number of trips are higher at different points throughout the day, however, the times shown in Table 6-1 coincide with the peak traffic flows on Bath Road and were therefore considered to be the network peak times.

## 6.3 FORECAST TRIP GENERATION (WAREHOUSING - COMMERICAL)

- 6.3.1 To consider the trip generation of the proposed development, it is proposed trip rates obtained from the TRICS V7.8.2 database are used with the proposed parameters set out below.
  - 02 Employment F Warehousing:
  - Greater London sites selected:
  - GFA 1,000sqm 20,000sqm; and
  - Suburban Area and Edge of Town locations selected.
- 6.3.2 The above parameters return two relevant surveys in the Hillingdon and Hounslow boroughs of London. It should be noted the sites have a PTAL rating of 1b and 2 which equates to very poor and poor, this is below the proposed site's PTAL rating of 4 meaning these sites are significantly less accessible than the proposed development will be. These trip rates should, therefore, be considered a robust, worst-case scenario, particularly with regards to car trips to the site which will be appropriate for considering the impact of the development in a full TS.
- 6.3.3 The trip rates obtained are shown in Table 6-2 below, these have been applied to the floorspace of 8,562sqm which is currently proposed at the site with it anticipated this floorspace is unlikely to significantly change prior to a full application being submitted. The resultant trip generation is shown in Table 6-3.

Bridge Industrial



Table 6-2 – Forecasted Trip Rates (Warehousing - Commercial)

|                 | AM Peak (09:00-10:00) |           |         | PM Peak (18:00-19:00) |            |         |
|-----------------|-----------------------|-----------|---------|-----------------------|------------|---------|
|                 | Arrival               | Departure | Two-way | Arrival               | Departures | Two-Way |
| Cars/LGVs       | 0.253                 | 0.122     | 0.375   | 0.122                 | 0.347      | 0.469   |
| OGVs            | 0.072                 | 0.054     | 0.126   | 0.036                 | 0.023      | 0.059   |
| All<br>Vehicles | 0.325                 | 0.176     | 0.501   | 0.158                 | 0.370      | 0.528   |

**TRICS 7.8.2** 

Table 6-3 – Forecasted Trip Generation (Rounded) (Warehousing - Commercial)

|                 | AM Peak (09:00-10:00) |           |         | PM Peak (18:00-19:00) |            |         |
|-----------------|-----------------------|-----------|---------|-----------------------|------------|---------|
|                 | Arrival               | Departure | Two-way | Arrival               | Departures | Two-Way |
| Cars/LGVs       | 22                    | 10        | 32      | 10                    | 30         | 40      |
| OGVs            | 6                     | 5         | 11      | 3                     | 2          | 5       |
| All<br>Vehicles | 28                    | 15        | 43      | 13                    | 32         | 45      |

TRICS 7.8.2

6.3.4 As shown by Table 6-3 the development is anticipated to generate approximately 43 trips in the AM Peak and 45 trips in the PM Peak, these equate to less one trip per minute. Due to the proximity of the development to the SRN these trips will be able to easily access major routes and dissipate on the network without the need to travel on sensitive routes through towns or villages. Even without considering the "fall-back" position it is, therefore, considered the development is unlikely to have a severe impact on the highway network and no further junction modelling should be required.

**Bridge Industrial** 



## 6.4 NET IMPACT

6.4.1 The impact of the proposed development against the "fall-back" position of the proposed car park is shown in Table 6-4 below.

**Table 6-4 – Development Net Impact** 

|                 | AM Peak (09:00-10:00) |           |         | PM Peak (18:00-19:00) |            |         |
|-----------------|-----------------------|-----------|---------|-----------------------|------------|---------|
|                 | Arrival               | Departure | Two-way | Arrival               | Departures | Two-Way |
| Cars/LGVs       | +12                   | +1        | +13     | +6                    | +23        | +29     |
| OGVs            | +6                    | +5        | +11     | +3                    | +2         | +5      |
| All<br>Vehicles | +18                   | +6        | +24     | +9                    | +25        | +34     |

- 6.4.2 As shown by Table 6-4 the development will result in an increase of 24 two-way trips in the AM Peak, which is below the 30 two-way trip threshold which is usually considered a material impact. All these trips will arrive via the permitted Bath Road access which will be possible to safely access and egress due to the left-in / left-out arrangement with vehicles then able to conveniently access the SRN. The TS for the permitted site access demonstrated the proposed access would operate with a maximum RFC of 0.02 in the AM Peak suggesting there is significant capacity to accommodate additional trips.
- 6.4.3 In the PM Peak the development is anticipated to result in an increase of 34 two-way trips which is slightly above the 30-trip threshold at which point the impact would usually be considered material. However, the TS for the proposed site access from Bath Road demonstrated the junction would operate with a maximum RFC of 0.01 in the PM Peak suggesting the junction has a significant amount of spare capacity for additional trips. Again, once egressing the site trips will quickly dissipate on the SRN.
- 6.4.4 Based on the information presented in this section it is considered no further junction modelling will be required as part of the planning application and a TS rather than a TA is appropriate for assessing the impact of the proposed development. No further developments have been identified on the surrounding network which would need to be considered as part of a cumulative assessment.



## 7 CONCLUSION

- 7.1.1 WSP has been appointed by Bridge Industrial to prepare a scoping note prior to the submission of a full planning application for the change of use of the existing surface level Heathrow Flightpath NCP car park off Bath Road, north of Heathrow Airport, to warehousing and storage under Use Class B2/B8 with associated office space (E(g)(ii)&(iii))). The proposal is for some 8,562m² of this use.
- 7.1.2 This scoping note has provided a detailed overview of the information which will be provided as part of a full application. To summarise, it is proposed the following information is provided to assess the impact of the proposals:
  - A TS rather than a full TA should be appropriate to consider the impact of the proposed development due to the likely net impact of the development on the highway network;
  - A full review of National and Local planning policy will be provided as part of the TS; however, it is considered the proposals are compliant and will help support policy aspirations;
  - The surrounding highway network is of a good quality with the number of trips generated unlikely to have a severe impact on its operation or safety;
  - The site is ideally located for a development of this nature due to the proximity to the SRN and Heathrow airport;
  - A preliminary review of highway safety has identified no safety issues which would be exacerbated by the proposals, a more detailed review can be undertaken using data obtained from the LHA as part of a full planning application;
  - The pedestrian and cycle infrastructure in the vicinity of the site is of a high quality to facilitate sustainable trips to the site;
  - The site benefits from a wide range of public transport choices to the site, including bus services on Bath Road and underground and national rail services available from Heathrow airport;
  - The site has a PTAL rating of 4, which is classed as above average;
  - The development will benefit from a permitted access from Bath Road. Initial assessment suggests this access will be fit for purpose, however, swept path analysis will be undertaken to ensure this access to fit for purpose with any necessary revisions proposed as part of the application;
  - The development will provide facilities to encourage sustainable transport where possible such as showers and changing facilities;
  - A review of local parking standards will be undertaken as part of the full planning application;
  - Trip generation for the existing site is available from the TS for the permitted site access, this will be used to set out a "fall-back" position;
  - Trip rates have been proposed which are obtained from the TRICS database, the identified sites have PTAL rating worse than the proposed development so the trip rates should provide a robust assessment of the development impacts;
  - Using the trip rates proposed, and current proposed floorspace the development will have a netimpact of 24 two-way trips in the AM Peak and 34 two-way trips in the PM Peak, this is not a significant impact on should not warrant further junction assessment. A TS rather than a full TA should, therefore, be appropriate to assess the impact of the development.



Three White Rose Office Park Millshaw Park Lane Leeds LS11 0DL

wsp.com



The Council of the London Borough of Hillingdon. 28<sup>th</sup> June 2021. 'Grant of Planning Permission. NCP Heathrow Flightpath, Bath Road, Sipson', Application Reference: 41632/APP/2021/1301.



Mrs Grace Crook 118 Pall Mall London SW1Y 5EA Application Ref: 41632/APP/2021/1301

# TOWN AND COUNTRY PLANNINGACT 1990 (AS AMENDED) GRANT OF PLANNING PERMISSION

The Council of the London Borough of Hillingdon as the Local Planning Authority within the meaning of the above Act and associated Orders **GRANTS** permission for the following:-

## **Description of development:**

Provision of a new vehicular access to existing NCP car park via A4 Bath Road

Location of development: Ncp Heathrow Flight Path Bath Road Sipson

Date of application: 31 March 2021

Plan Numbers: See attached Schedule of plans

Permission is subject to the condition(s) listed on the attached schedule:-

Head of Planning, Transportation and Regeneration

Date: 28 June 2021

NOTES: (i) Please also see the informatives included in the Schedule of Conditions.

- (ii) Should you wish to appeal against any of the conditions please read the attached sheet which explains the procedure.
- (iii)This decision does not convey any approval or consent which may be required under any by-laws, building regulations or under any Act other than the Town and Country Planning Act 1990 (as amended).

PDECSTD Page 1 of 6

## **TOWN AND COUNTRY PLANNINGACT 1990 (AS AMENDED)**

## **GRANT OF PLANNING PERMISSION**

Application Ref: 41632/APP/2021/1301

#### SCHEDULE OF CONDITIONS

1 • The development hereby permitted shall be begun before the expiration of three years from the date of this permission.

REASON: To comply with Section 91 of the Town and Country Planning Act 1990.

2 • The development hereby permitted shall not be carried out except in complete accordance with the details shown on the submitted plans and documents below:

Location Plan MBSK210222-08 P2 Transport Assessment Final May 2021 Stage 1 Road Safety Audit May 2021 Arboricultural Impact assessment March 2021

REASON: To ensure the development complies with the provisions of the Hillingdon Local Plan Parts 1 (November 2012) and 2 (January 2020) and the London Plan (2021).

3 Notwithstanding drawing number MBSK210222-08 P2 the submitted tactile paving details are not approved as part of this permission. A revised access layout plan showing tactile paving at a depth of 1.2m across the full width of the dropped kerb shall be submitted to the Local Planning Authority within one month of the date of this permission. The revised access layout plan shall be approved in writing by the Local Planning Authority and the development hereby permitted shall not be carried out except in complete accordance with the details shown on the revised access layout plan.

REASON: To ensure an accessible and safe public realm and to comply with Hillingdon Local Plan Part 2 Policies DMHB 11, DMT2 and DMT5.

## **SCHEDULE OF CONDITIONS**

- 4 No development shall take place until a landscape scheme has been submitted to and approved in writing by the Local Planning Authority. The scheme shall include: -
  - 1. Details of Soft Landscaping
  - 1.a Planting plans (at not less than a scale of 1:100),
  - 1.b Written specification of planting and cultivation works to be undertaken,
  - 1.c Schedule of plants giving species, plant sizes, and proposed numbers/densities where appropriate
  - 4. Details of Landscape Maintenance
  - 4.a Landscape Maintenance Schedule for a minimum period of 5 years.
  - 4.b Proposals for the replacement of any tree, shrub, or area of surfing/seeding within the landscaping scheme which dies or in the opinion of the Local Planning Authority becomes seriously damaged or diseased.
  - 5. Schedule for Implementation

REASON: To ensure that the proposed development will provide appropriate replacement planting and preserve and enhance the visual amenities of the locality in compliance with Policies DMHB 11 and DMHB 14 of the Hillingdon Local Plan Part 2 (2020).

Prior to the use of the proposed access commencing, a Car Park Management Plan shall be submitted to and approved in writing by the Local Planning Authority. The Car Park Management Plan shall include details of how short term parking will be prevented and how queueing at the access point will be prevented. The development hereby permitted shall not be carried out except in complete accordance with the details shown on the approved Car Park Management Plan.

Reason: To ensure the proposal does not generate additional trips and to ensure no adverse impact on highway safety and the free flow of traffic in compliance with Hillingdon Local Plan Part 2 Policies DMT1 and DMT 2.

#### **INFORMATIVES:**

- 1. The decision to GRANT planning permission has been taken having regard to all relevant planning legislation, regulations, guidance, circulars and Council policies, including The Human Rights Act (1998) (HRA 1998) which makes it unlawful for the Council to act incompatibly with Convention rights, specifically Article 6 (right to a fair hearing); Article 8 (right to respect for private and family life); Article 1 of the First Protocol (protection of property) and Article 14 (prohibition of discrimination).
- 2. The decision to GRANT planning permission has been taken having regard to the policies and proposals in the Hillingdon Local Plan Part 1 (2012) and Part 2 (2020) set out below, including Supplementary Planning Guidance, and to all relevant material considerations, including The London Plan The Spatial Development Strategy for London consolidated with alterations since 2011 (2016) and national guidance.

Part 1 Policies:

Part 2 Policies

3. In dealing with the application the Council has implemented the requirement in the

Application Ref: 41632/APP/2021/1301

## **SCHEDULE OF CONDITIONS**

National Planning Policy Framework to work with the applicant in a positive and proactive way. We have made available detailed advice in the form of our statutory policies from Local Plan Part 1, Local Plan Part 2, Supplementary Planning Documents, Planning Briefs and other informal written guidance, as well as offering a full pre-application advice service, in order to ensure that the applicant has been given every opportunity to submit an application which is likely to be considered favourably.

4 . Given the nature of the proposed development it is possible that a crane may be required during its construction. The applicant's attention is drawn to the requirement within the British Standard Code of Practice for the safe use of Cranes, for crane operators to consult the aerodrome before erecting a crane in close proximity to an aerodrome. This is explained further in Advice Note 4, 'Cranes and Other Construction Issues' (available at www.aoa.org.uk/publications/safeguarding.asp)

## **END OF SCHEDULE**

#### Address:

Residents Services
London Borough of Hillingdon
3 North Civic Centre, High Street, Uxbridge UB8 1UW
Tel: 01895 250230

www.hillingdon.gov.uk

## **GRANT OF PLANNING PERMISSION**

Application Ref.No.: 41632/APP/2021/1301

## **SCHEDULE OF PLANS**

Arboricultural Impact Assessment, March 2021 - received 31 Mar 2021

Application Covering Letter. - received 31 Mar 2021

SiteandOtherPlans\_included\_in\_TransportAssessment. - received 31 Mar 2021

MBSK210222-08 P2. - received 31 Mar 2021

Transport Assessment Final May 2021 - received 07 Jun 2021

Stage 1 Road Safety Audit May 2021 - received 07 Jun 2021

#### RIGHTS OF APPLICANTS AGGRIEVED BY DECISION OF LOCAL PLANNING AUTHORITY

## **TOWN AND COUNTRY PLANNING ACT 1990 (AS AMENDED)**

If you are aggrieved by the decision of your local planning authority to refuse permission for the proposed development or to grant it subject to conditions, then you can appeal to the office of the First Secretary of State under Section 78 of hte Town and Country Planning Act 1990.

If you want to appeal, then you must do so within six months of the date of this notice, using a form which you can get from the Planning Inspecorate at Customer Support Unit, Room 3/15 Eagle Wing, Temple Quay House, 2 The Square, Temple Quay, Bristol, BS1 6PN (Tel 0117 372 8424) Appeal forms can be downloaded from the Planning Inspectorate's website at www.Planning-inspectorate.gov.uk

If you intend to submit an appeal that you would like examined by inquiry then you must notify the Local Planning Authority and Planning Inspectorate (inquiryappeals@planninginspectorate.gov.uk) at least 10 days before submitting the appeal.

Further details are available at www.gov.uk/government/collections/casework-dealt-with-by-inquiries

The Secretary of State can allow a longer period for giving notice of an appeal, but he will not normally be prepared to use this power inless there are special circumstances, which excuse the deploy in giving notice of an appeal.

The Secretary of State need not consider an appeal if it seems to him that the local planning authority could not have granted planning permission for the proposed development or could not have granted it without the conditions imposed, having regard to the statutory requirements, to the provisions of any development order and to any directions given under a development order.

In practice, the Secretary of State does not refuse to consider appeals solely because the local planning authority based their decision on a direction given by him.

## **Purchase Notices.**

If either the local planning authority or the officer of the First Secretary of State refuses permission to develop land or grants it subject to conditions, the owner may claim that he can neither put the land to a reasonably beneficial use by carrying out of any development which has been or would be permitted.

In these circumstances, the owner may serve a purchase notice on the Council (District Council, London Borough Council or Common Council of the City of London) in whose area the land is situated. This notice will require the Council to purchase his interest in the land in accordance with the provisions of Part VI of the Town and Country Planning Act 1990.



The Council of the London Borough of Hillingdon. 7<sup>th</sup> June 2021. 'Report of the Head of Planning, Transportation and Regeneration', Application Reference: 41632/APP/2021/1301.

- Please select each of the categories that enables this application to be

APP. REF. NO: 41632/APP/2021/1301

## **DELEGATED DECISION**

| <ul> <li>determined under delegated powers</li> <li>Criteria 1 to 5 or criteria 7 to 9 must be addressed for all categories application, except for applications for Certificates of Lawfulness, etc.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | The delegation powers schedule has been                                 |
| APPROVAL RECOMMENDED: GENERAL S  1. No valid planning application objection in the form of a petition of a petitio | elect Option | checked. Director of Residents Services can determine this application. |
| of 20 or more signatures, has been received                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | can determine this application.                                         |
| Application complies with all relevant planning policies and is acceptable on planning grounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | s $\square$  |                                                                         |
| 3. There is no Committee resolution for the enforcement action                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n 🔲          | Case Officer                                                            |
| 4. There is no effect on listed buildings or their settings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                                                                         |
| 5. The site is not in the Green Belt (but see 11 below)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              | Signature:                                                              |
| REFUSAL RECOMMENDED: GENERAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |                                                                         |
| 6. Application is contrary to relevant planning policies/standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ls 🗌         |                                                                         |
| 7. No petition of 20 or more signatures has been received                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              | Date:                                                                   |
| 8. Application has not been supported independently by a pers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | on/s         |                                                                         |
| 9. The site is not in Green Belt (but see 11 below)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | A delegated decision is appropriate                                     |
| RESIDENTIAL DEVELOPMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              | and the recommendation, conditions/reasons for refusal and              |
| 10. Single dwelling or less then 10 dewlling units and/or a site less than 0.5 ha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | of           | informatives are satisfactory.                                          |
| 11. Householder application in the Green Belt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              | Team Manager:                                                           |
| COMMERCIAL, INDUSTRIAL AND RETAIL DEVELOPMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                                         |
| 12. Change of use of retail units on site less than 1 ha or with I than 1000 sq m other than a change involving a loss of A1 u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              | Signature:                                                              |
| 13. Refusal of change of use from retail class A1 to any other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | I            |                                                                         |
| 14. Change of use of industrial units on site less than 1 ha or v less than 1000sq.m. of floor space other than to a retail use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | Date:                                                                   |
| CERTIFICATE OF LAWFULNESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                                                                         |
| 15. Certificate of Lawfulness (for proposed use or Developmer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nt)          | The decision notice for this                                            |
| 16. Certificate of Lawfulness (for existing use or Development)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | application can be issued.                                              |
| 17. Certificate of Appropriate Alternative Development                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |                                                                         |
| CERTIFICATE OF LAWFULNESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              | Director / Member of Senior                                             |
| 18. ADVERTISMENT CONSENT (excluding Hoardings)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              | Management Team:                                                        |
| 19. PRIOR APPROVAL APPLICATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              | Circumstance                                                            |
| 20. OUT-OF-BOROUGH OBSERVATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | Signature:                                                              |
| 21. CIRCULAR 18/84 APPLICATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |                                                                         |
| 22. CORPSEWOOD COVENANT APPLICATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | Batta                                                                   |
| 23. APPROVAL OF DETAILS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              | Date:                                                                   |
| 24. ANCILLARY PLANNING AGREEMENT (S.106 or S.278) we Heads of Terms have already received Committee approve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                                                                         |
| 25. WORKS TO TREES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              | NONE OF THE ABOVE DATES SHOULD BE USED IN THE PS2 RETURNS TO THE        |
| 26. OTHER (please specify)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | ODPM                                                                    |

Item No. Report of the Head of Planning, Transportation and Regeneration

Address NCP HEATHROW FLIGHT PATH BATH ROAD SIPSON

**Development:** Provision of a new vehicular access to existing NCP car park via A4 Bath

Road

LBH Ref Nos: 41632/APP/2021/1301

**Drawing Nos:** Arboricultural Impact Assessment, March 2021

Application Covering Letter.

SiteandOtherPlans included in TransportAssessment.

MBSK210222-08 P2.

Transport Assessment Final May 2021 Stage 1 Road Safety Audit May 2021

Date Plans received: 31/03/2021 Date(s) of Amendment(s): 07/06/2021

Date Application Valid: 31/03/2021

#### 1. SUMMARY

The application is for a new access from Bath Road to an existing car park. Subject to conditions it is considered that the proposal is acceptable in terms of highway, access and tree impacts and it is recommended that permission be granted.

#### 2. RECOMMENDATION

## APPROVAL subject to the following:

#### 1 COM3 Time Limit

The development hereby permitted shall be begun before the expiration of three years from the date of this permission.

REASON: To comply with Section 91 of the Town and Country Planning Act 1990.

#### **2** COM4 Accordance with Approved Plans

The development hereby permitted shall not be carried out except in complete accordance with the details shown on the submitted plans and documents below:

Location Plan MBSK210222-08 P2 Transport Assessment Final May 2021 Stage 1 Road Safety Audit May 2021 Arboricultural Impact assessment March 2021

REASON: To ensure the development complies with the provisions of the Hillingdon Local Plan Parts 1 (November 2012) and 2 (January 2020) and the London Plan (2021).

#### 3 NONSC Non Standard Condition

Notwithstanding drawing number MBSK210222-08 P2 the submitted tactile paving details are not approved as part of this permission. A revised access layout plan showing tactile paving at a depth of 1.2m across the full width of the dropped kerb shall be submitted to the Local Planning Authority within one month of the date of this permission. The revised access layout plan shall be approved in writing by the Local Planning Authority and the development hereby permitted shall not be carried out except in complete accordance

with the details shown on the revised access layout plan.

REASON: To ensure an accessible and safe public realm and to comply with Hillingdon Local Plan Part 2 Policies DMHB 11, DMT2 and DMT5.

## 4 COM9 Landscaping (car parking & refuse/cycle storage)

No development shall take place until a landscape scheme has been submitted to and approved in writing by the Local Planning Authority. The scheme shall include: -

- 1. Details of Soft Landscaping
- 1.a Planting plans (at not less than a scale of 1:100),
- 1.b Written specification of planting and cultivation works to be undertaken,
- 1.c Schedule of plants giving species, plant sizes, and proposed numbers/densities where appropriate
- 4. Details of Landscape Maintenance
- 4.a Landscape Maintenance Schedule for a minimum period of 5 years.
- 4.b Proposals for the replacement of any tree, shrub, or area of surfing/seeding within the landscaping scheme which dies or in the opinion of the Local Planning Authority becomes seriously damaged or diseased.

## 5. Schedule for Implementation

REASON: To ensure that the proposed development will provide appropriate replacement planting and preserve and enhance the visual amenities of the locality in compliance with Policies DMHB 11 and DMHB 14 of the Hillingdon Local Plan Part 2 (2020).

#### 5 NONSC Non Standard Condition

Prior to the use of the proposed access commencing, a Car Park Management Plan shall be submitted to and approved in writing by the Local Planning Authority. The Car Park Management Plan shall include details of how short term parking will be prevented and how queueing at the access point will be prevented. The development hereby permitted shall not be carried out except in complete accordance with the details shown on the approved Car Park Management Plan.

Reason: To ensure the proposal does not generate additional trips and to ensure no adverse impact on highway safety and the free flow of traffic in compliance with Hillingdon Local Plan Part 2 Policies DMT1 and DMT 2.

#### **INFORMATIVES**

## 1 I52 Compulsory Informative (1)

The decision to GRANT planning permission has been taken having regard to all relevant planning legislation, regulations, guidance, circulars and Council policies, including The Human Rights Act (1998) (HRA 1998) which makes it unlawful for the Council to act incompatibly with Convention rights, specifically Article 6 (right to a fair hearing); Article 8 (right to respect for private and family life); Article 1 of the First Protocol (protection of property) and Article 14 (prohibition of discrimination).

## **2** I53 Compulsory Informative (2)

The decision to GRANT planning permission has been taken having regard to the policies and proposals in the Hillingdon Local Plan Part 1 (2012) and Part 2 (2020) set out below, including Supplementary Planning Guidance, and to all relevant material considerations, including The London Plan - The Spatial Development Strategy for

London consolidated with alterations since 2011 (2016) and national guidance.

## 3 I70 LBH worked applicant in a positive & proactive (Granting)

In dealing with the application the Council has implemented the requirement in the National Planning Policy Framework to work with the applicant in a positive and proactive way. We have made available detailed advice in the form of our statutory policies from Local Plan Part 1, Local Plan Part 2, Supplementary Planning Documents, Planning Briefs and other informal written guidance, as well as offering a full pre-application advice service, in order to ensure that the applicant has been given every opportunity to submit an application which is likely to be considered favourably.

#### 4 I60 Cranes

Given the nature of the proposed development it is possible that a crane may be required during its construction. The applicant's attention is drawn to the requirement within the British Standard Code of Practice for the safe use of Cranes, for crane operators to consult the aerodrome before erecting a crane in close proximity to an aerodrome. This is explained further in Advice Note 4, 'Cranes and Other Construction Issues' (available at www.aoa.org.uk/publications/safeguarding.asp)

#### 3. CONSIDERATIONS

## 3.1 Site and Locality

The application site comprises the National Car Parks (NCP) 'Flightpath' car park (630 spaces), located on land to the north of the A4, Bath Road, and to the west of the motorway spur from the M4 leading to the Airport. Currently the site has two entrances. The main entrance is from the Park Inn Hotel service road via a single-track bridge over the motorway spur. The length of Bath Road outside the site is dual carriageway. The road was formerly a trunk road, but the responsible highway authority is now Transport for London. It is a major traffic route and an urban clearway. The section outside the site is subject to a 50mph speed limit, with a single offside traffic lane open to all vehicles and a nearside traffic lane open to buses, cyclists and taxis only. To the north of this, a combined footway and cycleway crosses the site frontage, with a width of around 4.5m. At present there is no access to the site from Bath Road.

## 3.2 Proposed Scheme

Planning permission is sought to create a new left in left out entry/exit from an existing car park north of the A4 Bath Road onto the eastbound carriageway of the A4 Bath Road. The size of the car park and the number of parking spaces would not change as part of this planning application.

The applicant explains that there is a need to increase the accessibility of the existing off-airport parking facility. Accessing and egressing the car park via the A4 will make it easier for users to find and access the car park, and also cut out the circuitous route for the shuttle buses taking people to the airport. In addition, the proposal would allow for the halving of the number of bus movements using the A4/Sipson Road/Nene Road junction which is a complex and congested signal junction. The Inspector in 2004 noted the unsatisfactory existing access arrangements.

As advised at pre-application stage the application is accompanied by a Road Safety Audit.

## 3.3 Relevant Planning History

41632/APP/2002/147 N C P Car Park (West Of Excelsior Hotel) Bath Road Sipson

RELOCATION OF EXISTING ENTRANCE FROM REAR OF THE EXCELSIOR HOTEL TO

THE BATH ROAD

**Decision:** 26-02-2003 Refused **Appeal:** 26-03-2004 Allowed

41632/APP/2010/2301 Ncp Car Park (West Of The Park Inn Hotel) Bath Road Sipson

New vehicular access to A4.

**Decision:** 02-02-2011 Approved

41632/PRC/2017/138 Site West Of Excelsior Hotel Bath Road Sipson

Heathrow s106 (41632C/90/2177) - Agreement dated 31st May 1991

**Decision:** 19-08-2020 NFA

41632/PRC/2017/142 Ncp Heathrow Flight Path Bath Road Sipson

Planning application for new access road on Bath Road

**Decision:** 14-09-2017 OBJ

41632/PRC/2018/249 Ncp Heathrow Flight Path Bath Road Sipson

Proposed new access off A4 to the car park (alternative access)

**Decision**: 20-02-2019 OBJ

## Comment on Planning History

A similar planning application (41632/APP/2002/147), to create a new access from the A4 was refused in 2002 because it was recognised that the A4 Bath Road is a busy strategic route and the applicant had failed to advance any compelling evidence to justify the need for a new access point. A second highway reason for refusal was that the development would be contrary to UDP Policy seeking to prohibit developments whose traffic generation is likely to prejudice the free flow of traffic or conditions or road safety generally. The applicant appealed against the decision (APP/R5510/A/03/1125426), and the appeal was allowed and permission granted. This scheme was never implemented, and the planning permission expired.

Subsequently a further application was submitted in 2010 (41632/APP/2010/2301), taking into account the site's planning history and all other relevant matters, and this was approved but again not implemented.

The present application follows pre-application submissions in 2017 and 2018 (41632/PRC/2018/249).

#### 4. Advertisement and Site Notice

4.1 Advertisement Expiry Date:-30th April 2021

4.2 Site Notice Expiry Date:-Not applicable

#### 5. Comments on Public Consult

## **EXTERNAL CONSULTEES:**

Four objections were received. The points raised and the applicant's responses are set out below.

Harmondsworth and Sipson Residents' Association:

The company claim the current entry and exit points are no longer satisfactory because clients have difficulty in finding them. We would strongly disagree with this statement. We believe the current access points to be far safer for all road users and easier to access for anyone who is unfamiliar with the locality. Object because:

- 1. Running a 20 minute shuttle bus service between 4.00 am and 11.40 pm would potentially only allow 4 hours 20
- minutes of respite from traffic noise for the residents who would be living next to this proposed new road. We consider this unacceptable.
- 2. Since the last granting of planning permission the number of bus routes and bus frequency have both increased meaning that it is not uncommon for 4 or 5 buses to arrive at bus stop BC at the same time. When this happens it becomes exceptionally difficult for drivers in oncoming traffic to see any object or person trying to gain access to the road at the designated location of the new road.
- 3. In mitigation NCP have requested the stretch of road from Sipson Way to the next set of traffic lights on the Bath Road to be reduced to 40mph. It expected this would eliminate the problem of restricted visibility and speeding motorists in the vicinity of the new road junction. As a regular user of the Bath Road I would anticipate that without a set of traffic lights at this point the traffic would continue at 50 mph until the traffic lights at the crossroads.
- 4. The statistics given for the number of accidents at this point do not take into account the possibility of a stream of vehicles trying to pull out of junction where they have restricted vision to the right, need to cross a busy bus lane and join a road where vehicles will be travelling up to 60 mph. Nor do these statistics give consideration to a vehicle wanting to turn left into a junction which is obstructed by a convoy of buses.
- 5. The owners of the NCP car park do not show any responsibility for the upkeep of the land on the margins of the parking area. The emergency exit on Sipson Way is allowed to be regularly blocked by PHVs and other vehicles when drivers are visiting the Portuguese Caf and the ground next to the Bath Road is a fly tippers haven. This car park has never provided any added value to the amenities on offer to the residents and a new access point in the Bath Road would seriously compromise road safety and the efficient running of our local bus service.

#### Applicant response -

- 1. The proposal does not include any change to the shuttle bus schedule, and so this point falls outside of the scope of this application. For traffic to have a significant amenity impact there would need to be a doubling, or more, of existing traffic volumes. Given the existing volume of traffic along the Bath Road, the minor re-routing of minibuses will have no perceptible impact on residential properties in the vicinity.
- 2. As outlined within the submitted TS, the site access has been designed to afford appropriate visibility for egressing vehicles.
- 3. Again, as outlined within the TS, current recorded vehicle speeds along this stretch of road are below 40mph and amending the speed limit is therefore an appropriate measure to accompany the new access.
- 4. The accident analysis is a matter of reporting factual statistics and considering them in the light of the development proposals. As set out in the Transport Statement, vehicle speeds are below 40mph on this section of the A4 and the analysis concluded that there would unlikely be any material impact on highway safety. As part of the analysis, statistics were considered for the junction of Sipson Way/A4, which comprises an almost identical arrangement as being proposed for the NCP car park. The data for this junction identified no particular issues.
- 5. The Sipson Way emergency access does not fall within the ownership of the applicant, who merely have a right of access across it for emergency use. Any unlawful parking or fly tipping etc. is not the responsibility of either the applicant or the NCP to enforce.

Heathrow Villages Conservation Area Advisory Panel:

In this case we can see the benefit to the owners of direct access off the Bath Road to their car park but regret the need to remove two mature trees from the roadside verge and more trees from the strip of vegetation that separates the car park from the pavement. Nowadays such biodiversity loss should be resisted, but if permission is to be granted then compensatory planting should be sought so there is a net biodiversity gain. There is plenty of space within the car park to allow new trees to be planted, even if it means that one or two parking places have to be lost. An alternative approach would be to move the access point to the south-east corner of the site which would reduce the loss of street trees to one while also moving the access further away from the residential properties to the west, though compensatory planting would still be needed. A final comment relates to the width of the access road. If this were an application for a 'dropped kerb' in front of a residential property it would be refused as being too wide; do similar criteria not also apply to commercial undertakings? Although aware of the benefits of the proposals, we hope that permission will not be granted. If it is, then a significant planting plan must be one of the conditions.

#### Applicant response -

We have minimised tree loss as far as possible through the scheme design and, as above, are happy to work with the Council's Tree Officer to suggest an appropriate scheme of replanting and/or landscaping at conditions stage.

The access position cannot move any further to the east due to the proximity of the bridge over the M4 spur and the associated vehicle restraint system. The access is in the best location in operational highways terms. It has been designed in accordance with all relevant standards and affords both pedestrians and cyclists suitable refuge between vehicles entering and exiting the site, reducing potential conflict at any one point.

Two further objections make following points -

- 1. Not needed: This additional entry/exit is not required. This is evidenced by the fact that NCP obtained permission years ago, having applied in 2002 and appealed, yet has never seen the need to create it. This also suggests there is an ulterior motive eg increasing resale value of site.
- 2. Dangerous for all users: The two-lane A4 has been reduced to one lane for cars and lorries at this point because there is a bus lane. Buses that do not need to stop will be travelling at speed. The Leonardo Hotel, at the top of Sipson Way, has large coaches joining the traffic. An ambulance station is on Sipson Way next to The Leonardo Hotel. There is a bus stop, a cycle lane and a pavement, which will all be affected by vehicles using the proposed access to the car park.
- 3. Disruptive to residents: The extra activity from the 634 spaces, including a shuttle bus every 20 mins between 4am and 11.40pm, will be disturbing, particularly for the residents of Dalton Villas who live between Sipson Way and the proposed entrance.
- 4. Transport statement massively outdated: The use of buses and active transport such as bicycles and walking will continue to be encouraged to reduce private cars to cut pollution and climate change emissions. Greater priority should be given to these modes of travel. Figures quoted are pre-covid and also do not take account of Free Travel Zone, which encouraged bus use thus reducing car numbers in recent years but is set to end due to cost cutting by Heathrow.
- 5. Traffic and vehicle speed: There is only one lane for car traffic on the A4 at this point and there are already traffic lights at regular intervals. At off-peak times, vehicles travel on the A4 at the speed limit making it difficult to join traffic from side roads. At peak times, traffic can be noseto-tail and vehicles find it very difficult to get into the traffic. If a vehicle pauses in the bus lane they risk causes an accident. I live in the area and have seen innumerable near misses as people try to cross the bus lane.
- 6. Current access is more than is needed: NCP does not manage the site well as it has sufficient access. The access on Sipson Way is often blocked by parked PHVs; I have

never seen it in use. Signage for on the spur road and Sipson Road would be seen by everyone if it was better placed. The signage on Sipson Road is within the branches of a tree! Opposite are very large signs for a restaurant, convenience store, offices to let, garage services etc.

7. Loss of trees: The vegetation at the front of the site acts as a buffer to pollution. It has not been maintained by NCP, who do not attend to the rubbish dropped over the wall. I do not believe they will suddenly decide to maintain it if given permission for access to the A4. Vehicular traffic on Sipson Way will increase as people coming from M4 will have no choice but to cut through

Sipson Way to join Bath road in order to take left into the proposed site. At the moment we get enough traffic as it is coming from Bath Road and causing nuisance. Bringing in vehicles, will inevitably increase pollution and the probability of accidents, especially as it is going to take over a bus lane and also a cycling route. (confirmed by TFL). Pedestrians will have to face the extra challenge of crossing this entrance. I can for see that when vehicles will be taking left from Bath Road onto the site itself, if for whatever reason there is a failure at the entrance (barriers not operating or a vehicle broken down at entrance) it will cause havoc for other vehicle then turning left from a fast road (50mph) and in turn causing traffic jams and delaying buses as well.

This proposal fails on plans for providing safety and also the vehicular traffic that will increase in the locality, especially on Sipson Way, directly effecting quality of life for my family and others who live locally. By giving another entrance to the site it will increase the opportunities for thieves as well to enter/exit. I regularly attend ward panel meetings with the local police and our ward (Heathrow Villages) suffers greatly with theft from motor vehicles.

## Applicant response -

- 1. Vehicles arriving at the site from the M4 will have a number of route options, including use of the northern perimeter road, avoiding Sipson Way. The volumes of vehicles identified as using the NCP car park were set out in Table 3.2 of the Technical Note and were recorded as between 19 and 11 vehicles in the typical peak periods this equates to one vehicle every 3-5 minutes and will not give rise to any material harm. The Technical Note included a review of the accident statistics for the area and concluded that the development would not give rise to any material increase in risk. Moreover, the proposals have been subject to an independent Road Safety Audit (approved by TfL) which identified no significant highway safety issues.
- 2. Pedestrians already satisfactorily cross the end of Sipson Way which carries significantly more traffic that the proposed access into the NCP car park. The proposals include the reduction of the speed limit to 40mph, to reflect the actual recorded speeds of vehicles on the A4. In the event of a barrier failure, they can be readily raised manually to avoid any potential for blocking back. As above, the proposals were subject to an independent Stage 1 RSA (approved by TfL) which identified no material issue with the access arrangements.
- 3. Vehicle crime is a matter is not directly related to the proposal, but we can confirm that the site will continue to be subject to appropriate security measures.
- 4. The two-lane A4 arrangement for one lane for cars and lorries with a bus lane is not an uncommon arrangement. It has been subject to an independent Stage 1 RSA (approved by TfL) and is very similar to the junction of Mondial Way approximately 750m east of the site.
- 5. Regarding disruption to residents, there will be no additional traffic to/from the site. All vehicles accessing the site will already be on the adjacent highway network. For traffic volumes to present a noticeable change in noise, there has to be a doubling or halving of

traffic movements. In the context of flows on Sipson Way and the A4, the existing traffic to the site is negligible and will not present any impact on noise amenity.

- 7. Comment that transport statement massively outdated The Technical Note is dated May 2021 and utilises appropriate data/information to draw its conclusions.
- 8. Comment on traffic and vehicle speed The surveys identify that vehicles on the A4 travel well below the posted speed limit. The Technical Note takes account of vehicle volumes on the A4 and the proposals have been the subject of an independent Stage 1 RSA (approved by TfL).
- 9. Comment that current access is more than is needed The reasons why the proposed access is required are covered in detail within the submitted Planning Statement. The Sipson Way access does not fall within the ownership of NCP or the applicant, who have a right of access for emergency vehicles only. This is why it is rarely used. It does not fall under the responsibility of NCP or the applicant to enforce traffic/parking restrictions in this area.

#### HIGHWAYS ENGLAND:

We consider the provision of a new vehicular access from the A4 to the NCP Car Park would be unlikely to materially affect the safety, reliability and/or operation of the SRN (the tests set out in DfT C2/13 para 10 and MHCLG NPPF para 109). Therefore, Highways England have no objection to this application.

## NATS:

The proposed development has been examined from a technical safeguarding aspect and does not conflict with our safeguarding criteria. Accordingly, NATS (En Route) Public Limited Company ("NERL") has no safeguarding objection to the proposal.

## Heathrow Safeguarding:

We have now assessed the below application against safeguarding criteria and can confirm we have no safeguarding objections to the proposed application. However, we would like to make the following observation:

#### Cranes

Given the nature of the proposed application, it is possible that a crane may be required during development. We would, therefore, draw the applicant's attention to the requirement within the British Standard Code of Practice for the safe use of Cranes, for crane operators to consult the aerodrome before erecting a crane in close proximity to an aerodrome. This is explained further in Advice Note 4, 'Cranes' (available at http://www.aoa.org.uk/wp-content/uploads/2016/09/Advice-Note-4-Cranes-2016.pdf)

#### INTERNAL CONSULTEES:

#### HIGHWAYS:

The size of the car park would not be increased as part of this application as such the proposal will not result in any additional traffic on the highway network, it would have an insignificant impact on the A4 Bath Road in terms of capacity or queuing.

The Highway Authority note that the Road Safety Audit highlights that the former Department for the Environment, Transport and the Regions recommended that 'in-line' tactile paving should be 1,200mm deep across the full width of the dropped kerb, this is to ensure that necessary warning is provided to a vision impaired pedestrian proceeding at normal pace. However, the tactile paving provided is 800mm deep when measured back from the channel line, which could lead to a vision impaired pedestrian stepping over the tactile paving and entering the carriageway unaware, with consequent risk of being struck

by a moving vehicle. The Highway Authority require that the design of the junction is modified in response to these comments. This requirement should be secured by way of a planning condition.

As mentioned above size of the car park - number of spaces would not change and as such the neither would the number of vehicle trips generated. However, the number trips generated could change if the use car park were to be used for short stay parking - as the turnover of spaces would increase so would the number of cars arriving and departing. With the new access, the car park would be more prominent and more able to 'catch passing trade' - people driving along Bath Road looking for somewhere to park for an hour or so. To protect against the car park being used for short-stay parking the Highway Authority require that the submission of a Car Parking Management Plan is made a condition of any forthcoming planning approval. This Car Parking Management Plan should contain information regarding duration of stay and cost.

The Highway Authority is aware that if entry to the car park is controlled by a barrier, then situations may arise whereby cars queue back onto the Bath Road waiting for their turn to enter the car park. The Car Parking Management Plan should also set out how the cost to park would be collected, the method of payment must not require the provision of a barrier.

Subject to the above there are no highway objections to this application.

## TREE/LANDSCAPE OFFICER:

This site is occupied by the wooded southern boundary of an NCP car park and a roadside verge to the west of the M4 spur road linking the M4 to Heathrow airport. The car park is currently only accessible via a road over bridge which is accessed via the Park Inn (Radisson) and Conference Centre to the east of the spur road. Aside from the landscape buffer of dense woody vegetation which screen the car from the south, there are roadside trees along the northern edge of Bath Road, thought to be managed by Highways England. - These trees are not protected by TPO or Conservation Area designation, nevertheless they are a valuable asset for their visual amenity and capacity to improve air quality.

This application follows the approval of a similar proposal, 41632/APP/2010/2301, which was never implemented. A tree report by Tamla, dated March 2021, has identified and assessed 4 highway trees and the on-site woodland shelter belt. Three individual trees and the shelter belt are 'B' category trees; T1, T2, T3 and TG1. T4 is a 'C' category tree. The report confirms that T3 Norway maple (B), T4 London Plane (C) and a length of the shelter belt, TG1 (B) will be removed to enable the new access point. Two adjacent street tree, T1 and T2 on plan, which are close to the proposed junction will be protected during the construction work. Tree loss is regrettable on the Bath Road, where pollution and poor air quality is recorded. Replacement tree planting should be provided by condition.

#### Recommendation

No objection subject to conditions COM9 (parts 1, 4 and 5).

## ACCESS OFFICER:

I have assessed this application for a new vehicle crossover for access into the NCP car park leading from Bath Road. Drawing No.MBSK210222-08 appears to show two dropped kerbs with tactile paving, with the central island. Conclusion: acceptable.

## 6. Local Plan Designation and London Plan

The following Local Plan Policies are considered relevant to the application:-

Part 1 Policies:

Part 2 Policies:

In addition: Relevant Local Plan policies:

PART 1

BE1 - Built environment

PART 2

DMHB 11 - Design of New Development DMT1 - Managing transport impacts

DMT2 - Highway impacts
DMT5 - Pedestrian and cyclists

DMT6 - Vehicle parking

## 7. MAIN PLANNING ISSUES

## 7.1 Impact on the amenities of the occupiers of neighbouring residential properties

No residential occupiers would be significantly affected by the proposal.

## 7.2 Impact on Street Scene

The proposed new access would result in the loss of some trees. The Tree/Landscape Officer does not object, subject to replacement tree planting being required by condition. A condition is recommended to require a replacement planting scheme. Subject to this, and given the highway context no significant adverse visual impact would result.

#### 7.3 Traffic Impact/Pedestrian Safety

The size of the car park would not be increased as part of the application and as such the proposal is not envisaged to result in any additional traffic on the highway network. In response to the Highway Officer comments on potential short stay parking and queuing, the applicant responded as follows:

"1) With a more visible entrance/site, how will we avoid casual, short term (20 minute) parking (and therefore a potential increase in trips)?

The business model for the NCP car park is that of an airport car park, providing secure parking for leisure and business travellers in/out of Heathrow Terminals 2 & 3. This is very much set out on the operators website which states:

"Heathrow Flightpath provides convenient parking for Heathrow Terminals 2 & 3. Located less than half a mile from the terminal building behind the Park Inn Hotel, this Heathrow car park is the best kept secret in Heathrow parking. Whether you're planning a holiday or jetting off on a business trip, park at Heathrow Flightpath and take advantage of the following benefits:"

While the minimum charge is £5 for two hours, I understand that these smaller charges allow customers to be charged for a partial day, rather than whole day, providing flexibility around flight times and it is not aimed at encouraging casual short term visits.

Moreover, realistically there is little (if anything) in the immediately vicinity that a casual visitor is likely to be trying to access - all of the local hotels have their own parking, as does the nearest public house so I believe that any casual short term visits will be negligible, if any.

2) Could the barrier provision result in blocking back onto the A4?

The proposed barriers are located circa 22m from the A4 bus lane and would operate very much as the existing ones do - the ANPR system will raise the barrier automatically for pre-booked customers. For those who have not pre-booked, their number plate is recorded and a ticket issued, with the barrier then raising to let them enter.

Within the 22m barrier setback, 3-4 vehicles could wait without blocking back onto the bus lane. To provide some context, it is generally accepted that a lifting arm barrier can cater for 360-400 vehicles per hour (Design Recommendations for Multi-storey and underground Car Parks, 4th Edition) - that's one vehicle every 10 seconds or so being able to pass. The level of traffic recorded at the NCP access was 19 vehicle in the morning peak period, only 10 of which were accessing the car park. With the barriers having a through-put capacity of up to 400 vehicles and only 10 vehicles presently entering in the morning peak, it seem very unlikely any blocking will occur - even if there is a modest increase in trips. I would add that the Stage 1 RSA (as approved by TfL) did not consider this a material risk.

It is considered this satisfactorily addresses the Highway Officers comments. Notwithstanding this, a condition is recommended to require a Car Park Management Plan to demonstrate that no unacceptable adverse effects would occur. Subject to this it is considered that the proposal would not have any significant impact on the A4 Bath Road in terms of capacity, queuing, and highway safety and the free flow of traffic.

## 7.4 Carparking & Layout

See Traffic Impact above.

## 7.5 Urban Design, Access and Security Considerations

A condition is recommended to require details of tactile paving for subsequent approval to ensure the safety of pedestrians when crossing the new access point.

## 7.6 Other Issues

None.

## 8. Reference Documents

Hillingdon Local Plan Part 1 2012 Hillingdon Local Plan Part 2 2020 London Plan 2021 NPPF 2019

Accessible Hillingdon Supplementary Planning Document 2010

Contact Officer: Michael Gavin Telephone No: 01895 250230