

**Capital Place
120 Bath Road,
Heathrow**

Planning Noise Assessment

On behalf of

Toyoko Inn Co Ltd

Project Reference: 93652 | Revision: 01 | Date: 20th November 2025
Revised: 10th December 2025

T: 01252 519881
W: noisesolutions.co.uk
E: hello@noisesolutions.co.uk

Noise Solutions Ltd, Alton, Hampshire (Head office); Knutsford, Manchester. Reg no. 3483481

Document Information

Project Name : **Toyoko Inn, Heathrow**
Project Reference : **93652**
Report Title : **Planning Noise Assessment Report**
Doc Reference : **93625/PNA**
Date : **20th November 2025**

	Name	Qualifications	Initials	Date
Prepared by:	Jon Stump	BSc(Hons), MIOA	JS	20 th November 2025
Reviewed and approved by:	Nigel Chandler	BSc(Hons), MIOA	NAC	24 th November 2025
For and on behalf of Noise Solutions Ltd				

Revision	Date	Description	Prepared	Reviewed/Approved
01	10/12/2025	Client comments	JS	DMB

Noise Solutions Ltd (NSL) disclaims any responsibility to the Client and others in respect of any matters outside the scope of this report. This report has been prepared with reasonable skill, care and diligence within the terms of the Contract with the Client and generally in accordance with the appropriate ACE Agreement and taking account of the manpower, resources, investigations and testing devoted to it by agreement with the Client. This report is confidential to the Client and NSL (Noise Solutions Ltd) accepts no responsibility of whatsoever nature to third parties to whom this report or any part thereof is made known. Any such party relies upon the report at their own risk.

© Noise Solutions Ltd (NSL) 2025

Reg no. 3483481 Head office: Unit 5 Oriel Court, Omega Park, Alton, Hampshire, GU34 2YT
Manchester office: 17 King Street, Knutsford, WA16 6DW

Contents

1.0	Introduction	1
2.0	Site layout and development proposals	1
3.0	Policy context	2
	National Planning Policy Framework	3
	Planning Practice Guidance – Noise	4
	London Borough of Hillingdon	7
4.0	Environmental sound levels	7
	Environmental sound survey	7
	Incident sound levels used in assessment	8
5.0	Building fabric assessment	8
6.0	Discussion of results and uncertainties	10
	External building fabric	10
	Uncertainties	10
7.0	Summary	11

Appendices

Appendix A	Acoustic terminology
Appendix B	Aerial photograph of site showing survey locations
Appendix C	Environmental sound survey
Appendix D	Development proposals (subject to design development)
Appendix E	Façade identifications
Appendix F	Runways in use during survey

1.0 Introduction

- 1.1. Noise Solutions Ltd (NSL) has been commissioned by Toyoko Inn Co. to undertake a noise assessment for a proposed hotel development at an existing office building at 120 Bath Road, Harlington. The existing building is to be redeveloped for use as a Toyoko Inn hotel.
- 1.2. This report presents the results of an environmental noise survey, the applicable policies and guidance, and a noise impact assessment demonstrating the suitability of the site for the proposed hotel use.
- 1.3. This assessment gives specifications for the external building fabric acoustic specification.
- 1.4. To assist with the understanding of this report a brief glossary of acoustic terms can be found in [Appendix A](#). A more in-depth glossary of acoustic terms can be assessed at the following web address <http://www.acoustic-glossary.co.uk/>.

2.0 Site layout and development proposals

- 2.1. The current development proposal is for change of use of the existing building from Class E (office) to Class C1 (hotel), with infill extension, together with ancillary hotel facilities, car parking, drop-off and servicing arrangements, and associated landscaping.
- 2.2. The ground floor of the property will comprise reception, bar and breakfast facilities and back of house areas, along with hotel bedrooms. First to third floors will predominantly comprise bedrooms.
- 2.3. The third floor currently extends to only part of the footprint of the building, but is to be extended as part of the proposals to cover the full area.
- 2.4. First to third floor levels include a central lightwell, overlooked by interior bedrooms.
- 2.5. The proposed development is shown in [Appendix D](#)
- 2.6. [Appendix B](#) contains an aerial photograph showing the site and surrounding area.

3.0 Policy context

Noise Policy Statement for England

3.1. The Noise Policy Statement for England (NPSE¹), published in March 2010, sets out the long-term vision of Government noise policy. The Noise Policy aims, as presented in this document, are: *"Through the effective management and control of environmental, neighbour and neighbourhood noise within the context of Government policy on sustainable development:*

- *avoid significant adverse effects on health and quality of life;*
- *mitigate and minimise adverse effects on health and quality of life; and*
- *where possible, contribute to the improvement of health and quality of life."*

3.2. The NPSE makes reference to the concepts of NOEL (No Observed Effect Level) and LOAEL (Lowest Observed Adverse Effect Level) as used in toxicology but applied to noise impacts. It also introduces the concept of SOAEL (Significant Observed Adverse Effect Level) which is described as the level above which significant adverse effects on health and quality of life occur.

3.3. The first aim of the NPSE is to avoid significant adverse effects, taking into account the guiding principles of sustainable development (as referenced in Section 1.8 of the NPSE). The second aim seeks to provide guidance on the situation that exists when the potential noise impact falls between the LOAEL and the SOAEL, in which case: *"...all reasonable steps should be taken to mitigate and minimise adverse effects on health and quality of life while also taking into account the guiding principles of sustainable development."*

3.4. Importantly, the NPSE goes on to state: "This does not mean that such adverse effects cannot occur."

3.5. The NPSE does not provide a noise-based measure to define SOAEL, acknowledging that the SOAEL is likely to vary depending on the noise source, the receptor and the time in question. NPSE advises that: *"Not having specific SOAEL values in the NPSE provides the necessary policy flexibility until further evidence and suitable guidance is available."*

3.6. It is therefore likely that other guidance will need to be referenced when applying objective standards for the assessment of noise, particularly in reference to the SOAEL, whilst also taking into account the specific circumstances of a proposed development.

¹ Noise Policy Statement for England, Defra, March 2010

National Planning Policy Framework

3.7. A new edition of NPPF was published in December 2024 and came into effect immediately, with corrections issued in February 2025. The original National Planning Policy Framework (NPPF²) was published in March 2012, with subsequent revisions made periodically - this document replaced the existing Planning Policy Guidance Note 24 (PPG 24) "Planning and Noise." The December 2024 revised edition contains no new directions or guidance with respect to noise. The paragraph references quoted below relate to the December 2024/February 2025 edition.

3.8. Paragraph 187 of the NPPF states that the planning system should contribute to and enhance the natural and local environment by, (amongst others) *"preventing new and existing development from contributing to or being put at unacceptable risk from, or being adversely affected by unacceptable levels of soil, air, water or noise pollution or land instability."*

3.9. The NPPF goes on to state in Paragraph 198:

"planning policies and decisions should ...

- a) *Mitigate and reduce to a minimum potential adverse impacts resulting from noise from new development, - and avoid noise giving rise to significant adverse impacts on health and quality of life;*
- b) *identify and protect tranquil areas which have remained relatively undisturbed by noise and are prized for their recreational and amenity value for this reason ...*

3.10. The NPPF document does not refer to any other documents or British Standards regarding noise other than the Noise Policy Statement for England (NPSE³).

3.11. Paragraph 2 of the NPPF states that *"planning law requires that applications for planning permission be determined in accordance with the development plan unless material considerations indicate otherwise."*

3.12. Paragraph 12 of the NPPF states that *"The presumption in favour of sustainable development does not change the statutory status of the development plan as the starting point for decision making. Where a planning application conflicts with an up-to-date development plan (including any neighbourhood plans that form part of the development plan), permission should not usually be granted. Local planning authorities may take decisions that depart from an up-to-date development plan, but only if material considerations in a particular case indicate that the plan should not be followed".*

² National Planning Policy Framework, DCLG, March 2012

³ Noise Policy Statement for England, DEFRA, March 2010

3.13. Paragraph 124 states that "*Planning policies and decisions should promote an effective use of land in meeting the need for homes and other uses, while safeguarding and improving the environment and ensuring safe and healthy living conditions. Strategic policies should set out a clear strategy for accommodating objectively assessed needs, in a way that makes as much use as possible of previously-developed or 'brownfield' land*".

Planning Practice Guidance – Noise

3.14. An updated Planning Practice Guidance (PPG⁴) for noise was published on 22 July 2019 and provides additional guidance and elaboration on the NPPF. It advises that when plan-making and decision-taking, the Local Planning Authority should consider the acoustic environment in relation to:

- Whether or not a significant adverse effect is occurring or likely to occur;
- Whether or not an adverse effect is occurring or likely to occur; and
- Whether or not a good standard of amenity can be achieved.

3.15. This guidance introduced the concepts of NOAEL (No Observed Adverse Effect Level), and UAEI (Unacceptable Adverse Effect Level). NOAEL differs from NOEL in that it represents a situation where the acoustic character of an area can be slightly affected (but not such that there is a perceived change in the quality of life). UAEI represents a situation where noise is 'very disruptive' and should be 'prevented' (as opposed to SOAEL, which represents a situation where noise is 'disruptive', and should be 'avoided').

3.16. As exposure increases above the LOAEL, the noise begins to have an adverse effect and consideration needs to be given to mitigating and minimising those effects, taking account of the economic and social benefits being derived from the activity causing the noise. As the noise exposure increases, it will then at some point cross the SOAEL boundary.

3.17. The LOAEL is described in PPG⁵ as the level above which "*noise starts to cause small changes in behaviour and attitude, for example, having to turn up the volume on the television or needing to speak more loudly to be heard*".

3.18. PPG identifies the SOAEL as the level above which "*noise causes a material change in behaviour such as keeping windows closed for most of the time or avoiding certain activities during periods when the noise is present*."

⁴ Planning Practice Guidance – Noise, <https://www.gov.uk/guidance/noise--2>, 22 July 2019

⁵ Paragraph: 005 Reference ID: 30-005-20190722

3.19. In line with the Explanatory Note of the NPSE, the PPG goes on to reference the LOAEL and SOAEL in relation to noise impact. It also provides examples of outcomes that could be expected for a given perception level of noise, plus actions that may be required to bring about a desired outcome. However, in line with the NPSE, no objective noise levels are provided for LOAEL or SOAEL although the PPG⁶ acknowledges that *“...the subjective nature of noise means that there is not a simple relationship between noise levels and the impact on those affected. This will depend on how various factors combine in any particular situation.”*

3.20. The relevant guidance in the PPG in relation to the adverse effect levels is summarized below:

Table 1 ProPG Effects Table

Response	Examples of Outcomes	Increasing Effect Level	Action
No Observed Effect Level			
Not Present	No Effect	No Observed Effect	No specific measures required
No Observed Adverse Effect Level			
Present and not Intrusive	Noise can be heard, but does not cause any change in behaviour, attitude or other physiological response. Can slightly affect the acoustic character of the area but not such that there is a perceived change in the quality of life.	No Observed Adverse Effect	No specific measures required
Lowest Observed Adverse Effect Level			
Present and Intrusive	Noise can be heard and causes small changes in behaviour, attitude or other physiological response, e.g. turning up volume of television; speaking more loudly; where there is no alternative ventilation, having to close windows for some of the time because of the noise. Potential for some reported sleep disturbance. Affects the acoustic character of the area such that there is a small actual or perceived change in the quality of life.	Observed Adverse Effect	Mitigate and reduce to a minimum

⁶ Paragraph: 006 Reference ID: 30-006-20190722

Response	Examples of Outcomes	Increasing Effect Level	Action
Significant Observed Adverse Effect Level			
Present and Disruptive	The noise causes a material change in behaviour, attitude or other physiological response, e.g. avoiding certain activities during periods of intrusion; where there is no alternative ventilation, having to keep windows closed most of the time because of the noise. Potential for sleep disturbance resulting in difficulty in getting to sleep, premature awakening and difficulty in getting back to sleep. Quality of life diminished due to change in acoustic character of the area.	Significant Observed Adverse Effect	Avoid
Present and very Disruptive	Extensive and regular changes in behaviour, attitude or other physiological response and/or an inability to mitigate effect of noise leading to psychological stress, e.g. regular sleep deprivation/awakening; loss of appetite, significant, medically definable harm, e.g. auditory and non-auditory	Unacceptable Adverse Effect	Prevent

3.21. The Planning Practice Guidance⁷ states the following in relation to mitigation measures:

"For noise sensitive developments, mitigation measures can include avoiding noisy locations in the first place; designing the development to reduce the impact of noise from adjoining activities or the local environment; incorporating noise barriers; and optimising the sound insulation provided by the building envelope."

3.22. In addition, the Guide notes that it may also be relevant to consider⁸:

"... whether any adverse internal effects can be completely removed by closing windows and, in the case of new residential development, if the proposed mitigation relies on windows being kept closed most of the time (and the effect this may have on living conditions). In both cases a suitable alternative means of ventilation is likely to be necessary. Further information on ventilation can be found in the Building Regulations".

⁷ Paragraph: 010 Reference ID: 30-010-20190722

⁸ Paragraph: 006 Reference ID: 30-006-20190722

London Borough of Hillingdon

3.23. Hillingdon's Local Plan: Part 1 – Strategic Policies (Adopted November 2012) contains Policy EM8 which states:

The Council will seek to ensure that noise sensitive development and noise generating development are only permitted if noise impacts can be adequately controlled and mitigated.

4.0 Environmental sound levels

Environmental sound survey

4.1. Measurements of the existing environmental sound levels were undertaken between 11.15 hours on Tuesday 21st October and 10.30 hours on Wednesday 22nd October 2025. Measurements were taken at third floor level, at the north elevation and at the south west corner of the site.

4.2. Full details of the surveys are provided in [Appendix C](#) with time history graphs of the measurements.

4.3. It should be noted that, currently, aircraft are permitted to land on one of the two runways and take off from the other, with the northern runway being the closer to the development site. The runways in use during the survey are shown in [Appendix F](#). It can be seen that the closer, northern runway was in use for both take off and landing during the survey, demonstrating a representative split of activity.

4.4. The relevant results of the survey have been summarised in Table 2 below.

Table 2 Summary of survey results

Measurement location	Measurement period	Range of recorded sound pressure levels (dB)			
		$L_{AFmax}(15mins)$	$L_{Aeq}(15mins)$	$L_{A10}(15mins)$	$L_{A90}(15mins)$
P1 (N)	Daytime (07.00 – 23.00 hours)	68 - 101	57 - 76	59 - 75	52 - 59
	Night-time (23.00 – 07.00 hours)	61 - 97	50 - 69	51 - 66	47 - 54
P2 (SW)	Daytime (07.00 – 23.00 hours)	77 - 99	67 - 78	70 - 79	62 - 67
	Night-time (23.00 – 07.00 hours)	70 - 92	60 - 70	64 - 73	51 - 65

4.5. The data presented above are the levels recorded from the meters.

4.6. Table 3 below presents the noise levels in terms of daytime and night-time levels measured during the monitoring period.

Table 3 Daytime and night-time sound pressure levels (as measured)

Period	Parameter	P1 North	P2 South West
21 st October 2025 daytime*	$L_{Aeq,T}$	67	72
21 st – 22 nd October 2025 night	L_{Aeq} (8 hours)	60	66
22 nd October 2025 daytime*	$L_{Aeq,T}$	59	69
Overall daytime	L_{Aeq} (16 hours)	66	72
Overall night-time	L_{Aeq} (8 hours)	60	66

*not complete 16 hour measurements.

Incident sound levels used in assessment

4.7. The values in Table 4 will be used in the following assessment.

Table 4 Predicted incident octave band sound pressure levels at most-affected façades

Period	Incident sound pressure levels (dB) at Octave Band Centre Frequencies (Hz)								dB(A)
	63	125	250	500	1000	2000	4000	8000	
North elevation, interior courtyard									
Daytime $L_{eq, 16 \text{ hours}}$	68	65	65	65	62	58	51	41	67
Night-time $L_{eq, 8 \text{ hours}}$	59	57	59	59	55	50	42	35	60
Typical highest night L_{Max}^*	78	79	85	85	82	76	66	52	86
East, South and West elevations									
Daytime $L_{eq, 16 \text{ hours}}$	74	71	71	69	68	64	56	46	72
Night-time $L_{eq, 8 \text{ hours}}$	65	62	63	62	63	58	49	42	66
Typical highest night L_{Max}^*	82	84	89	89	81	77	67	64	88

*sound pressure level of 10th-highest noise event at night, derived from $L_{Af,max \text{ 2min}}$ analysis

5.0 Building fabric assessment

5.1. In order to assess the suitability of the site for the proposed dwellings it is important to predict the internal noise levels within hotel bedrooms. In the absence of any confirmed operator-specific internal noise criteria, guidance will be sought from BS 8233:2014.

5.2. The composite acoustic performance required of any portion of the building envelope will depend on its location relative to the principal noise sources around the site and the nature of the spaces behind it (as well as noise criteria, size, room finishes etc.).

5.3. The detailed calculation methodology described in BS 8233:2014 has been used in the assessment. Room and window dimensions have been taken from Stephenson Hamilton Risley drawings 7967-al(05)0030, 0031, 0032, 0033 and 0034.

5.4. Based on the information above, and the noise spectrum data shown in Table 4, the resulting internal sound levels may be calculated. The results of the assessment are shown in Table 7. These predictions are based on the following glazing and ventilator recommendations:

Table 5 Glazing and ventilator types

Bedroom	
Glazing	Ventilator
North and courtyard - BLUE	
Type B	No trickle vents; mechanically ventilated
All other facades - RED	
Type A	No trickle vents; mechanically ventilated

5.5. Façade identifications are shown in [Appendix E](#).

5.6. The minimum airborne sound insulation performance of each of these constructions is as set out in Table 6.

Table 6 Proposed building envelope specifications

Item	SRI	Attenuation (dB) at Octave Band Centre Frequency (Hz)							
		63	125	250	500	1000	2000	4000	8000
Type A Glazing [typically 10mm glass /16mm cavity /16.8 mm glass]	SRI	24	28	32	43	46	48	55	61
Type B Glazing [typically 10.8mm pvb glass / 16mm cavity / 8.8mm pvb glass]	SRI	30	27	30	37	42	45	48	48
Non-vision wall – all areas									
Cavity brick-block construction (or cladding with dry-lining with similar acoustic performance)	SRI	35	41	45	45	54	58	55	55

5.7. With the external building fabric constructions shown in Table 5, the results of the calculations give the internal noise levels detailed in Table 7.

Table 7 Predicted internal noise levels (based on proposed room sizes, windows closed)

Room Type	Reference*	External noise levels, dB	Predicted internal noise levels, dB	Proposed LOAEL dB	Difference, dB
North elevation, courtyard - BLUE					
Bedroom	L_{Aeq} , daytime	67	24	35	-11
	L_{Aeq} , night-time	60	17	30	-13
	L_{Amax} , night-time	86	43	45	-2
East, South, West elevations - RED					
Bedroom	L_{Aeq} , daytime	72	28	35	-7
	L_{Aeq} , night-time	66	20	35	-15
	L_{Amax} , night-time	88	45	45	0

*Daytime $L_{Aeq,16hr}$, night-time $L_{Aeq,8hr}$, 10th-highest night-time $L_{Amax,2min}$

- 5.8. It should be noted that glazing configurations and other constructions described above are for guidance and costings purposes only. It will be the responsibility of the manufacturer to provide evidence of compliance with the required octave band sound reduction performances. Please note that the requirements are for the complete assembly, including frames and seals, and not the glass panels alone.
- 5.9. It is understood that the hotel bedrooms are to be mechanically ventilated. Ventilation ducts must include sufficient attenuation that the internal noise level criteria are met.
- 5.10. The assessment shows that with typical building constructions and glazing specifications as noted, internal noise levels will be within the guidance values in BS 8233:2014.

6.0 Discussion of results and uncertainties

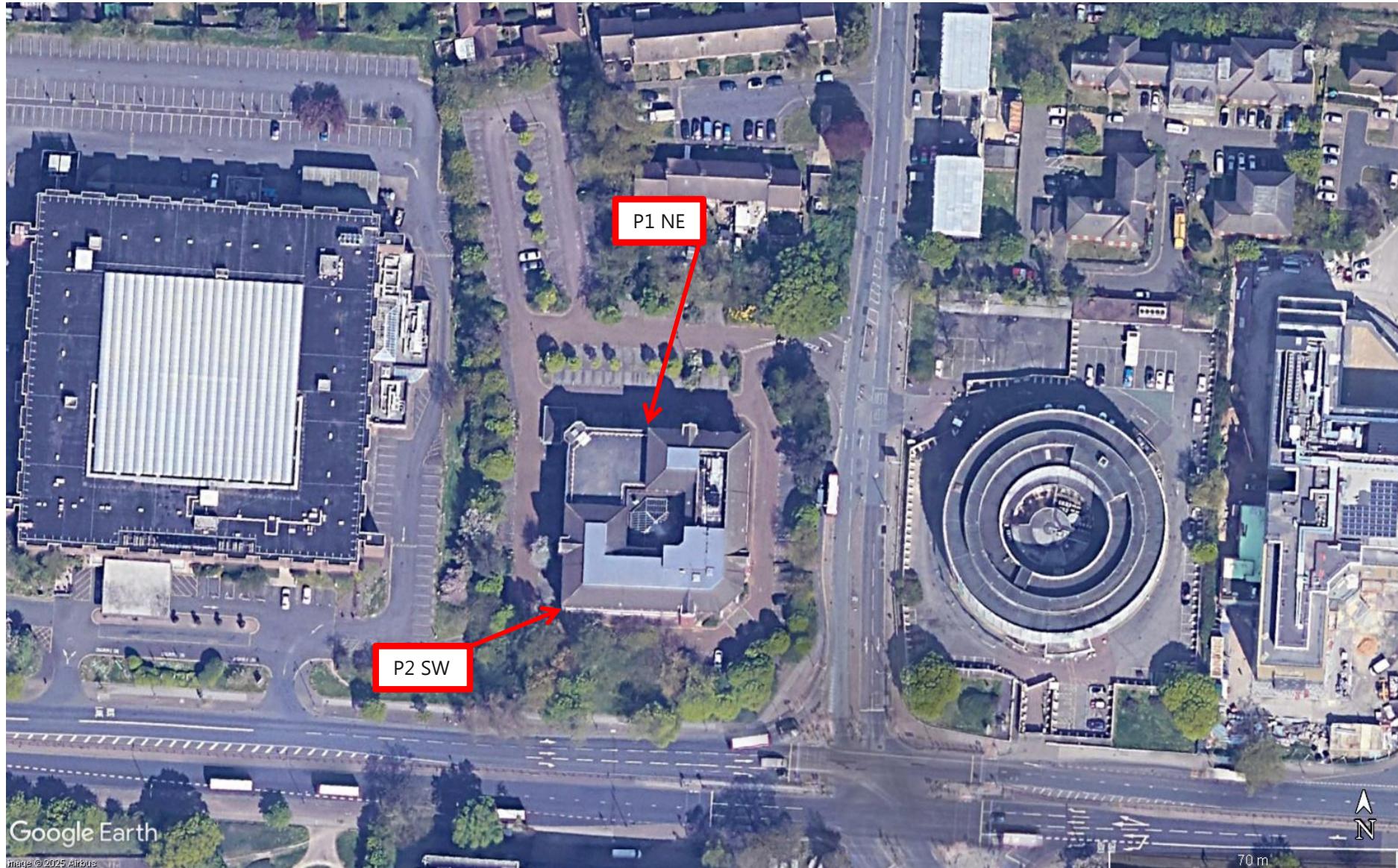
External building fabric

- 6.1. The assessment has demonstrated that, taking into consideration the provision of reasonable practicable measures (i.e. the provision of suitable trickle ventilators and good quality thermal double glazing, or secondary glazing where appropriate), adverse effects of noise can be minimised for the development proposals. With reference to Table 7, it can be seen that internal noise levels are predicted to be at or below the proposed LOAEL.

Uncertainties

- 6.2. Where possible uncertainty in the above assessments has been minimised by taking the following steps:

- Measurements were taken across the site, including over a full 24-hour period at two position
- The meters and calibrators used have traceable laboratory calibration and the meters were field calibrated before and after the measurements.
- Uncertainty in the calculated impacts has been reduced by the use of a well-established calculation method.


7.0 Summary

- 7.1. Noise Solutions Limited has been commissioned by Toyoko Inn Co. to undertake a noise assessment for a proposed hotel development at an existing office building at 120 Bath Road, Harlington.
- 7.2. The results of the assessments were analysed and reviewed in line with current guidance and national policy.
- 7.3. The external building fabric assessment found that the calculated internal noise meets the guidance in recognised Standards and professional guidance. The assessment has demonstrated that taking into consideration the provision of reasonable practicable measures - i.e. the provision of high-performance double glazing - adverse effects of noise can be minimised.

Appendix A Acoustic terminology

Parameter	Description
Ambient Noise Level	The totally encompassing sound in a given situation at a given time, usually composed of a sound from many sources both distant and near ($L_{Aeq,T}$).
Decibel (dB)	A scale for comparing the ratios of two quantities, including sound pressure and sound power. The difference in level between two sounds s_1 and s_2 is given by $20 \log_{10} (s_1/s_2)$. The decibel can also be used to measure absolute quantities by specifying a reference value that fixes one point on the scale. For sound pressure, the reference value is $20\mu\text{Pa}$. The threshold of normal hearing is in the region of 0 dB and 140 dB is the threshold of pain. A change of 1 dB is only perceptible under controlled conditions.
$\text{dB(A)}, L_{A_x}$	Decibels measured on a sound level meter incorporating a frequency weighting (A weighting) which differentiates between sounds of different frequency (pitch) in a similar way to the human ear. Measurements in dB(A) broadly agree with people's assessment of loudness. A change of 3 dB(A) is the minimum perceptible under normal conditions, and a change of 10 dB(A) corresponds roughly to halving or doubling the loudness of a sound. The background noise in a living room may be about 30 dB(A); normal conversation about 60 dB(A) at 1 metre; heavy road traffic about 80 dB(A) at 10 metres; the level near a pneumatic drill about 100 dB(A).
Fast Time Weighting	Setting on sound level meter, denoted by a subscript F, that determines the speed at which the instrument responds to changes in the amplitude of any measured signal. The fast time weighting can lead to higher values than the slow time weighting when rapidly changing signals are measured. The average time constant for the fast response setting is 0.125 (1/8) seconds.
Free-field	Sound pressure level measured outside, far away from reflecting surfaces (except the ground), usually taken to mean at least 3.5 metres
Façade	Sound pressure level measured at a distance of 1 metre in front of a large sound reflecting object such as a building façade.
$L_{Aeq,T}$	A noise level index called the equivalent continuous noise level over the time period T. This is the level of a notional steady sound that would contain the same amount of sound energy as the actual, possibly fluctuating, sound that was recorded.
$L_{max,T}$	A noise level index defined as the maximum noise level recorded during a noise event with a period T. L_{max} is sometimes used for the assessment of occasional loud noises, which may have little effect on the overall L_{eq} noise level but will still affect the noise environment. Unless described otherwise, it is measured using the 'fast' sound level meter response.
$L_{10,T}$	A noise level index. The noise level exceeded for 10% of the time over the period T. L_{10} can be considered to be the "average maximum" noise level. Generally used to describe road traffic noise. $L_{A10,18h}$ is the A -weighted arithmetic average of the 18 hourly $L_{A10,1h}$ values from 06:00-24:00.
$L_{90,T}$	A noise level index. The noise level that is exceeded for 90% of the measurement time interval, T. It gives an indication of the lower levels of fluctuating noise. It is often used to describe the background noise level and can be considered to be the "average minimum" noise level and is a term used to describe the level to which non-specific noise falls during quiet spells, when there is lull in passing traffic for example.

Appendix B Aerial photograph of site showing survey locations

Appendix C Environmental sound survey

Details of environmental sound survey

C.1 Measurements of the existing environmental sound levels were undertaken between 11.15 hours on Tuesday 21st October and 10.30 hours on Wednesday 22nd October 2025.

C.2 The sound level meters were programmed to record the A-weighted L_{eq} , L_{90} , L_{10} and L_{max} noise indices for consecutive 15-minute sample periods for the duration of the survey.

Measurement position

C.3 Unattended measurements were made with microphones on extended booms at third floor level at the north elevation and at the south west corner of the site.

Equipment

C.4 Details of the equipment used during the survey are provided in the table below. The sound level meters were calibrated before and after the survey; no significant change (+/-0.2 dB) in the calibration level was noted.

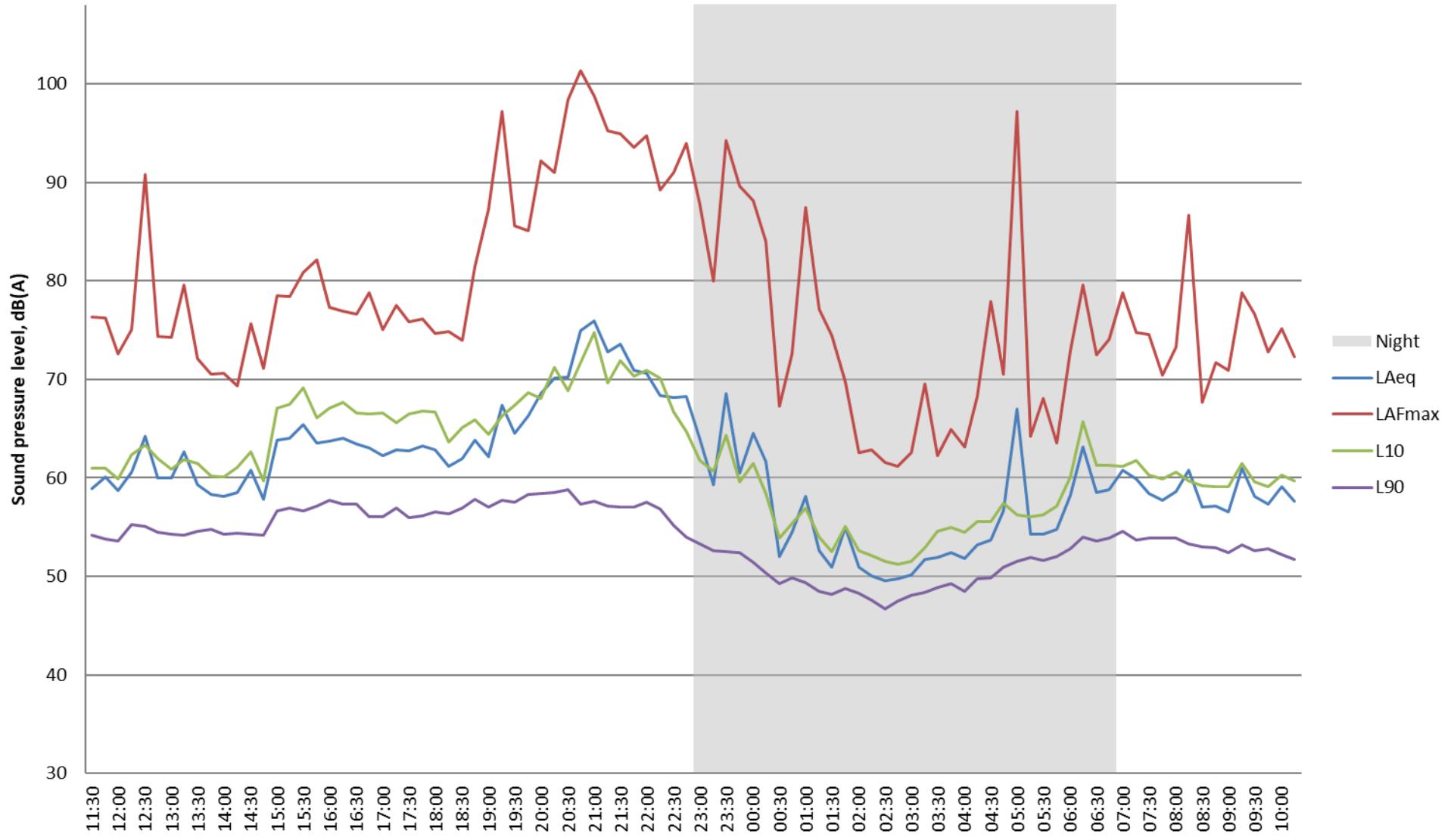
Location	Description	Model / serial no.	Calibration date	Calibration certificate no.
P1 (NE)	Class 1 Sound level meter	Svantek 977D / 99472	07/02/2024	Factory conformation certificate
	Condenser microphone	Microtech MK255 / 26247		
	Preamplifier	Svantek SV12L / 144643		
	Calibrator	Svantek SV33B / 148015	10/03/2025	1511553-1

Location	Description	Model / serial no.	Calibration date	Calibration certificate no.
P2 (SW)	Class 1 Sound level meter	Svantek 977 / 36190	24/09/2024	1509891-1
	Condenser microphone	GRAS 40E / 86699		
	Preamplifier	Svantek SV12L / 86561		
	Calibrator	Svantek SV33B / 73430	25/09/2025	1513494-1

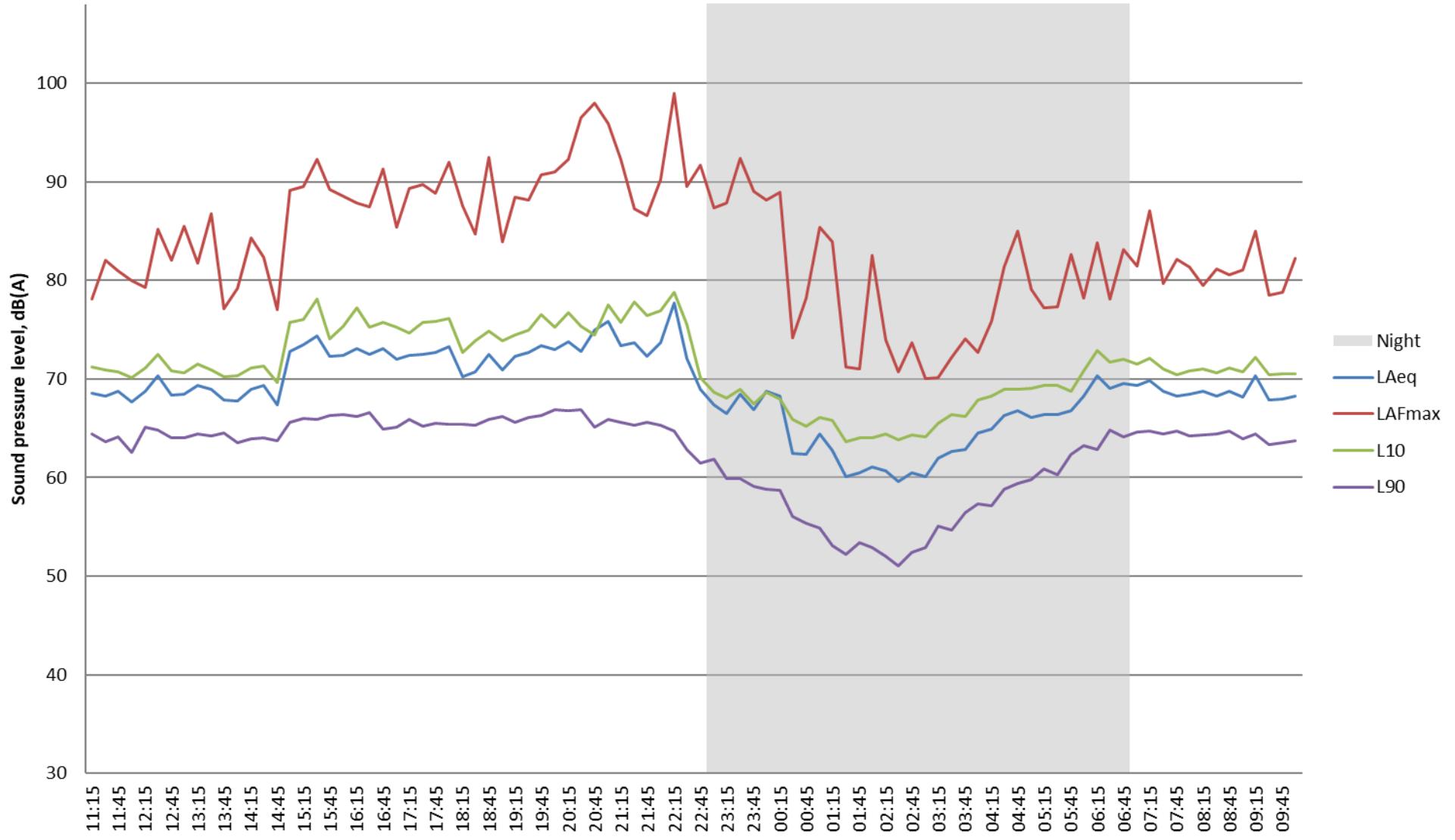
Weather Conditions

C.5 Weather conditions were determined both at the start and on completion of the survey. It is considered that the meteorological conditions were appropriate for environmental noise measurements. The table below presents the weather conditions recorded on site at the beginning and end of the survey.

Weather Conditions				
Measurement Location	Date/Time	Description	Beginning of Survey	End of Survey
As indicated on Appendix B	11.15 21 Oct - 10.30 22 Oct 2025	Temperature (°C)	13	12
		Precipitation:	No	No
		Cloud cover (oktas - see guide)	7	6
		Presence of fog/snow/ice	No	No
		Presence of damp roads/wet ground	No	No
		Wind Speed (m/s)	3	1
		Wind Direction	S	S
		Conditions that may cause temperature inversion (i.e. calm nights with no cloud)	-	-

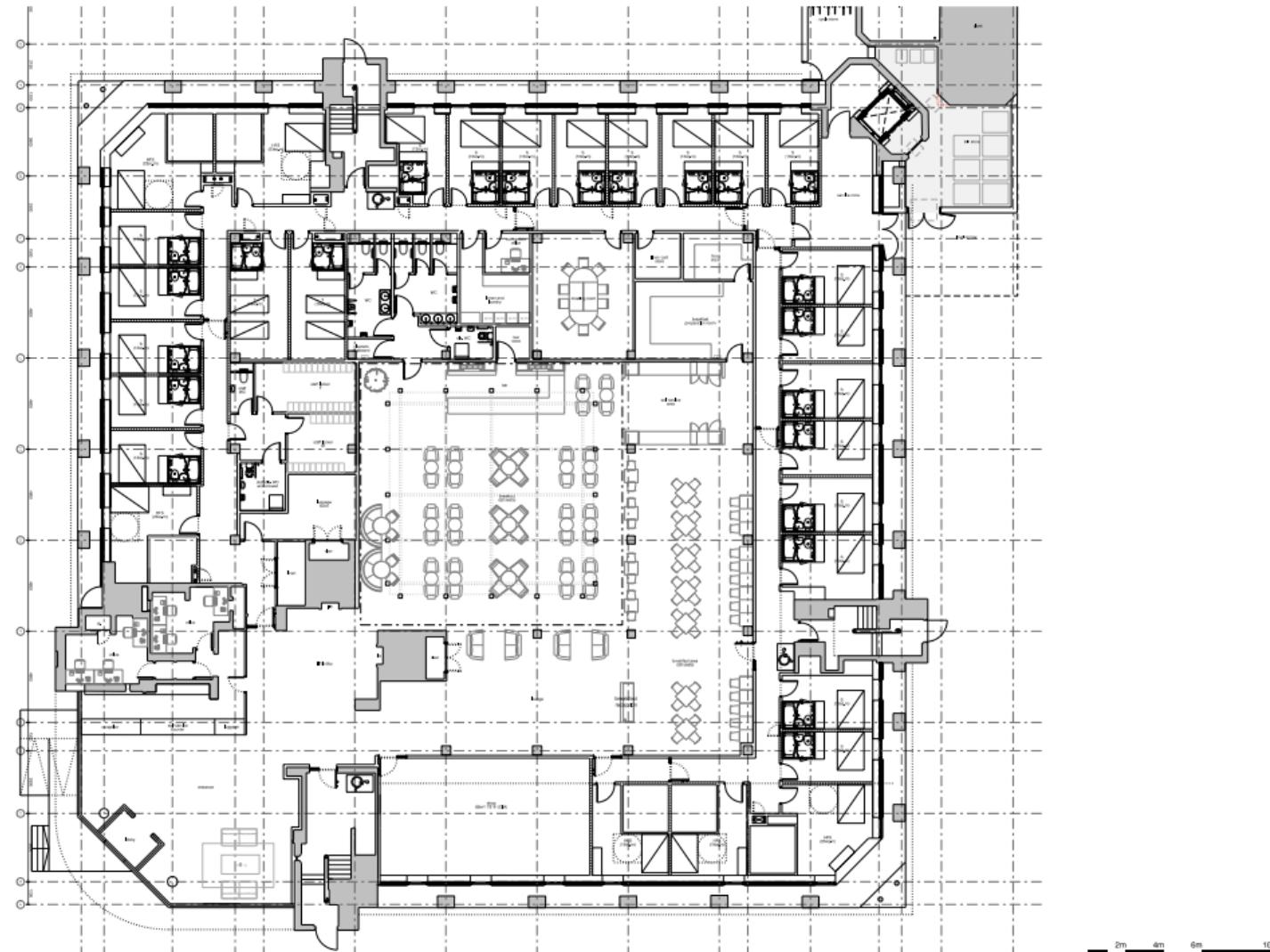

Cloud Cover	
Symbol	Scale in oktas (eighths)
	0 Sky completely clear
	1
	2
	3
	4 Sky half cloudy
	5
	6
	7
	8 Sky completely cloudy
	(9) Sky obstructed from view

Results and observations


C.6 Noise levels affecting the site were observed to be predominantly due to aircraft and local road traffic.

C.7 The results of the unattended survey are presented in time history graphs overleaf.

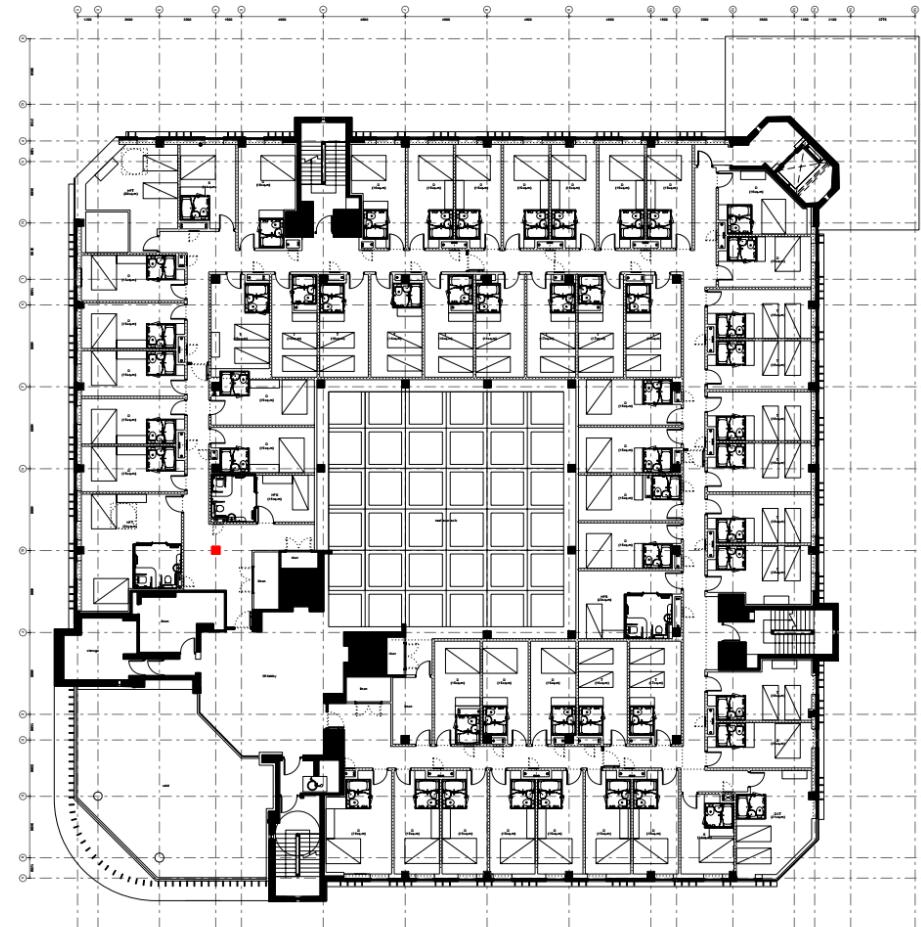
Capital Place P1 NE
Tuesday 21 - Wednesday 22 Oct 2025



Capital Place P2 SW
Tuesday 21 - Wednesday 22 Oct 2025

Appendix D

Development proposals (subject to design development)

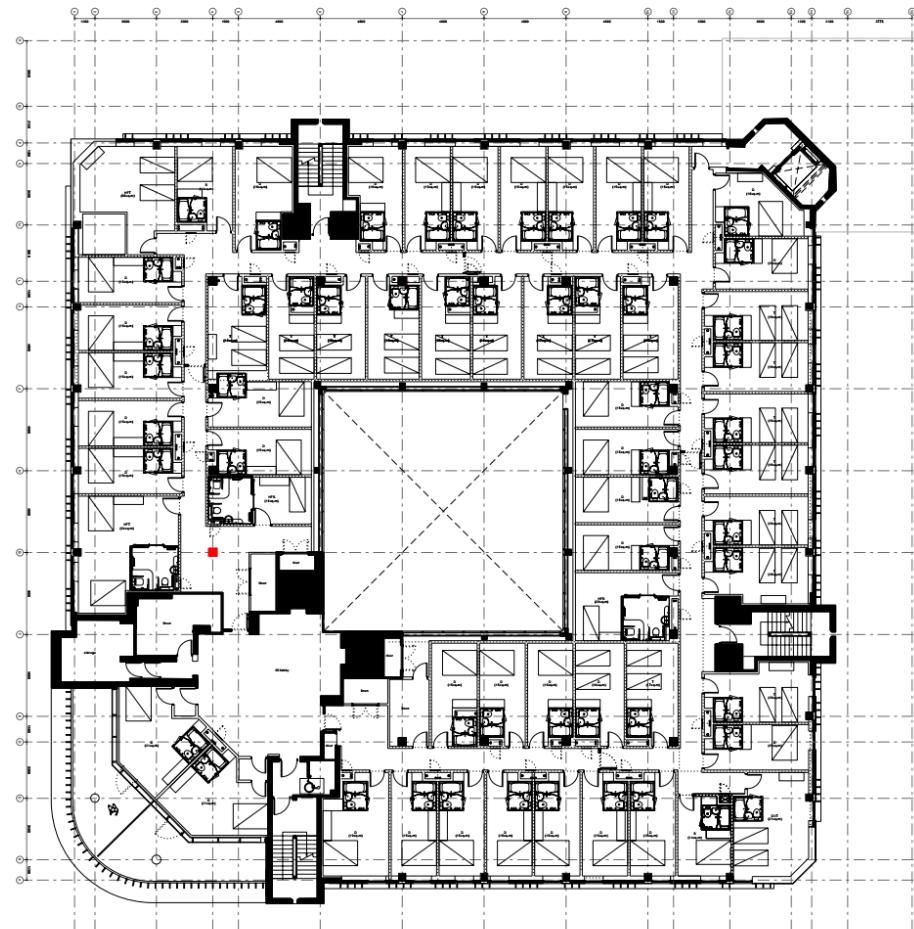

revisions date notes
P01 20251127 initial planning issue
P02 20251204 preliminary second issue
P03 20251208 preliminary third issue

NB - Site layout as per landscape architect's design - not shown until final design confirmed
- furniture layout indicates

project
Toyoko Inn, Heathrow
job no.
7697
date
Proposed ground floor plan
scale
1:200 (A3/1:100 (A1
drawing no.
7697-a1(05)0010

stephenson hamilton riley
STUDIO

3 chesterfield mews
4 chesterfield street
manchester, M15 4RQ
www.shr.studio
email@shr.studio
0161 832 0244


revision: date: note:
P01 20251103 preliminary first issue
P02 20251113 preliminary second issue
P03 20251117 entrance updated to Tc preferred option

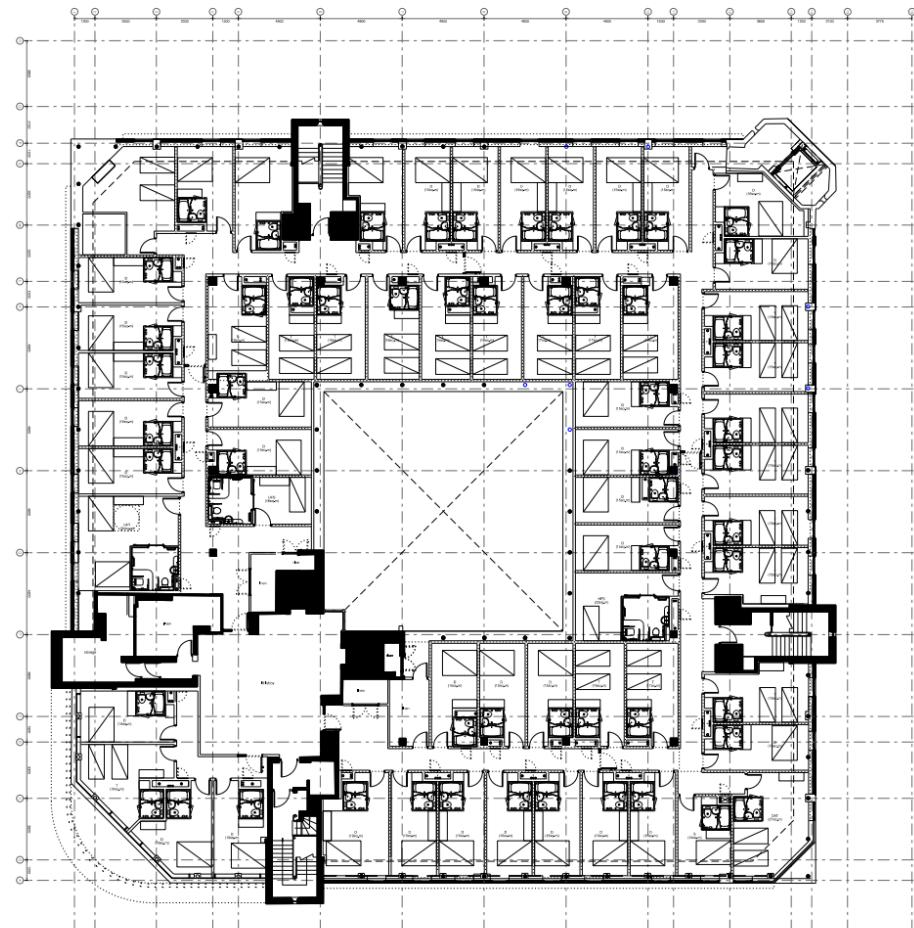
key:
site boundary

project
Toyoko Inn, Heathrow
job no.
7697
title
Proposed first floor plan
scale
1:250 @ A3
drawing no.
7697-al(05)0031

stephenson hamilton riley
STUDIO

3 riverside mews
4 commercial street
manchester, M15 4HO
www.shr studio
email@shr studio
0161 832 0244

revision: date: note:
P01 20251103 preliminary first issue
P02 20251113 preliminary second issue
P03 20251117 entrance updated to T1C preferred option


key:
site boundary

project
Toyoko Inn, Heathrow
job no.
7697
title
Proposed second floor plan
scale
1:250 @ A3
drawing no.
7697-al(05)0032

stephenson hamilton riley
STUDIO

3 riverside meads
4 commercial street
manchester M15 4RQ
www.shr.studio
email@shr.studio
0161 832 0244

revision: date: note:
P01 20251103 preliminary first issue
P02 20251113 preliminary second issue
P03 20251117 entrance updated to 110 preferred option

key:
site boundary

project
Toyoko Inn, Heathrow
Job no.
7697

title
Proposed third floor plan
scale
1:250 @ A3
drawing no.
7697-al(05)0033

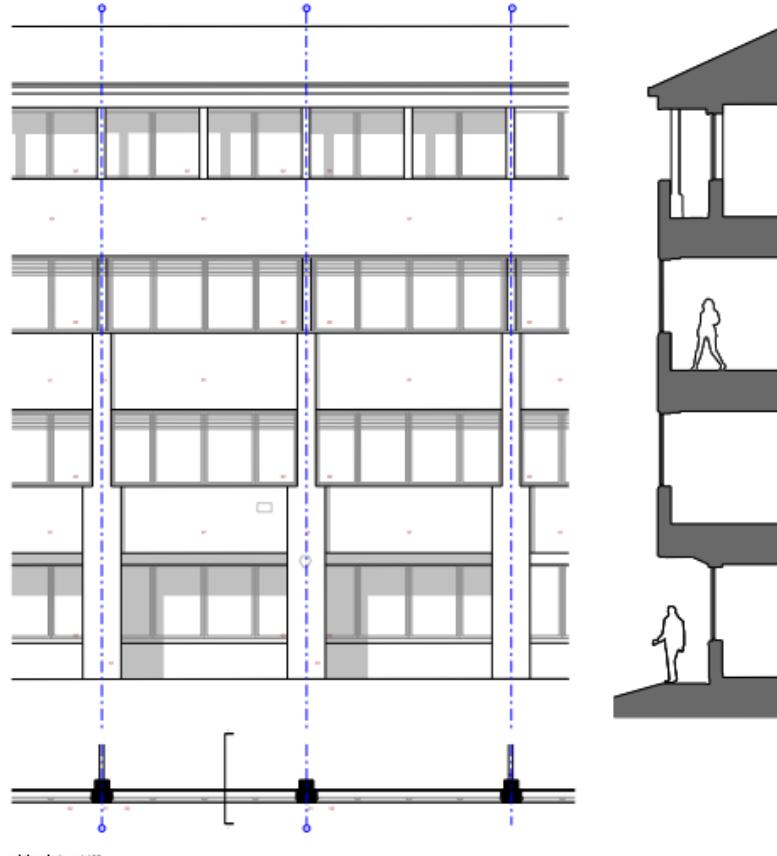
stephenson hamilton risley
STUDIO

3 riverside mews
4 commercial street
manchester m15 4ro
www.shr.studio
email@shr.studio
0161 832 0244

Existing windows

The existing windows are likely to have exceeded their expected lifespan which is typically 20 years.

Part L - conservation of fuel and power

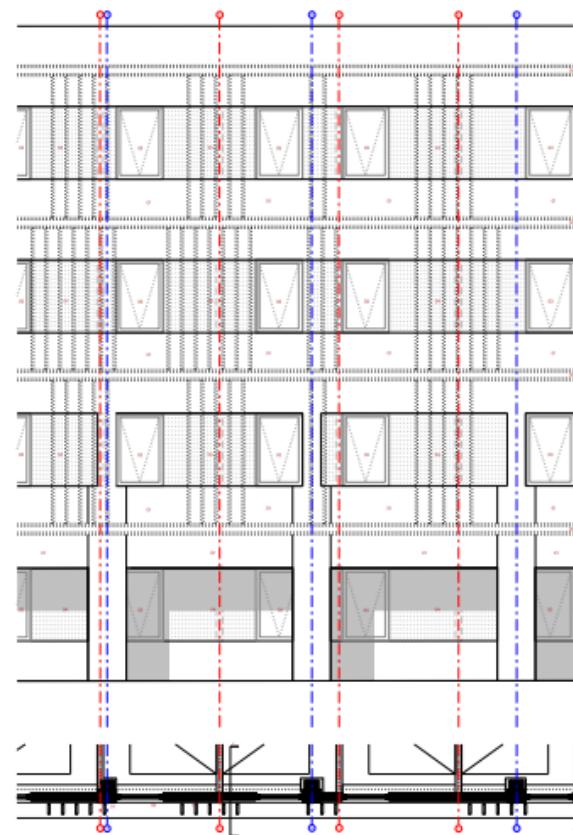

Part L of the building regulations set the thermal performance standards for placing in the UK. Windows in refurbishment projects must meet 3.4W/m² U-value. Failure to meet the U-value requirements of Part L Regulations can result in non-compliance with building regulations, leading to difficulties in obtaining necessary certifications. It is also a requirement that Part L also addresses air permeability which will be tested through air pressure tests once the building is complete.

Part F - resistance to sound

In terms of acoustics, key requirements include a maximum night-time noise level of 40dB over 8 hours. This is very unlikely to be achieved with the existing windows.

Part F - ventilation

Rooms with windows will need to be operable for ventilation purposes.


existing windows 1:100
existing blocks
existing window
proposed window
proposed window panel

Proposed windows

The proposed windows have been designed alongside infill panels.

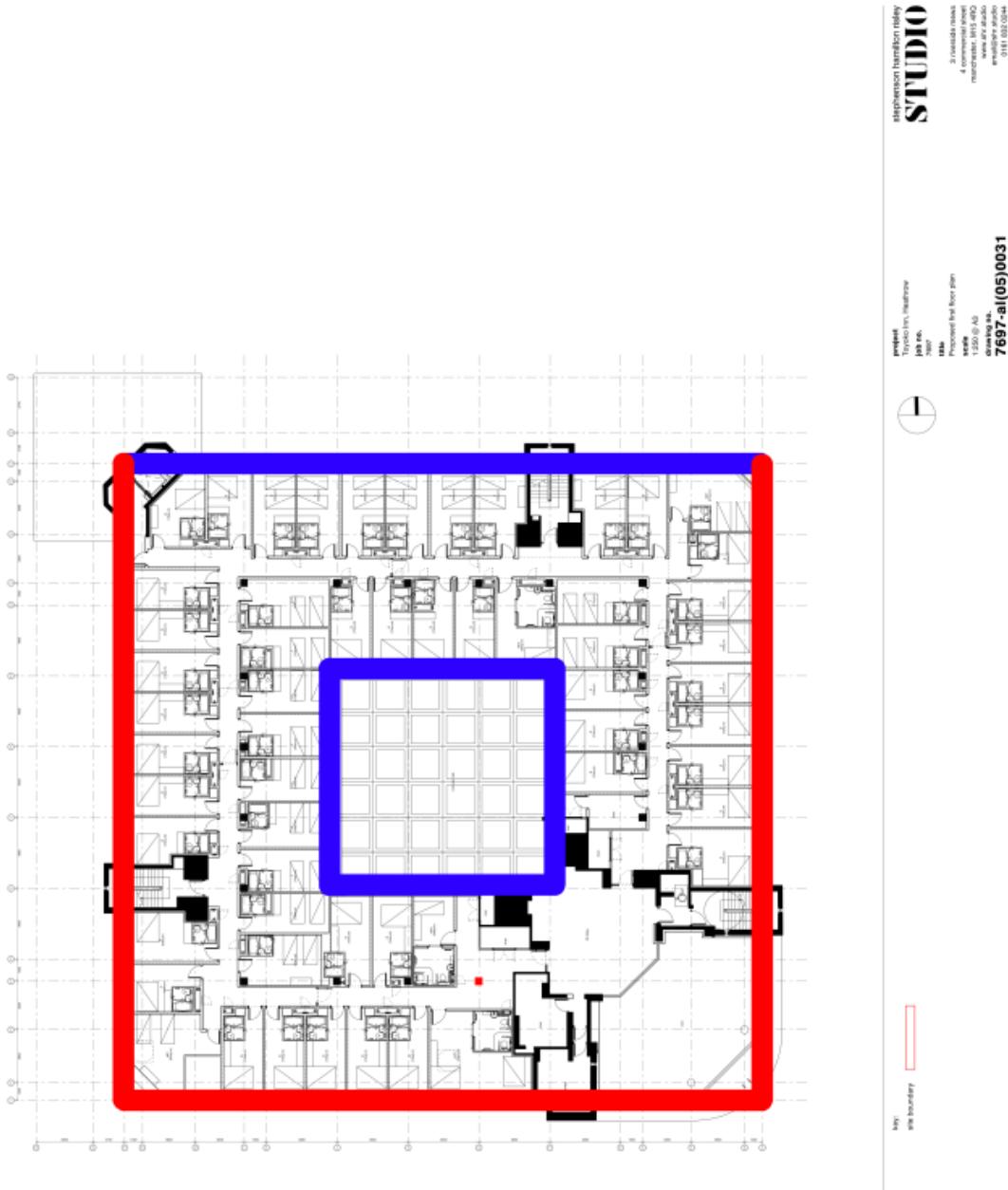
They will be operable for passive ventilation purposes, will meet the requirements for both Part L and E. Meeting the requirements for these regulations will also assist in the blocking noise issues that arise from room to room within levels.

Existing brickwork is maintained, with the new screen and fins adding depth and interest to the elevation.

proposed windows 1:100

refid: date: 20251008 note: initial issue
P01

© stephenson hamilton idley 07/2020 (b) do not scale from this drawing



project
Toyoko Inn, Heathrow
Job no.
7697
Title
Bay study showing existing and proposed windows
scale
1:100 @ A3
drawing no.
7697-SK0302

stephenson hamilton idley
STUDIO

3 Avenue House
4 Commercial Street
Maidstone ME14 1QD
www.shid.co.uk
email@shid.co.uk
0161 802 0944

Appendix E Façade identifications

NB North at top

Appendix F

Runways in use during survey

Date/Time (UTC)	Take off runway	Landing runway	Northern runway
21/10/2025 10:30	27L	27R	Westerly landings
21/10/2025 10:45	27L	27R	Westerly landings
21/10/2025 11:00	27L	27R	Westerly landings
21/10/2025 11:15	27L	27R	Westerly landings
21/10/2025 11:30	27L	27R	Westerly landings
21/10/2025 11:45	27L	27R	Westerly landings
21/10/2025 12:00	27L	27R	Westerly landings
21/10/2025 12:15	27L	27R	Westerly landings
21/10/2025 12:30	27L	27R	Westerly landings
21/10/2025 12:45	27L	27R	Westerly landings
21/10/2025 13:00	27L	27R	Westerly landings
21/10/2025 13:15	27L	27R	Westerly landings
21/10/2025 13:30	27L	27R	Westerly landings
21/10/2025 13:45	27L	27R	Westerly landings
21/10/2025 14:00	27R	27L	Westerly takeoffs
21/10/2025 14:15	27R	27L	Westerly takeoffs
21/10/2025 14:30	27R	27L	Westerly takeoffs
21/10/2025 14:45	27R	27L	Westerly takeoffs
21/10/2025 15:00	27R	27L	Westerly takeoffs
21/10/2025 15:15	27R	27L	Westerly takeoffs
21/10/2025 15:30	27R	27L	Westerly takeoffs
21/10/2025 15:45	27R	27L	Westerly takeoffs
21/10/2025 16:00	27R	27L	Westerly takeoffs
21/10/2025 16:15	27R	27L	Westerly takeoffs
21/10/2025 16:30	27R	27L	Westerly takeoffs
21/10/2025 16:45	27R	27L	Westerly takeoffs
21/10/2025 17:00	27R	27L	Westerly takeoffs
21/10/2025 17:15	27R	27L	Westerly takeoffs
21/10/2025 17:30	27R	27L	Westerly takeoffs
21/10/2025 17:45	27R	27L	Westerly takeoffs
21/10/2025 18:00	27R	27L	Westerly takeoffs
21/10/2025 18:15	27R	27L	Westerly takeoffs
21/10/2025 18:30	27R	27L	Westerly takeoffs
21/10/2025 18:45	27R	27L	Westerly takeoffs
21/10/2025 19:00	27R	27L	Westerly takeoffs
21/10/2025 19:15	27R	27L	Westerly takeoffs
21/10/2025 19:30	27R	27L	Westerly takeoffs
21/10/2025 19:45	27R	27L	Westerly takeoffs
21/10/2025 20:00	27R	27L	Westerly takeoffs
21/10/2025 20:15	27R	27L	Westerly takeoffs
21/10/2025 20:30	27R	27L	Westerly takeoffs

Date/Time (UTC)	Take off runway	Landing runway	Northern runway
21/10/2025 20:45	27R	27L	Westerly takeoffs
21/10/2025 21:00	27R	27L	Westerly takeoffs
21/10/2025 21:15	27R	27L	Westerly takeoffs
21/10/2025 21:30	27R	27L	Westerly takeoffs
21/10/2025 21:45	27L	-	no activity
21/10/2025 22:00	27L	27L	no activity
21/10/2025 22:15	27L		no activity
21/10/2025 22:30	27L		no activity
21/10/2025 22:45	27L		no activity
21/10/2025 23:00	-	-	no activity
21/10/2025 23:15	-	-	no activity
21/10/2025 23:30	-	-	no activity
21/10/2025 23:45	-	-	no activity
22/10/2025 00:00	-	-	no activity
22/10/2025 00:15	-	-	no activity
22/10/2025 00:30	-	-	no activity
22/10/2025 00:45	-	-	no activity
22/10/2025 01:00	-	-	no activity
22/10/2025 01:15	-	-	no activity
22/10/2025 01:30	-	-	no activity
22/10/2025 01:45	-	-	no activity
22/10/2025 02:00	-	-	no activity
22/10/2025 02:15	-	-	no activity
22/10/2025 02:30	-	-	no activity
22/10/2025 02:45	-	-	no activity
22/10/2025 03:00	-	-	no activity
22/10/2025 03:15	-	-	no activity
22/10/2025 03:30	-	-	no activity
22/10/2025 03:45	-	-	no activity
22/10/2025 04:00	-	27L	no activity
22/10/2025 04:15		27L	no activity
22/10/2025 04:30		27L	no activity
22/10/2025 04:45		27L	no activity
22/10/2025 05:00	27L	27R + 27L	Westerly landings
22/10/2025 05:15	27L	27R + 27L	Westerly landings
22/10/2025 05:30	27L	27R	Westerly landings
22/10/2025 05:45	27L	27R	Westerly landings
22/10/2025 06:00	27L	27R	Westerly landings
22/10/2025 06:15	27L	27R	Westerly landings
22/10/2025 06:30	27L	27R	Westerly landings
22/10/2025 06:45	27L	27R	Westerly landings
22/10/2025 07:00	27L	27R	Westerly landings
22/10/2025 07:15	27L	27R	Westerly landings

Date/Time (UTC)	Take off runway	Landing runway	Northern runway
22/10/2025 07:30	27L	27R	Westerly landings
22/10/2025 07:45	27L	27R	Westerly landings
22/10/2025 08:00	27L	27R	Westerly landings
22/10/2025 08:15	27L	27R	Westerly landings
22/10/2025 08:30	27L	27R	Westerly landings
22/10/2025 08:45	27L	27R	Westerly landings
22/10/2025 09:00	27L	27R	Westerly landings
22/10/2025 09:15	27L	27R	Westerly landings