

Arboricultural Appraisal Report

Subsidence Damage Investigation at:

143 The Greenway
Ickenham
Uxbridge
UB10 8LT

CLIENT: Crawford & Company
CLIENT REF: SU2206150
MWA REF: SUB221129-11483
MWA CONSULTANT: Andy Clark
REPORT DATE: 12/04/2023

SUMMARY

Statutory Controls		Mitigation (Current claim tree works)	
TPO current claim	Yes – T1	Policy Holder	Yes
TPO future risk	No		No
Cons. Area	No		No
Trusts schemes	No		No
Local Authority: -	London Borough of Hillingdon		

Introduction

Acting on instructions from Crawford & Company, the insured property was visited on 20/01/2023 to assess the potential role of vegetation in respect of subsidence damage.

We are instructed to provide opinion on whether moisture abstraction by vegetation is a causal factor in the damage to the property and give recommendations on what vegetation management, if any, may be carried out with a view to restoring stability to the property. The scope of our assessment includes opinion relating to mitigation of future risk. Vegetation not recorded is considered not to be significant to the current damage or pose a significant risk in the foreseeable future.

This is an initial appraisal report and recommendations are made with reference to the technical reports and information currently available and may be subject to review upon receipt of additional site investigation data, monitoring, engineering opinion or other information.

This report does not include a detailed assessment of tree condition or safety. Where indications of poor condition or health in accessible trees are observed, this will be indicated within the report. Assessment of the condition and safety of third-party trees is excluded and third-party owners are advised to seek their own advice on tree health and stability of trees under their control.

Property Description

The property comprises a detached bungalow of traditional construction, extended with a conservatory to the rear.

External areas comprise gardens to the front and rear.

The site is generally level with no adverse topographical features.

Damage Description & History

Damage relates to the rear-right sections of the building, with cracking first observed during the summer of 2022. For a more detailed synopsis of the damage please refer to the building surveyor's technical report.

We have not been made aware of any previous claims.

Geology / Soils

The online 1:50 000 scale British Geological Survey map records the bedrock geology as London Clay Formation - Clay, silt and sand. No superficial deposits are recorded. BGS records for this area also include historic borehole logs which record clay soils.

Discussion

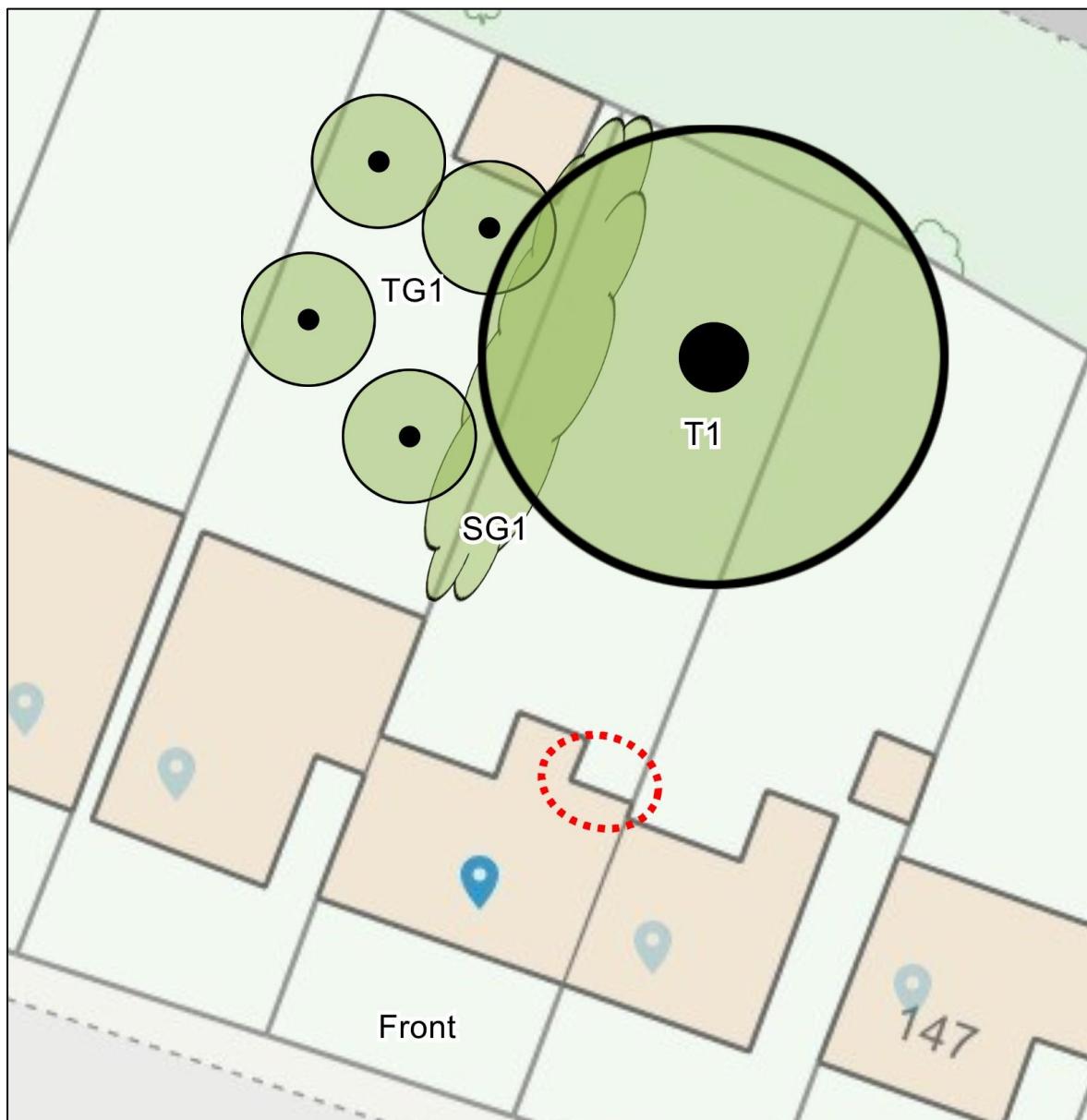
Opinion and recommendations are made on the understanding that Crawford & Company are satisfied that the current building movement and the associated damage is the result of clay shrinkage subsidence and that other possible causal factors have been discounted.

Published soil maps indicate the underlying soils include or are likely to include a clay component susceptible to undergoing volumetric change with changes in soil moisture. Moisture abstraction by vegetation has the potential to cause soil shrinkage and consequent subsidence of the building.

Our survey has identified vegetation within influencing distance of the building with a current potential to influence soil volumes below foundation level; the most significant of which in relation to the current damage is T1 Oak.

Based on the information currently available, engineering opinion and our own site assessment we conclude the damage appears consistent with shrinkage of the clay fraction due to the soil drying effects of vegetation.

If an arboricultural solution is to be implemented to mitigate the influence of the trees/shrubs considered to be responsible for the damage we recommend that T1 Oak is subject to significant crown reduction in order to reduce the trees moisture uptake.

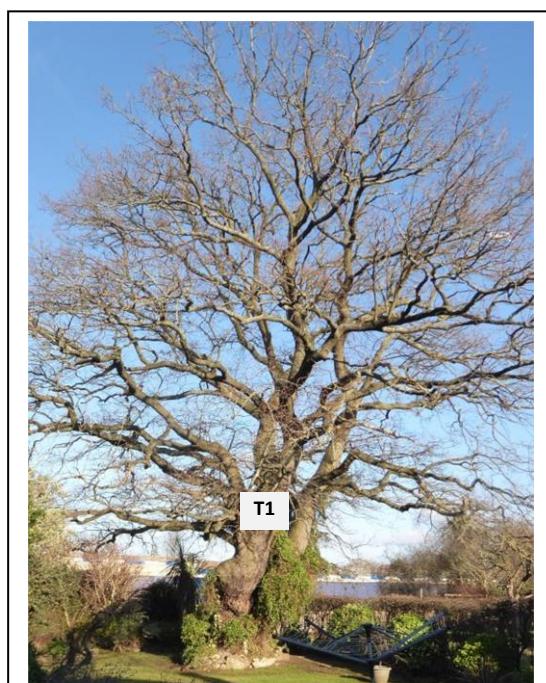

Other vegetation recorded presents a potential future risk to building stability and management is therefore recommended. Recommended tree works may be subject to change upon receipt of additional information.

Technical Summary

- Conditions necessary for clay shrinkage subsidence to occur related to moisture abstraction by vegetation have been confirmed by reference to published soil maps.
- Engineering opinion is that the damage is related to clay shrinkage subsidence.
- There is significant vegetation present with the potential to influence soil moisture and volumes below foundation level.

Site Plan

Plan not to scale – indicative only


Approximate areas of damage

Images

View of T1 Oak, with SG1 group to left of frame

View of T1 Oak

Management of vegetation to alleviate clay shrinkage subsidence.

All vegetation requires water to survive which is accessed from the soil. Clay soils shrink when water abstracted by vegetation exceeds inputs from rainfall, which typically occurs during the summer months. When deciduous vegetation enters dormancy and loses its leaves and rainfall increases during the winter months, soil moisture increases and the clay swells. (Evergreen trees and shrubs use minimal/negligible amounts of soil water during the winter).

Buildings founded on clay are susceptible to movement as the clay shrinks and swells which can result in cracking or other damage.

Where damage does occur, pruning (reducing leaf area) can in some circumstances be effective in restoring stability however, removal of the influencing vegetation (trees, shrubs, climbers) causing the ground movement offers the most predictable and quickest solution in stabilising the clay and hence the building and for this reason is frequently initially recommended as the most appropriate solution.

Often this is unavoidable due to the size or number of influencing trees, shrubs etc and their proximity to the building. Very heavy pruning of some species to a level required to effectively control its water use can result in the trees decline and ultimately death and is one factor considered when making recommendations for remedial tree works. Pruning alone, whilst reducing soil moisture uptake is often an unpredictable management option in restoring building stability either in the short or long term.

In some circumstances however, where vegetation initially recommended for removal is subsequently pruned and monitoring indicates the building has stabilised, removal becomes unnecessary with decisions based on best evidence available at the time.