

Sainsbury's Superstore Long Drive Ruislip HA4 0HQ

Plant Noise Impact Assessment Report

On behalf of

Sainsbury's

Project Reference: 88713 | Revision: - | Date: 7th June 2023

T: 01252 519881
W: noisesolutions.co.uk
E: hello@noisesolutions.co.uk

Noise Solutions Ltd, Unit 5, Oriel Court, Omega Park, Alton, GU34 2YT Reg no. 3483481

Document Information

Project Name : **Sainsbury's Superstore, South Ruislip**
Project Reference : **88713**
Report Title : **Plant Noise Impact Assessment Report**
Doc Reference : **88713/NIA**
Date : **7th June 2023**

	Name	Qualifications	Initials	Date
Prepared by:	Adam Meakins	AMIOA	ACM	7 th June 2023
Reviewed and approved by:	Nigel Chandler	BSc(Hons), MIOA	NAC	8 th June 2023
For and on behalf of Noise Solutions Ltd				

Revision	Date	Description	Prepared	Reviewed/Approved

Noise Solutions Ltd (NSL) disclaims any responsibility to the Client and others in respect of any matters outside the scope of this report. This report has been prepared with reasonable skill, care and diligence within the terms of the Contract with the Client and generally in accordance with the appropriate ACE Agreement and taking account of the manpower, resources, investigations and testing devoted to it by agreement with the Client. This report is confidential to the Client and NSL (Noise Solutions Ltd) accepts no responsibility of whatsoever nature to third parties to whom this report or any part thereof is made known. Any such party relies upon the report at their own risk.

© Noise Solutions Ltd (NSL) 2023

Reg no. 3483481 Trading office Unit 5, Oriel Court, Omega Park, Alton, Hampshire, GU34 2YT

Contents

1.0	Introduction	2
2.0	Details of development proposals.....	2
3.0	Nearest noise-sensitive receptors.....	2
4.0	Existing noise climate	3
5.0	Plant noise design criteria	5
	National Planning Policy Framework	5
	London Borough of Hillingdon Council.....	6
	BS 4142:2014+A1:2019 Methods for rating and assessing industrial and commercial sound	7
	WHO Guidelines and BS 8233:2014.....	8
	Summary of criteria	9
6.0	Plant noise impact assessment.....	9
	Assessment of uncertainties	10
7.0	Summary	10

Appendices

Appendix A	Acoustic terminology
Appendix B	Photograph of site showing areas of interest
Appendix C	Environmental sound survey
Appendix D	Manufacturer's Noise Data
Appendix E	Plant noise calculations
Appendix F	Plant Layout

Executive Summary

Noise Solutions Limited has been appointed to provide a noise impact assessment of replacement plant to be installed at the existing Sainsbury's Superstore along Long Drive in South Ruislip.

Replacement plant to be installed comprises two gas coolers, two refrigeration compressor packs and two false load evaporators.

The cumulative plant noise emission levels for the proposed plant, inclusive of proposed mitigation measures, have been predicted at the most affect noise sensitive receptor locations and assessed taking into consideration the typical requirements of the London Borough of Hillingdon Council. Therefore, the plant proposals should not be a reason for refusal of planning permission.

1.0 Introduction

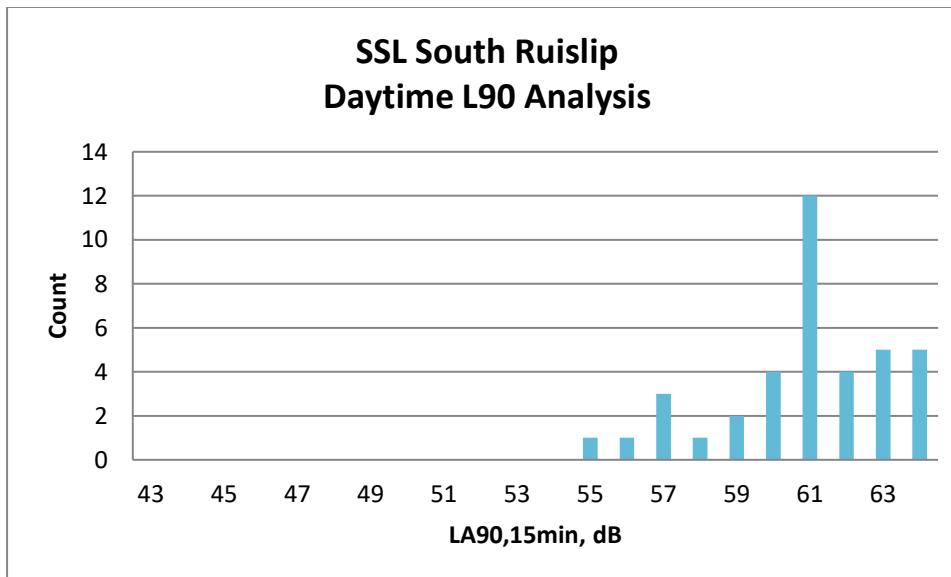
- 1.1. Noise Solutions Ltd (NSL) has been commissioned by Sainsbury's Limited to provide a noise impact assessment for new plant serving an existing Sainsbury's Superstore located along Long Drive in South Ruislip.
- 1.2. An environmental sound survey has been undertaken to establish the prevailing background sound pressure levels at a location representative of the sound levels outside the nearest noise sensitive receptors to the site.
- 1.3. Plant noise levels have been predicted at the nearest residential property and assessed against the London Borough of Hillingdon Council's typical requirements.
- 1.4. To assist with the understanding of this report a glossary of acoustic terms can be found in [Appendix A](#). An in-depth glossary of acoustic terms can be viewed online at www.acoustic-glossary.co.uk.

2.0 Details of development proposals

- 2.1. The Sainsbury's Local store occupies a dedicated building located along Long Drive in South Ruislip.
- 2.2. Existing plant is located on the roof of the store. It is proposed to replace the existing plant and install more efficient units. The replacement plant will comprise two gas coolers, two refrigeration compressor packs and two false load evaporators. All plant will be located in a service yard south-east of the building. The refrigeration plant will operate 24 hours but generally at a reduced duty at night when cooling demands are lower.
- 2.3. A site plan showing the site and surrounding area and the noise monitoring location used in this assessment is presented in [Appendix B](#).

3.0 Nearest noise-sensitive receptors

- 3.1. The area surrounding the site is a mix of commercial and residential in use. The nearest noise sensitive properties to the plant are the flats in Kipling House (Receptor R1) on the opposite side of Victoria Road, approximately 50m from the nearest plant item, and flats in Burnett Court (Receptor R2), approximately 80m from the nearest plant item.


4.0 Existing noise climate

- 4.1. An environmental noise survey was undertaken to establish the typical background sound levels at a location representative of the noise climate outside the façades of the nearest noise sensitive receptors to the proposed plant area during the quietest times at which the plant will operate.
- 4.2. The results of the environmental sound survey are summarised in Table 1 below. The full set of measurement results and details of the survey methodology are presented in [Appendix C](#).

Table 1 Summary of survey results

Measurement period	Range of recorded sound pressure levels (dB)			
	$L_{Aeq(15mins)}$	$L_{Amax(15mins)}$	$L_{A10(15mins)}$	$L_{A90(15mins)}$
Daytime (07.00 – 23.00 hours)	65-71	75-98	68-72	55-64
Night-time (23.00 – 07.00 hours)	56-71	70-85	60-73	43-64

Figure 1 Histogram of daytime L_{A90} background sound pressure levels

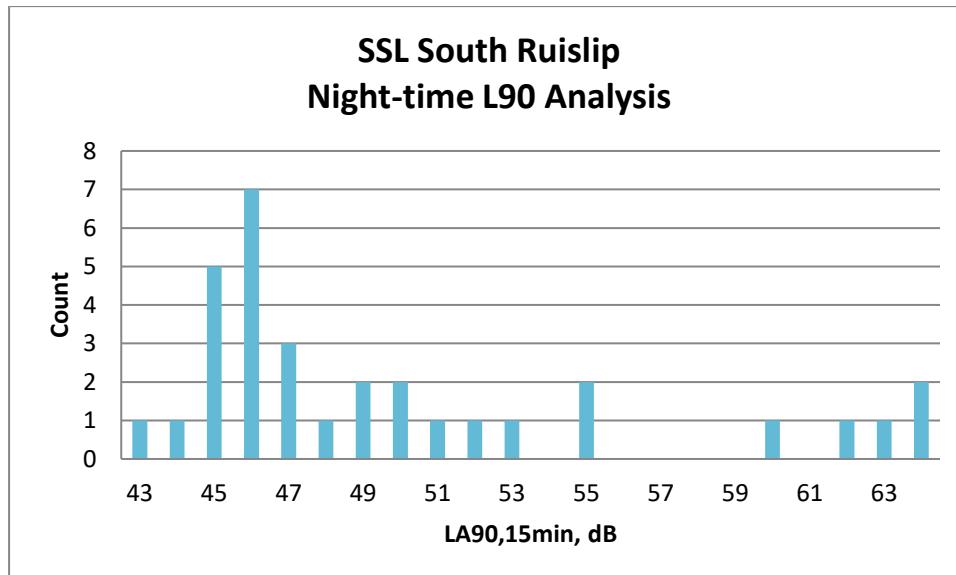

- 4.3. Further statistical analysis has been carried out on the data; the mean, modal and median values are shown in Table 2 below.

Table 2 Statistical analysis of $L_{A90,15min}$ levels during the daytime period

dB, L_{A90} daytime period	
mean	61
modal	61
median	61

4.4. From the histogram analysis, 57dB has been selected to be a robust representation of the background noise level during the daytime period.

Figure 2 Histogram of night-time L_{A90} background sound pressure levels

4.5. Further statistical analysis has been carried out on the data; the mean, modal and median values are shown in Table 3 below.

Table 3 Statistical analysis of $L_{A90,15min}$ levels during the night-time period

dB, L_{A90} night-time period	
mean	50
modal	46
median	47

4.6. Again, from the histogram analysis, 45dB has been selected to be a robust representation of the background sound level during the night-time period.

4.7. Therefore, the following values are considered to be the lowest existing background sound pressure levels at nearby noise sensitive premises:

- 57dB L_{A90} during the daytime period; and
- 45dB L_{A90} during the night-time period.

5.0 Plant noise design criteria

National Planning Policy Framework

5.1. A new edition of NPPF was published in July 2021 and came into effect immediately. The original National Planning Policy Framework (NPPF¹) was published in March 2012, with revisions in July 2018 and February 2019 - this document replaced the existing Planning Policy Guidance Note 24 (PPG 24) "Planning and Noise." The 2021 revised edition contains no new directions or guidance with respect to noise, and hence, all previous references remain extant. The paragraph references quoted below relate to the July 2021 edition.

5.2. Paragraph 174 of the NPPF states that the planning system should contribute to and enhance the natural and local environment by (amongst others) *"preventing both new and existing development from contributing to or being put at unacceptable risk from, or being adversely affected by unacceptable levels of soil, water or noise pollution or land stability."*

5.3. The NPPF goes on to state in Paragraph 185:

"planning policies and decisions should ...

- a) *Mitigate and reduce to a minimum potential adverse impacts resulting from noise from new development, - and avoid noise giving rise to significant adverse impacts on health and quality of life;*
- b) *identify and protect tranquil areas which have remained relatively undisturbed by noise and are prized for their recreational and amenity value for this reason ...*

5.4. The NPPF document does not refer to any other documents or British Standards regarding noise other than the Noise Policy Statement for England (NPSE²).

5.5. Paragraph 2 of the NPPF states that *"planning law requires that applications for planning permission must be determined in accordance with the development plan unless material considerations indicate otherwise."*

5.6. Paragraph 12 of the NPPF states that *"The presumption in favour of sustainable development does not change the statutory status of the development plan as the starting point for decision making. Where a planning application conflicts with an up-to-date development plan (including any neighbourhood plans that form part of the development plan), permission should not usually be granted. Local planning authorities may take decisions that depart from an up-to-date development plan, but only if material considerations in a particular case indicate that the plan should not be followed".*

¹ National Planning Policy Framework, DCLG, March 2012

² Noise Policy Statement for England, DEFRA, March 2010

5.7. Paragraph 119 states that *"Planning policies and decisions should promote an effective use of land in meeting the need for homes and other uses, while safeguarding and improving the environment and ensuring safe and healthy living conditions. Strategic policies should set out a clear strategy for accommodating objectively assessed needs, in a way that makes as much use as possible of previously-developed or 'brownfield' land".*

London Borough of Hillingdon Council

5.8. The London Borough of Hillingdon Council Supplementary Planning Document Noise (dated April 2006) contains the following:

Key Point 6: Industrial Uses:

Industrial uses will require particular attention as they can often cause severe noise problems due to both the character of industrial noise and its level. Sudden impulses, irregular noise or noise which contains a distinguishable continuous tone will require special consideration.

In considering new industrial development, the Council will apply policies OE1 and OE3 of the UDP and will have regard to, amongst other considerations, the British Standard 4142:1997 "Method for rating industrial noise affecting mixed residential and industrial areas", and internal and external noise criteria. Specific consideration will also be given to the features and characteristics of the noise.

British Standard 4142:1997 gives advice on measuring and assessing the noise from machinery or plant and is relevant if surrounding residential areas might be affected. Developments with a BS4142 assessment of marginal significance or above would not ordinarily be permitted. Consequently, the development should be controlled such that the rating level of the noise from the proposed development determined according to BS4142 is at least 5 dB below the background noise level $L_{A90,T}$. Ideally, the assessment of noise should give a positive indication that complaints are unlikely...

Before the proposed use commences, the local planning authority may require that a noise control scheme is agreed. This will need to have regard to the British Standard 4142:1997 and internal noise criteria.

To ensure that the proposed use does not have an unacceptable impact, conditions may be required.

5.9. It should be noted that BS 4142:1997 has been superseded by the 2014 version amended in 2019. The latest version of the standard has been adopted for this assessment.

BS 4142:2014+A1:2019 Methods for rating and assessing industrial and commercial sound

5.10. BS 4142:2014+A1:2019 is intended to be used to assess the likely effects of sound on people residing in nearby dwellings. The scope of BS 4142:2014 includes "*sound from fixed plant installations which comprise mechanical and electrical plant and equipment*".

5.11. The procedure contained in BS 4142:2014+A1:2019 is to quantify the "*specific sound level*", which is the measured or predicted level of sound from the source in question over a one hour period for the daytime and a 15 minute period for the night-time. Daytime is defined in the standard as 07:00 to 23:00 hours, and night-time as 23:00 to 07:00 hours.

5.12. The specific sound level is converted to a rating level by adding penalties on a sliding scale to account for either potentially tonal or impulsive elements. The standard sets out objective methods for determining the presence of tones or impulsive elements, but notes that it is acceptable to subjectively determine these effects.

5.13. The penalty for tonal elements is between 0dB and 6dB, and the standard notes: "*Subjectively, this can be converted to a penalty of 2 dB for a tone which is just perceptible at the noise receptor, 4 dB where it is clearly perceptible, and 6 dB where it is highly perceptible.*"

5.14. The penalty for impulsive elements is between 0dB and 9dB, and the standard notes: "*Subjectively, this can be converted to a penalty of 3 dB for impulsivity which is just perceptible at the noise receptor, 6 dB where it is clearly perceptible, and 9 dB where it is highly perceptible.*"

5.15. The assessment outcome results from a comparison of the rating level with the background sound level. The standard states:

- *Typically, the greater this difference, the greater the magnitude of the impact.*
- *A difference of around +10 dB or more is likely to be an indication of a significant adverse impact, depending on the context;*
- *A difference of around +5 dB is likely to be an indication of an adverse impact, depending on the context;*
- *The lower the rating level is relative to the measured background sound level, the less likely it is that the specific sound source will have an adverse impact or a significant adverse impact. Where the rating level does not exceed the background sound level, this is an indication of the specific sound source having a low impact, depending on the context.*

5.16. The standard does state that "*adverse impacts include, but are not limited to, annoyance and sleep disturbance. Not all adverse impacts will lead to complaints and not every complaint is proof of an adverse impact.*"

5.17. The standard goes on to note that: "*Where background sound levels and rating levels are low, absolute levels might be as, or more, relevant than the margin by which the rating level exceeds the background. This is especially true at night.*"

5.18. In addition to the margin by which the Rating Level of the specific sound source exceeds the Background Sound Level, the 2014 edition places emphasis upon an appreciation of the context, as follows:

"An effective assessment cannot be conducted without an understanding of the reason(s) for the assessment and the context in which the sound occurs/will occur. When making assessments and arriving at decisions, therefore, it is essential to place the sound in context."

5.19. BS 4142:2014+A1:2019 requires uncertainties in the assessment to be considered, and where the uncertainty is likely to affect the outcome of the assessment, steps should be taken to reduce the uncertainty.

WHO Guidelines and BS 8233:2014

5.20. One of the tenets of the World Health Organisation (WHO) document *Guidelines for Community Noise, 1999* is the protection of the most vulnerable and sensitive of the population. The WHO guideline values for community noise are set at the level of the lowest adverse health effect below which the effects of environmental noise can be assumed to be negligible.

5.21. BS 8233:2014 '*Guidance on sound insulation and noise reduction for buildings*' builds on the guidance in the WHO document and recommends desirable internal noise levels within different room spaces, including residential dwellings.

5.22. The applicable internal noise criteria for residential properties given in BS 8233:2014 and the WHO guidelines are summarised in the following table:

Table 4 Summary of relevant guidance given in WHO documents and BS 8233:2014 with regard to internal noise levels affecting residential premises

Period	Space	Recommended Noise Level (dB)
Daytime (07.00 – 23.00 hours)	Living rooms and Bedrooms	< 35 L _{Aeq,T}
Night-time (23.00 – 07.00 hours)	Bedrooms	< 30 L _{Aeq,T}

5.23. The above guidance is intended for anonymous sources such as road traffic noise. For potentially identifiable sources such as plant noise it is appropriate to include any BS4142:2014+A1:2019 rating penalties. BS 8233:2014 also suggests a typical façade sound reduction of 15dB for partially opened windows. External noise levels due to the new plant should therefore be no higher than 50dB $L_{A\text{Tr}\ 1\text{-hour}}$ during the daytime and 45dB $L_{A\text{Tr}\ 15\text{-minutes}}$ at night.

Summary of criteria

5.24. Based on London Borough of Hillingdon's typical requirements, it is considered appropriate that the cumulative plant noise rating level of proposed plant should be controlled to a level that does not exceed 5dB below the representative L_{A90} background sound level at the nearest residential property.

5.25. Since the L_{A90} background levels during the daytime period are exceptionally high, it is also recommended that noise emissions from fixed plant at the store should also not exceed the BS 8233:2014 guidance levels inside the nearest residential dwelling as described in paragraph 5.23. Table 5 below presents the proposed plant noise rating levels at the nearest residences.

Table 5 Proposed plant sound emissions level limits at nearest residential receptors

Receptor	Period	Plant rating level (dB $L_{A\text{Tr}}$)
Residential	Daytime (07.00 – 23.00 hours)	50
	Night-time (23.00 – 07.00 hours)	40

6.0 Plant noise impact assessment

6.1. Plant noise levels at the most affected noise sensitive receptors have been predicted based on the manufacturer's noise data for the proposed equipment.

6.2. It should be noted that the proposed plant is not anticipated to exhibit any tonal or impulsive characteristics provided it is well maintained. All proposed plant will be inverter driven and, therefore, will gently ramp up and down depending on the demands on the various systems. As a result, the plant items are not considered to operate intermittently. In any case, in order to be robust, a +3dB feature correction has been applied to noise level predictions at residential receptors, for the possible presence of "...characteristics that are neither tonal nor impulsive, though otherwise are readily distinctive against the residual acoustic environment...".

6.3. The predictions are inclusive of a louvred screen along the north-east side of the plant gantry providing a minimum 5dB sound reduction. This will fully screen all plant from the flats at R1 and partially screen the plant from the flats at R2.

6.4. Table 6 summarises the results of the assessment outside the nearest noise-sensitive dwellings. All other nearby receptors benefit from increased distance/screening to the plant such that resulting noise levels will be lower than at the receptors considered. The full calculations are presented in [Appendix E](#):

Table 6 Assessment of plant sound pressure levels

Receptor	Period	Predicted plant rating level at receptor, L_{Aeq} (dB)	Proposed design criterion (dB)	Difference (dB)
R1 (Residential)	Daytime (07.00 – 23.00 hours)	44	50	-6
	Night-time (23.00 – 07.00 hours)	40	40	0
R2 (Residential)	Daytime (07.00 – 23.00 hours)	44	50	-6
	Night-time (23.00 – 07.00 hours)	40	40	0

Assessment of uncertainties

6.5. Where possible uncertainty in this assessment has been minimised by taking the following steps:

- The measurement of the background sound levels was undertaken over a period including the quietest times of the day and night.
- The sound level meter and calibrator used have a traceable laboratory calibration and the meter was field calibrated before and after the measurements.
- Uncertainty in the calculated impact has been reduced by the use of a well-established calculation method.
- Care was taken to ensure that the measurement position was representative of the noise climate outside the nearby residential dwellings and not at a position where higher noise levels are present.

7.0 Summary

7.1. Noise Solutions Ltd (NSL) has been commissioned by Sainsbury's Limited to provide a noise impact assessment for new plant serving an existing Sainsbury's Superstore located along Long Drive in South Ruislip.

- 7.2. An environmental noise survey has been undertaken to establish the existing prevailing noise levels at a location representative of the noise climate outside the nearest noise sensitive receptors to the proposed site.

- 7.3. The cumulative sound rating levels for the proposed plant have been predicted, including proposed mitigation, at the most affected noise sensitive receptor locations and assessed taking into consideration the typical requirements of the London Borough of Hillingdon Council. Therefore, noise from the plant proposals should not be a reason for refusal of planning permission.

Appendix A Acoustic terminology

Parameter	Description
Ambient Noise Level	The totally encompassing sound in a given situation at a given time, usually composed of a sound from many sources both distant and near ($L_{Aeq,T}$).
Decibel (dB)	A scale for comparing the ratios of two quantities, including sound pressure and sound power. The difference in level between two sounds s_1 and s_2 is given by $20 \log_{10} (s_1/s_2)$. The decibel can also be used to measure absolute quantities by specifying a reference value that fixes one point on the scale. For sound pressure, the reference value is $20\mu\text{Pa}$. The threshold of normal hearing is in the region of 0 dB and 140 dB is the threshold of pain. A change of 1 dB is only perceptible under controlled conditions.
dB(A) , L_{A_x}	Decibels measured on a sound level meter incorporating a frequency weighting (A weighting) which differentiates between sounds of different frequency (pitch) in a similar way to the human ear. Measurements in dB(A) broadly agree with people's assessment of loudness. A change of 3 dB(A) is the minimum perceptible under normal conditions, and a change of 10 dB(A) corresponds roughly to halving or doubling the loudness of a sound. The background noise in a living room may be about 30 dB(A); normal conversation about 60 dB(A) at 1 metre; heavy road traffic about 80 dB(A) at 10 metres; the level near a pneumatic drill about 100 dB(A).
Fast Time Weighting	Setting on sound level meter, denoted by a subscript F, that determines the speed at which the instrument responds to changes in the amplitude of any measured signal. The fast time weighting can lead to higher values than the slow time weighting when rapidly changing signals are measured. The average time constant for the fast response setting is 0.125 (1/8) seconds.
Free-field	Sound pressure level measured outside, far away from reflecting surfaces (except the ground), usually taken to mean at least 3.5 metres
Façade	Sound pressure level measured at a distance of 1 metre in front of a large sound reflecting object such as a building façade.
$L_{Aeq,T}$	A noise level index called the equivalent continuous noise level over the time period T. This is the level of a notional steady sound that would contain the same amount of sound energy as the actual, possibly fluctuating, sound that was recorded.
$L_{max,T}$	A noise level index defined as the maximum noise level recorded during a noise event with a period T. L_{max} is sometimes used for the assessment of occasional loud noises, which may have little effect on the overall L_{eq} noise level but will still affect the noise environment. Unless described otherwise, it is measured using the 'fast' sound level meter response.
$L_{10,T}$	A noise level index. The noise level exceeded for 10% of the time over the period T. L_{10} can be considered to be the "average maximum" noise level. Generally used to describe road traffic noise. $L_{A10,18h}$ is the A-weighted arithmetic average of the 18 hourly $L_{A10,1h}$ values from 06:00-24:00.
$L_{90,T}$	A noise level index. The noise level exceeded for 90% of the time over the period T. Generally used to describe background noise level.

Appendix B Photograph of site showing areas of interest

Appendix C Environmental sound survey

Details of environmental sound survey

C.1 Measurements of the existing background sound levels were undertaken between 17.30 hours on Thursday 22nd September and 11.00 hours on Friday 23rd September 2022.

C.2 The sound level meter was programmed to record the A-weighted L_{eq} , L_{90} , L_{10} and L_{max} noise indices for consecutive fifteen-minute sample periods for the duration of the survey.

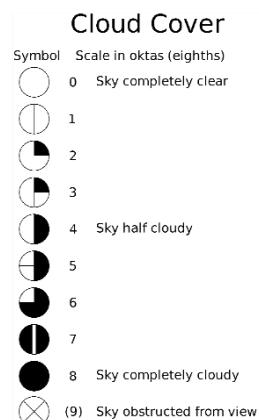
Measurement position

C.3 The representative measurement position was located on a lamp post along Long Drive. This location is approximately representative of the levels of road traffic noise at the closest receptor. The approximate location of the microphone is indicated on the plan in [Appendix B](#).

C.4 In accordance with BS 7445-2:1991 '*Description and measurement of environmental noise – Part 2: Guide to the acquisition of data pertinent to land use*', the measurements were undertaken under free-field conditions.

Equipment

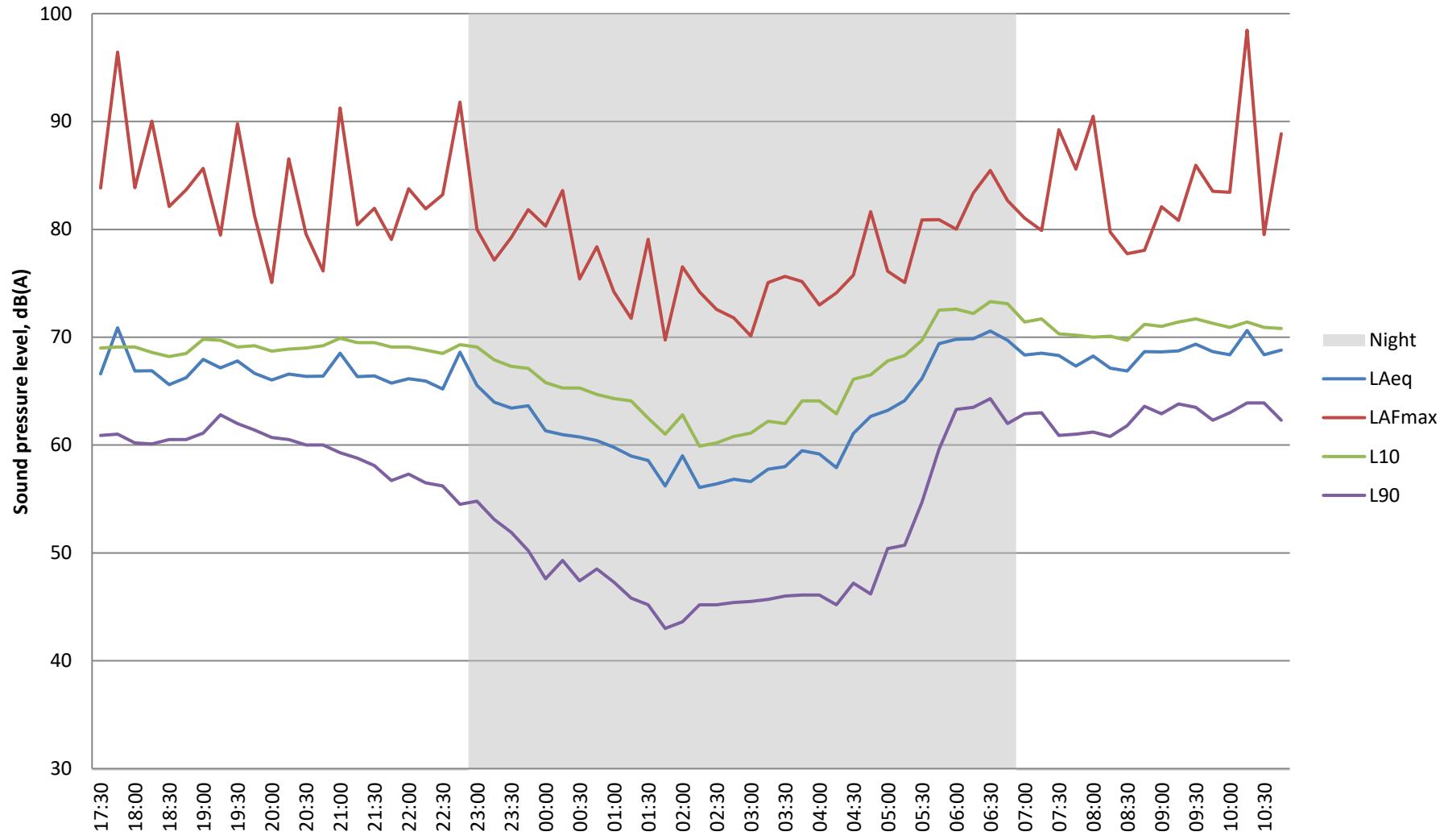
C.5 Details of the equipment used during the survey are provided in the table below. The sound level meter was calibrated before and after the survey; no significant change (+/-0.2 dB) in the calibration level was noted.


Environmental noise survey

Description	Model / serial no.	Calibration date	Calibration certificate no.
Class 1 Sound level meter	Svantek 971A / 124655	26/07/2022	Factory conformation certificate
Condenser microphone	ACO Pacific 7152 / 84710		
Preamplifier	Svantek SV18A / 126200		
Calibrator	Svantek SV33B / 125706	09/09/2022	Factory conformation certificate

Weather conditions

C.6 Weather conditions were determined both at the start and on completion of the survey. It is considered that the meteorological conditions were appropriate for environmental noise measurements. The table below presents the weather conditions recorded on site at the beginning and end of the survey.


Weather Conditions				
Measurement Location	Date/Time	Description	Beginning of Survey	End of Survey
As indicated on Appendix B	17.30 22/9/22 - 11.00 23/9/22	Temperature (°C)	20	16
		Precipitation:	No	No
		Cloud cover (oktas - see guide)	8	8
		Presence of fog/snow/ice	No	No
		Presence of damp roads/wet ground	No	No
		Wind Speed (m/s)	2	2
		Wind Direction	South westerly	North easterly
		Conditions that may cause temperature inversion (i.e. calm nights with no cloud)	No	No

Results

C.7 The results of the environmental survey are considered to be representative of the background sound pressure levels at the façades of the nearest noise sensitive receptors during the quietest times at which the plant will operate. The predominant noise source affecting the area was local traffic. The results of the survey are presented in a time history graph overleaf.

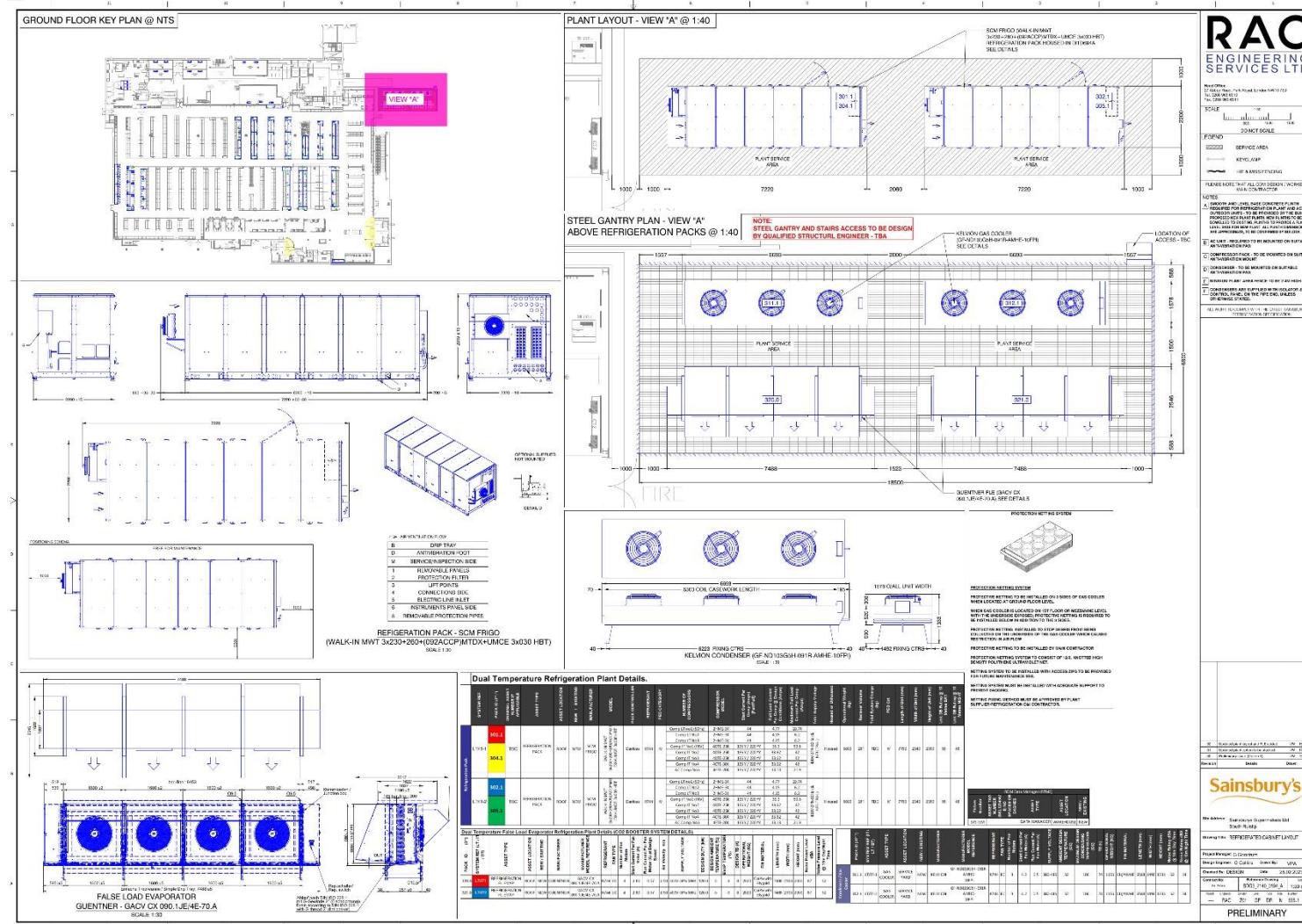
SSL South Ruislip
Thursday 22 - Friday 23 Sep 2022

Appendix D Manufacturer's Noise Data

Plant	Unit/Model	No. of units	Description	Level (dBA)
Gas coolers	Kelvion/GF-ND103G5H-091R-AMHE-10FPI	2	Sound pressure level at 10m	Daytime 52 (each)
				Night-time 34 (each)
Pack	SCM Frigo/Walk-in	2	Sound pressure level at 10m	Daytime 55 (each)
				Night-time 48 (each)
FLE	Güntner	2	Sound pressure level at 10m	Day and night 52 (each)

Appendix E Plant noise calculations

Receptor R1 – Daytime


Receptor R1 – Night-time

Receptor R2 – Daytime

Receptor R2 – Night-time

Appendix F

Plant Layout

