



CIVIL ENGINEERING CONSULTANTS

# FLOOD RISK ASSESSMENT

GRID REF: 505759E, 191614N

**HAREFIELD GROVE**  
RICKMANSWORTH ROAD, HAREFIELD, UB9 6JH

Prepared for  
COMER HOMES GROUP

**SEPTEMBER 2021**

REFERENCE: ST3118/FRA-2109  
REVISION 0



This report has been prepared by Stomor Ltd. based upon information obtained from others. Stomor Ltd cannot be held responsible for inaccuracies in this information.

This report has been prepared for the Client for their sole and specific use. No professional liability or warranty shall be extended to other parties in connection with this report without the explicit written agreement of Stomor Ltd and payment of the appropriate fee.

Drawings contained in this report are based upon information available at the time of production and serve to assess the likely flooding and flood risk implications arising from delivery of the proposed development. The information produced by Stomor Ltd for this report should not be used as detailed design for construction purposes.

Should the Client wish to pass copies of this report to others for information, the entire report should be copied.

| <i>Revision</i> | <i>Author</i> | <i>Checked by</i> | <i>Issue Date</i> |
|-----------------|---------------|-------------------|-------------------|
| 0               | JD            | SJB               | 30.09.21          |
|                 |               |                   |                   |
|                 |               |                   |                   |

## CONTENTS

|     |                                                                     |    |
|-----|---------------------------------------------------------------------|----|
| 1   | Introduction .....                                                  | 1  |
| 1.6 | Policy Context .....                                                | 1  |
| 1.7 | Vulnerability and the NPPF Sequential Test .....                    | 2  |
| 2   | Site Location .....                                                 | 4  |
| 3   | Site Background .....                                               | 6  |
| 4   | Existing Drainage .....                                             | 7  |
| 4.2 | Surface Water Drainage .....                                        | 7  |
| 4.3 | Foul Drainage .....                                                 | 8  |
| 5   | Proposed Development .....                                          | 9  |
| 6   | Proposed Site Drainage .....                                        | 10 |
| 6.1 | General .....                                                       | 10 |
| 6.2 | Surface Water Drainage .....                                        | 10 |
| 6.3 | Foul Drainage .....                                                 | 12 |
| 6.4 | Detailed Design and Approvals .....                                 | 13 |
| 6.5 | Maintenance of Drainage Features .....                              | 13 |
| 7   | Potential Sources of Flooding .....                                 | 15 |
| 7.2 | Flooding from Land (Surface Water) .....                            | 15 |
| 7.3 | Flooding from Groundwater .....                                     | 16 |
| 7.4 | Flooding from Sewers .....                                          | 17 |
| 7.5 | Flooding from Reservoirs, Canals and Other Artificial Sources ..... | 17 |
| 8.0 | Summary and Recommendations .....                                   | 18 |

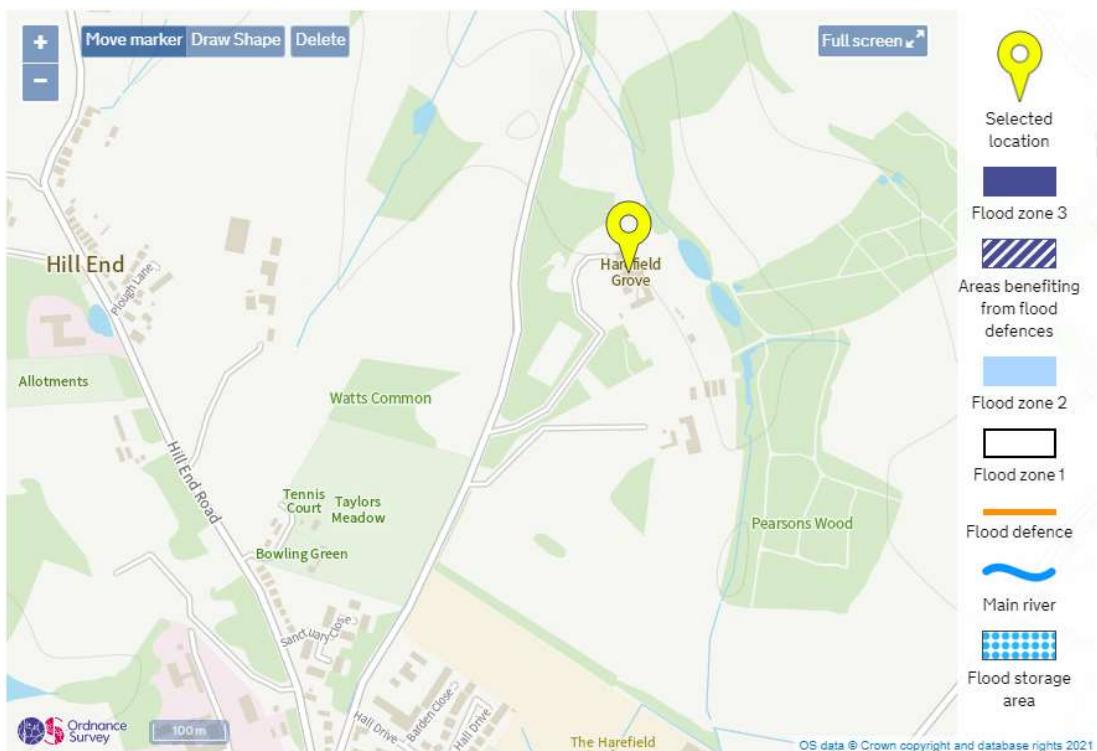
## APPENDICES

- A Site Location Plan
- B Topographical Survey
- C Soilscapes Map
- D Soakage Test Results
- E TWU Sewer Records
- F Greenfield Runoff Rate Calculations
- G Indicative Drainage Strategy
- H Drainage Areas Plan
- I MicroDrainage Output Files
- J Groundwater Flood Susceptibility Map

## 1 Introduction

- 1.1 Stomor Ltd have been commissioned by Comer Homes Group to prepare a Flood Risk Assessment (FRA) associated with the proposed redevelopment of Harefield Grove off Rickmansworth Road in Harefield. A Site Location Plan is provided in **Appendix A**.
- 1.2 The overall area of the site is approximately 7.48 hectares (ha) and comprises an existing manor house with outbuildings, associated car parking and landscaping and an existing Lodge House at the site access.
- 1.3 Development proposals comprise conversion of the existing manor house and outbuildings into residential apartments, in addition to the demolition and reconstruction of the existing stable block and several new dwellings to provide a total of 41no. residential units.
- 1.4 The site was subject to an Outline Planning Application (Ref: 28301/APP/2013/3104) relating to the conversion of the historic main house and associated outbuildings to provide a total of 24no. residential units. The application was submitted in 2013 and granted planning permission in April 2015.
- 1.5 An FRA was previously prepared by Cole Easdon Consultants (CEC) to support the 2013 planning application. No objections to the FRA or the accompanying documents were received from the statutory consultees.

## 1.6 Policy Context


- 1.6.1 The FRA has been prepared in accordance with the relevant national, regional and local planning policy as follows:
  - The National Planning Policy Framework (NPPF) by the Ministry of Housing, Communities and Local Government, and accompanying National Planning Practice Guidance (NPPG).
  - Department for Environment, Food and Rural Affairs (DEFRA) and The Environment Agency (EA) published Guidance for Planning Applications: Assessing Flood Risk.
  - The EA Flood Risk Standing Advice (FRSA) version 3.1 (April 2012).
  - The EA's Approach to Groundwater Protection (March 2017).

- The London Plan (March 2021).
- West London Strategic Flood Risk Assessment (SFRA).
- London Borough of Hillingdon (LBH) Surface Water Management Plan.

1.6.2 Furthermore, the FRA follows the methodology prescribed in Construction Industry Research and Information Association (CIRIA) document C624: Development and Flood Risk (2004), Guidance for the Construction Industry.

## 1.7 Vulnerability and the NPPF Sequential Test

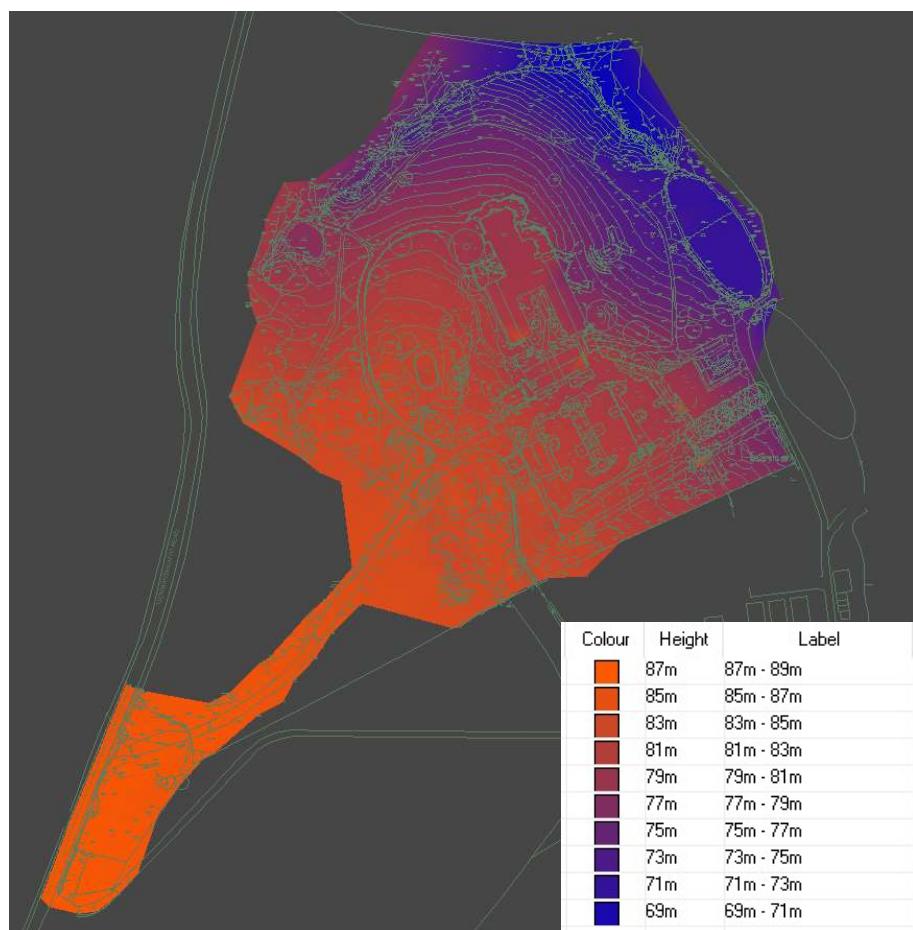
- 1.7.1 The NPPF follows a sequential risk based approach in determining the suitability of land for development in flood risk areas, with the intention of steering all new development to the lowest flood risk areas.
- 1.7.2 The indicative floodplain map obtained from the EA website is provided in **Figure 1.1**. This shows the site to be located within Flood Zone 1.



**Figure 1.1 - Environment Agency Indicative Floodplain Map**

1.7.3 The difference between Flood Zones 1, 2 and 3 are described in the table below:

|                                             |                                                                                                                                                                                                                                                                                                                 |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Zone 1</b><br>Low Probability            | Land assessed as having a less than 1 in 1000 annual probability of river or sea flooding in any year (<0.1%)                                                                                                                                                                                                   |
| <b>Zone 2</b><br>Medium Probability         | Land assessed as having between a 1 in 100 and 1 in 1000 annual probability of river flooding (1% - 0.1%) or between a 1 in 200 and 1 in 1000 annual probability of sea flooding (0.55% – 0.1%) in any year.                                                                                                    |
| <b>Zone 3a</b><br>High Probability          | Land assessed as having a 1 in 100 or greater annual probability of river flooding (>1%) or a 1 in 200 or greater annual probability of flooding from the sea (>0.5%) in any year.                                                                                                                              |
| <b>Zone 3b</b><br>The Functional Floodplain | Land where water has to flow or be stored in times of flood. (Land which would flood with an annual probability of 1 in 20 (5%) or greater in any year or is designed to flood in an extreme (0.1%) flood or at another probability to be agreed between the LPA and the EA including water conveyance routes). |


1.7.4 The Flood Risk and Coastal Change Category (ID 7) of the PPG and associated documents identifies that a Flood Risk Assessment is required for areas at risk of flooding, or for developments of more than 1ha within Flood Zone 1.

1.7.5 The Flood Risk and Coastal Change Category of the NPPG and associated documents identifies that site-specific flood risk assessments should identify and assess the risks of all forms of flooding to and from the development and demonstrate how these flood risks will be managed so that the development remains safe throughout its lifetime, taking climate change into account.

1.7.6 The development would have a NPPF flood risk vulnerability classification of 'More Vulnerable' and will be situated within Flood Zone 1. NPPG identifies that 'More Vulnerable' uses of land are appropriate within Flood Zones 1.

## 2 Site Location

- 2.1 The application site comprises 7.48ha of previously developed land, to the north east of Harefield. Of this, a net developable area of 1.20ha has been identified.
- 2.2 Access to the site is currently taken from Rickmansworth Road to the west. The access road leads to a parking area associated with the existing Main House.
- 2.3 The development boundary is defined by Rickmansworth Road to the west, Pearsons Wood to the north and east and existing farm buildings to the south.
- 2.4 The site levels generally slope from south west to north east. The highest point of the site is about 87.82m Above Ordnance Datum (AOD), towards the existing site access, and the lowest point is about 69.52m AOD to the north east of the site, adjacent to the unnamed watercourse passing through the site. A copy of the topographical survey is attached in **Appendix B**.



**Figure 2.1: Contour shaded topographical survey of site.**

- 2.5 An Ordinary Watercourse passes through the east side of the site from south to north. The nearest EA Statutory Main River is the River Colne, located approximately 1.6km west of the site, which runs from south to north in the area.
- 2.6 The site is located within a Groundwater Source Protection Zone 2. Therefore, there should be no restrictions on the area discharging via infiltration methods, subject to suitable infiltration rates and levels of water treatment.

### 3 Site Background

- 3.1 A level 1 Strategic Flood Risk Assessment (SFRA) for the area was prepared by Metis Consultants Ltd. in April 2018. The SFRA is used as a desk-based study to map all forms of flood risk to provide an evidence basis to locate new development primarily within low risk areas. The information allows the planning authority to identify the level of detail required for site-specific Flood Risk Assessments.
- 3.2 Inspection of the British Geological Survey (BGS) website identifies that the underlying ground conditions of the site comprise superficial deposits of Gerrards Cross Gravel underlain by Lambeth Group bedrock.
- 3.3 Inspection of Cranfield University's Soilscapes Map, obtained from the Land Information System (LandIS) website, identifies that the soil at the application site is base rich, loamy and clayey with impeded drainage. A copy of the Soilscapes map is provided in **Appendix C**.
- 3.4 Soil infiltration test results in accordance with BRE Digest 365 have been provided to Stomor by the Client which identified varying levels of infiltration potential across the site. Infiltration rates in the vicinity of the Main House were recorded at  $3.6 \times 10^{-8} \text{ ms}^{-1}$  which would suggest infiltration in this area may not be feasible. Copies of the soakage test results are provided in **Appendix D**.

## 4 Existing Drainage

4.1 Investigations into the existing drainage of the site have been carried out using the above information in conjunction with the topographical survey and site inspection. In addition, existing Thames Water Utilities (TWU) drainage records have been obtained in order to identify the available public sewer networks in the vicinity of the site. A copy of the TWU records is provided in **Appendix E**.

### 4.2 Surface Water Drainage

4.2.1 TWU sewer records have identified that there are no public surface water sewers within the vicinity of the site. Inspection of the topographical survey suggests surface water runoff from the current site would appear to discharge to the unnamed Ordinary Watercourse to the east.

4.2.2 Inspection of the BGS website indicates that the underlying soil conditions may provide a suitable infiltration rate, although this would need to be confirmed by soil infiltration testing, in accordance with BRE Digest 365.

4.2.3 Considering an existing impermeable area of 0.73ha, based upon the topographical survey, brownfield runoff rates for the site during various storm events have been calculated, based upon the Modified Rational Method, as follows:

| Storm Event    | Rainfall Intensity | Peak Runoff Rate |
|----------------|--------------------|------------------|
| 1 in 1 year    | 50mm/h             | 101.5/l/s        |
| 1 in 30 years  | 126mm/h            | 255.6l/s         |
| 1 in 100 years | 152mm/h            | 308.5l/s         |

4.2.4 Greenfield runoff rates have been calculated based upon IH124 Method, using a developable area of 1.20ha to be positively drained. Geotechnical information indicates that the underlying soil conditions would reflect Winter Rain Acceptance Potential (WRAP) Soil Class 3. A copy of the calculation sheet is provided in **Appendix F**, which gives flow rates as follows:

| <b>Greenfield Runoff (l/s)</b> |      |      |
|--------------------------------|------|------|
| Qbar                           | -    | 5.5  |
| 1 in 1 year                    | Q1   | 4.7  |
| 1 in 30 years                  | Q30  | 12.7 |
| 1 in 100 years                 | Q100 | 17.7 |

#### 4.3 Foul Drainage

4.3.1 TWU sewer records have identified no public foul water sewers in the immediate vicinity of the site. The nearest public foul water sewer is located on Rickmansworth Road, approximately 445m south west of the site access.

## 5 Proposed Development

- 5.1.1 Development proposals comprise conversion of the existing manor house and outbuildings into residential apartments, in addition to the demolition and reconstruction of the existing stable block and several new dwellings to provide a total of 41no. residential units.
- 5.1.2 As part of the redevelopment, the existing impermeable internal roads are to be replaced with free draining gravel, leading to an overall reduction in impermeable area associated with the site. It is anticipated that the redevelopment will generate a total impermeable area of 0.48ha to be positively drained, a reduction of 0.25ha from the existing 0.73ha.
- 5.1.3 Vehicular access to the site will be taken from Rickmansworth Road to the east of the application site, via the existing access.
- 5.1.4 The proposed development would have a NPPF flood risk vulnerability classification of 'More Vulnerable', which NPPG guidance deems appropriate within Flood Zones 1.

## 6 Proposed Site Drainage

### 6.1 General

6.1.1 Environment Agency (EA) Flood Risk Assessment (FRA) Guidance Note 1 - Development within a Critical Drainage area or greater than 1 hectare (ha) in Flood Zone 1 (Dated April 2012) states that the applicant should submit, "*Proposals for surface water management that aims to not increase, and where practicable reduce the rate of runoff from the site as a result of the development*".

### 6.2 Surface Water Drainage

6.2.1 Surface water runoff from the site is likely to discharge into the unnamed Ordinary Watercourse to the east, either directly or via existing on-site drainage infrastructure.

6.2.2 For the purposes of this assessment, it is anticipated that redevelopment proposals will generate a total impermeable area of 0.48ha to be positively drained. A 10% allowance for increases in impermeable area due to Urban Creep has been allowed for in this assessment.

6.2.3 In accordance with EA Guidance, the order of consideration for the disposal of surface water runoff from a development should be as follows; infiltration methods, watercourses then public sewer network.

6.2.4 Inspection of the British Geological Survey (BGS) website identifies that the underlying ground conditions of the site comprise superficial deposits of Gerrards Cross Gravel, which indicates that there may be a suitable infiltration rate for the use of SuDS.

6.2.5 Soakage test results undertaken on site in accordance with BRE Digest 365 have been provided to Stomor Ltd by the Client and indicate varying levels of soil infiltration rates across the site. In the vicinity of the Main House, infiltration rates of  $3.6 \times 10^{-8} \text{ ms}^{-1}$  were identified, which would suggest a positive outfall will likely be required.

6.2.6 Therefore, a connection to the adjacent unnamed Ordinary Watercourse would appear to be the most feasible point of discharge.

6.2.7 An indicative Drainage Strategy for the development is provided in **Appendix G**. The strategy demonstrates a proposed layout of SuDS to provide sufficient source control and storage to avoid flooding within the site during all storms up to and including the 1 in 100 year storm event plus 40% allowance for climate change.

6.2.8 The proposed SuDS solutions will need to have clear, enforceable maintenance regimes in place so that they provide effective flood protection and water treatment for the long term.

6.2.9 The CIRIA SuDS Manual C753 promotes the use of the Simple Index Approach as a method of determining water quality risk management and is generally regarded as the accepted method within the industry.

6.2.10 Table 26.2 of The SuDS Manual C753 gives pollution hazard indices for different land use classifications:

| Land use                                                                                                                                                                                                                                       | Pollution hazard level | Total suspended solids (TSS) | Metals | Hydro-carbons |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------------|--------|---------------|
| Residential Roofs                                                                                                                                                                                                                              | Very Low               | 0.2                          | 0.2    | 0.05          |
| Individual property driveways, residential car parks, low traffic roads (e.g. cul de sacs, homezones and general access roads) and non-residential car parking with infrequent change (e.g. schools, offices) i.e. <300 traffic movements/day. | Low                    | 0.5                          | 0.4    | 0.4           |

6.2.11 Table 26.3 of The SuDS Manual provides typical treatments levels for discharge to surface waters. The proposed drainage strategy for the site incorporates permeable pavement, filter drains and a detention basin. An extract of the relevant sections of the table is reproduced below:

| Type of SuDS component | Mitigation indices |        |              |
|------------------------|--------------------|--------|--------------|
|                        | TSS                | Metals | Hydrocarbons |
| Filter Drain           | 0.4                | 0.4    | 0.4          |
| Permeable Pavement     | 0.7                | 0.6    | 0.7          |
| Detention Basin        | 0.5                | 0.5    | 0.6          |

6.2.12 To deliver adequate treatment, the selected SuDS components should have a total mitigation indices that equals or is greater than the pollution hazard index. Where a single SuDS component is insufficient, additional components in a series would be required where:

$$\text{Total SuDS mitigation index} = \text{mitigation index}_1 + 0.5 (\text{mitigation index}_n)$$

6.2.13 Surface water runoff from residential roofs will, as a minimum, pass through the granular filter drains proposed across the site. Based on this, the total SuDS mitigation would be as follows:

| SuDS components | Mitigation indices |            |              |
|-----------------|--------------------|------------|--------------|
|                 | TSS                | Metals     | Hydrocarbons |
| 1) Filter Drain | 0.4                | 0.4        | 0.4          |
| <b>Total</b>    | <b>0.4</b>         | <b>0.4</b> | <b>0.4</b>   |

6.2.14 Surface water runoff from the remaining areas of hardstanding will, as a minimum, pass through the granular filter drain and detention basin. The total SuDS mitigation would be as follows:

| SuDS components    | Mitigation indices |             |              |
|--------------------|--------------------|-------------|--------------|
|                    | TSS                | Metals      | Hydrocarbons |
| 1) Filter Drain    | 0.4                | 0.4         | 0.4          |
| 2) Detention Basin | 0.25               | 0.25        | 0.3          |
| <b>Total</b>       | <b>0.65</b>        | <b>0.65</b> | <b>0.7</b>   |

6.2.15 From the above tables, it can be seen that the SuDS proposed on the development would provide more than the adequate treatment for the potential pollution hazards generated by the land uses.

6.2.16 In order to provide a robust assessment, drainage proposals will retain the 1 in 100 year storm event within the site, without generating flood risk to proposed buildings within or adjacent to the development, while also making provision for climate change, relating to a 40% increase in rainfall intensity. A Drainage Areas Plan, is provided in **Appendix H**.

6.2.17 The proposed drainage strategy has been modelled using Micro Drainage. Copies of Micro Drainage output files for the development are provided in **Appendix I**, demonstrating that the proposed SuDS features provide sufficient storage to avoid flooding during the 1 in 100 year storm event plus 40% allowance for climate change.

6.2.18 The above strategy must not be used for construction purposes and it is anticipated that the indicative proposals will be designed in detail. Storage volumes and drainage features must be confirmed by detailed design.

### 6.3 Foul Drainage

6.3.1 As previously stated, TWU sewer records have identified no public foul water sewers in the vicinity of the site. Therefore, foul water flows are to be directed to a package treatment

plant located on the site, before ultimately discharging to the Ordinary Watercourse to the east of the site.

6.3.2 A proposed strategy for the discharge of foul water flows from the development has been prepared and is attached in **Appendix G**. This drawing shows an illustrative drainage layout to demonstrate that the site can be drained based upon the proposed development. This drawing is a strategy only and must not be used for construction purposes.

#### 6.4 Detailed Design and Approvals

6.4.1 The drainage strategy is subject to approval by LBH, where connections to the existing watercourse are proposed.

6.4.2 Approval from the EA will be required where foul flows are proposed to discharge to an Ordinary Watercourse, via a package treatment plant.

6.4.3 Proposed drainage systems will need to be modelled in MicroDrainage to confirm required pipe sizes and storage volumes.

6.4.4 Overland flow routes have been shown on the drainage strategy through the development to identify proposed flow paths for surface runoff during extreme storm events. Final external levels will be designed to prevent overland flow routes from entering buildings.

#### 6.5 Maintenance of Drainage Features

6.5.1 The design process should consider the maintenance of the components including any corrective maintenance to repair defects or improve performance of SuDS. Inlets, outlets, control structures or other below ground features should be as shallow as reasonably possible to allow easy access for maintenance and to reduce safety risks, while ensuring that sufficient depth is maintained for structural stability.

6.5.2 A SuDS Management Plan will be provided at detailed design stage which will identify the following:

- The function of SuDS;
- How and why it works on the site;
- Impacts on amenity and wildlife, indicating how they can be enhanced;
- Health and safety issues;

6.5.3 Usually, SuDS components are on or near the surface and most can be managed using landscape maintenance techniques. Typical inspection and maintenance requirements for surface SuDS features are identified below:

| Activity                    | Indicative frequency                                              | Typical tasks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Routine/regular maintenance | Monthly (for normal care of SuDS)                                 | <ul style="list-style-type: none"> <li>• litter picking</li> <li>• grass cutting (cuttings to compost, wildlife piles or removed from site) Height and frequency dependent upon amenity of grass area.</li> <li>• inspection of inlets, outlets and control structures.</li> </ul>                                                                                                                                                                                                                                                                                                                                         |
| Occasional maintenance      | Annually (dependent on the design)                                | <ul style="list-style-type: none"> <li>• silt control around components</li> <li>• vegetation management around components</li> <li>• suction sweeping of permeable paving in autumn after leaf fall</li> <li>• silt and debris removal from inlets, outlets, gratings, catchpits, control chambers, soakaways and cellular storage.</li> <li>• strim wet swale or pond edges in September to October or 3-year rotation for wildlife value</li> <li>• wetland vegetation to be cut to 30% height annually and to 100mm on a 3 year rotation</li> <li>• remove overhanging trees or growth within SuDS features</li> </ul> |
| Remedial maintenance        | As required (tasks to repair problems due to damage or vandalism) | <ul style="list-style-type: none"> <li>• inlet/outlet repair</li> <li>• erosion repairs</li> <li>• reinstatement of edgings</li> <li>• reinstatement following pollution</li> <li>• removal of silt build up.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                   |

6.5.4 For below-ground SuDS, such as permeable paving, the manufacturer or designer should provide maintenance advice. This should include routine and long-term actions that can be incorporated into the SuDS Management Plan.

6.5.5 Funding for the maintenance of SuDS features on the site should be resolved at the start of the development process to ensure that there are sufficient resources to maintain the systems in the long-term.

6.5.6 If the development is to be constructed in phases, the proposed surface water drainage system is established as soon as reasonably practicable. It will be necessary to ensure sufficient storage is provided for earlier phases of development to avoid flooding during the 1 in 100 year storm event plus 40% allowance for climate change.

## 7 Potential Sources of Flooding

### 7.1 Flooding from Rivers or Sea

- 7.1.1 The site levels vary significantly across the site, with existing levels falling towards the north eastern boundary. The highest point of the site is about 87.82m AOD, located adjacent to the existing site access to the south west. The lowest recorded level within the site is 69.52m AOD, located on the Ordinary Watercourse to the north east of the site.
- 7.1.2 The EA Indicative Floodplain Map, shown in **Figure 1.1**, identifies that the site lies wholly within Flood Zone 1; land considered to have a Very Low probability of flooding and defined as land having less than 1 in 1,1000 annual probability of river or sea flooding.
- 7.1.3 The primary source of fluvial flooding from the site would be the Ordinary Watercourse, which passes through the east side of the site from south to north.
- 7.1.4 The SFRA does not identify any recorded flood incidents within the vicinity of the site.
- 7.1.5 The EA indicative Floodplain Map identifies that fluvial flooding associated with the unnamed Ordinary Watercourse, or the River Colne located 1.6km away, would not affect any areas in the immediate vicinity of the site.

### 7.2 Flooding from Land (Surface Water)

- 7.2.1 Flooding from land occurs when intense rainfall is unable to soak into the ground or enter drainage systems. Local topography and built form can have a strong influence on the direction and depth of flow.
- 7.2.2 The EA indicative surface water flood map identifies most of the site as being at very low risk of surface water flooding. Land adjacent to the Ordinary Watercourse to the east of the site, as well as land adjacent to a ditch to the north of the site are considered to be at a high risk of surface water flooding.
- 7.2.3 Small sections of land around the existing manor house are also considered to be at medium/ high risk of surface water flooding. An extract from the EA website is provided in **Figure 7.1** below.



**Figure 7.1 – Environment Agency Indicative Surface Water Flood Map**

7.2.4 Overland flow paths will be taken into account in design of levels for the proposed development to direct overland flows away from buildings.

7.2.5 On-site drainage systems will be designed to accommodate runoff volume from a 1 in 100 year plus 40% climate change rainfall event, so as to minimise overland flow routes during such storm events.

### 7.3 Flooding from Groundwater

7.3.1 Groundwater flooding occurs when water levels in the ground rise above surface elevations. Groundwater flooding events are most likely to occur in low lying areas underlain by permeable rocks (aquifers).

7.3.2 The SFRA identifies the site as being <25% susceptible to groundwater flooding. A copy of the Susceptibility to Groundwater Flooding map from the West London SFRA is provided in **Appendix J**.

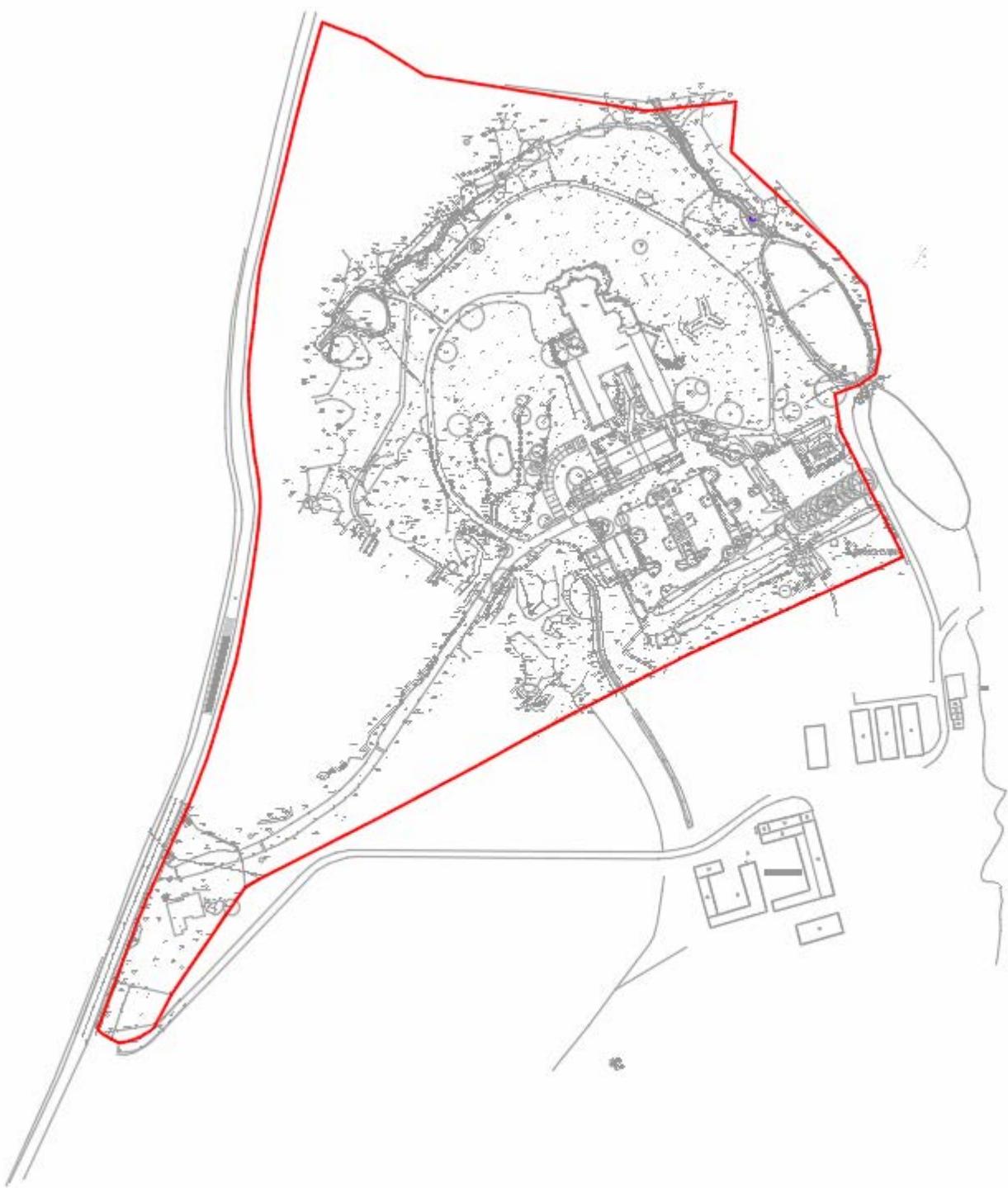
7.3.3 It is anticipated that groundwater flooding should not be an issue to the proposed development. However, overland flow routes will be taken into account in the design of

levels for the proposed development and, should groundwater flooding occur on the site, flows will tend to run overland towards ponds situated at the low areas of the site.

#### 7.4 Flooding from Sewers

- 7.4.1 The SFRA identified no historical recorded flooding events which can be related to sewers within the vicinity of the site. A sewer flooding history enquiry was submitted to TWU who confirmed that they have no historic recorded flooding incidents for the area in the vicinity of the site.
- 7.4.2 The development layout will be designed with consideration of flood routing, to ensure that new buildings and occupants of the site will not be subject to detrimental impacts in the event of flooding from infrastructure failure within or upstream of the site.

#### 7.5 Flooding from Reservoirs, Canals and Other Artificial Sources


- 7.5.1 Inspection of the EA flood maps confirms that the unnamed Ordinary Watercourse passing through the site is considered to be at risk of flooding due to reservoirs. However, the extent of this flood risk is not shown to affect the proposed developable area of the site.
- 7.5.2 No other non-natural or artificial sources of flooding where water is retained above natural ground level, operational and redundant industrial processes including mining, quarrying and sand and gravel extraction, would appear to be located in the vicinity of the site which may cause increase floodwater depths or velocities.

## **8.0 Summary and Recommendations**

- 8.1 Stomor Ltd have been commissioned by Comer Homes Group to prepare a Flood Risk Assessment associated with proposed redevelopment of the Harefield Grove site on Rickmansworth Road in Harefield.
- 8.2 The overall area of the site is approximately 7.48 hectares (ha) and comprises an existing manor house, outbuildings with associated access and landscaping. Development proposals comprise conversion of the existing manor house and outbuildings into residential apartments, in addition to the demolition and reconstruction of the existing stable block and several new dwellings to provide a total of 41 no. residential units.
- 8.3 The nearest watercourse to the site is an Ordinary Watercourse, which passes through the site from south to north. The nearest EA Designated Main River is the River Colne, located approximately 1.6km to the west of the site.
- 8.4 The proposed development would have a NPPF flood risk vulnerability classification of 'More Vulnerable'. Based on EA data, the site is situated wholly within Flood Zone 1. NPPG identifies more vulnerable uses of land are permitted within Flood Zone 1.
- 8.5 The EA indicative surface water flood map identifies most of the site as being at very low risk of surface water flooding. Land adjacent to the Ordinary Watercourse to the east of the site, as well as land adjacent to a ditch to the north of the site and are considered to be at high risk of surface water flooding. Small sections of land around the existing manor house are also considered to be at medium/ high risk of surface water flooding.
- 8.6 Infiltration tests to BRE Digest 365 have been undertaken on site, which show soil infiltration rates to vary considerably. Infiltration rates in the vicinity of the existing manor house mean a positive outfall will likely be required. A connection to the adjacent Ordinary Watercourse would appear to be the most feasible point of discharge.
- 8.7 The proposed surface water drainage strategy demonstrates a system of SuDS and attenuation features to provide sufficient storage to avoid flooding within the site during the 1 in 100 year storm event + 40% allowance for climate change.
- 8.8 Overland flow paths will be taken into account in design of levels for the proposed development to direct overland flows away from buildings.

## APPENDIX A





## APPENDIX B



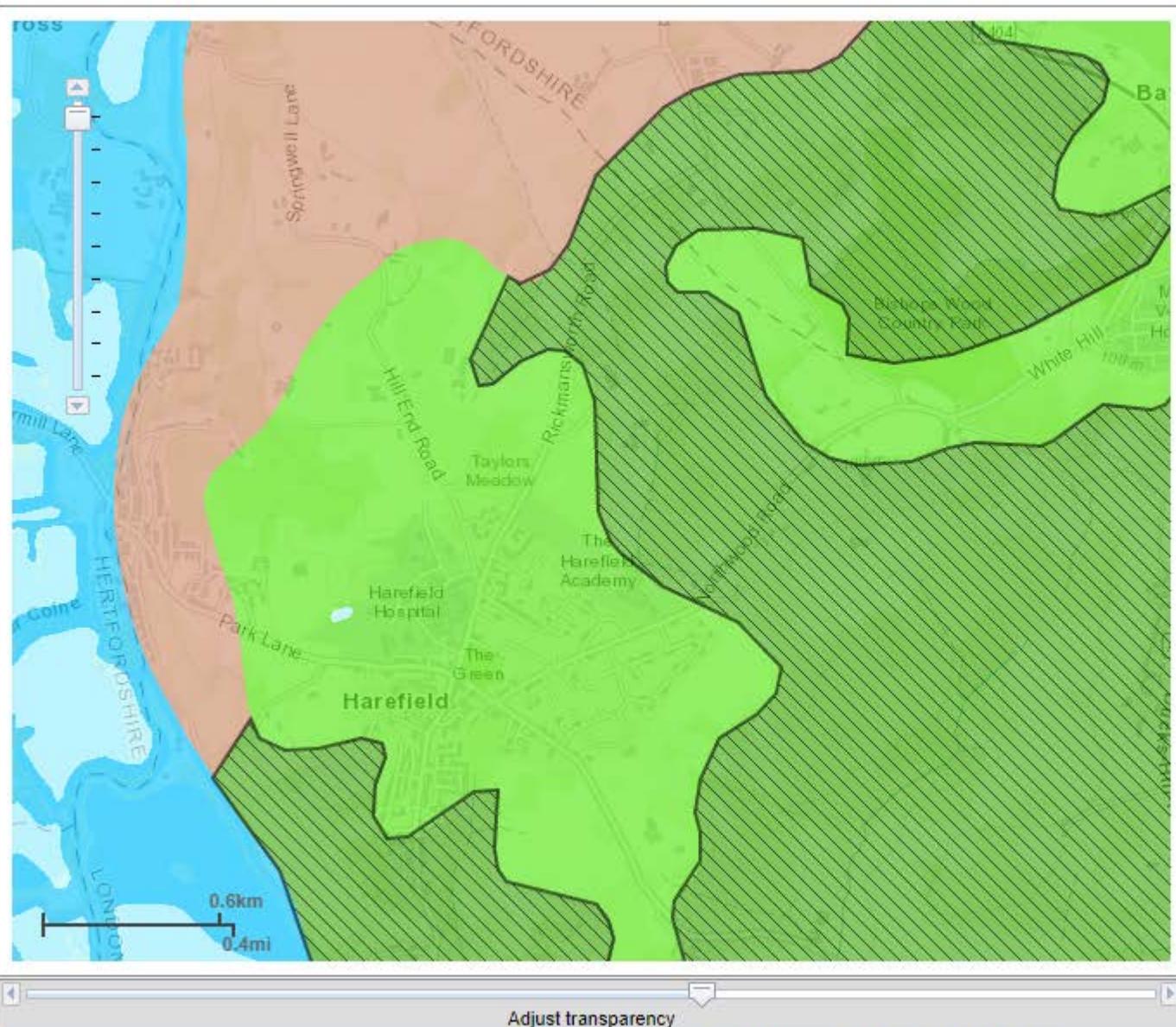
ZA



---

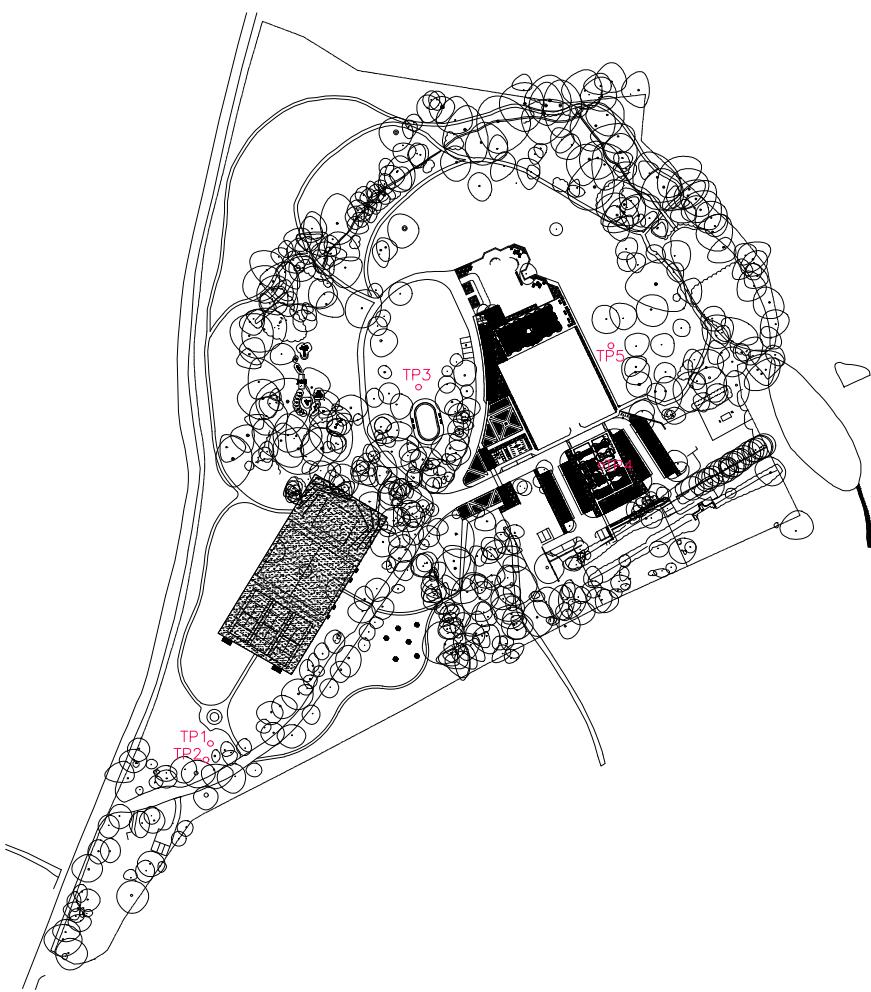
1

YORK HOUSE  
EDISON PARK


# Existing Site and Impermeable Areas

Harefield Grove

Existing Impermeable Areas  
= 0.45ha  
(to be removed as part of  
proposed development)


## APPENDIX C





## APPENDIX D





### **Falling Head Permeability Test**

Location TP1 – Harefield Grove Infiltration Tests in Accordance with BRE 365

Length of test section 2.0m

Width of test section 2.0m

Depth of test section 2.0m

Test Duration 2mins

Depth of Water at Commencement of Test 0.0m

Permeability  $5.41 \times 10^{-3} \text{m/s}$

| Time Elapsed (mins) | Depth of Water Top (m) | Time Elapsed (mins) | Depth of Water Top (m) |
|---------------------|------------------------|---------------------|------------------------|
| 0.00                | 0.0                    | 10.00               | -                      |
| 1.00                | 1.6                    | 15.00               | -                      |
| 2.00                | 2.0                    | 30.00               | -                      |
| 3.00                | -                      | 60.00               | -                      |
| 4.00                | -                      |                     |                        |
| 5.00                | -                      |                     |                        |

### **Falling Head Permeability Test**

Location TP2 – Harefield Grove Infiltration Tests in Accordance with BRE 365

Length of test section 2.0m

Width of test section 2.0m

Depth of test section 2.0m

Test Duration 2mins

Depth of Water at Commencement of Test 0.0m

Permeability  $7.23 \times 10^{-3} \text{m/s}$

| Time Elapsed (mins) | Depth of Water Top (m) | Time Elapsed (mins) | Depth of Water Top (m) |
|---------------------|------------------------|---------------------|------------------------|
| 0.00                | 0.0                    | 10.00               | -                      |
| 1.00                | 1.2                    | 15.00               | -                      |
| 2.00                | 1.9                    | 30.00               | -                      |
| 3.00                | 2.0                    | 60.00               | -                      |
| 4.00                | -                      |                     |                        |
| 5.00                | -                      |                     |                        |

### **Falling Head Permeability Test**

Location TP3 – Harefield Grove Infiltration Tests in Accordance with BRE 365

Length of test section 2.0m

Width of test section 2.0m

Depth of test section 2.0m

Test Duration 2mins

Depth of Water at Commencement of Test 0.0m

Permeability  $8.11 \times 10^{-7} \text{ m/s}$

| Time Elapsed (mins) | Depth of Water Top (m) | Time Elapsed (mins) | Depth of Water Top (m) |
|---------------------|------------------------|---------------------|------------------------|
| 0.00                | 0.0                    | 10.00               | 0.03                   |
| 1.00                | 0.0                    | 15.00               | 0.09                   |
| 2.00                | 0.0                    | 30.00               | 0.16                   |
| 3.00                | 0.0                    | 60.00               | 0.28                   |
| 4.00                | 0.0                    |                     |                        |
| 5.00                | 0.0                    |                     |                        |

### **Falling Head Permeability Test**

Location TP4 – Harefield Grove Infiltration Tests in Accordance with BRE 365

Length of test section 2.0m

Width of test section 2.0m

Depth of test section 2.0m

Test Duration 2mins

Depth of Water at Commencement of Test 0.0m

Permeability  $3.60 \times 10^{-8} \text{ m/s}$

| Time Elapsed (mins) | Depth of Water Top (m) | Time Elapsed (mins) | Depth of Water Top (m) |
|---------------------|------------------------|---------------------|------------------------|
| 0.00                | 0.0                    | 10.00               | 0.02                   |
| 1.00                | 0.0                    | 15.00               | 0.03                   |
| 2.00                | 0.0                    | 30.00               | 0.06                   |
| 3.00                | 0.0                    | 60.00               | 0.10                   |
| 4.00                | 0.0                    |                     |                        |
| 5.00                | 0.0                    |                     |                        |

### **Falling Head Permeability Test**

Location TP5 – Harefield Grove Infiltration Tests in Accordance with BRE 365

Length of test section 2.0m

Width of test section 2.0m

Depth of test section 2.0m

Test Duration 60mins

Depth of Water at Commencement of Test 0.0m

Permeability  $4.87 \times 10^{-7} \text{ m/s}$

| Time Elapsed (mins) | Depth of Water Top (m) | Time Elapsed (mins) | Depth of Water Top (m) |
|---------------------|------------------------|---------------------|------------------------|
| 0.00                | 0.0                    | 10.00               | 0.02                   |
| 1.00                | 0.0                    | 15.00               | 0.02                   |
| 2.00                | 0.0                    | 30.00               | 0.07                   |
| 3.00                | 0.0                    | 60.00               | 0.12                   |
| 4.00                | 0.0                    |                     |                        |
| 5.00                | 0.0                    |                     |                        |

## APPENDIX E



# Asset location search



Property Searches

Stomor Ltd  
19

HITCHIN  
SG4 9SP

**Search address supplied** Cube Metals Ltd  
Harefield Grove  
Rickmansworth Road  
Harefield  
Uxbridge  
UB9 6JY

**Your reference** st-3118

**Our reference** ALS/ALS Standard/2021\_4476564

**Search date** 28 July 2021

## Knowledge of features below the surface is essential for every development

The benefits of this knowledge not only include ensuring due diligence and avoiding risk, but also being able to ascertain the feasibility of any development.

Did you know that Thames Water Property Searches can also provide a variety of utility searches including a more comprehensive view of utility providers' assets (across up to 35-45 different providers), as well as more focused searches relating to specific major utility companies such as National Grid (gas and electric).

Contact us to find out more.



Thames Water Utilities Ltd  
Property Searches, PO Box 3189, Slough SL1 4WW  
DX 151280 Slough 13



[searches@thameswater.co.uk](mailto:searches@thameswater.co.uk)  
[www.thameswater-propertysearches.co.uk](http://www.thameswater-propertysearches.co.uk)



0800 009 4540

# Asset location search



## Property Searches

**Search address supplied:** Cube Metals Ltd, Harefield Grove, Rickmansworth Road, Harefield, Uxbridge, UB9 6JY

Dear Sir / Madam

**An Asset Location Search is recommended when undertaking a site development.** It is essential to obtain information on the size and location of clean water and sewerage assets to safeguard against expensive damage and allow cost-effective service design.

The following records were searched in compiling this report: - the map of public sewers & the map of waterworks. Thames Water Utilities Ltd (TWUL) holds all of these.

This search provides maps showing the position, size of Thames Water assets close to the proposed development and also manhole cover and invert levels, where available.

Please note that none of the charges made for this report relate to the provision of Ordnance Survey mapping information. The replies contained in this letter are given following inspection of the public service records available to this company. No responsibility can be accepted for any error or omission in the replies.

You should be aware that the information contained on these plans is current only on the day that the plans are issued. The plans should only be used for the duration of the work that is being carried out at the present time. Under no circumstances should this data be copied or transmitted to parties other than those for whom the current work is being carried out.

Thames Water do update these service plans on a regular basis and failure to observe the above conditions could lead to damage arising to new or diverted services at a later date.

### Contact Us

If you have any further queries regarding this enquiry please feel free to contact a member of the team on 0800 009 4540, or use the address below:

Thames Water Utilities Ltd  
Property Searches  
PO Box 3189  
Slough  
SL1 4WW

Email: [searches@thameswater.co.uk](mailto:searches@thameswater.co.uk)

Web: [www.thameswater-propertysearches.co.uk](http://www.thameswater-propertysearches.co.uk)

# Asset location search



## Property Searches

### Waste Water Services

**Please provide a copy extract from the public sewer map.**

The following quartiles have not been printed as they contain no assets:

TQ0591NE

TQ0591SE

Following examination of our statutory maps, Thames Water has been unable to find any record of public sewerage within this area. However, there may be other sewerage pipework within the area that is not owned by the company. You may be able to obtain records of such pipework from the building control department of your local authority, from property deeds or from neighbouring landowners.

For your guidance:

- The Company is not generally responsible for rivers, watercourses, ponds, culverts or highway drains. If any of these are shown on the copy extract they are shown for information only.
- Any private sewers or lateral drains which are indicated on the extract of the public sewer map as being subject to an agreement under Section 104 of the Water Industry Act 1991 are not an 'as constructed' record. It is recommended these details be checked with the developer.

### Clean Water Services

**Please provide a copy extract from the public water main map.**

Following examination of our statutory maps, Thames Water has been unable to find any plans of water mains within this area. If you require a connection to the public water supply system, please write to:

New Connections / Diversions  
Thames Water  
Network Services Business Centre  
Brentford  
Middlesex  
TW8 0EE

Tel: 0845 850 2777  
Fax: 0207 713 3858  
Email: [developer.services@thameswater.co.uk](mailto:developer.services@thameswater.co.uk)

# Asset location search



## Property Searches

The following quartiles have not been printed as they are out of Thames' water catchment area. For details of the assets requested please contact the water company indicated below:

TQ0591NE      Affinity Water  
TQ0591SE      Affinity Water

Affinity Water Ltd  
Tamblin Way  
Hatfield  
AL10 9EZ

Tel: 0345 3572401

For your guidance:

- Assets other than vested water mains may be shown on the plan, for information only.
- If an extract of the public water main record is enclosed, this will show known public water mains in the vicinity of the property. It should be possible to estimate the likely length and route of any private water supply pipe connecting the property to the public water network.

### Payment for this Search

A charge will be added to your suppliers account.

# Asset location search



# Property Searches

## Further contacts:

### Waste Water queries

Should you require verification of the invert levels of public sewers, by site measurement, you will need to approach the relevant Thames Water Area Network Office for permission to lift the appropriate covers. This permission will usually involve you completing a TWOSA form. For further information please contact our Customer Centre on Tel: 0845 920 0800. Alternatively, a survey can be arranged, for a fee, through our Customer Centre on the above number.

If you have any questions regarding sewer connections, budget estimates, diversions, building over issues or any other questions regarding operational issues please direct them to our service desk. Which can be contacted by writing to:

Developer Services (Waste Water)  
Thames Water  
Clearwater Court  
Vastern Road  
Reading  
RG1 8DB

Tel: 0800 009 3921  
Email: [developer.services@thameswater.co.uk](mailto:developer.services@thameswater.co.uk)

### Clean Water queries

Should you require any advice concerning clean water operational issues or clean water connections, please contact:

Developer Services (Clean Water)  
Thames Water  
Clearwater Court  
Vastern Road  
Reading  
RG1 8DB

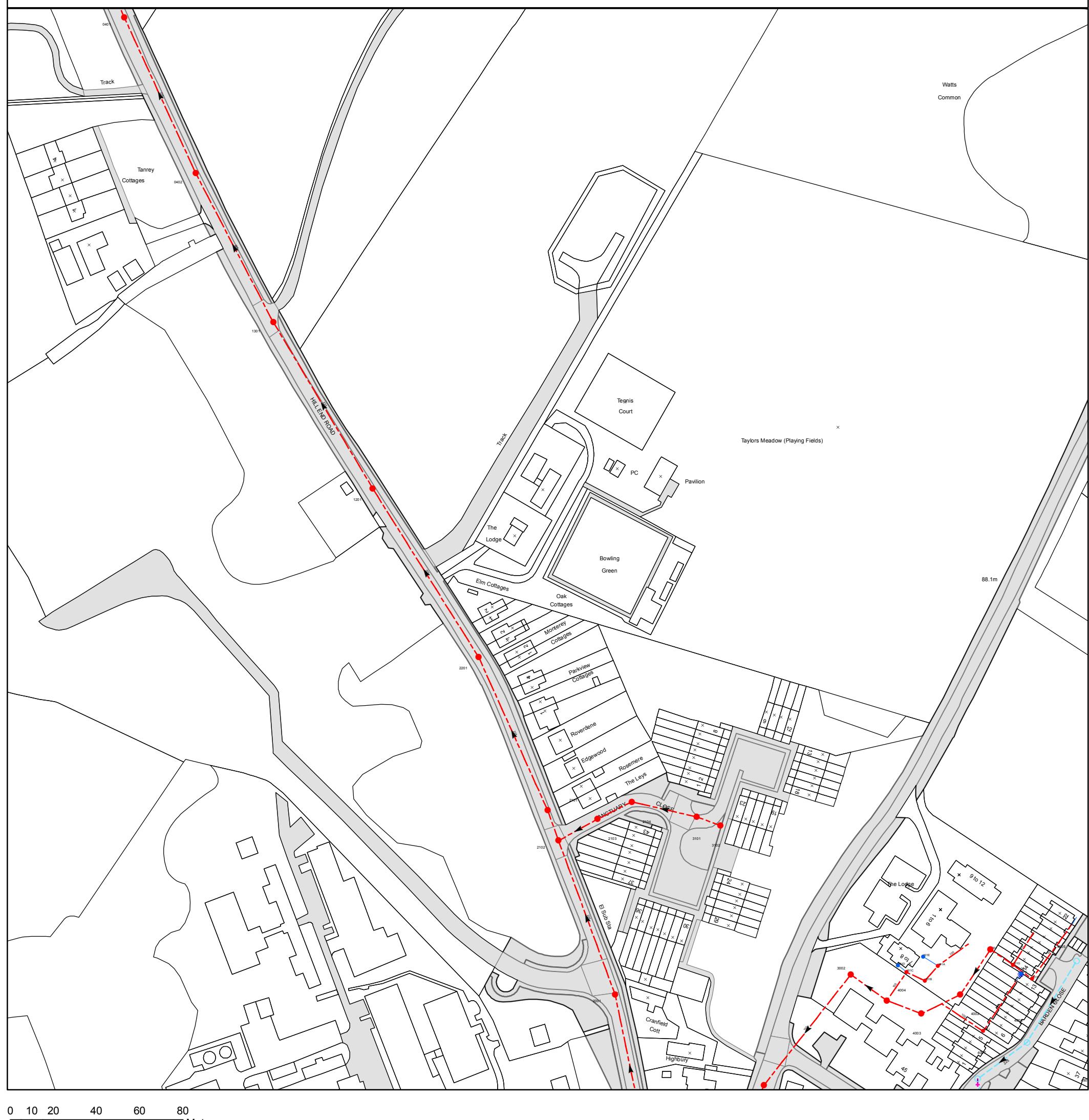
Tel: 0800 009 3921  
Email: [developer.services@thameswater.co.uk](mailto:developer.services@thameswater.co.uk)



0 10 20 40 60 80  
Meters

The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified before any works are undertaken. Crown copyright Reserved

**Scale:** 1:1792  
**Width:** 500m  
**Printed By:** G1KANAGA  
**Print Date:** 28/07/2021  
**Map Centre:** 505711,191560  
**Grid Reference:** TQ0591NE


**Comments:**

# ALS/ALS Standard/2021\_4476564

NB: Level quoted in metres Ordnance Newlyn Datum. The value -9999.00 indicates no Survey information is available.

| REFERENCE | COVER LEVEL | INVERT LEVEL |
|-----------|-------------|--------------|
|-----------|-------------|--------------|

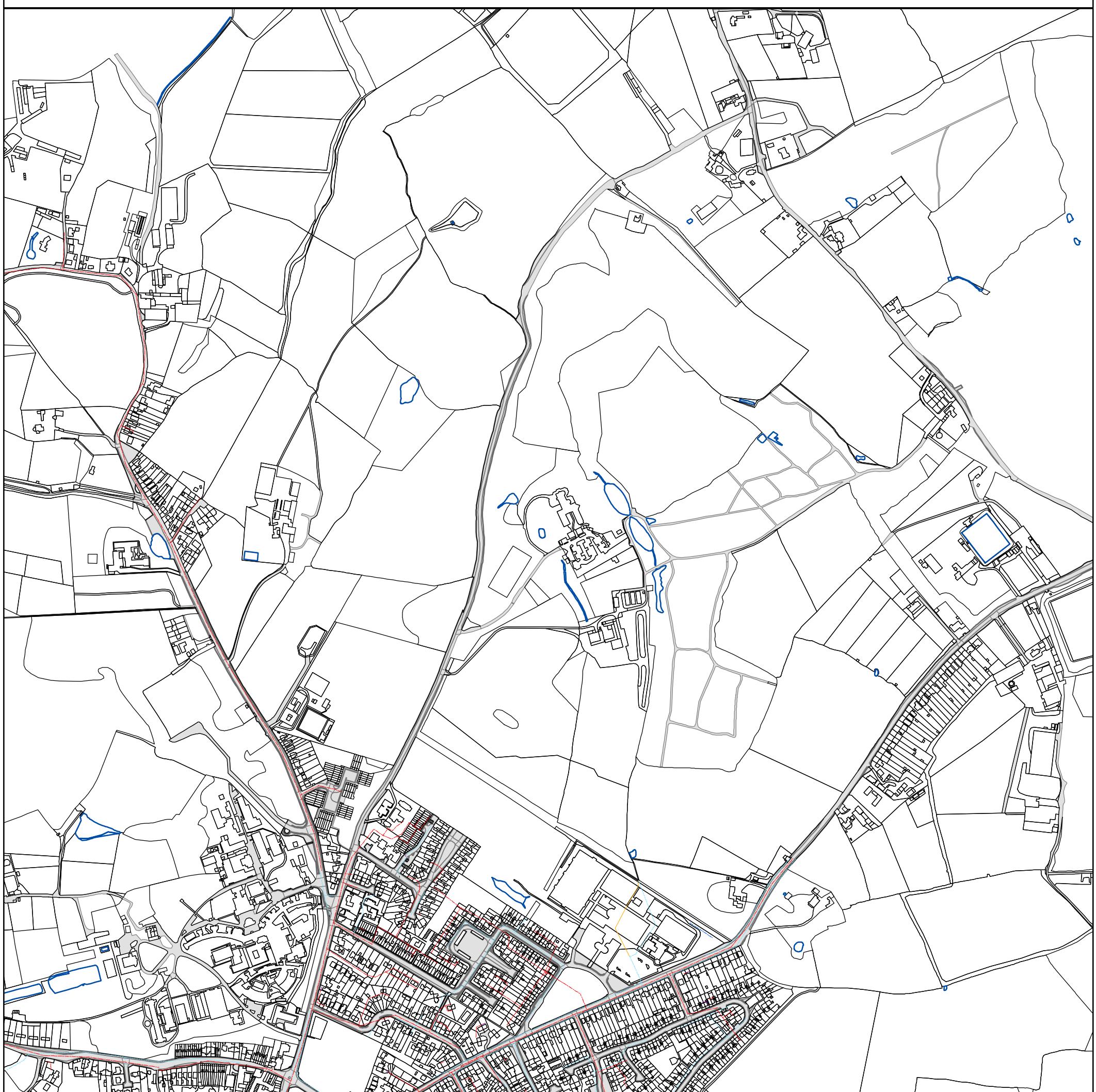
| REFERENCE | COVER LEVEL | INVERT LEVEL |
|-----------|-------------|--------------|
|-----------|-------------|--------------|



0 10 20 40 60 80  
Meters

The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified before any works are undertaken. Crown copyright Reserved

**Scale:** 1:1792  
**Width:** 500m  
**Printed By:** G1KANAGA  
**Print Date:** 28/07/2021  
**Map Centre:** 505250,191250  
**Grid Reference:** TQ0591SW


**Comments:**

# ALS/ALS Standard/2021\_4476564

NB: Level quoted in metres Ordnance Newlyn Datum. The value -9999.00 indicates no Survey information is available.

| REFERENCE | COVER LEVEL | INVERT LEVEL |
|-----------|-------------|--------------|
| 4006      |             |              |
| 4011      |             |              |
| 2201      | 87.2        | 86.31        |
| 3001      | 88.65       | 87.28        |
| 4004      |             |              |
| 4002      |             |              |
| 3002      |             |              |
| 4003      |             |              |
| 2102      |             |              |
| 3102      |             |              |
| 2104      |             |              |
| 401A      |             |              |
| 401B      |             |              |
| 4001      |             |              |
| 401F      |             |              |

| REFERENCE | COVER LEVEL | INVERT LEVEL |
|-----------|-------------|--------------|
| 4007      |             |              |
| 4005      |             |              |
| 2103      |             |              |
| 0401      |             |              |
| 1301      | 86.87       | 85.47        |
| 1201      | 87.13       | 86.03        |
| 0402      | 87.58       | 85.47        |
| 2101      | 87.63       | 86.56        |
| 3101      |             |              |
| 2001      | 88.04       | 86.74        |
| 401J      |             |              |
| 401D      |             |              |
| 401C      |             |              |
| 401E      |             |              |
| 401G      |             |              |



0 45 90 180 270 360  
Meters

The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified before any works are undertaken. Crown copyright Reserved

**Scale:** 1:7158  
**Width:** 2000m  
**Printed By:** G1KANAGA  
**Print Date:** 28/07/2021  
**Map Centre:** 505711,191560  
**Grid Reference:** TQ0591NE

**Comments:**

## Terms and Conditions

All sales are made in accordance with Thames Water Utilities Limited (TWUL) standard terms and conditions unless previously agreed in writing.

1. All goods remain in the property of Thames Water Utilities Ltd until full payment is received.
2. Provision of service will be in accordance with all legal requirements and published TWUL policies.
3. All invoices are strictly due for payment 14 days from due date of the invoice. Any other terms must be accepted/agreed in writing prior to provision of goods or service, or will be held to be invalid.
4. Thames Water does not accept post-dated cheques-any cheques received will be processed for payment on date of receipt.
5. In case of dispute TWUL's terms and conditions shall apply.
6. Penalty interest may be invoked by TWUL in the event of unjustifiable payment delay. Interest charges will be in line with UK Statute Law 'The Late Payment of Commercial Debts (Interest) Act 1998'.
7. Interest will be charged in line with current Court Interest Charges, if legal action is taken.
8. A charge may be made at the discretion of the company for increased administration costs.

A copy of Thames Water's standard terms and conditions are available from the Commercial Billing Team (cashoperations@thameswater.co.uk).

We publish several Codes of Practice including a guaranteed standards scheme. You can obtain copies of these leaflets by calling us on 0800 316 9800

If you are unhappy with our service you can speak to your original goods or customer service provider. If you are not satisfied with the response, your complaint will be reviewed by the Customer Services Director. You can write to her at: Thames Water Utilities Ltd. PO Box 492, Swindon, SN38 8TU.

If the Goods or Services covered by this invoice falls under the regulation of the 1991 Water Industry Act, and you remain dissatisfied you can refer your complaint to Consumer Council for Water on 0121 345 1000 or write to them at Consumer Council for Water, 1st Floor, Victoria Square House, Victoria Square, Birmingham, B2 4AJ.

### Ways to pay your bill

| Credit Card                                                                              | BACS Payment                                                                                                                                                                                                                                                                        | Telephone Banking                                                                                                                 | Cheque                                                                                                                                                                                                                                                        |
|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Call <b>0800 009 4540</b><br>quoting your invoice<br>number starting CBA or<br>ADS / OSS | Account number<br><b>90478703</b><br>Sort code <b>60-00-01</b><br>A remittance advice must<br>be sent to:<br><b>Thames Water Utilities<br/>Ltd., PO Box 3189,<br/>Slough SL1 4WW.</b><br>or email<br><a href="mailto:ps.billing@thameswater.co.uk">ps.billing@thameswater.co.uk</a> | By calling your bank and<br>quoting:<br>Account number<br><b>90478703</b><br>Sort code <b>60-00-01</b><br>and your invoice number | Made payable to ' <b>Thames<br/>Water Utilities Ltd'</b><br>Write your Thames Water<br>account number on the<br>back.<br>Send to:<br><b>Thames Water Utilities<br/>Ltd., PO Box 3189,<br/>Slough SL1 4WW</b><br>or by DX to <b>151280</b><br><b>Slough 13</b> |

Thames Water Utilities Ltd Registered in England & Wales No. 2366661 Registered Office Clearwater Court, Vastern Rd, Reading, Berks, RG1 8DB.

## APPENDIX F



|                |                 |
|----------------|-----------------|
| Calculated by: | Jack Dudmish    |
| Site name:     | Harefield Grove |
| Site location: | Harefield       |

This is an estimation of the greenfield runoff rates that are used to meet normal best practice criteria in line with Environment Agency guidance "Rainfall runoff management for developments", SC030219 (2013) , the SuDS Manual C753 (Ciria, 2015) and the non-statutory standards for SuDS (Defra, 2015). This information on greenfield runoff rates may be the basis for setting consents for the drainage of surface water runoff from sites.

|            |                   |
|------------|-------------------|
| Latitude:  | 51.61317° N       |
| Longitude: | 0.474° W          |
| Reference: | 2738209797        |
| Date:      | Aug 18 2021 14:37 |

## Runoff estimation approach

IH124

## Site characteristics

Total site area (ha):

1.2

## Notes

### (1) Is $Q_{BAR} < 2.0 \text{ l/s/ha}$ ?

When  $Q_{BAR}$  is  $< 2.0 \text{ l/s/ha}$  then limiting discharge rates are set at  $2.0 \text{ l/s/ha}$ .

## Methodology

$Q_{BAR}$  estimation method:

Calculate from SPR and SAAR

SPR estimation method:

Calculate from SOIL type

## Soil characteristics

SOIL type:

| Default | Edited |
|---------|--------|
| 4       | 4      |
| N/A     | N/A    |
| 0.47    | 0.47   |

### (2) Are flow rates $< 5.0 \text{ l/s}$ ?

Where flow rates are less than  $5.0 \text{ l/s}$  consent for discharge is usually set at  $5.0 \text{ l/s}$  if blockage from vegetation and other materials is possible. Lower consent flow rates may be set where the blockage risk is addressed by using appropriate drainage elements.

## Hydrological characteristics

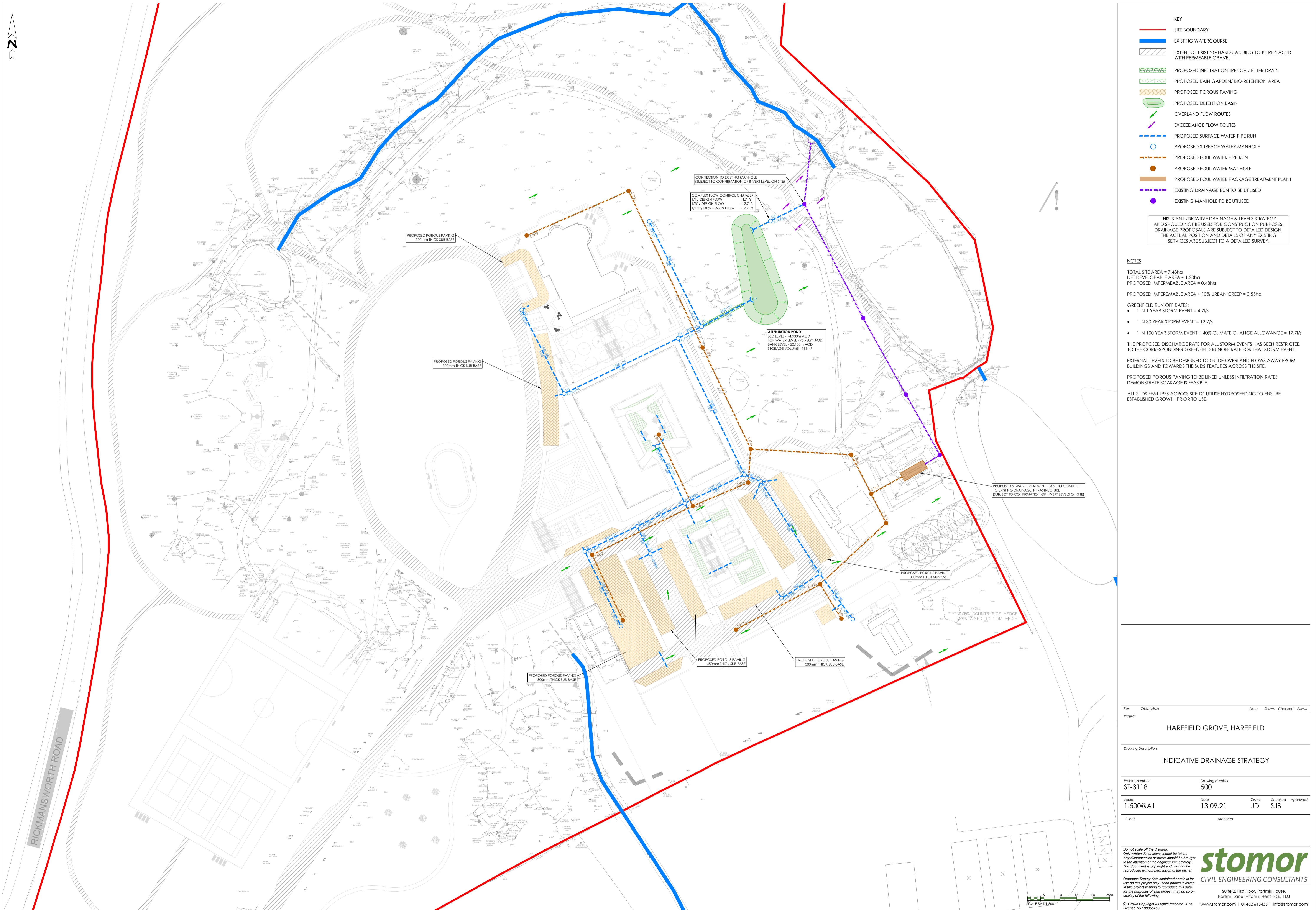
SAAR (mm):

| Default | Edited |
|---------|--------|
| 673     | 673    |
| 6       | 6      |
| 0.85    | 0.85   |
| 2.3     | 2.3    |
| 3.19    | 3.19   |
| 3.74    | 3.74   |

### (3) Is $SPR/SPRHOST \leq 0.3$ ?

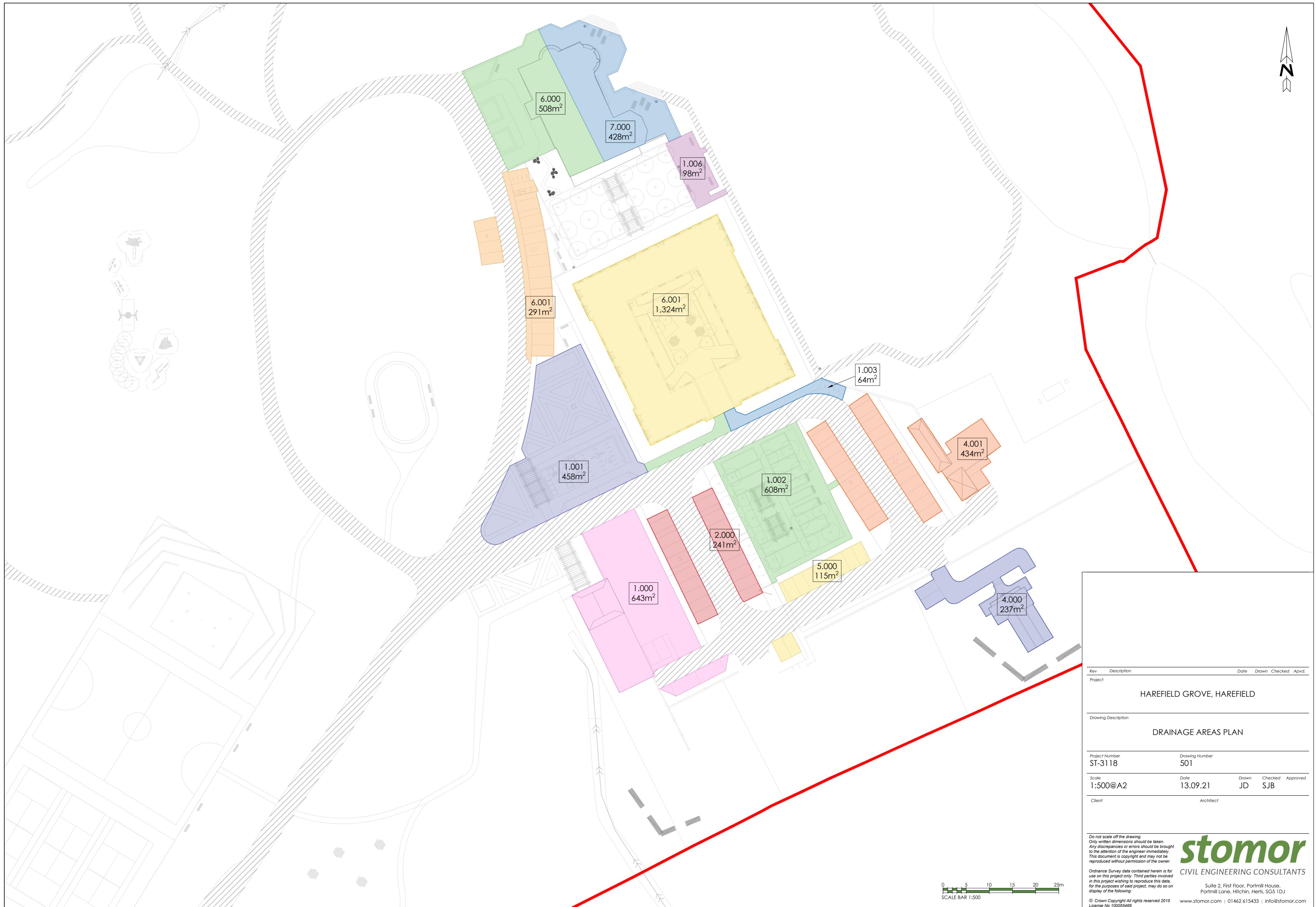
Where groundwater levels are low enough the use of soakaways to avoid discharge offsite would normally be preferred for disposal of surface water runoff.

## Greenfield runoff rates


$Q_{BAR}$  (l/s):

| Default | Edited |
|---------|--------|
| 5.53    | 5.53   |
| 4.7     | 4.7    |
| 12.73   | 12.73  |
| 17.65   | 17.65  |
| 20.69   | 20.69  |

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at [www.eksuds.com](http://www.eksuds.com). The use of this tool is subject to the UK SuDS terms and conditions and licence agreement , which can both be found at [www.eksuds.com/terms-and-conditions.htm](http://www.eksuds.com/terms-and-conditions.htm). The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.


## APPENDIX G





## APPENDIX H





## APPENDIX I



|                                                                      |                                |                                                                                     |
|----------------------------------------------------------------------|--------------------------------|-------------------------------------------------------------------------------------|
| Stomor Ltd<br>32 Beehive Lane<br>Welwyn Garden City<br>Herts AL7 4BQ |                                | Page 0                                                                              |
| Date 19/08/2021 14:11<br>File ST-3118-Main House Model...            | Designed by Jack<br>Checked by |  |
| Micro Drainage                                                       | Network 2019.1                 |                                                                                     |

Existing Network Details for Surface Network 1

\* - Indicates pipe has been modified outside of System 1  
 # - Indicates pipe length does not match coordinates

| PN | Length<br>(m) | Fall<br>(m) | Slope<br>(1:X) | I.Area<br>(ha) | T.E.<br>(mins) | k<br>(mm) | HYD<br>SECT | DIA<br>(mm) | Section Type     |
|----|---------------|-------------|----------------|----------------|----------------|-----------|-------------|-------------|------------------|
| *  | 1.000         | 25.256      | 0.995          | 25.4           | 0.064          | 5.00      | 0.600       | o           | 150 Pipe/Conduit |
|    | 1.001         | 17.651      | 0.859          | 20.5           | 0.046          | 0.00      | 0.600       | o           | 150 Pipe/Conduit |
|    | 2.000         | 9.301       | 0.203          | 45.8           | 0.024          | 5.00      | 0.600       | o           | 150 Pipe/Conduit |
| *  | 1.002         | 16.838      | 0.792          | 21.3           | 0.061          | 0.00      | 0.600       | o           | 150 Pipe/Conduit |
| *  | 3.000         | 22.304      | 0.372          | 60.0           | 0.132          | 5.00      | 0.600       | o           | 300 Pipe/Conduit |
| *  | 1.003         | 19.496      | 0.957          | 20.4           | 0.006          | 0.00      | 0.600       | o           | 300 Pipe/Conduit |
|    | 4.000         | 17.037      | 0.214          | 79.6           | 0.024          | 5.00      | 0.600       | o           | 150 Pipe/Conduit |
|    | 5.000         | 13.832      | 0.859          | 16.1           | 0.012          | 5.00      | 0.600       | o           | 150 Pipe/Conduit |
|    | 4.001         | 33.431      | 0.417          | 80.2           | 0.043          | 0.00      | 0.600       | o           | 150 Pipe/Conduit |
|    | 4.002         | 5.403       | 0.068          | 79.5           | 0.000          | 0.00      | 0.600       | o           | 150 Pipe/Conduit |

| PN | US/MH<br>Name | US/CL<br>(m) | US/IL<br>(m) | US<br>C.Depth<br>(m) | DS/CL<br>(m) | DS/IL<br>(m) | DS<br>C.Depth<br>(m) | Ctrl  | US/MH<br>(mm) |
|----|---------------|--------------|--------------|----------------------|--------------|--------------|----------------------|-------|---------------|
| *  | 1.000         | S1           | 83.309       | 82.639               | 0.520        | 83.157       | 81.644               | 1.363 | 1200          |
|    | 1.001         | S2           | 83.157       | 81.644               | 1.363        | 82.135       | 80.785               | 1.200 | Orifice 1200  |
|    | 2.000         | S3           | 82.338       | 80.988               | 1.200        | 82.135       | 80.785               | 1.200 | 1200          |
| *  | 1.002         | S4           | 82.135       | 80.785               | 1.200        | 81.584       | 79.993               | 1.441 | Orifice 1200  |
| *  | 3.000         | S5           | 81.565       | 80.215               | 1.050        | 81.584       | 79.843               | 1.441 | 1200          |
| *  | 1.003         | S6           | 81.584       | 79.843               | 1.441        | 81.596       | 78.886               | 2.410 | 1200          |
|    | 4.000         | S7           | 81.085       | 79.735               | 1.200        | 81.469       | 79.521               | 1.798 | 1200          |
|    | 5.000         | S8           | 81.980       | 80.380               | 1.450        | 81.469       | 79.521               | 1.798 | 1200          |
|    | 4.001         | S9           | 81.469       | 79.521               | 1.798        | 81.605       | 79.104               | 2.351 | 1200          |
|    | 4.002         | S10          | 81.605       | 79.104               | 2.351        | 81.596       | 79.036               | 2.410 | 1200          |

|                                                                      |                                |                                                                                     |
|----------------------------------------------------------------------|--------------------------------|-------------------------------------------------------------------------------------|
| Stomor Ltd<br>32 Beehive Lane<br>Welwyn Garden City<br>Herts AL7 4BQ |                                | Page 1                                                                              |
| Date 19/08/2021 14:11<br>File ST-3118-Main House Model...            | Designed by Jack<br>Checked by |  |
| Micro Drainage                                                       | Network 2019.1                 |                                                                                     |

Existing Network Details for Surface Network 1

| PN      | Length<br>(m) | Fall<br>(m) | Slope<br>(1:X) | I.Area<br>(ha) | T.E.<br>(mins) | k<br>(mm) | HYD<br>SECT | DIA<br>(mm) | Section Type |
|---------|---------------|-------------|----------------|----------------|----------------|-----------|-------------|-------------|--------------|
| * 1.004 | 45.591        | 1.750       | 26.1           | 0.000          | 0.00           | 0.600     | o           | 300         | Pipe/Conduit |
| 6.000   | 29.160        | 0.364       | 80.1           | 0.051          | 5.00           | 0.600     | o           | 150         | Pipe/Conduit |
| * 6.001 | 38.624        | 2.025       | 19.1           | 0.029          | 0.00           | 0.600     | o           | 150         | Pipe/Conduit |
| * 1.005 | 13.331        | 0.659       | 20.2           | 0.000          | 0.00           | 0.600     | o           | 300         | Pipe/Conduit |
| * 7.000 | 27.600        | 0.345       | 80.0           | 0.043          | 5.00           | 0.600     | o           | 150         | Pipe/Conduit |
| * 1.006 | 10.619        | 0.822       | 12.9           | 0.009          | 0.00           | 0.600     | o           | 300         | Pipe/Conduit |
| * 1.007 | 26.221        | 0.734       | 35.7           | 0.000          | 0.00           | 0.600     | o           | 300         | Pipe/Conduit |
| * 1.008 | 32.344#       | 4.231       | 7.6            | 0.000          | 0.00           | 0.600     | o           | 300         | Pipe/Conduit |

| PN      | US/MH<br>Name | US/CL<br>(m) | US/IL<br>(m) | US<br>C.Depth<br>(m) | DS/CL<br>(m) | DS/IL<br>(m) | DS<br>C.Depth<br>(m) | Ctrl      | US/MH<br>(mm) |
|---------|---------------|--------------|--------------|----------------------|--------------|--------------|----------------------|-----------|---------------|
| * 1.004 | S11           | 81.596       | 78.886       | 2.410                | 78.486       | 77.136       | 1.050                |           | 1200          |
| 6.000   | S12           | 81.026       | 79.676       | 1.200                | 81.668       | 79.312       | 2.206                |           | 1200          |
| * 6.001 | S13           | 81.668       | 79.311       | 2.207                | 78.486       | 77.286       | 1.050                |           | 1200          |
| * 1.005 | S14           | 78.486       | 77.136       | 1.050                | 78.096       | 76.477       | 1.319                | 900 x 675 |               |
| * 7.000 | S15           | 78.322       | 76.972       | 1.200                | 78.096       | 76.627       | 1.319                |           | 1200          |
| * 1.006 | S16           | 78.096       | 76.477       | 1.319                | 77.004       | 75.655       | 1.049                |           | 1200          |
| * 1.007 | S17           | 77.004       | 75.655       | 1.049                | 76.271       | 74.921       | 1.050                |           | 1200          |
| * 1.008 | S18           | 76.271       | 74.921       | 1.050                | 72.040       | 70.690       | 1.050                | Complex   | 1200          |

Free Flowing Outfall Details for Surface Network 1

| Outfall<br>Pipe Number | Outfall<br>Name | C. Level<br>(m) | I. Level<br>(m) | Min<br>I. Level<br>(m) | D,L<br>(mm) | W<br>(mm) |
|------------------------|-----------------|-----------------|-----------------|------------------------|-------------|-----------|
| 1.008                  | S21             | 72.040          | 70.690          | 0.000                  | 0           | 0         |

|                                                                      |                                |                                                                                     |
|----------------------------------------------------------------------|--------------------------------|-------------------------------------------------------------------------------------|
| Stomor Ltd<br>32 Beehive Lane<br>Welwyn Garden City<br>Herts AL7 4BQ |                                | Page 2                                                                              |
| Date 19/08/2021 14:11<br>File ST-3118-Main House Model...            | Designed by Jack<br>Checked by |  |
| Micro Drainage                                                       | Network 2019.1                 |                                                                                     |

#### Simulation Criteria for Surface Network 1

|                                 |       |                                     |               |
|---------------------------------|-------|-------------------------------------|---------------|
| Volumetric Runoff Coeff         | 0.750 | Additional Flow - % of Total Flow   | 0.000         |
| Areal Reduction Factor          | 1.000 | MADD Factor * 10m <sup>3</sup> /ha  | Storage 3.000 |
| Hot Start (mins)                | 0     | Inlet Coefffiecient                 | 0.800         |
| Hot Start Level (mm)            | 0     | Flow per Person per Day (l/per/day) | 0.000         |
| Manhole Headloss Coeff (Global) | 0.500 | Run Time (mins)                     | 60            |
| Foul Sewage per hectare (l/s)   | 0.000 | Output Interval (mins)              | 1             |

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0  
 Number of Online Controls 3 Number of Storage Structures 6 Number of Real Time Controls 0

#### Synthetic Rainfall Details

|                       |                   |                       |        |
|-----------------------|-------------------|-----------------------|--------|
| Rainfall Model        | FSR               | Profile Type          | Summer |
| Return Period (years) | 100               | Cv (Summer)           | 0.750  |
| Region                | England and Wales | Cv (Winter)           | 0.840  |
| M5-60 (mm)            | 20.000            | Storm Duration (mins) | 30     |
| Ratio R               | 0.409             |                       |        |

|                                                                      |                                |                                                                                     |
|----------------------------------------------------------------------|--------------------------------|-------------------------------------------------------------------------------------|
| Stomor Ltd<br>32 Beehive Lane<br>Welwyn Garden City<br>Herts AL7 4BQ |                                | Page 3                                                                              |
| Date 19/08/2021 14:11<br>File ST-3118-Main House Model...            | Designed by Jack<br>Checked by |  |
| Micro Drainage                                                       | Network 2019.1                 |                                                                                     |

#### Online Controls for Surface Network 1

Orifice Manhole: S2, DS/PN: 1.001, Volume (m³): 2.1

Diameter (m) 0.050 Discharge Coefficient 0.600 Invert Level (m) 81.644

Orifice Manhole: S4, DS/PN: 1.002, Volume (m³): 2.0

Diameter (m) 0.070 Discharge Coefficient 0.600 Invert Level (m) 80.785

Complex Manhole: S18, DS/PN: 1.008, Volume (m³): 3.3

#### Hydro-Brake® Optimum

|                                   |                            |
|-----------------------------------|----------------------------|
| Unit Reference                    | MD-SHE-0102-4700-1000-4700 |
| Design Head (m)                   | 1.000                      |
| Design Flow (l/s)                 | 4.7                        |
| Flush-Flo™                        | Calculated                 |
| Objective                         | Minimise upstream storage  |
| Application                       | Surface                    |
| Sump Available                    | Yes                        |
| Diameter (mm)                     | 102                        |
| Invert Level (m)                  | 74.921                     |
| Minimum Outlet Pipe Diameter (mm) | 150                        |
| Suggested Manhole Diameter (mm)   | 1200                       |

| Control Points            | Head (m) | Flow (l/s) | Control Points            | Head (m) | Flow (l/s) |
|---------------------------|----------|------------|---------------------------|----------|------------|
| Design Point (Calculated) | 1.000    | 4.7        | Kick-Flo®                 | 0.640    | 3.8        |
| Flush-Flo™                | 0.299    | 4.7        | Mean Flow over Head Range | -        | 4.1        |

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

| Depth (m) | Flow (l/s) |
|-----------|------------|-----------|------------|-----------|------------|-----------|------------|
| 0.100     | 3.4        | 1.200     | 5.1        | 3.000     | 7.9        | 7.000     | 11.7       |
| 0.200     | 4.6        | 1.400     | 5.5        | 3.500     | 8.4        | 7.500     | 12.1       |
| 0.300     | 4.7        | 1.600     | 5.8        | 4.000     | 9.0        | 8.000     | 12.5       |
| 0.400     | 4.6        | 1.800     | 6.2        | 4.500     | 9.5        | 8.500     | 12.9       |
| 0.500     | 4.5        | 2.000     | 6.5        | 5.000     | 10.0       | 9.000     | 13.2       |
| 0.600     | 4.1        | 2.200     | 6.8        | 5.500     | 10.5       | 9.500     | 13.6       |
| 0.800     | 4.2        | 2.400     | 7.1        | 6.000     | 10.9       |           |            |
| 1.000     | 4.7        | 2.600     | 7.3        | 6.500     | 11.3       |           |            |

|                                                                      |                                |                                                                                     |
|----------------------------------------------------------------------|--------------------------------|-------------------------------------------------------------------------------------|
| Stomor Ltd<br>32 Beehive Lane<br>Welwyn Garden City<br>Herts AL7 4BQ |                                | Page 4                                                                              |
| Date 19/08/2021 14:11<br>File ST-3118-Main House Model...            | Designed by Jack<br>Checked by |  |
| Micro Drainage                                                       | Network 2019.1                 |                                                                                     |

Orifice

Diameter (m) 0.095 Discharge Coefficient 0.600 Invert Level (m) 75.186

Orifice

Diameter (m) 0.045 Discharge Coefficient 0.600 Invert Level (m) 75.721

|                                                                      |                                |                                                                                     |
|----------------------------------------------------------------------|--------------------------------|-------------------------------------------------------------------------------------|
| Stomor Ltd<br>32 Beehive Lane<br>Welwyn Garden City<br>Herts AL7 4BQ |                                | Page 5                                                                              |
| Date 19/08/2021 14:11<br>File ST-3118-Main House Model...            | Designed by Jack<br>Checked by |                                                                                     |
| Micro Drainage                                                       | Network 2019.1                 |  |

### Storage Structures for Surface Network 1

#### Porous Car Park Manhole: S1, DS/PN: 1.000

|                                      |         |                         |       |
|--------------------------------------|---------|-------------------------|-------|
| Infiltration Coefficient Base (m/hr) | 0.00000 | Width (m)               | 12.5  |
| Membrane Percolation (mm/hr)         | 1000    | Length (m)              | 33.3  |
| Max Percolation (l/s)                | 115.6   | Slope (1:X)             | 0.0   |
| Safety Factor                        | 2.0     | Depression Storage (mm) | 5     |
| Porosity                             | 0.30    | Evaporation (mm/day)    | 3     |
| Invert Level (m)                     | 82.639  | Cap Volume Depth (m)    | 0.300 |

#### Porous Car Park Manhole: S3, DS/PN: 2.000

|                                      |         |                         |       |
|--------------------------------------|---------|-------------------------|-------|
| Infiltration Coefficient Base (m/hr) | 0.00000 | Width (m)               | 9.5   |
| Membrane Percolation (mm/hr)         | 1000    | Length (m)              | 25.2  |
| Max Percolation (l/s)                | 66.5    | Slope (1:X)             | 0.0   |
| Safety Factor                        | 2.0     | Depression Storage (mm) | 5     |
| Porosity                             | 0.30    | Evaporation (mm/day)    | 3     |
| Invert Level (m)                     | 80.838  | Cap Volume Depth (m)    | 0.450 |

#### Porous Car Park Manhole: S8, DS/PN: 5.000

|                                      |         |                         |       |
|--------------------------------------|---------|-------------------------|-------|
| Infiltration Coefficient Base (m/hr) | 0.00000 | Width (m)               | 5.5   |
| Membrane Percolation (mm/hr)         | 1000    | Length (m)              | 15.8  |
| Max Percolation (l/s)                | 24.1    | Slope (1:X)             | 0.0   |
| Safety Factor                        | 2.0     | Depression Storage (mm) | 5     |
| Porosity                             | 0.30    | Evaporation (mm/day)    | 3     |
| Invert Level (m)                     | 80.380  | Cap Volume Depth (m)    | 0.300 |

#### Porous Car Park Manhole: S10, DS/PN: 4.002

|                                      |         |                         |       |
|--------------------------------------|---------|-------------------------|-------|
| Infiltration Coefficient Base (m/hr) | 0.00000 | Width (m)               | 9.6   |
| Membrane Percolation (mm/hr)         | 1000    | Length (m)              | 30.0  |
| Max Percolation (l/s)                | 80.0    | Slope (1:X)             | 0.0   |
| Safety Factor                        | 2.0     | Depression Storage (mm) | 5     |
| Porosity                             | 0.30    | Evaporation (mm/day)    | 3     |
| Invert Level (m)                     | 80.935  | Cap Volume Depth (m)    | 0.300 |

#### Porous Car Park Manhole: S12, DS/PN: 6.000

|                                      |         |                         |       |
|--------------------------------------|---------|-------------------------|-------|
| Infiltration Coefficient Base (m/hr) | 0.00000 | Width (m)               | 3.9   |
| Membrane Percolation (mm/hr)         | 1000    | Length (m)              | 22.0  |
| Max Percolation (l/s)                | 23.8    | Slope (1:X)             | 0.0   |
| Safety Factor                        | 2.0     | Depression Storage (mm) | 5     |
| Porosity                             | 0.30    | Evaporation (mm/day)    | 3     |
| Invert Level (m)                     | 80.506  | Cap Volume Depth (m)    | 0.300 |

|                                                                      |                                |                                                                                     |
|----------------------------------------------------------------------|--------------------------------|-------------------------------------------------------------------------------------|
| Stomor Ltd<br>32 Beehive Lane<br>Welwyn Garden City<br>Herts AL7 4BQ |                                | Page 6                                                                              |
| Date 19/08/2021 14:11<br>File ST-3118-Main House Model...            | Designed by Jack<br>Checked by |  |
| Micro Drainage                                                       | Network 2019.1                 |                                                                                     |

Tank or Pond Manhole: S18, DS/PN: 1.008

Invert Level (m) 74.930

| Depth (m) | Area (m <sup>2</sup> ) | Depth (m) | Area (m <sup>2</sup> ) |
|-----------|------------------------|-----------|------------------------|
| 0.000     | 143.0                  | 1.250     | 360.0                  |

|                                                                      |                                |                                                                                     |
|----------------------------------------------------------------------|--------------------------------|-------------------------------------------------------------------------------------|
| Stomor Ltd<br>32 Beehive Lane<br>Welwyn Garden City<br>Herts AL7 4BQ |                                | Page 7                                                                              |
| Date 19/08/2021 14:11<br>File ST-3118-Main House Model...            | Designed by Jack<br>Checked by |  |
| Micro Drainage                                                       | Network 2019.1                 |                                                                                     |

1 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Surface Network 1

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000  
 Hot Start (mins) 0 MADD Factor \* 10m<sup>3</sup>/ha Storage 3.000  
 Hot Start Level (mm) 0 Inlet Coeffiecient 0.800  
 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (l/per/day) 0.000  
 Foul Sewage per hectare (l/s) 0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0  
 Number of Online Controls 3 Number of Storage Structures 6 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR Ratio R 0.409  
 Region England and Wales Cv (Summer) 0.750  
 M5-60 (mm) 20.000 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 50.0  
 Analysis Timestep 2.5 Second Increment (Extended)  
 DTS Status OFF  
 DVD Status ON  
 Inertia Status ON

Profile(s) Summer and Winter  
 Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440  
 Return Period(s) (years) 1, 30, 100  
 Climate Change (%) 0, 0, 40

| PN    | US/MH<br>Name | Storm | Return Period | Climate Change | First (X) |               | First (Y)<br>Flood | First (Z)<br>Overflow | Overflow Act. | Water Level (m) |
|-------|---------------|-------|---------------|----------------|-----------|---------------|--------------------|-----------------------|---------------|-----------------|
|       |               |       |               |                | Surcharge | Flood         |                    |                       |               |                 |
| 1.000 | S1            | 120   | Winter        | 1              | +0%       | 100/15 Winter |                    |                       |               | 82.661          |
| 1.001 | S2            | 30    | Winter        | 1              | +0%       | 1/15 Summer   | 100/15 Summer      |                       |               | 82.131          |
| 2.000 | S3            | 1440  | Winter        | 1              | +0%       | 100/30 Summer |                    |                       |               | 80.907          |
| 1.002 | S4            | 15    | Winter        | 1              | +0%       | 1/15 Summer   |                    |                       |               | 81.157          |
| 3.000 | S5            | 15    | Winter        | 1              | +0%       |               |                    |                       |               | 80.291          |
| 1.003 | S6            | 15    | Winter        | 1              | +0%       |               |                    |                       |               | 79.911          |
| 4.000 | S7            | 15    | Winter        | 1              | +0%       | 100/15 Summer |                    |                       |               | 79.778          |
| 5.000 | S8            | 60    | Winter        | 1              | +0%       |               |                    |                       |               | 80.390          |
| 4.001 | S9            | 15    | Winter        | 1              | +0%       | 30/15 Summer  |                    |                       |               | 79.591          |
| 4.002 | S10           | 15    | Winter        | 1              | +0%       | 30/15 Summer  |                    |                       |               | 79.180          |
| 1.004 | S11           | 15    | Winter        | 1              | +0%       |               |                    |                       |               | 78.967          |
| 6.000 | S12           | 15    | Winter        | 1              | +0%       | 100/15 Summer |                    |                       |               | 79.740          |
| 6.001 | S13           | 15    | Winter        | 1              | +0%       | 100/15 Summer |                    |                       |               | 79.364          |
| 1.005 | S14           | 15    | Winter        | 1              | +0%       |               |                    |                       |               | 77.230          |
| 7.000 | S15           | 15    | Winter        | 1              | +0%       | 100/15 Summer |                    |                       |               | 77.030          |

|                                                                      |                                |                                                                                     |
|----------------------------------------------------------------------|--------------------------------|-------------------------------------------------------------------------------------|
| Stomor Ltd<br>32 Beehive Lane<br>Welwyn Garden City<br>Herts AL7 4BQ |                                | Page 8                                                                              |
| Date 19/08/2021 14:11<br>File ST-3118-Main House Model...            | Designed by Jack<br>Checked by |  |
| Micro Drainage                                                       | Network 2019.1                 |                                                                                     |

1 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Surface Network 1

| PN    | Name | Surcharged Flooded |           |             | Pipe                       |            |            | Status | Level Exceeded |
|-------|------|--------------------|-----------|-------------|----------------------------|------------|------------|--------|----------------|
|       |      | US/MH              | Depth (m) | Volume (m³) | Flow / Overflow Cap. (l/s) | Flow (l/s) |            |        |                |
| 1.000 | S1   |                    | -0.128    | 0.000       | 0.05                       | 1.8        | OK         |        |                |
| 1.001 | S2   |                    | 0.337     | 0.000       | 0.10                       | 3.5        | SURCHARGED | 2      |                |
| 2.000 | S3   |                    | -0.231    | 0.000       | 0.00                       | 0.0        | OK         |        |                |
| 1.002 | S4   |                    | 0.222     | 0.000       | 0.16                       | 5.9        | SURCHARGED |        |                |
| 3.000 | S5   |                    | -0.224    | 0.000       | 0.15                       | 18.4       | OK         |        |                |
| 1.003 | S6   |                    | -0.232    | 0.000       | 0.11                       | 24.6       | OK         |        |                |
| 4.000 | S7   |                    | -0.107    | 0.000       | 0.18                       | 3.3        | OK         |        |                |
| 5.000 | S8   |                    | -0.140    | 0.000       | 0.01                       | 0.6        | OK         |        |                |
| 4.001 | S9   |                    | -0.080    | 0.000       | 0.44                       | 8.4        | OK         |        |                |
| 4.002 | S10  |                    | -0.074    | 0.000       | 0.51                       | 8.4        | OK         |        |                |
| 1.004 | S11  |                    | -0.219    | 0.000       | 0.16                       | 33.1       | OK         |        |                |
| 6.000 | S12  |                    | -0.086    | 0.000       | 0.37                       | 7.0        | OK         |        |                |
| 6.001 | S13  |                    | -0.097    | 0.000       | 0.27                       | 10.5       | OK         |        |                |
| 1.005 | S14  |                    | -0.206    | 0.000       | 0.21                       | 43.6       | OK         |        |                |
| 7.000 | S15  |                    | -0.092    | 0.000       | 0.31                       | 6.0        | OK         |        |                |

|                                                                      |                                |                                                                                     |
|----------------------------------------------------------------------|--------------------------------|-------------------------------------------------------------------------------------|
| Stomor Ltd<br>32 Beehive Lane<br>Welwyn Garden City<br>Herts AL7 4BQ |                                | Page 9                                                                              |
| Date 19/08/2021 14:11<br>File ST-3118-Main House Model...            | Designed by Jack<br>Checked by |  |
| Micro Drainage                                                       | Network 2019.1                 |                                                                                     |

1 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Surface Network 1

| PN    | US/MH<br>Name | Storm      | Return | Climate | First (X) | First (Y) | First (Z) | Overflow | Water<br>Level |
|-------|---------------|------------|--------|---------|-----------|-----------|-----------|----------|----------------|
|       |               |            | Period | Change  | Surcharge | Flood     | Overflow  | Act.     | (m)            |
| 1.006 | S16           | 15 Winter  | 1      | +0%     |           |           |           |          | 76.572         |
| 1.007 | S17           | 15 Winter  | 1      | +0%     | 100/15    | Summer    |           |          | 75.767         |
| 1.008 | S18           | 120 Winter | 1      | +0%     | 30/15     | Summer    |           |          | 75.189         |

| PN    | US/MH<br>Name | Surcharged   |                | Flooded            |      | Pipe          |               | Level |
|-------|---------------|--------------|----------------|--------------------|------|---------------|---------------|-------|
|       |               | Depth<br>(m) | Volume<br>(m³) | Flow /<br>Overflow | Cap. | Flow<br>(l/s) | Flow<br>(l/s) |       |
| 1.006 | S16           | -0.205       | 0.000          | 0.22               |      | 50.5          | OK            |       |
| 1.007 | S17           | -0.188       | 0.000          | 0.30               |      | 50.1          | OK            |       |
| 1.008 | S18           | -0.032       | 0.000          | 0.01               |      | 4.7           | OK            |       |

|                                                                      |                                |                                                                                     |
|----------------------------------------------------------------------|--------------------------------|-------------------------------------------------------------------------------------|
| Stomor Ltd<br>32 Beehive Lane<br>Welwyn Garden City<br>Herts AL7 4BQ |                                | Page 10                                                                             |
| Date 19/08/2021 14:11<br>File ST-3118-Main House Model...            | Designed by Jack<br>Checked by |  |
| Micro Drainage                                                       | Network 2019.1                 |                                                                                     |

30 year Return Period Summary of Critical Results by Maximum Level (Rank 1)  
for Surface Network 1

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000  
Hot Start (mins) 0 MADD Factor \* 10m<sup>3</sup>/ha Storage 3.000  
Hot Start Level (mm) 0 Inlet Coeffiecient 0.800  
Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (l/per/day) 0.000  
Foul Sewage per hectare (l/s) 0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0  
Number of Online Controls 3 Number of Storage Structures 6 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR Ratio R 0.409  
Region England and Wales Cv (Summer) 0.750  
M5-60 (mm) 20.000 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 50.0  
Analysis Timestep 2.5 Second Increment (Extended)  
DTS Status OFF  
DVD Status ON  
Inertia Status ON

Profile(s) Summer and Winter  
Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440  
Return Period(s) (years) 1, 30, 100  
Climate Change (%) 0, 0, 40

| PN    | US/MH<br>Name | Storm      | Return<br>Period | Climate<br>Change | Water                  |                    |                       |                  |              |
|-------|---------------|------------|------------------|-------------------|------------------------|--------------------|-----------------------|------------------|--------------|
|       |               |            |                  |                   | First (X)<br>Surcharge | First (Y)<br>Flood | First (Z)<br>Overflow | Overflow<br>Act. | Level<br>(m) |
| 1.000 | S1            | 60 Winter  | 30               | +0%               | 100/15 Winter          |                    |                       |                  | 82.731       |
| 1.001 | S2            | 15 Winter  | 30               | +0%               | 1/15 Summer            | 100/15 Summer      |                       |                  | 82.902       |
| 2.000 | S3            | 120 Winter | 30               | +0%               | 100/30 Summer          |                    |                       |                  | 81.080       |
| 1.002 | S4            | 15 Winter  | 30               | +0%               | 1/15 Summer            |                    |                       |                  | 81.287       |
| 3.000 | S5            | 15 Winter  | 30               | +0%               |                        |                    |                       |                  | 80.340       |
| 1.003 | S6            | 15 Winter  | 30               | +0%               |                        |                    |                       |                  | 79.946       |
| 4.000 | S7            | 15 Winter  | 30               | +0%               | 100/15 Summer          |                    |                       |                  | 79.857       |
| 5.000 | S8            | 15 Winter  | 30               | +0%               |                        |                    |                       |                  | 80.405       |
| 4.001 | S9            | 15 Winter  | 30               | +0%               | 30/15 Summer           |                    |                       |                  | 79.824       |
| 4.002 | S10           | 15 Winter  | 30               | +0%               | 30/15 Summer           |                    |                       |                  | 79.295       |
| 1.004 | S11           | 15 Winter  | 30               | +0%               |                        |                    |                       |                  | 79.012       |
| 6.000 | S12           | 15 Winter  | 30               | +0%               | 100/15 Summer          |                    |                       |                  | 79.790       |
| 6.001 | S13           | 15 Winter  | 30               | +0%               | 100/15 Summer          |                    |                       |                  | 79.405       |
| 1.005 | S14           | 15 Winter  | 30               | +0%               |                        |                    |                       |                  | 77.288       |
| 7.000 | S15           | 15 Winter  | 30               | +0%               | 100/15 Summer          |                    |                       |                  | 77.073       |

|                                                                      |                                |                                                                                     |
|----------------------------------------------------------------------|--------------------------------|-------------------------------------------------------------------------------------|
| Stomor Ltd<br>32 Beehive Lane<br>Welwyn Garden City<br>Herts AL7 4BQ |                                | Page 11                                                                             |
| Date 19/08/2021 14:11<br>File ST-3118-Main House Model...            | Designed by Jack<br>Checked by |  |
| Micro Drainage                                                       | Network 2019.1                 |                                                                                     |

30 year Return Period Summary of Critical Results by Maximum Level (Rank 1)  
for Surface Network 1

| PN    | US/MH<br>Name | Surcharged Flooded |                |                         | Pipe          |               |        | Level<br>Exceeded |
|-------|---------------|--------------------|----------------|-------------------------|---------------|---------------|--------|-------------------|
|       |               | Depth<br>(m)       | Volume<br>(m³) | Flow / Overflow<br>Cap. | Flow<br>(l/s) | Flow<br>(l/s) | Status |                   |
| 1.000 | S1            | -0.058             | 0.000          | 0.15                    | 5.2           |               | OK     |                   |
| 1.001 | S2            | 1.108              | 0.000          | 0.16                    | 5.8           | SURCHARGED    |        | 2                 |
| 2.000 | S3            | -0.058             | 0.000          | 0.16                    | 3.7           |               | OK     |                   |
| 1.002 | S4            | 0.352              | 0.000          | 0.19                    | 7.0           | SURCHARGED    |        |                   |
| 3.000 | S5            | -0.175             | 0.000          | 0.36                    | 45.3          |               | OK     |                   |
| 1.003 | S6            | -0.197             | 0.000          | 0.25                    | 54.0          |               | OK     |                   |
| 4.000 | S7            | -0.028             | 0.000          | 0.42                    | 7.8           |               | OK     |                   |
| 5.000 | S8            | -0.125             | 0.000          | 0.07                    | 2.7           |               | OK     |                   |
| 4.001 | S9            | 0.153              | 0.000          | 1.12                    | 21.3          | SURCHARGED    |        |                   |
| 4.002 | S10           | 0.041              | 0.000          | 1.30                    | 21.3          | SURCHARGED    |        |                   |
| 1.004 | S11           | -0.174             | 0.000          | 0.36                    | 74.3          |               | OK     |                   |
| 6.000 | S12           | -0.036             | 0.000          | 0.91                    | 17.2          |               | OK     |                   |
| 6.001 | S13           | -0.056             | 0.000          | 0.69                    | 27.1          |               | OK     |                   |
| 1.005 | S14           | -0.148             | 0.000          | 0.50                    | 101.9         |               | OK     |                   |
| 7.000 | S15           | -0.049             | 0.000          | 0.77                    | 14.6          |               | OK     |                   |

|                                                                      |                                |                                                                                     |
|----------------------------------------------------------------------|--------------------------------|-------------------------------------------------------------------------------------|
| Stomor Ltd<br>32 Beehive Lane<br>Welwyn Garden City<br>Herts AL7 4BQ |                                | Page 12                                                                             |
| Date 19/08/2021 14:11<br>File ST-3118-Main House Model...            | Designed by Jack<br>Checked by |  |
| Micro Drainage                                                       | Network 2019.1                 |                                                                                     |

30 year Return Period Summary of Critical Results by Maximum Level (Rank 1)  
for Surface Network 1

| PN    | US/MH<br>Name | Storm      | Return | Climate | First (X) | First (Y) | First (Z) | Overflow | Water Level |
|-------|---------------|------------|--------|---------|-----------|-----------|-----------|----------|-------------|
|       |               |            | Period | Change  | Surcharge | Flood     | Overflow  | Act.     | (m)         |
| 1.006 | S16           | 15 Winter  | 30     | +0%     |           |           |           |          | 76.633      |
| 1.007 | S17           | 15 Winter  | 30     | +0%     | 100/15    | Summer    |           |          | 75.843      |
| 1.008 | S18           | 240 Winter | 30     | +0%     | 30/15     | Summer    |           |          | 75.426      |

| PN    | US/MH<br>Name | Surcharged Flooded |                |                 | Pipe |       |            | Level |
|-------|---------------|--------------------|----------------|-----------------|------|-------|------------|-------|
|       |               | Depth<br>(m)       | Volume<br>(m³) | Flow / Overflow | Flow |       |            |       |
| 1.006 | S16           | -0.144             | 0.000          | 0.53            |      | 119.8 |            | OK    |
| 1.007 | S17           | -0.112             | 0.000          | 0.72            |      | 119.8 |            | OK    |
| 1.008 | S18           | 0.205              | 0.000          | 0.03            |      | 12.7  | SURCHARGED |       |

|                                                                      |                                |                                                                                     |
|----------------------------------------------------------------------|--------------------------------|-------------------------------------------------------------------------------------|
| Stomor Ltd<br>32 Beehive Lane<br>Welwyn Garden City<br>Herts AL7 4BQ |                                | Page 13                                                                             |
| Date 19/08/2021 14:11<br>File ST-3118-Main House Model...            | Designed by Jack<br>Checked by |  |
| Micro Drainage                                                       | Network 2019.1                 |                                                                                     |

100 year Return Period Summary of Critical Results by Maximum Level (Rank 1)  
for Surface Network 1

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000  
Hot Start (mins) 0 MADD Factor \* 10m<sup>3</sup>/ha Storage 3.000  
Hot Start Level (mm) 0 Inlet Coeffiecient 0.800  
Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (l/per/day) 0.000  
Foul Sewage per hectare (l/s) 0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0  
Number of Online Controls 3 Number of Storage Structures 6 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR Ratio R 0.409  
Region England and Wales Cv (Summer) 0.750  
M5-60 (mm) 20.000 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 50.0  
Analysis Timestep 2.5 Second Increment (Extended)  
DTS Status OFF  
DVD Status ON  
Inertia Status ON

Profile(s) Summer and Winter  
Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440  
Return Period(s) (years) 1, 30, 100  
Climate Change (%) 0, 0, 40

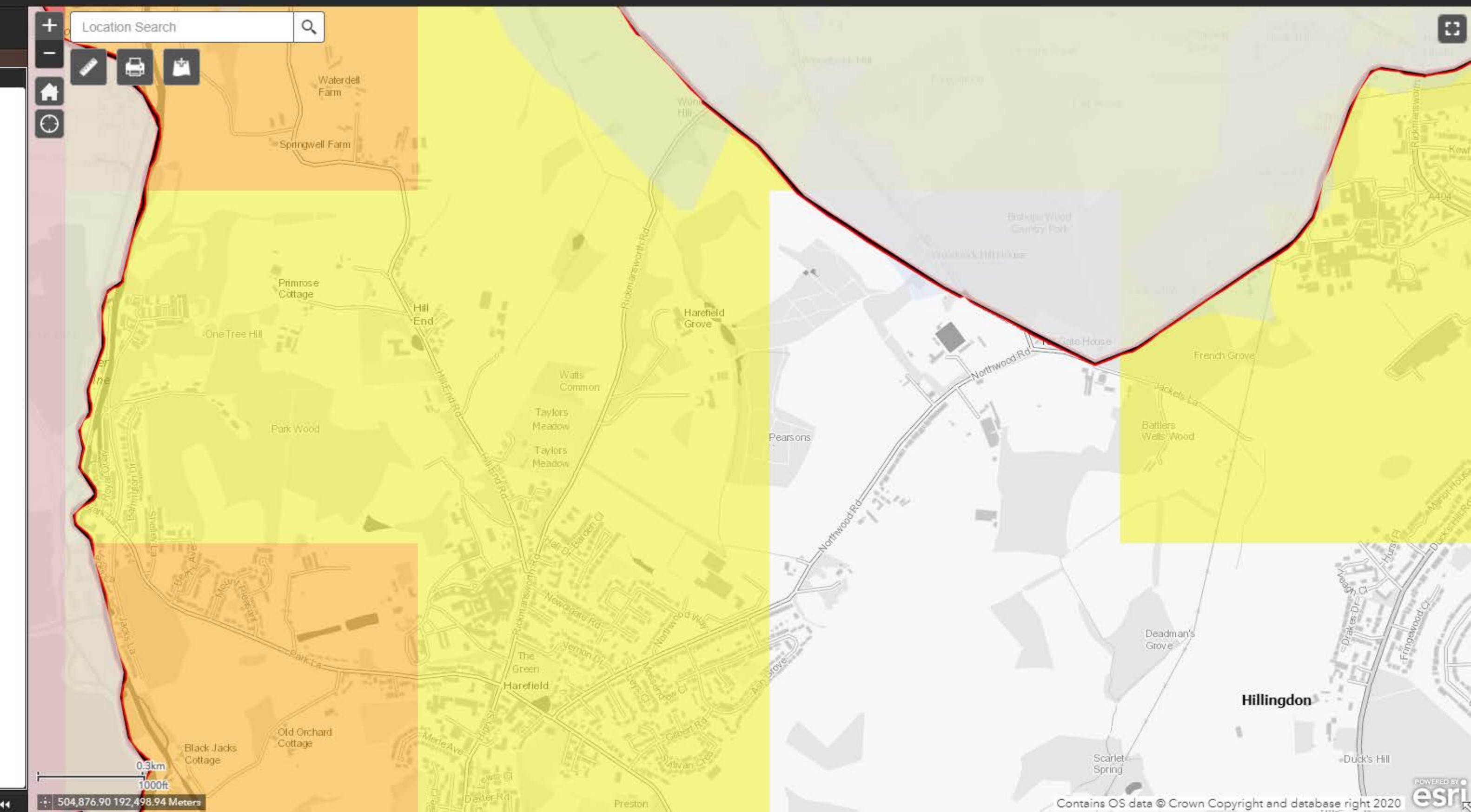
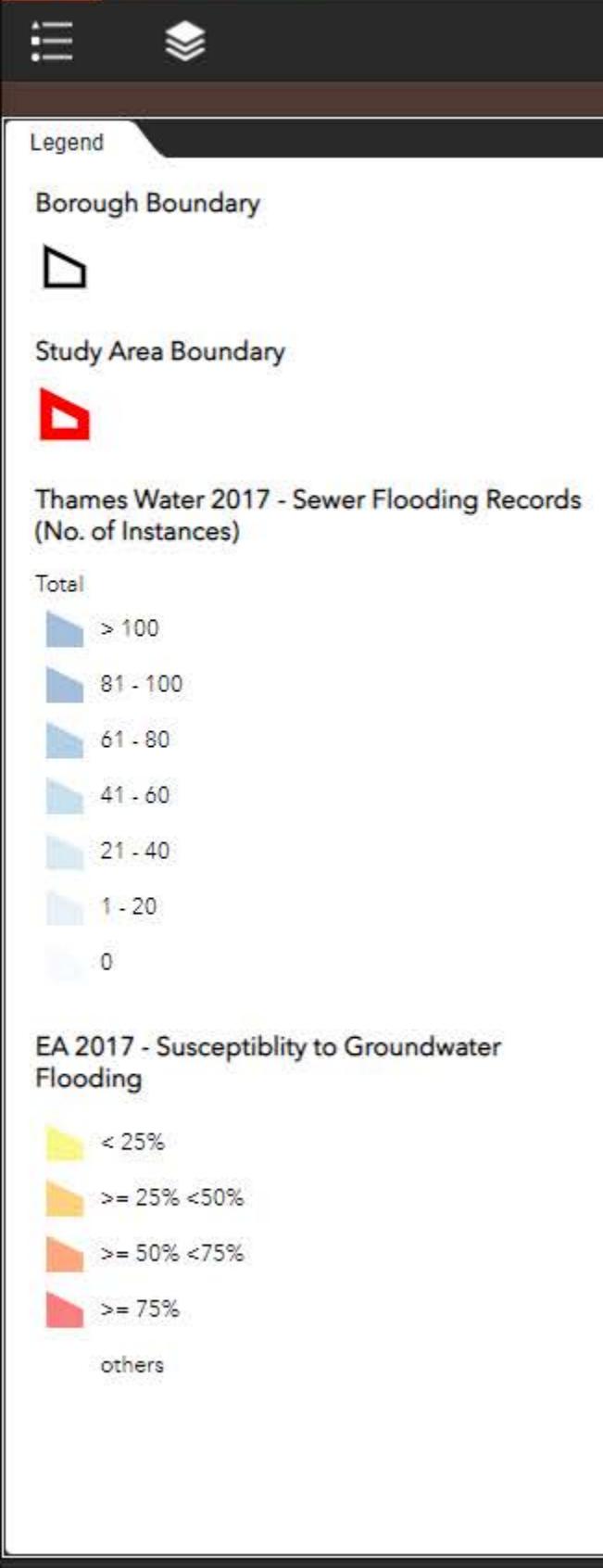
| PN    | US/MH<br>Name | Storm      | Return Period | Climate Change | Water                  |                    |                       |               |           |
|-------|---------------|------------|---------------|----------------|------------------------|--------------------|-----------------------|---------------|-----------|
|       |               |            |               |                | First (X)<br>Surcharge | First (Y)<br>Flood | First (Z)<br>Overflow | Overflow Act. | Level (m) |
| 1.000 | S1            | 60 Winter  | 100           | +40%           | 100/15 Winter          |                    |                       |               | 82.883    |
| 1.001 | S2            | 15 Winter  | 100           | +40%           | 1/15 Summer            | 100/15 Summer      |                       |               | 83.157    |
| 2.000 | S3            | 240 Winter | 100           | +40%           | 100/30 Summer          |                    |                       |               | 81.539    |
| 1.002 | S4            | 15 Winter  | 100           | +40%           | 1/15 Summer            |                    |                       |               | 81.641    |
| 3.000 | S5            | 15 Winter  | 100           | +40%           |                        |                    |                       |               | 80.393    |
| 1.003 | S6            | 15 Winter  | 100           | +40%           |                        |                    |                       |               | 79.984    |
| 4.000 | S7            | 15 Winter  | 100           | +40%           | 100/15 Summer          |                    |                       |               | 80.674    |
| 5.000 | S8            | 15 Winter  | 100           | +40%           |                        |                    |                       |               | 80.464    |
| 4.001 | S9            | 15 Winter  | 100           | +40%           | 30/15 Summer           |                    |                       |               | 80.566    |
| 4.002 | S10           | 15 Winter  | 100           | +40%           | 30/15 Summer           |                    |                       |               | 79.426    |
| 1.004 | S11           | 15 Winter  | 100           | +40%           |                        |                    |                       |               | 79.056    |
| 6.000 | S12           | 15 Winter  | 100           | +40%           | 100/15 Summer          |                    |                       |               | 80.338    |
| 6.001 | S13           | 15 Winter  | 100           | +40%           | 100/15 Summer          |                    |                       |               | 79.596    |
| 1.005 | S14           | 15 Winter  | 100           | +40%           |                        |                    |                       |               | 77.342    |
| 7.000 | S15           | 15 Winter  | 100           | +40%           | 100/15 Summer          |                    |                       |               | 77.372    |

|                                                                      |                                |                                                                                     |
|----------------------------------------------------------------------|--------------------------------|-------------------------------------------------------------------------------------|
| Stomor Ltd<br>32 Beehive Lane<br>Welwyn Garden City<br>Herts AL7 4BQ |                                | Page 14                                                                             |
| Date 19/08/2021 14:11<br>File ST-3118-Main House Model...            | Designed by Jack<br>Checked by |  |
| Micro Drainage                                                       | Network 2019.1                 |                                                                                     |

100 year Return Period Summary of Critical Results by Maximum Level (Rank 1)  
for Surface Network 1

| PN    | US/MH<br>Name | Surcharged Flooded |                |                               | Pipe       |            |   | Level<br>Exceeded |
|-------|---------------|--------------------|----------------|-------------------------------|------------|------------|---|-------------------|
|       |               | Depth<br>(m)       | Volume<br>(m³) | Flow / Overflow<br>Cap. (l/s) | Flow (l/s) | Status     |   |                   |
| 1.000 | S1            | 0.094              | 0.000          | 0.16                          | 5.6        | SURCHARGED |   |                   |
| 1.001 | S2            | 1.363              | 0.369          | 0.17                          | 6.4        | FLOOD      | 2 |                   |
| 2.000 | S3            | 0.401              | 0.000          | 0.22                          | 5.0        | SURCHARGED |   |                   |
| 1.002 | S4            | 0.706              | 0.000          | 0.25                          | 9.1        | SURCHARGED |   |                   |
| 3.000 | S5            | -0.122             | 0.000          | 0.65                          | 82.4       | OK         |   |                   |
| 1.003 | S6            | -0.159             | 0.000          | 0.44                          | 94.6       | OK         |   |                   |
| 4.000 | S7            | 0.789              | 0.000          | 0.74                          | 13.7       | SURCHARGED |   |                   |
| 5.000 | S8            | -0.066             | 0.000          | 0.30                          | 12.4       | OK         |   |                   |
| 4.001 | S9            | 0.895              | 0.000          | 1.63                          | 31.2       | SURCHARGED |   |                   |
| 4.002 | S10           | 0.172              | 0.000          | 1.90                          | 31.0       | SURCHARGED |   |                   |
| 1.004 | S11           | -0.130             | 0.000          | 0.60                          | 123.2      | OK         |   |                   |
| 6.000 | S12           | 0.512              | 0.000          | 1.42                          | 27.0       | SURCHARGED |   |                   |
| 6.001 | S13           | 0.135              | 0.000          | 1.03                          | 40.9       | SURCHARGED |   |                   |
| 1.005 | S14           | -0.094             | 0.000          | 0.81                          | 164.0      | OK         |   |                   |
| 7.000 | S15           | 0.250              | 0.000          | 1.30                          | 24.6       | SURCHARGED |   |                   |

|                                                                      |                                |                                                                                     |
|----------------------------------------------------------------------|--------------------------------|-------------------------------------------------------------------------------------|
| Stomor Ltd<br>32 Beehive Lane<br>Welwyn Garden City<br>Herts AL7 4BQ |                                | Page 15                                                                             |
| Date 19/08/2021 14:11<br>File ST-3118-Main House Model...            | Designed by Jack<br>Checked by |  |
| Micro Drainage                                                       | Network 2019.1                 |                                                                                     |



100 year Return Period Summary of Critical Results by Maximum Level (Rank 1)  
for Surface Network 1

| PN    | US/MH<br>Name | Storm      | Return | Climate | First (X) | First (Y) | First (Z) | Overflow | Water Level |
|-------|---------------|------------|--------|---------|-----------|-----------|-----------|----------|-------------|
|       |               |            | Period | Change  | Surcharge | Flood     | Overflow  | Act.     | (m)         |
| 1.006 | S16           | 15 Winter  | 100    | +40%    |           |           |           |          | 76.761      |
| 1.007 | S17           | 15 Winter  | 100    | +40%    | 100/15    | Summer    |           |          | 76.199      |
| 1.008 | S18           | 120 Winter | 100    | +40%    | 30/15     | Summer    |           |          | 75.735      |

| PN    | US/MH<br>Name | Surcharged Flooded |                |                 | Pipe  |            |    | Level |
|-------|---------------|--------------------|----------------|-----------------|-------|------------|----|-------|
|       |               | Depth<br>(m)       | Volume<br>(m³) | Flow / Overflow | Flow  |            |    |       |
| 1.006 | S16           | -0.016             | 0.000          | 0.84            | 189.8 |            | OK |       |
| 1.007 | S17           | 0.244              | 0.000          | 1.13            | 189.4 | SURCHARGED |    |       |
| 1.008 | S18           | 0.514              | 0.000          | 0.05            | 17.7  | SURCHARGED |    |       |

## APPENDIX J



