

# **auricI**

## **acoustic consulting**

**Hillingdon Hospital**

### **Plant Noise Assessment Report**

23 April 2025

**For:**

Tejpal Golh  
Hillingdon Hospital

London

UB8 3NN

## Contents

|                                                    |    |
|----------------------------------------------------|----|
| SUMMARY.....                                       | 2  |
| 1.0 INTRODUCTION.....                              | 3  |
| 2.0 DESCRIPTION OF SITE.....                       | 3  |
| 3.0 LONDON BOROUGH OF HILLINGDON REQUIREMENTS..... | 4  |
| 4.0 NOISE SURVEY.....                              | 4  |
| 4.1 Methodology .....                              | 4  |
| 4.2 Noise Survey Equipment.....                    | 5  |
| 4.3 Survey Results & Observations.....             | 6  |
| 5.0 BUILDING SERVICES PLANT NOISE EMISSIONS.....   | 6  |
| 5.1 Plant Noise Limits .....                       | 6  |
| 5.2 Proposed Plant.....                            | 6  |
| 5.3 Noise Predictions .....                        | 7  |
| APPENDIX A – ACOUSTIC TERMINOLOGY .....            | 10 |
| APPENDIX B – TIME HISTORY GRAPH .....              | 10 |

## SUMMARY

New items of building services plant are proposed at Hillingdon Hospital in Hillingdon, noise emissions from which will be subject to London Borough of Hillingdon's requirements.

**auricl** has been instructed to carry out an environmental noise survey at the site to determine background noise levels at the nearest noise sensitive properties and to undertake an acoustic assessment of the proposed plant in relation to London Borough of Hillingdon's noise requirements.

The assessment shows that the predicted plant noise levels at the nearest noise sensitive properties achieve the London Borough of Hillingdon's requirements.

|                                                                                                 |                                            |                                                |             |
|-------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------------|-------------|
| <b>Project Number</b>                                                                           | 14894                                      | <b>Issue Date</b>                              | 15 May 2025 |
| <b>Document Reference</b>                                                                       | R/PNA/1/250515                             | <b>Version</b>                                 | 01          |
| <b>Report Produced by</b>                                                                       | Nicholas Jones<br>BEng(Hons) CEng MIOA     | T: 07739 715411<br>E: njones@auricl.com        |             |
| <b>auricl</b> Limited<br><a href="http://www.auricl.com">www.auricl.com</a><br>hello@auricl.com | 107 Cheapside<br><b>London</b><br>EC2V 6DN | 9 Greyfriars Road<br><b>Reading</b><br>RG1 1NU |             |
|                                                                                                 |                                            | Registered Company 09824075                    |             |

*Copyright © auricl Limited 2025. All rights reserved. This report is confidential to the party to whom it is addressed and their professional advisers for the specific purpose to which it refers. No responsibility is accepted to third parties, and neither the whole nor any part of this report nor reference thereto may be published or disclosed without the written consent of auricl Limited.*

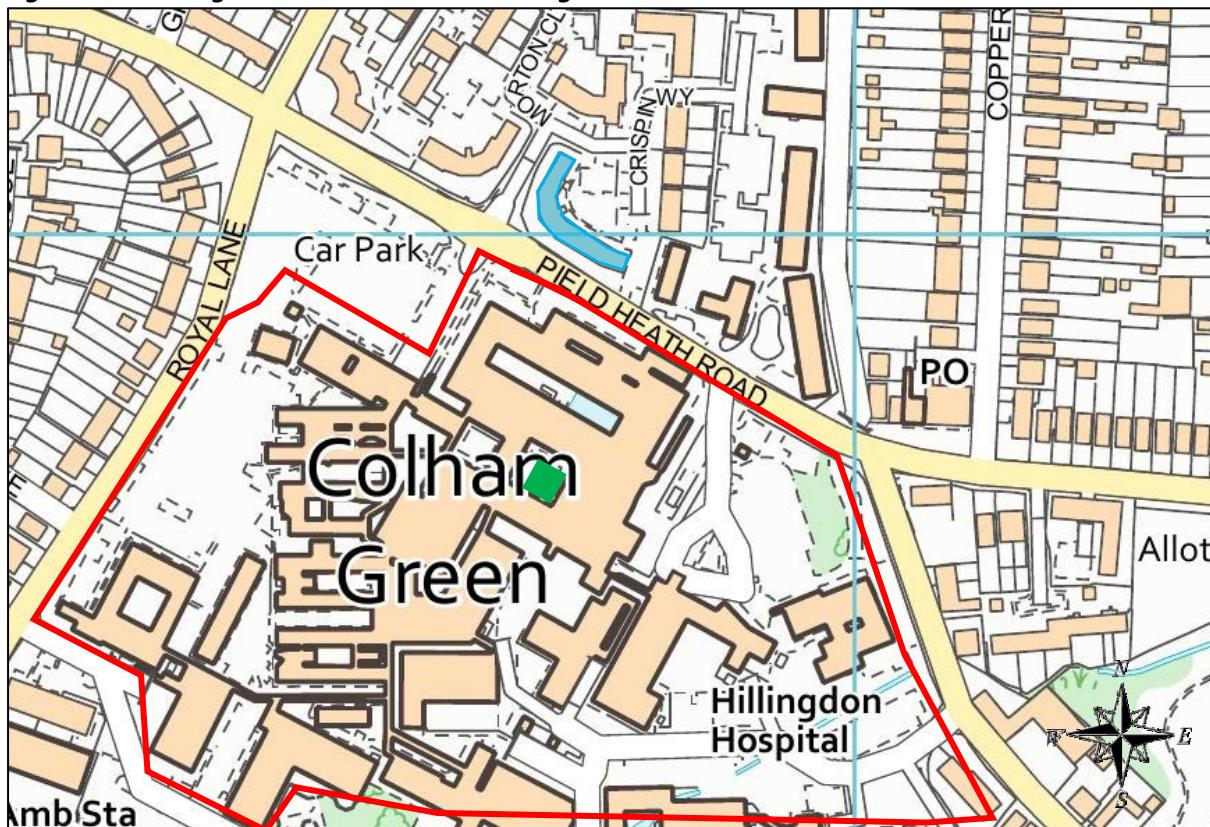
## 1.0 Introduction

New items of building services plant are proposed at Hillingdon Hospital in Hillingdon, noise emissions from which will be subject to London Borough of Hillingdon's requirements.

**auricl** has been appointed to undertake an environmental noise survey to determine background noise levels at the nearest noise sensitive properties and to undertake an acoustic assessment of the proposed plant in relation to London Borough of Hillingdon's noise requirements.

This report presents the methodology and results of the noise survey and our acoustic assessment of the proposed plant.

## 2.0 Description of Site


The site is occupied by a clinical building within the Hillingdon Hospital site, in a predominantly residential area.

New items of plant are proposed in the courtyard/lightwell area towards the south-west of the main clinical building.

The nearest noise sensitive properties to the proposed plant are noted to be located to the north east, on the north-eastern side of Pield Heath Road.

Figure 2.1 shows the approximate existing site extent in **red**, the approximate plant location in **blue** and the nearest noise sensitive properties indicated in **orange**.

**Figure 2.1 Existing Site Extent and Surroundings**



### 3.0 London Borough of Hillingdon Requirements

London Borough of Hillingdon's Supplementary Planning Document "*Development Control for Noise Generating and Noise Sensitive Development*" (July 2014) states it would normally be acceptable for the Rating Level ( $L_{Ar,Tr}$ ) due to sounds of an industrial and/or commercial nature to be at least 5 dB(A) below the Background Level  $L_{A90}$ , based on the terms specified in BS 4142.

British Standard (BS) 4142: 2014+A1: 2019 "*Methods for rating and assessing industrial and commercial*" provides a procedure for the measurement and rating of noise levels from industrial and commercial noise sources. BS 4142: 2014 is the current industry standard for predicting the likelihood of adverse impact due to these sources.

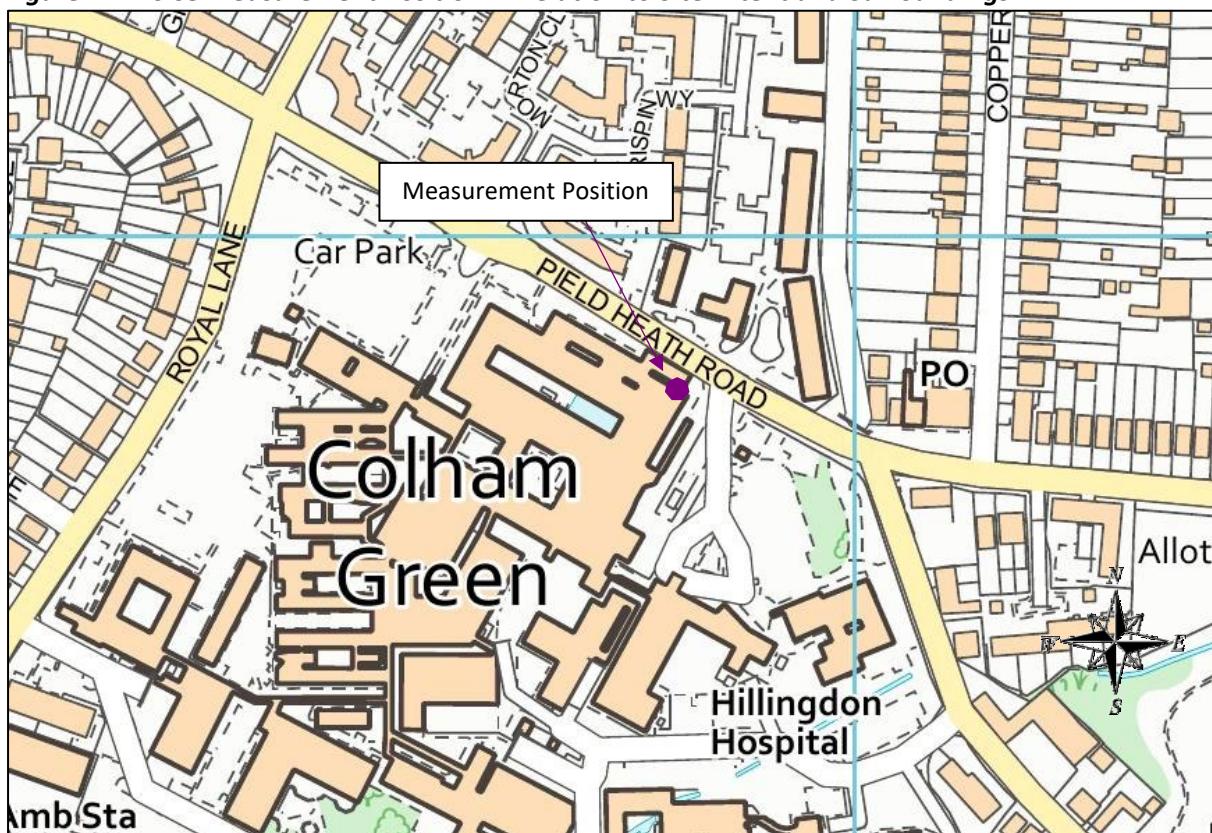
The rating level ( $L_{Ar,Tr}$ ) is defined in BS 4142: 2014+A1: 2019 and is used to rate the source (known as the specific noise source) at the assessment location. This level is obtained by adding a correction for tonal and/or impulsive noise sources. Additionally, corrections can be made for other sound characteristics and intermittency of the noise source.

The method for predicting the likelihood of complaints is based on differences between the rating level and the background  $L_{A90,T}$  noise level. The standard states that:

- a) *"Typically, the greater this difference, the greater the magnitude of the impact.*
- b) *A difference of around +10dB or more is likely to be an indication of a significant adverse impact, depending on the context.*
- c) *A difference of around +5 dB is likely to be an indication of an adverse impact, depending on context.*

*The lower the rating level is relative to the measured background sound level, the less likely it is that the specific sound source will have an adverse impact or significant adverse impact. Where the rating level does not exceed the background sound level, this is an indication of the specific sound source having a low impact depending on the context."*

## 4.0 Noise Survey


### 4.1 Methodology

An unmanned environmental noise survey was undertaken between Friday 4 April 2025 and Tuesday 8 April 2025.

The noise survey period was selected to determine background noise levels during periods when the plant items are proposed to be operational i.e. daytime and night-time, weekdays and weekends.

The measurement position was located on the north eastern most point of the roof of the main building facing Pield Heath Road, as indicated in **purple** on Figure 4.1.

**Figure 4.1 Noise Measurement Position in Relation to Site Extent and Surroundings**



The measurement position was selected as being representative of background noise levels at the nearest noise sensitive properties to the proposed plant.

Due to the nature of the noise survey, i.e. unmanned, we are unable to comment on the exact weather conditions throughout the entire noise survey period, however at the beginning and end of the survey period, weather conditions were dry with partial cloud coverage and only light wind. Conditions throughout the survey period were considered to be appropriate for undertaking environmental noise measurements.

## 4.2 Noise Survey Equipment

The equipment used for the noise survey is summarised in Table 4.1.

**Table 4.1 Description of Equipment used for Noise Survey**

| Item                                       | Make & Model | Serial Number |
|--------------------------------------------|--------------|---------------|
| Type 1 automated logging sound level meter | 01dB FUSION  | 15996         |
| Type 1 ½" microphone                       | GRAS 40CD    | 627559        |
| Calibrator                                 | CIRRUS CR515 | 105381        |

$L_{Aeq}$  and  $L_{A90}$  sound pressure levels were measured throughout the noise survey over contiguous 1-second intervals.

The noise monitoring equipment was calibrated before and after the noise survey period. No significant change was found. Laboratory equipment calibration certificates can be provided upon request.

### 4.3 Survey Results & Observations

Appendix B presents a time history graph showing the  $L_{Aeq}$  and  $L_{A90}$  sound pressure levels measured throughout the noise survey (shown as 15-minute periods).

The typical (modal) measured ( $L_{A90}$ ) background noise levels during daytime and night-time periods are summarised in Table 4.2.

**Table 4.2 Typical Measured Background Noise Levels**

| Typical Measured $L_{A90,T}$ Background Noise Level (dB) |                                               |
|----------------------------------------------------------|-----------------------------------------------|
| Daytime (07:00 – 23:00 hours, T = 1 hour)                | Night-time (23:00 – 07:00 hours, T = 15 mins) |
| 55                                                       | 50                                            |

We would consider the measured levels to be reasonable, taking into account the location of the measurement position and the dominant nearby noise sources.

Due to the nature of the unmanned noise survey, we are unable to comment on the exact noise climate throughout the entire survey period, however at the beginning and end of the survey period, the typical daytime noise climate at the measurement position was noted to be affected by distant road traffic. We would expect the same to be apparent during night-time periods.

## 5.0 Building Services Plant Noise Emissions

### 5.1 Plant Noise Limits

Based on London Borough of Hillingdon's requirements and the results of the noise survey, Table 5.1 presents the overall development plant noise limits to be achieved at the nearest noise sensitive properties during daytime and night-time periods.

**Table 5.1 External Noise Limits**

| External $L_{Aeq}$ Plant Noise Limit during Plant Operating Period (dB) |                                  |
|-------------------------------------------------------------------------|----------------------------------|
| Daytime (07:00 – 23:00 hours)                                           | Night-time (23:00 – 07:00 hours) |
| 50                                                                      | 45                               |

The noise limits are to be achieved at a distance of 1m external to the nearest noise sensitive property and apply to the total cumulative noise level with all relevant plant operating simultaneously.

### 5.2 Proposed Plant

One air source heat pump, four condenser units and an air handling unit are proposed in the courtyard/lightwell area towards the south-west of the main clinical building, in the approximate location indicated on Figure 2.1.

The proposed air source heat pump and condenser units, and the manufacturer's published noise data, are as follows:

|      |                              |                                         |
|------|------------------------------|-----------------------------------------|
| ASHP | Swegon ZETA Sky Hi R7 HP SLN | 83 dB L <sub>WA</sub> sound power level |
| CU1  | Mitsubishi PURY-P200YNW-A2   | 76 dB L <sub>WA</sub> sound power level |
| CU2  | Carrier 38VT018173HQEE       | 88 dB L <sub>WA</sub> sound power level |
| CU3  | Carrier 38VT018173HQEE       | 88 dB L <sub>WA</sub> sound power level |
| CU4  | Mitsubishi PUZ-ZM100YKA2     | 69 dB L <sub>WA</sub> sound power level |

The manufacturer's sound levels for the air handling unit are shown in Table 5.2.

**Table 5.2 Air Handling Unit Noise Data**

| Source          | Sound Pressure Level (dB) at Octave Band Centre Frequency (Hz) |     |     |     |    |    |    |    |
|-----------------|----------------------------------------------------------------|-----|-----|-----|----|----|----|----|
|                 | 63                                                             | 125 | 250 | 500 | 1k | 2k | 4k | 8k |
| Supply Intake   | 80                                                             | 80  | 80  | 71  | 72 | 70 | 73 | 64 |
| Extract Exhaust | 75                                                             | 75  | 75  | 75  | 75 | 73 | 73 | 66 |

These types of plant items are not usually tonal or impulsive and are not expected to operate intermittently.

### 5.3 Noise Predictions

Our plant noise calculations are presented in Tables 5.3 and 5.4 for the air handling unit (supply and extract respectively) and in Table 5.5 for the proposed air source heat pumps and condenser units, with the total cumulative levels presented in Table 5.6.

**Table 5.3 Air Handling Unit Noise Calculations – Supply Intake**

| Element                                    | Level (dB) at Octave Band Centre Frequency (Hz) |     |      |     |     |     |     |     |
|--------------------------------------------|-------------------------------------------------|-----|------|-----|-----|-----|-----|-----|
|                                            | 63                                              | 125 | 250  | 500 | 1k  | 2k  | 4k  | 8k  |
| In-Duct Sound Power Level                  | 80                                              | 80  | 80   | 71  | 72  | 70  | 73  | 64  |
| Grille End Reflection                      | -4                                              | -1  | 0    | 0   | 0   | 0   | 0   | 0   |
| Distance Attenuation                       | -47                                             | -47 | -47  | -47 | -47 | -47 | -47 | -47 |
| Directivity                                | +4.5                                            | +5  | +5.5 | +6  | +6  | +6  | +6  | +6  |
| Screening Attenuation                      | -5                                              | -5  | -5   | -5  | -5  | -5  | -5  | -5  |
| Predicted Sound Pressure Level at Receptor | 29                                              | 32  | 34   | 25  | 26  | 24  | 27  | 18  |
|                                            | 33 dB L <sub>pA</sub>                           |     |      |     |     |     |     |     |

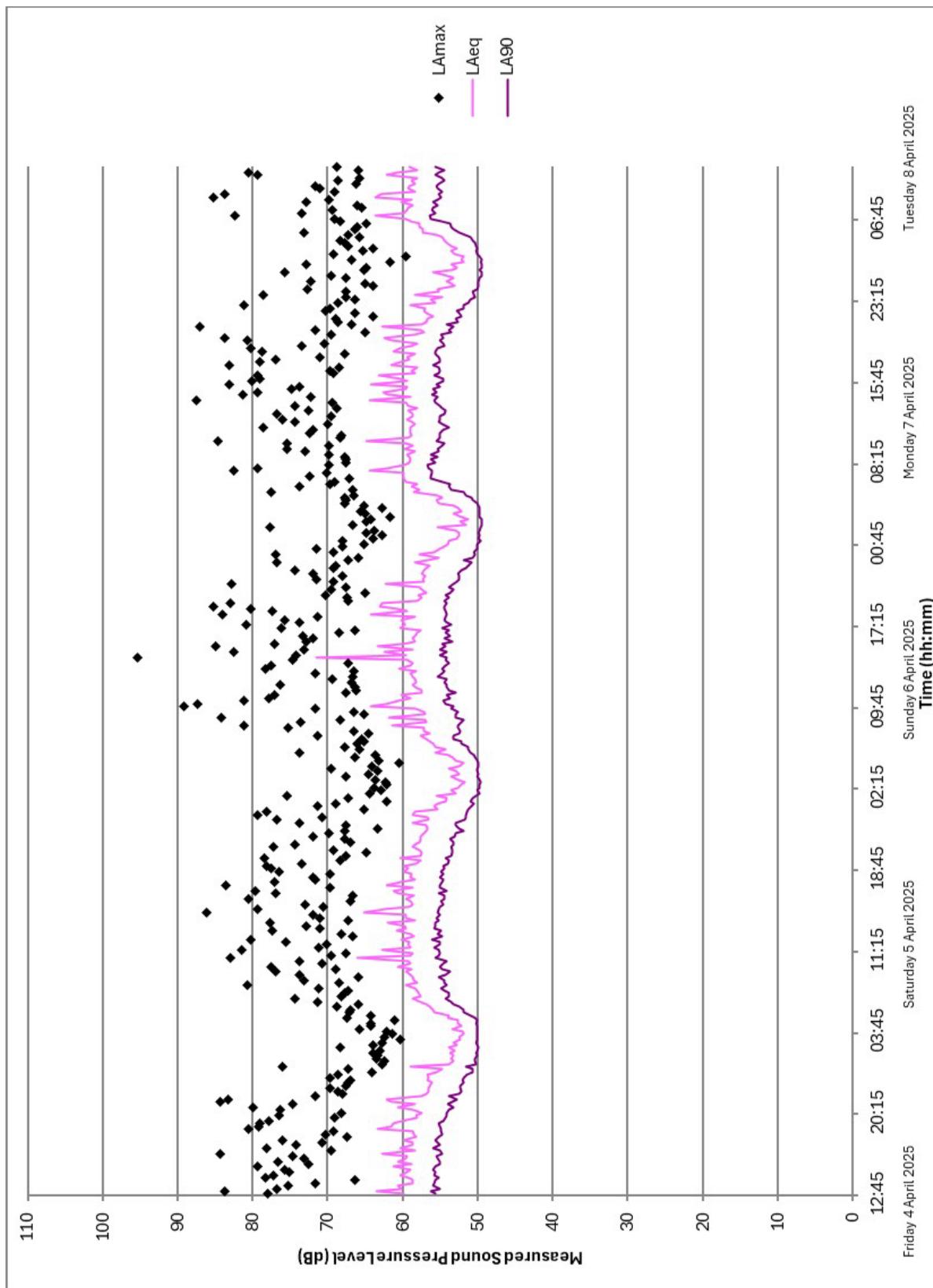
**Table 5.4 Air Handling Unit Noise Calculations – Extract Exhaust**

| Element                                    | Level (dB) at Octave Band Centre Frequency (Hz) |     |      |     |     |     |     |     |
|--------------------------------------------|-------------------------------------------------|-----|------|-----|-----|-----|-----|-----|
|                                            | 63                                              | 125 | 250  | 500 | 1k  | 2k  | 4k  | 8k  |
| In-Duct Sound Power Level                  | 75                                              | 75  | 75   | 75  | 75  | 73  | 73  | 66  |
| Grille End Reflection                      | -4                                              | -1  | 0    | 0   | 0   | 0   | 0   | 0   |
| Distance Attenuation                       | -47                                             | -47 | -47  | -47 | -47 | -47 | -47 | -47 |
| Directivity                                | +4.5                                            | +5  | +5.5 | +6  | +6  | +6  | +6  | +6  |
| Screening Attenuation                      | -5                                              | -5  | -5   | -5  | -5  | -5  | -5  | -5  |
| Predicted Sound Pressure Level at Receptor | 24                                              | 27  | 29   | 29  | 29  | 27  | 27  | 20  |
|                                            | 34 dB L <sub>pA</sub>                           |     |      |     |     |     |     |     |

**Table 5.5 ASHP and Condenser Unit Noise Calculations**

| Element                                                                                  | Level (dB) |           |           |           |           |
|------------------------------------------------------------------------------------------|------------|-----------|-----------|-----------|-----------|
|                                                                                          | ASHP       | CU1       | CU2       | CU3       | CU4       |
| Unit Sound Power Level $L_{wA}$                                                          | 83         | 76        | 88        | 88        | 69        |
| Acoustic Reflections                                                                     | +5         | +5        | +5        | +5        | +5        |
| Screening Attenuation                                                                    | -15        | -15       | -15       | -15       | -15       |
| Distance Attenuation                                                                     | -48        | -48       | -48       | -48       | -48       |
| <b>Predicted Sound Pressure Level (<math>L_p</math>) at Nearest Residential Property</b> | <b>25</b>  | <b>18</b> | <b>30</b> | <b>30</b> | <b>11</b> |

**Table 5.6 Total Noise Calculations**


| Element                                                                    | Predicted Sound Pressure Level ( $L_p$ ) at Receptor (dB) |
|----------------------------------------------------------------------------|-----------------------------------------------------------|
| Supply Intake                                                              | 23                                                        |
| Extract Exhaust                                                            | 24                                                        |
| ASHP                                                                       | 25                                                        |
| CU1                                                                        | 18                                                        |
| CU2                                                                        | 30                                                        |
| CU3                                                                        | 30                                                        |
| CU4                                                                        | 11                                                        |
| <b>TOTAL Predicted Sound Pressure Level (<math>L_p</math>) at Receptor</b> | <b>35</b>                                                 |
| <b>Noise Limit</b>                                                         | <b>50 Daytime</b>                                         |
|                                                                            | <b>45 Night-time</b>                                      |

It can be seen that the total predicted building services plant noise level at the nearest noise sensitive properties does not exceed the proposed plant noise limit during daytime and night-time periods and should therefore be considered acceptable in relation to London Borough of Hillingdon's noise requirements.

## Appendix A – Acoustic Terminology

| Parameter                      | Description                                                                                                                                                                                                                                                                                                       |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Decibel (dB)                   | A logarithmic scale representing the sound pressure or power level relative to the threshold of hearing ( $20 \times 10^{-6}$ Pascals).                                                                                                                                                                           |
| Sound Pressure Level ( $L_p$ ) | The sound pressure level is the sound pressure fluctuation caused by vibrating objects relative to the threshold of hearing.                                                                                                                                                                                      |
| A-weighting ( $L_A$ or dBA)    | The sound level in dB with a filter applied to increase certain frequencies and decrease others to correspond with the average human response to sound.                                                                                                                                                           |
| $L_{Aeq,T}$                    | The A-weighted equivalent continuous noise level over the time period T (typically T= 16 hours for daytime periods, T = 8 hours for night-time periods).<br><br>This is the sound level that is equivalent to the average energy of noise recorded over a given period.                                           |
| $R_w$                          | The weighted (w) sound reduction index (R), a single figure rating of the <b>laboratory</b> airborne sound insulation performance of a construction, usually measured across the frequency range 100-3150Hz.<br><br>The higher the value, the greater the sound insulation, and the more onerous the requirement. |

## Appendix B – Time History Graph

