

ProSteel 7 Project Summary

Site address: 80 AppleTree Avenue

Job: ASB\024\080\Appl

Client:

Job number:

ITEMS:

1: Beam: RIDGE BEAM RB1

Span: 6.1 m.

Reactions (unfactored/factored): R1: 17.46/26.51 kN; R2: 17.33/26.30 kN

Use 203 x203 x 46 UC S355

Bearing R1: 20 mm m.s. bearing plate, size 450 x 100 mm

Bearing R2: 20 mm m.s. bearing plate, size 450 x 100 mm

2: Beam: SB1

Span: 6.1 m.

Reactions (unfactored/factored): R1: 20.29/31.62 kN; R2: 20.25/31.55 kN

Use 203 x203 x 46 UC S355

Bearing R1: 25 mm m.s. bearing plate, size 550 x 100 mm

Bearing R2: 25 mm m.s. bearing plate, size 550 x 100 mm

3: Beam: SB2

Span: 6.1 m.

Reactions (unfactored/factored): R1: 29.83/46.35 kN; R2: 29.58/45.92 kN

Use 203 x203 x 46 UC S355

Bearing R1: 30 mm m.s. bearing plate, size 750 x 100 mm

Bearing R2: Not specified

4: Beam: LINTEL L1 (ASSUME EXISTING)

Span: 1.0 m.

Reactions (unfactored/factored): R1: 11.01/16.44 kN; R2: 11.01/16.44 kN

Use 100 x100 x5 HF SHS S355 (14.7kg/m)

5: Beam: LINTEL L2

Span: 1.2 m.

Reactions (unfactored/factored): R1: 15.54/23.38 kN; R2: 35.38/53.49 kN

Use 100 x100 x5 HF SHS S355 (14.7kg/m)

Beam: RIDGE BEAM RB1

Span: 6.1 m.

	Load name	Loading w1	Start x1	Loading w2	End x2	R1comp	R2comp	Defl.
O D	o.w.	0.5	0		L	1.52	1.52	9
U L	Flat Roof A	0.75*(2.9/2)	0		L	3.32	3.32	20
U D	Flat Roof A	0.85*(2.9/2)	0		L	3.76	3.76	22
V L	Pitch Roof	0.75*(3.1/2)	0	0.75*(0.1/2)	3.0	1.50	0.30	4
V D	Pitch Roof	0.75*(3.1/2)	0	0.75*(0.1/2)	3.0	1.50	0.30	4
V L	Pitch Roof	0.75*(0.1/2)	3.0	0.75*(3.1/2)	6.1	0.32	1.54	4
V D	Pitch Roof	0.75*(0.1/2)	3.0	0.75*(3.1/2)	6.1	0.32	1.54	4
P L	RT4:R2	10.26	3.0			5.21	5.05	48
Total load (unfactored):						34.8 kN	17.46	17.33
Dead/Permanent (unfactored):						14.2 kN	7.10	7.12
Live/Variable (unfactored):						20.6 kN	10.35	10.20
Total load (factored):						52.8 kN	26.51	26.30

Load types: O:Beam o.w.; U:UDL; V:Variable load; P:Point load; Load positions: m. from R1

Load durations: D: Dead; L: Live

Maximum B.M. = 50.2 kNm (factored) at 3.00 m. from R1

Maximum S.F. = 26.5 kN (factored) at R1

Mid-span deflections: Dead: $39 \times 10^8 / EI$ (E in N/mm 2 , I in cm 4)

Live: $76 \times 10^8 / EI$

Total: $115 \times 10^8 / EI$

Beam calculation to BS5950-1:2000 using S355 steel

SECTION SIZE : 203 x 203 x 46 UC S355 (semi-compact)

D=203.2 mm B=203.6 mm t=7.2 mm T=11.0 mm $I_x=4,570 \text{ cm}^4$ $r_y=5.13 \text{ cm}$ $S_x=497 \text{ cm}^3$ $x=17.7$

Section classification: $T = 11.0 \text{ mm}$ $p_y = 355 \text{ N/mm}^2$ $e = \sqrt{(275/355)} = 0.88$

(Table 11) Flange: $b/T = 101.8/11.0 = 9.25$ (≤ 15 Class 3 semi-compact)

Web: $d/t = 160.8/7.2 = 22.3$ (≤ 80 Class 1, plastic)

Section classification is Class 3, semi-compact $S_{x,eff} = 490 \text{ cm}^3$

Shear

Maximum S.F. = 27 kN

Shear capacity = $0.6 p_y t D = 0.6 \times 355 \times 7.2 \times 203.2 / 1000 = 312 \text{ kN}$ OK

Bending

Maximum B.M. = 50.2 kNm

Moment capacity, $M_c = p_y S_{x,eff} = 355 \times 490 / 1000 = 174 \text{ kNm}$ OK

Lateral-torsional buckling

Beam is laterally restrained at supports only

Restraint condition at R1 and R2: Compression flange laterally unrestrained; both flanges free to rotate on plan.

Partial torsional restraint by dead bearing of bottom flange to support (1.2L+2D)

Effective length = $1.2L+2D = 7.73 \text{ m}$. [Table 13]

Bending strength, $p_b = 172 \text{ N/mm}^2$

Maximum moment within segment, $M_x = 50.2 \text{ kNm}$

Equivalent uniform moment factor, $m_{LT} = 0.888$ ($M_2 = 32.2$, $M_3 = 49.8$, $M_4 = 31.8$)

Equivalent uniform moment = $0.888 \times 50.2 = 44.5 \text{ kNm}$

Buckling resistance moment, $M_b = p_b S_{x,eff} = 172 \times 490 / 1000 = 84.2 \text{ kNm}$ OK

Web capacity

Check unstiffened web capacities with loads of 26.5 kN and 26.3 kN

$C1 = 108 \text{ kN}$; $C2 = 2.56 \text{ kN/mm}$; $C4 = 399$; $K = \min\{0.5 + (a_e/1.4d), 1.0\}$; $p_{yw} = 355 \text{ N/mm}^2$

For derivation of C factors see SCI Steelwork Design Guide to BS5950-1:2000 6th ed. (P325)

R1: Minimum required stiff bearing length, $b_1 = 0 \text{ mm}$; $a_e = 0 \text{ mm}$; $d = 160.8 \text{ mm}$; $K = 0.500$

Bearing capacity, $P_w = C1 + b_1 \cdot C2 = 108 \text{ kN}$

Buckling capacity, $P_x = K_w / (C4 \cdot P_w) = 0.500 / (399 \times 108) = 104 \text{ kN} \rightarrow$

R2: Minimum required stiff bearing length, $b_1 = 0 \text{ mm}$; $a_e = 0 \text{ mm}$; $d = 160.8 \text{ mm}$; $K = 0.500$

Bearing capacity, $P_w = C1 + b_1 \cdot C2 = 108 \text{ kN}$

Buckling capacity, $P_x = K_w / (C4 \cdot P_w) = 0.500 / (399 \times 108) = 104 \text{ kN} \rightarrow$

Deflection

LL deflection = $76.1 \times 10^8 / (205,000 \times 4,570) = 8.1 \text{ mm}$ (L/751) OK

TL deflection = $115.3 \times 10^8 / (205,000 \times 4,570) = 12.3 \text{ mm}$ (L/496)

Bearings

203 x 203 x 46 UC stiff bearing length, $b_1 = t + 1.6r + 2T = 45.5 \text{ mm}$

R1: 450 x 100 x 20 mm S275 bearing plate

Factored reaction = $1.4 \times 7.10 + 1.6 \times 10.35 = 26.5 \text{ kN}$

Local design strength of masonry (factored) = 0.630 N/mm^2 (User-entered value)

Factored stress under plate = $26.5 \times 1000 / 450 \times 100 = 0.59 \text{ N/mm}^2$ OK

Bearing plate projection beyond stiff bearing length = $(450 - 45.5) / 2 = 202 \text{ mm}$

Required plate thickness = $\sqrt{3 \times 0.59 \times 202 \times 202 / 265} = 16.5 \text{ mm}$: use 20mm

Factored bending stress in plate = $0.59 \times 202 \times (202 / 2) / (20 \times 20 / 6) = 181 \text{ N/mm}^2$ ($p_y = 265 \text{ N/mm}^2$)

R2: 450 x 100 x 20 mm S275 bearing plate

Factored reaction = $1.4 \times 7.12 + 1.6 \times 10.20 = 26.3 \text{ kN}$

Local design strength of masonry (factored) = 0.630 N/mm^2 (User-entered value)

Factored stress under plate = $26.3 \times 1000 / 450 \times 100 = 0.58 \text{ N/mm}^2$ OK

Bearing plate projection beyond stiff bearing length = $(450 - 45.5) / 2 = 202 \text{ mm}$

Required plate thickness = $\sqrt{3 \times 0.58 \times 202 \times 202 / 265} = 16.4 \text{ mm}$: use 20mm

Factored bending stress in plate = $0.58 \times 202 \times (202 / 2) / (20 \times 20 / 6) = 179 \text{ N/mm}^2$ ($p_y = 265 \text{ N/mm}^2$)

Beam: SB1

								Span: 6.1 m.
O D	Load name	Loading w1	Start x1	Loading w2	End x2	R1comp	R2comp	Defl.
O W.		0.5	0		L	1.52	1.52	9
R L	Floor A	1.31/0.4	0		1.6	4.55	0.69	9
R D	Floor A	0.44/0.4	0		1.6	1.53	0.23	3
R L	Floor B	1.5*(2.7/2)	1.6		4.4	2.88	2.79	24
R D	Floor B	0.5*(2.7/2)	1.6		4.4	0.96	0.93	8
R L	Floor A	1.31/0.4	4.4		6.1	0.78	4.79	10
R D	Floor A	0.44/0.4	4.4		6.1	0.26	1.61	4
P L	T3:R1	3.58	0.6			3.23	0.35	5
P L	T4:R1	4.17	1.7			3.01	1.16	15
P L	T5:R1	4.17	4.4			1.16	3.01	15
P L	T6:R1	3.58	5.4			0.41	3.17	6
Total load (unfactored): 40.5 kN						20.29	20.25	108
Dead/Permanent (unfactored):						8.6 kN	4.28	4.29
Live/Variable (unfactored):						32.0 kN	16.02	15.96
Total load (factored):						63.2 kN	31.62	31.55

Load types: O:Beam o.w.; R:Part UDL; P:Point load; Load positions: m. from R1
Load durations: D: Dead; L: Live

Maximum B.M. = 41.33 kNm (factored) at 3.08 m. from R1

Maximum S.F. = 31.6 kN (factored) at R1

Mid-span deflections: Dead: $24 \times 10^8 / EI$ (E in N/mm², I in cm⁴)

Live: $84 \times 10^8 / EI$

Total: $108 \times 10^8 / EI$

Beam calculation to BS5950-1:2000 using S355 steel

SECTION SIZE : 203 x 203 x 46 UC S355 (semi-compact)

D=203.2 mm B=203.6 mm t=7.2 mm T=11.0 mm $I_x = 4,570 \text{ cm}^4$ $r_y = 5.13 \text{ cm}$ $S_x = 497 \text{ cm}^3$ $x = 17.7$

Section classification: $T = 11.0 \text{ mm}$ $p_y = 355 \text{ N/mm}^2$ $e = \sqrt{(275/355)} = 0.88$

(Table 11) Flange: $b/T = 101.8/11.0 = 9.25$ (≤ 15 Class 3 semi-compact)

Web: $d/t = 160.8/7.2 = 22.3$ (≤ 80 Class 1, plastic)

Section classification is Class 3, semi-compact $S_{x,eff} = 490 \text{ cm}^3$

Shear

Maximum S.F. = 32 kN

Shear capacity = $0.6 p_y \cdot t \cdot D = 0.6 \times 355 \times 7.2 \times 203.2 / 1000 = 312 \text{ kN}$ OK

Bending

Maximum B.M. = 41.3 kNm

Moment capacity, $M_c = p_y \cdot S_{x,eff} = 355 \times 490 / 1000 = 174 \text{ kNm}$ OK

Lateral-torsional buckling

Beam is laterally restrained at supports only

Restraint condition at R1 and R2: Compression flange laterally unrestrained; both flanges free to rotate on plan.

Partial torsional restraint by dead bearing of bottom flange to support (1.2L+2D)

Effective length = $1.2L+2D = 7.73 \text{ m.}$ [Table 13]

Bending strength, $p_b = 172 \text{ N/mm}^2$

Maximum moment within segment, $M_k = 41.3 \text{ kNm}$

Equivalent uniform moment factor, $m_{LT} = 0.950$ ($M_2 = 34.2, M_3 = 41.3, M_4 = 34.7$)

Equivalent uniform moment = $0.950 \times 41.3 = 39.3 \text{ kNm}$

Buckling resistance moment, $M_b = p_b \cdot S_{x,eff} = 172 \times 490 / 1000 = 84.2 \text{ kNm}$ OK

Web capacity

Check unstiffened web capacities with loads of 31.6 kN and 31.5 kN

$C1 = 108 \text{ kN}$; $C2 = 2.56 \text{ kN/mm}$; $C4 = 399$; $K = \min\{0.5 + (a_e/1.4d), 1.0\}$; $p_{yw} = 355 \text{ N/mm}^2$

For derivation of C factors see SCI Steelwork Design Guide to BS5950-1:2000 6th ed. (P325)

R1: Minimum required stiff bearing length, $b_1 = 0 \text{ mm}$; $a_e = 0 \text{ mm}$; $d = 160.8 \text{ mm}$; $K = 0.500$

Bearing capacity, $P_w = C1 + b_1 \cdot C2 = 108 \text{ kN}$

Buckling capacity, $P_x = K_w / (C4 \cdot P_w) = 0.500 / (399 \times 108) = 104 \text{ kN} \rightarrow$

R2: Minimum required stiff bearing length, $b_1 = 0 \text{ mm}$; $a_e = 0 \text{ mm}$; $d = 160.8 \text{ mm}$; $K = 0.500$

Bearing capacity, $P_w = C1 + b_1 \cdot C2 = 108 \text{ kN}$

Buckling capacity, $P_x = K_w / (C4 \cdot P_w) = 0.500 / (399 \times 108) = 104 \text{ kN} \rightarrow$

Deflection

LL deflection = $84.3 \times 10^8 / (205,000 \times 4,570) = 9.0 \text{ mm}$ (L/678) OK

TL deflection = $108.0 \times 10^8 / (205,000 \times 4,570) = 11.5 \text{ mm}$ (L/529)

Bearings

203 x 203 x 46 UC stiff bearing length, $b_1 = t + 1.6r + 2T = 45.5 \text{ mm}$

R1: 550 x 100 x 25 mm S275 bearing plate

Factored reaction = $1.4 \times 4.28 + 1.6 \times 16.02 = 31.6 \text{ kN}$

Local design strength of masonry (factored) = 0.630 N/mm^2 (User-entered value)

Factored stress under plate = $31.6 \times 1000 / 550 \times 100 = 0.57 \text{ N/mm}^2$ OK

Bearing plate projection beyond stiff bearing length = $(550-45.5)/2 = 252 \text{ mm}$

Required plate thickness = $\sqrt{3 \times 0.57 \times 252 \times 252 / 265} = 20.3 \text{ mm}$: use 25mm

Factored bending stress in plate = $0.57 \times 252 \times (252/2) / (25 \times 25/6) = 176 \text{ N/mm}^2$ ($p_y = 265 \text{ N/mm}^2$)

R2: 550 x 100 x 25 mm S275 bearing plate

Factored reaction = $1.4 \times 4.29 + 1.6 \times 15.96 = 31.5 \text{ kN}$

Local design strength of masonry (factored) = 0.630 N/mm^2 (User-entered value)

Factored stress under plate = $31.5 \times 1000 / 550 \times 100 = 0.57 \text{ N/mm}^2$ OK

Bearing plate projection beyond stiff bearing length = $(550-45.5)/2 = 252 \text{ mm}$

Required plate thickness = $\sqrt{3 \times 0.57 \times 252 \times 252 / 265} = 20.3 \text{ mm}$: use 25mm

Factored bending stress in plate = $0.57 \times 252 \times (252/2) / (25 \times 25/6) = 175 \text{ N/mm}^2$ ($p_y = 265 \text{ N/mm}^2$)

Beam: SB2

								Span: 6.1 m.
O D	Load name	Loading w1	Start x1	Loading w2	End x2	R1comp	R2comp	Defl.
O D	o.w.	0.5	0		L	1.52	1.52	9
R L	Floor A	1.21/0.4	0		1.6	4.21	0.63	9
R D	Floor A	0.40/0.4	0		1.6	1.39	0.21	3
R L	Floor B	1.5*(2.7/2)	1.6		4.4	2.88	2.79	24
R D	Floor B	0.5*(2.7/2)	1.6		4.4	0.96	0.93	8
R L	Floor A	1.21/0.4	4.4		6.1	0.72	4.43	10
R D	Floor A	0.40/0.4	4.4		6.1	0.24	1.46	3
R L	Floor C	1.5*(3.6/2)	0		5.1	8.01	5.76	46
R D	Floor C	0.5*(3.6/2)	0		5.1	2.67	1.92	15
R D	Stud Wall	0.5*2.2	5.1		6.1	0.09	1.01	1
P L	T3:R2	4.72	0.6			4.26	0.46	7
P L	T4:R2	1.87	1.7			1.35	0.52	7
P L	T5:R2	1.87	4.4			0.52	1.35	7
P L	T6:R2	4.72	5.4			0.54	4.18	8
P L	T1:R1	2.88	5.1			0.47	2.41	6
Total load (unfactored): 59.4 kN						29.83	29.58	161
Dead/Permanent (unfactored):						13.9 kN	6.87	7.06
Live/Variable (unfactored):						45.5 kN	22.96	22.53
Total load (factored):						92.3 kN	46.35	45.92

Load types: O:Beam o.w.; R:Part UDL; P:Point load; Load positions: m. from R1

Load durations: D: Dead; L: Live

Maximum B.M. = 62.8 kNm (factored) at 3.11 m. from R1

Maximum S.F. = 46.4 kN (factored) at R1

Mid-span deflections: Dead: $40 \times 10^8 / EI$ (E in N/mm², I in cm⁴)

Live: $122 \times 10^8 / EI$

Total: $161 \times 10^8 / EI$

Beam calculation to BS5950-1:2000 using S355 steel

SECTION SIZE : 203 x 203 x 46 UC S355 (semi-compact)

D=203.2 mm B=203.6 mm t=7.2 mm T=11.0 mm $I_x = 4,570 \text{ cm}^4$ $r_y = 5.13 \text{ cm}$ $S_x = 497 \text{ cm}^3$ $x = 17.7$

Section classification: $T = 11.0 \text{ mm}$ $p_y = 355 \text{ N/mm}^2$ $e = \sqrt{(275/355)} = 0.88$

(Table 11) Flange: $b/T = 101.8/11.0 = 9.25$ ($<= 15$ Class 3 semi-compact)

Web: $d/t = 160.8/7.2 = 22.3$ ($<= 80$ Class 1, plastic)

Section classification is Class 3, semi-compact $S_{x,eff} = 490 \text{ cm}^3$

Shear

Maximum S.F. = 46 kN

Shear capacity = $0.6 p_y t D = 0.6 \times 355 \times 7.2 \times 203.2 / 1000 = 312 \text{ kN}$ OK

Bending

Maximum B.M. = 62.8 kNm

Moment capacity, $M_c = p_y S_{x,eff} = 355 \times 490 / 1000 = 174 \text{ kNm}$ OK

Lateral-torsional buckling

Beam is laterally restrained at supports only

Restraint condition at R1 and R2: Compression flange laterally unrestrained; both flanges free to rotate on plan.

Partial torsional restraint by dead bearing of bottom flange to support (1.2L+2D)

Effective length = $1.2L+2D = 7.73 \text{ m.}$ [Table 13]

Bending strength, $p_b = 172 \text{ N/mm}^2$

Maximum moment within segment, $M_k = 62.8 \text{ kNm}$

Equivalent uniform moment factor, $m_{LT} = 0.939$ ($M_2 = 49.1, M_3 = 62.8, M_4 = 51.0$)

Equivalent uniform moment = $0.939 \times 62.8 = 59.0 \text{ kNm}$

Buckling resistance moment, $M_b = p_b \cdot S_{x,eff} = 172 \times 490/1000 = 84.2 \text{ kNm}$ OK

Web capacity

Check unstiffened web capacities with loads of 46.4 kN and 45.9 kN

$C1 = 108 \text{ kN}$; $C2 = 2.56 \text{ kN/mm}$; $C4 = 399$; $K = \min\{0.5 + (a_e/1.4d), 1.0\}$; $p_{yw} = 355 \text{ N/mm}^2$

For derivation of C factors see SCI Steelwork Design Guide to BS5950-1:2000 6th ed. (P325)

R1: Minimum required stiff bearing length, $b_1 = 0 \text{ mm}$; $a_e = 0 \text{ mm}$; $d = 160.8 \text{ mm}$; $K = 0.500$

Bearing capacity, $P_w = C1 + b_1 \cdot C2 = 108 \text{ kN}$

Buckling capacity, $P_x = K_w / (C4 \cdot P_w) = 0.500 / (399 \times 108) = 104 \text{ kN} \rightarrow$

R2: Minimum required stiff bearing length, $b_1 = 0 \text{ mm}$; $a_e = 0 \text{ mm}$; $d = 160.8 \text{ mm}$; $K = 0.500$

Bearing capacity, $P_w = C1 + b_1 \cdot C2 = 108 \text{ kN}$

Buckling capacity, $P_x = K_w / (C4 \cdot P_w) = 0.500 / (399 \times 108) = 104 \text{ kN} \rightarrow$

Deflection

LL deflection = $122 \times 10^8 / (205,000 \times 4,570) = 13.0 \text{ mm}$ (L/469) OK

TL deflection = $161 \times 10^8 / (205,000 \times 4,570) = 17.2 \text{ mm}$ (L/354)

Bearings

203 x 203 x 46 UC stiff bearing length, $b_1 = t + 1.6r + 2T = 45.5 \text{ mm}$

R1: 750 x 100 x 30 mm S275 bearing plate

Factored reaction = $1.4 \times 6.87 + 1.6 \times 22.96 = 46.4 \text{ kN}$

Local design strength of masonry (factored) = 0.630 N/mm^2 (User-entered value)

Factored stress under plate = $46.4 \times 1000 / 750 \times 100 = 0.62 \text{ N/mm}^2$ OK

Bearing plate projection beyond stiff bearing length = $(750 - 45.5) / 2 = 352 \text{ mm}$

Required plate thickness = $\sqrt{3 \times 0.62 \times 352 \times 352 / 265} = 29.5 \text{ mm}$: use 30mm

Factored bending stress in plate = $0.62 \times 352 \times (352/2) / (30 \times 30/6) = 256 \text{ N/mm}^2$ ($p_y = 265 \text{ N/mm}^2$)

R2: None

Beam: LINTEL L1 (ASSUME EXISTING)

Span: 1.0 m.

	Load name	Loading w1	Start x1	Loading w2	End x2	R1comp	R2comp	Defl.
O D	o.w.	0.15	0		L	0.08	0.08	0.00
V D	Brick Wall	4.55*0.8	0	4.55*1.2	0.5	1.67	0.61	0.03
V D	Brick Wall	4.55*1.2	0.5	4.55*0.8	1.0	0.61	1.67	0.03
P D	Bm: RIDGE BEAM RB1 : R2	7.12 [B/F]	0.5			3.56	3.56	0.15
P L	Bm: RIDGE BEAM RB1 : R2	10.20 [B/F]	0.5			5.10	5.10	0.21
Total load (unfactored): 22.03 kN						11.01	11.01	0.43
Dead/Permanent (unfactored): 11.82 kN						5.91	5.91	0.21
Live/Variable (unfactored): 10.20 kN						5.10	5.10	0.21
Total load (factored): 32.88 kN						16.44	16.44	

Load types: O:Beam o.w.; V:Variable load; P:Point load; Load positions: m. from R1

Load durations: D: Dead; L: Live

Maximum B.M. = 7.45 kNm (factored) at 0.50 m. from R1

Maximum S.F. = 16.44 kN (factored) at R1

Mid-span deflections: Dead: $0.21 \times 10^8 / EI$ (E in N/mm^2 , I in cm^4)

Live: $0.21 \times 10^8 / EI$

Total: $0.43 \times 10^8 / EI$

Beam calculation to BS5950-1:2000 using S355 steel

SECTION SIZE : 100 x 100 x 5 HF SHS S355 (14.7kg/m) (compact)

$I_x = 279 \text{ cm}^4$ $r_y = 3.86 \text{ cm}$ $S_x = 66.0 \text{ cm}^3$ $A = 18.7 \text{ cm}^2$

Section classification: $T = 5.0 \text{ mm}$ $p_y = 355 \text{ N/mm}^2$ $e = \sqrt{(275/355)} = 0.88$

(Table 12) Flange: $b/T = 85.0/5.0 = 17.0 (<= 28 \text{ Class 1 plastic})$

Web: $d/t = 85.0/5.0 = 17.0 (<= 64 \text{ Class 1, plastic})$

For design purposes section classification is Class 2, compact

Shear

Maximum S.F. = 16 kN

Shear capacity = $0.6 p_y A D / (D+B) = 0.6 \times 355 \times (100 \times 18.7 \times 100) / (100+100) / 1000 = 199 \text{ kN OK}$

Bending

Maximum B.M. = 7.45 kNm

Moment capacity, $M_c = p_y S_x = 355 \times 66.0 / 1000 = 23.43 \text{ kNm OK}$

Lateral-torsional buckling

Beam is laterally restrained at supports only

Restraint condition at R1 and R2: Compression flange laterally unrestrained; both flanges free to rotate on plan.

Partial torsional restraint by dead bearing of bottom flange to support (1.2L+2D)

Effective length = $1.2L+2D = 1.40 \text{ m.}$ [Table 13]

Slenderness (L_E/r_y) = $1.40 \times 100 / 3.86 = 36.3$

Check for lateral torsional buckling not required (Table 15)

Web buckling and crushing have not been checked

Deflection

LL deflection = $0.213 \times 10^8 / (205,000 \times 279) = 0.4 \text{ mm}$ (L/2691) OK

TL deflection = $0.425 \times 10^8 / (205,000 \times 279) = 0.7 \text{ mm}$ (L/1344)

Beam: LINTEL L2

Span: 1.2 m.								
	Load name	Loading w1	Start x1	Loading w2	End x2	R1comp	R2comp	Defl.
O D	O.w.	0.15	0		L	0.09	0.09	0.00
R L	Floor	1.5*(0.4/2)	0		0.8	0.16	0.08	0.01
R D	Floor	0.5*(0.4/2)	0		0.8	0.05	0.03	0.00
V D	Brick Wall	4.55*1.3	0	4.55*2.3	1.2	4.46	5.37	0.22
P D	Beam: SB2 : R2	7.06 [B/F]	0.8			2.35	4.70	0.22
P L	Beam: SB2 : R2	22.53 [B/F]	0.8			7.51	15.02	0.69
P D	Beam: LINTEL L1 : R1	5.91 [B/F]	1.1			0.49	5.42	0.05
P L	Beam: LINTEL L1 : R1	5.10 [B/F]	1.1			0.43	4.68	0.05
Total load (unfactored): 50.9 kN						15.54	35.38	1.24
Dead/Permanent (unfactored): 23.1 kN						7.45	15.61	0.50
Live/Variable (unfactored): 27.9 kN						8.09	19.77	0.74
Total load (factored): 76.9 kN						23.38	53.49	

Load types: O:Beam o.w.; R:Part UDL; V:Variable load; P:Point load; Load positions: m. from R1

Load durations: D: Dead; L: Live

Maximum B.M. = 15.33 kNm (factored) at 0.80 m. from R1

Maximum S.F. = -53.5 kN (factored) at R2

Mid-span deflections: Dead: $0.50 \times 10^8 / EI$ (E in N/mm 2 , I in cm 4)

Live: $0.74 \times 10^8 / EI$

Total: $1.24 \times 10^8 / EI$

Beam calculation to BS5950-1:2000 using S355 steel

SECTION SIZE: 100 x 100 x 5 HF SHS S355 (14.7kg/m) (compact)

$I_x = 279 \text{ cm}^4$ $r_y = 3.86 \text{ cm}$ $S_x = 66.0 \text{ cm}^3$ $A = 18.7 \text{ cm}^2$

Section classification: $T = 5.0 \text{ mm}$ $p_y = 355 \text{ N/mm}^2$ $e = \sqrt{(275/355)} = 0.88$

(Table 12) Flange: $b/T = 85.0/5.0 = 17.0$ (≤ 28 Class 1 plastic)

Web: $d/t = 85.0/5.0 = 17.0$ (≤ 64 Class 1, plastic)

For design purposes section classification is Class 2, compact

Shear

Maximum S.F. = 53 kN

Shear capacity = $0.6 p_y A D / (D+B) = 0.6 \times 355 \times (100 \times 18.7 \times 100) / (100+100) / 1000 = 199 \text{ kN}$ OK

Bending

Maximum B.M. = 15.33 kNm

Moment capacity, $M_c = p_y S_x = 355 \times 66.0 / 1000 = 23.43 \text{ kNm}$ OK

Lateral-torsional buckling

Beam is laterally restrained at supports only

Restraint condition at R1 and R2: Compression flange laterally unrestrained; both flanges free to rotate on plan.

Partial torsional restraint by dead bearing of bottom flange to support (1.2L+2D)

Effective length = $1.2L+2D = 1.64 \text{ m}$. [Table 13]

Slenderness (L_E / r_y) = $1.64 \times 100 / 3.86 = 42.5$

Check for lateral torsional buckling not required (Table 15)

Web buckling and crushing have not been checked

Deflection

LL deflection = $0.74 \times 10^8 / (205,000 \times 279) = 1.3 \text{ mm}$ (L/925) OK

TL deflection = $1.24 \times 10^8 / (205,000 \times 279) = 2.2 \text{ mm}$ (L/554)