

A1

APPENDIX C

HUMAN HEALTH GAC

Generic assessment criteria for human health: residential scenario without home-grown produce

Background

RSK's generic assessment criteria (GAC) were initially prepared following the publication by the Environment Agency (EA) of soil guideline value (SGV) and toxicological (TOX) reports, and associated publications in 2009⁽¹⁾. RSK GAC were updated following the publication of GAC by LQM/CIEH in 2009⁽²⁾. RSK GAC are periodically revised when updated information on toxicological, land use or receptor parameters is published.

Updates to the RSK GAC

In 2014, the publication of Category 4 Screening Levels (C4SL)^(3,4), as part of the Defra-funded research project SP1010, included modifications to certain exposure assumptions documented within EA Science Report SC050221/SR3 (herein after referred to as SR3)⁽⁵⁾ used in the generation of SGVs.

C4SL were published for six substances (cadmium, arsenic, benzene, benzo(a)pyrene, chromium VI and lead) for a sandy loam soil type with 6% soil organic matter, based on a low level of toxicological concern (LLTC; see Section 2.3 of research project report SP1010⁽³⁾). Where a C4SL has been published, the RSK GAC duplicates the C4SL published values using all input parameters within the SP1010 final project report⁽³⁾ and associated appendices⁽⁶⁾, and adopts them as GAC for these six substances.

For all other substances the C4SL exposure modifications relevant for residential without home-grown produce end use have been applied to the current RSK GAC. These include alterations to daily inhalation rates for residential and commercial scenarios, reducing soil adherence factors in children (age classes 1 to 12 only) and reducing exposure frequency for dermal contact outdoors.

The RSK GAC have also been revised with updated toxicology published by LQM/CIEH in 2015⁽⁷⁾ or by the USEPA⁽¹⁴⁾, where a C4SL has not been published.

RSK GAC derivation for metals and organic compounds

Model selection

Soil assessment criteria (SAC) were calculated using the Contaminated Land Exposure Assessment (CLEA) tool v1.071, supporting EA guidance^(5,8,9) and revised exposure scenarios published for the C4SL⁽³⁾. The SAC are also termed GAC.

Conceptual model

In accordance with SR3⁽⁵⁾, the residential without home-grown produce scenario considers risks to a female child between the ages of 0 and 6 years old as the highest risk scenario. In accordance with Box 3.1 of SR3⁽⁵⁾, the pathways considered for production of the SAC in the residential without home-grown produce scenario are

- direct soil and dust ingestion in areas of soft landscaping
- dermal contact with soil and indoor dust

- inhalation of indoor and outdoor dust and vapours.

Figure 1 is a conceptual model illustrating these linkages.

In line with guidance in the EA SGV report for cadmium⁽¹⁾, the RSK GAC for cadmium has been derived based on estimates representative of lifetime exposure. Although young children are generally more likely to have higher exposures to soil contaminants, the renal toxicity of cadmium, and the derivation of the TDI_{oral} and TDI_{inh}, are based on considerations of the kidney burden accumulated over 50 years or so. It is therefore reasonable to consider exposure not just in childhood but averaged over a longer period.

With respect to volatilisation, the CLEA model assumes a simple linear partitioning of a chemical in the soil between the sorbed, dissolved and vapour phase⁽⁹⁾. The upper boundaries of this partitioning are represented by the maximum aqueous solubility and pure saturated vapour concentration of the chemical. The CLEA model estimates saturated soil concentrations where these limits are reached⁽⁹⁾. The CLEA software uses a traffic light system to identify when individual and/or combined assessment criteria exceed the lower of either the aqueous- or vapour-based soil saturation limits. Model output cells are flagged red where the saturated soil concentration has been exceeded and the contribution of the indoor and outdoor vapour pathway to total exposure is greater than 10%. In this case, further consideration of the following is required⁽⁹⁾:

- Free phase contamination may be present.
- Exposure from the vapour pathways will be over-predicted by the model, as in reality the vapour phase concentration will not increase at concentrations above saturation limits
- Where the vapour pathway contribution is greater than 90%, it is unlikely the relevant health criteria value (HCV) will be exceeded at soil concentrations at least a factor of ten higher than the relevant HCV.

Where the vapour pathway is the predominant pathway (contributes greater than 90% of exposure) or the only exposure route considered and the cell is highlighted red (SAC exceeds saturation limit), the risk based on the assumed conceptual model is likely to be negligible as the vapour risk is assumed to be tolerable at maximum possible soil concentrations. In such circumstances, the vapour pathway exposure should be considered based on the presence of free phase or non-aqueous phase liquid sources and the measured concentrations of volatile organic compounds (VOC) in the vapour phase. Screening could be considered based on setting the SAC as the modelled soil saturation limits. However, as stated within the CLEA handbook⁽⁹⁾, this is likely to not be practical in many cases because of the very low saturation limits and, in any case, is highly conservative.

It should also be noted that for mixtures of compounds, free phase may be present where soil (or groundwater) concentrations are well below saturation limits for individual compounds.

Where the vapour pathway is only one of the exposure pathways considered, an additional approach can then be utilised as detailed within Section 4.12 of the CLEA model handbook⁽⁹⁾, which explains how to calculate an effective assessment criterion manually.

SR3⁽⁵⁾ states that, as a general rule of thumb, it is recognised that estimating vapour phase concentrations from dissolved and sorbed phase contamination by petroleum hydrocarbons are at least a factor of ten higher than those likely to be measured on-site. RSK has therefore applied an empirical subsurface to indoor air correction factor of 10 into the CLEA model chemical database for all petroleum hydrocarbon fractions (including BTEX, trimethylbenzenes and the

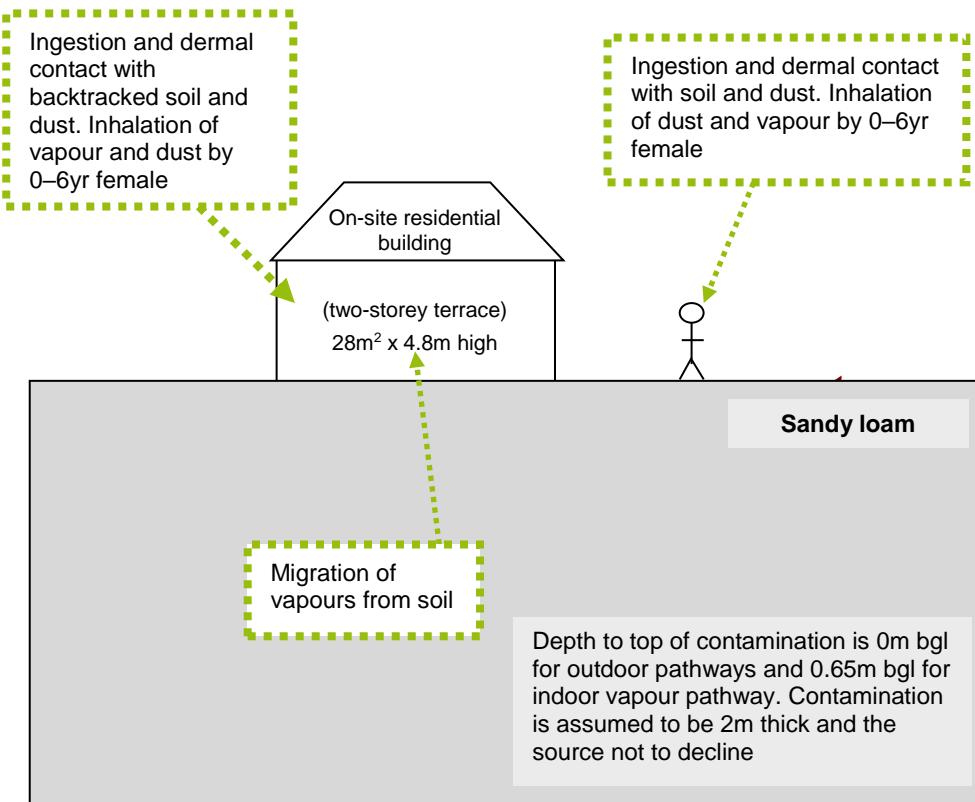
polycyclic aromatic hydrocarbons (PAH) naphthalene, acenaphthene and acenaphthylene) to reduce this conservatism.

Input selection

The most up-to-date published chemical and toxicological data was obtained from EA Report SC050021/SR7⁽¹⁰⁾, the EA TOX⁽¹⁾ reports, the C4SL SP1010 project report and associated appendices^(3,6), the 2015 LQM/CIEH report⁽⁷⁾ or the USEPA IRIS database⁽¹⁴⁾. Where a C4SL has been published, the RSK GAC have duplicated the C4SL published values using all input parameters within the SP1010 final project report⁽³⁾ and associated appendices⁽⁶⁾, and has adopted them as GAC for these six substances. Toxicological and specific chemical parameters for 1,2,4-trimethylbenzene, barium and methyl tertiary-butyl ether (MTBE) were obtained from the CL:AIRE Soil Generic Assessment Criteria report⁽¹¹⁾.

For TPH, aromatic hydrocarbons C₅–C₈ were not modelled, as this range comprises benzene (>EC5-EC7) and toluene (>EC7-EC8), which are modelled separately.

Physical parameters


For the residential without home-grown produce scenario, the CLEA default building is a small, two-storey terrace house with a concrete ground-bearing slab. SR3⁽⁵⁾ notes this residential building type to be the most conservative in terms of potential for vapour intrusion. The building parameters used in the production of the RSK GACs are the default CLEA v1.06 inputs presented in Table 3.3 of SR3⁽³⁾, with a dust loading factor detailed in Section 9.3 of SR3⁽⁵⁾. The parameters for a sandy loam soil type were used in line with Table 4.4 of SR3⁽⁵⁾. This includes a value of 6% for the percentage of soil organic matter (SOM) within the soil. In RSK's experience, this is rather high for many sites. To avoid undertaking site-specific risk assessments for this SOM, RSK has produced an additional set of GAC for SOM of 1% and 2.5% for all substances using the CLEA tool.

Summary of modifications to the default CLEA SR3⁽⁵⁾ input parameters for residential without home-grown produce

In summary, the RSK GAC were produced using the default input parameters for soil properties, the air dispersion model, building properties and the vapour model detailed in SR3⁽⁵⁾. Modifications to the default SR3⁽⁵⁾ exposure scenarios based on the C4SL exposure scenarios⁽³⁾ are presented in Table 2 below.

The final selected GAC are presented by pathway in Table 3 and the combined GAC in Table 4.

Figure 1: Conceptual model for CLEA residential scenario without home-grown produce

Table 1: Exposure assessment parameters for residential scenario without home-grown produce – inputs for CLEA model

Parameter	Value	Justification
Land use	Residential without home-grown produce	Chosen land use
Receptor	Female child	Key generic assumption given in Box 3.1, SR3 ⁽⁵⁾
Building	Small terraced house	Key generic assumption given in Box 3.1, SR3 ⁽⁵⁾ . Small, two-storey terraced house chosen, as it is the most conservative residential building type in terms of protection from vapor intrusion (Section 3.4.6, SR3) ⁽⁵⁾
Soil type	Sandy loam	Most common UK soil type (Section 4.3.1, from Table 3.1, SR3) ⁽⁵⁾
Start age class (AC)	1	Range of age classes corresponding to key generic assumption that the critical receptor is a young female child aged 0–6. From Box 3.1, SR3 ⁽⁵⁾
End AC	6	
SOM (%)	6	Representative of sandy loamy soil according to EA guidance note dated January 2009 entitled 'Changes We Have Made to the CLEA Framework Documents' ⁽¹³⁾
	1	To provide SAC for sites where SOM <6% as often observed by RSK
	2.5	
pH	7	Model default

Table 2: Residential without home-grown produce – modified receptor data

Parameter	Unit	Age class					
		1	2	3	4	5	6
Soil to skin adherence factor – (outdoor)	mg soil/cm ² skin	0.1	0.1	0.1	0.1	0.1	0.1
Justification	Table 3.5, SP1010 ⁽³⁾						
Inhalation rate	m ³ day ⁻¹	5.4	8.0	8.9	10.1	10.1	10.1
Justification	Mean value USEPA, 2011 ⁽¹²⁾ ; Table 3.2, SP1010 ⁽³⁾						
<p>Notes: For cadmium, the exposure assessment for a residential land use is based on estimates representative of lifetime exposure AC1-18. This is because the TDI_{oral} and TDI_{inh} are based on considerations of the kidney burden accumulated over 50 years. It is therefore reasonable to consider exposure not just in childhood but averaged over a longer period. See the Environment Agency Science Report SC05002/ TOX 3⁽¹⁾, Science Report SC050021/Cadmium SGV⁽¹⁾ and the project report SP1010⁽³⁾ for more information.</p>							

References

1. Environment Agency (2009), 'Science Reports SC050021 - SGV and TOX reports for: benzene, toluene, ethylbenzene, xylene, mercury, selenium, nickel, arsenic, cadmium, phenol, dioxins, furans and dioxin-like PCBs'; 'Supplementary information for the derivation of SGV for: benzene, toluene, ethylbenzene, xylene, mercury, selenium, nickel, arsenic, cadmium, phenol, dioxins, furans and dioxin-like PCBs', and 'Contaminants in soil: updated collation of toxicological data and intake values for humans: benzene, toluene, ethylbenzene, xylene, mercury, selenium, nickel, arsenic, cadmium, phenol, dioxins, furans and dioxin-like PCBs'. Available at: <https://www.gov.uk/government/publications/contaminants-in-soil-updated-collation-of-toxicological-data-and-intake-values-for-humans> and <https://www.gov.uk/government/publications/land-contamination-soil-guideline-values-sgvs> (accessed 4 February 2015)
2. Nathaniel, C. P., McCaffrey, C., Ashmore, M., Cheng, Y., Gillet, A. G., Ogden, R. C. and Scott, D. (2009), *LQM/CIEH Generic Assessment Criteria for Human Health Risk Assessment*, second edition (Nottingham: Land Quality Press).
3. Contaminated Land: Applications in Real Environment (CL:AIRE) (2014). 'Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination', Revision 2, DEFRA research project SP1010.
4. Department for Environment, Food and Rural Affairs (Defra) (2014), 'SP1010: Development of Category 4 Screening Levels for assessment of land affected by contamination – Policy Companion Document', Revision 2.
5. Environment Agency (2009), *Science Report – SC050021/SR3. Updated technical background to the CLEA model* (Bristol: Environment Agency).
6. Contaminated Land: Applications in Real Environment (CL:AIRE) (2014). 'Appendices C to H'. DEFRA research project SP1010'.
7. Nathaniel, C. P., McCaffrey, C., Gillet, A. G., Ogden, R. C. and Nathaniel, J. F. (2015), *The LQM/CIEH S4ULs for Human Health Risk Assessment* (Nottingham: Land Quality Press).
8. Environment Agency (2009), *Human health toxicological assessment of contaminants in soil. Science Report – Final SC050021/SR2* (Bristol: Environment Agency).
9. Environment Agency (2009), *Science Report – SC050021/SR4 CLEA Software (version 1.05) Handbook* (Bristol: Environment Agency).
10. Environment Agency (2008), *Science Report SC050021/SR7. Compilation of Data for Priority Organic Pollutants for Derivation of Soil Guideline Values* (Bristol: Environment Agency).
11. CL:AIRE (2010), *Soil Generic Assessment Criteria for Human Health Risk Assessment* (London: CL:AIRE).
12. USEPA (2011), *Exposure factors handbook*, EPA/600/R-090/052F (Washington, DC: Office of Research and Development).
13. Environment Agency (2009), 'Changes made to the CLEA framework documents after the three-month evaluation period in 2008', released January 2009.
14. USEPA (2010). Hydrogen cyanide and cyanide salts. Integrated Risk Information Systems (IRIS) Chemical Assessment Summary. September 2010. <https://www.epa.gov/iris> (accessed 9 December 2015)

Table 3

Human Health Generic Assessment Criteria by Pathway for Residential Scenario Without Home-Grown Produce

Compound	Season	SAC Appropriate to Pathway SOM 1% (mg/kg)			Soil Saturation Limit (mg/kg)	SAC Appropriate to Pathway SOM 2.5% (mg/kg)			Soil Saturation Limit (mg/kg)	SAC Appropriate to Pathway SOM 6% (mg/kg)			Soil Saturation Limit (mg/kg)	
		Oral	Inhalation	Combined		Oral	Inhalation	Combined		Oral	Inhalation	Combined		
Metals														
Arsenic	(a,b)	3.99E+01	5.26E+02	NR	NR	3.99E+01	5.26E+02	NR	NR	3.99E+01	5.26E+02	NR	NR	
Barium	(b)	1.35E+03	NR	NR	NR	1.35E+03	NR	NR	NR	1.35E+03	NR	NR	NR	
Beryllium		1.56E+02	1.72E+00	NR	NR	1.56E+02	1.72E+00	NR	NR	1.56E+02	1.72E+00	NR	NR	
Boron		1.08E+04	5.20E+06	NR	NR	1.08E+04	5.20E+06	NR	NR	1.08E+04	5.20E+06	NR	NR	
Cadmium	(a)	1.95E+02	4.88E+02	1.49E+02	NR	1.95E+02	4.88E+02	1.49E+02	NR	1.95E+02	4.88E+02	1.49E+02	NR	
Chromium (III) - trivalent	(c)	1.98E+04	9.07E+02	NR	NR	1.98E+04	9.07E+02	NR	NR	1.98E+04	9.07E+02	NR	NR	
Chromium (VI) - hexavalent	(a,d)	5.91E+01	2.06E+01	NR	NR	5.91E+01	2.06E+01	NR	NR	5.91E+01	2.06E+01	NR	NR	
Copper		1.08E+04	1.41E+04	7.13E+03	NR	1.08E+04	1.41E+04	7.13E+03	NR	1.08E+04	1.41E+04	7.13E+03	NR	
Lead	(a)	3.14E+02	NR	NR	NR	3.14E+02	NR	NR	NR	3.14E+02	NR	NR	NR	
Elemental Mercury (Hg ⁰)	(d)	NR	2.41E-01	NR	4.31E+00	NR	5.74E-01	NR	1.07E+01	NR	1.25E+00	NR	2.58E+01	
Inorganic Mercury (Hg ²⁺)		5.71E+01	3.63E+03	5.62E+01	NR	5.71E+01	3.63E+03	5.62E+01	NR	5.71E+01	3.63E+03	5.62E+01	NR	
Methyl Mercury (Hg ⁴⁺)		1.80E+01	1.87E+01	9.16E+00	7.33E+01	1.80E+01	3.62E+01	1.20E+01	1.42E+02	1.80E+01	7.68E+01	1.46E+01	3.04E+02	
Nickel	(d)	1.88E+02	1.81E+02	NR	NR	1.88E+02	1.81E+02	NR	NR	1.88E+02	1.81E+02	NR	NR	
Selenium	(b)	4.31E+02	NR	NR	NR	4.31E+02	NR	NR	NR	4.31E+02	NR	NR	NR	
Vanadium		1.17E+03	1.46E+03	NR	NR	1.17E+03	1.46E+03	NR	NR	1.17E+03	1.46E+03	NR	NR	
Zinc	(b)	4.05E+04	3.63E+07	NR	NR	4.05E+04	3.63E+07	NR	NR	4.05E+04	3.63E+07	NR	NR	
Cyanide (free)		4.03E+01	1.37E+04	4.02E+01	NR	4.03E+01	1.37E+04	4.02E+01	NR	4.03E+01	1.37E+04	4.02E+01	NR	
Volatile Organic Compounds														
Benzene	(a)	7.36E+01	9.01E-01	8.90E-01	1.22E+03	7.36E+01	1.68E+00	1.64E+00	2.26E+03	7.36E+01	3.48E+00	3.33E+00	4.71E+03	
Toluene		2.87E+04	9.08E+02	8.80E+02	8.69E+02	2.87E+04	2.00E+03	1.87E+03	1.92E+03	2.87E+04	4.55E+03	3.93E+03	4.36E+03	
Ethylbenzene		1.29E+04	8.34E+01	8.29E+01	5.18E+02	1.29E+04	1.96E+02	1.93E+02	1.22E+03	1.29E+04	4.58E+02	4.42E+02	2.84E+03	
Xylene - m		2.32E+04	8.25E+01	8.22E+01	6.25E+02	2.32E+04	1.95E+02	1.93E+02	1.47E+03	2.32E+04	4.56E+02	4.47E+02	3.46E+03	
Xylene - o		2.32E+04	8.87E+01	8.83E+01	4.78E+02	2.32E+04	2.08E+02	2.06E+02	1.12E+03	2.32E+04	4.86E+02	4.76E+02	2.62E+03	
Xylene - p		2.32E+04	7.93E+01	7.90E+01	5.76E+02	2.32E+04	1.86E+02	1.85E+02	1.35E+03	2.32E+04	4.36E+02	4.28E+02	3.17E+03	
Total xylene		2.32E+04	7.93E+01	7.90E+01	6.25E+02	2.32E+04	1.86E+02	1.85E+02	1.47E+03	2.32E+04	4.36E+02	4.28E+02	3.46E+03	
Methyl tertiary-Butyl ether (MTBE)		3.87E+04	1.04E+02	1.04E+02	2.04E+04	3.87E+04	1.69E+02	1.69E+02	3.31E+04	3.87E+04	3.21E+02	3.19E+02	6.27E+04	
Trichloroethene		6.45E+01	1.72E-02	1.72E-02	1.54E+03	6.45E+01	3.59E-02	3.59E-02	3.22E+03	6.45E+01	7.98E-02	7.97E-02	7.14E+03	
Tetrachloroethene		7.13E+02	1.79E-01	1.79E-01	4.24E+02	7.13E+02	4.02E-01	4.02E-01	9.51E+02	7.13E+02	9.21E-01	9.20E-01	2.18E+03	
1,1,1-Trichloroethane		7.74E+04	9.01E+00	9.01E+00	1.43E+03	7.74E+04	1.84E+01	1.84E+01	2.92E+03	7.74E+04	4.04E+01	4.04E+01	6.39E+03	
1,1,2-Tetrachloroethane		7.34E+02	1.54E+00	1.53E+00	2.60E+03	7.34E+02	3.56E+00	3.55E+00	6.02E+03	7.34E+02	8.29E+00	8.20E+00	1.40E+04	
1,1,2,2-Tetrachloroethane		7.34E+02	3.92E+00	3.90E+00	2.67E+03	7.34E+02	8.04E+00	7.95E+00	5.46E+03	7.34E+02	1.76E+01	1.72E+01	1.20E+04	
Carbon Tetrachloride		5.15E+02	2.58E-02	2.58E-02	1.52E+03	5.15E+02	5.65E-02	5.64E-02	3.32E+03	5.15E+02	1.28E-01	1.28E-01	7.54E+03	
1,2-Dichloroethane		1.55E+01	9.20E-03	9.20E-03	3.41E+03	1.55E+01	1.33E-02	1.33E-02	4.91E+03	1.55E+01	2.28E-02	2.27E-02	8.43E+03	
Vinyl Chloride		1.81E+00	7.73E-04	7.73E-04	1.36E+03	1.81E+00	1.00E-03	9.99E-04	1.76E+03	1.81E+00	1.53E-03	1.53E-03	2.69E+03	
1,2,4-Trimethylbenzene		NR	5.58E+00	NR	4.74E+02	NR	1.29E+01	NR	1.16E+03	NR	2.69E+01	NR	2.76E+03	
1,3,5-Trimethylbenzene	(e)	NR	NR	NR	2.30E+02	NR	NR	NR	5.52E+02	NR	NR	NR	1.30E+03	
Semi-Volatile Organic Compounds														
Acenaphthene		7.64E+03	4.86E+04	6.60E+03	5.70E+01	7.64E+03	1.18E+05	7.17E+03	1.41E+02	7.64E+03	2.68E+05	7.43E+03	3.36E+02	
Acenaphthylene		7.65E+03	4.59E+04	6.55E+03	8.61E+01	7.65E+03	1.11E+05	7.15E+03	2.12E+02	7.65E+03	2.53E+05	7.42E+03	5.06E+02	
Anthracene		3.82E+04	1.53E+05	3.06E+04	1.17E+00	3.82E+04	3.77E+05	3.47E+04	2.91E+00	3.82E+04	8.76E+05	3.66E+04	6.96E+00	
Benzo(a)anthracene		1.98E+01	2.47E+01	1.10E+01	1.71E+00	1.98E+01	4.37E+01	1.36E+01	4.28E+00	1.98E+01	6.26E+01	1.50E+01	1.03E+01	
Benzo(a)pyrene	(a)	5.34E+00	3.51E+01	NR	9.11E-01	5.34E+00	3.77E+01	NR	2.28E+00	5.34E+00	3.89E+01	NR	5.46E+00	
Benzo(b)fluoranthene		4.97E+00	1.93E+01	3.95E+00	1.22E+00	4.97E+00	2.13E+01	4.03E+00	3.04E+00	4.97E+00	2.22E+01	4.06E+00	7.29E+00	
Benzo(g,h,i)perylene		4.38E+02	1.87E+03	3.55E+02	1.54E-02	4.38E+02	1.94E+03	3.58E+02	3.85E-02	4.38E+02	1.97E+03	3.59E+02	9.23E-02	
Benzo(k)fluoranthene		1.31E+02	5.41E+02	1.06E+02	6.87E-01	1.31E+02	5.76E+02	1.07E+02	1.72E+00	1.31E+02	5.91E+02	1.07E+02	4.12E+00	
Chrysene		3.95E+01	1.19E+02	2.97E+01	4.40E-01	3.95E+01	1.49E+02	3.12E+01	1.10E+00	3.95E+01	1.66E+02	3.19E+01	2.64E+00	
Dibenzo(a,h)anthracene		3.95E-01	1.45E+00	3.10E-01	3.93E-03	3.95E-01	1.64E+00	3.18E-01	9.82E-03	3.95E-01	1.74E+00	3.22E-01	2.36E-02	
Fluoranthene		1.59E+03	3.83E+04	1.53E+03	1.89E+01	1.59E+03	8.87E+04	1.56E+03	4.73E+01	1.59E+03	1.83E+05	1.58E+03	1.13E+02	

GENERIC ASSESSMENT CRITERIA FOR HUMAN HEALTH - RESIDENTIAL WITHOUT HOME-GROWN PRODUCE
Table 3
Human Health Generic Assessment Criteria by Pathway for Residential Scenario Without Home-Grown Produce

Compound	Season	SAC Appropriate to Pathway SOM 1% (mg/kg)			Soil Saturation Limit (mg/kg)	SAC Appropriate to Pathway SOM 2.5% (mg/kg)			Soil Saturation Limit (mg/kg)	SAC Appropriate to Pathway SOM 6% (mg/kg)			Soil Saturation Limit (mg/kg)
		Oral	Inhalation	Combined		Oral	Inhalation	Combined		Oral	Inhalation	Combined	
Fluorene		5.09E+03	6.20E+03	2.80E+03	3.09E+01	5.09E+03	1.53E+04	3.82E+03	7.65E+01	5.09E+03	3.62E+04	4.47E+03	1.83E+02
Indeno(1,2,3-cd)pyrene		5.65E+01	2.12E+02	4.46E+01	6.13E-02	5.65E+01	2.38E+02	4.56E+01	1.53E-01	5.65E+01	2.50E+02	4.60E+01	3.68E-01
Naphthalene		2.50E+03	2.33E+01	2.31E+01	7.64E+01	2.50E+03	5.58E+01	5.46E+01	1.83E+02	2.50E-03	1.31E+02	1.25E+02	4.32E+02
Phenanthrene		1.58E+03	7.17E+03	1.30E+03	3.60E+01	1.58E+03	1.76E+04	1.45E+03	8.96E+01	1.58E+03	4.07E+04	1.52E+03	2.14E+02
Pyrene		3.82E+03	8.79E+04	3.66E+03	2.20E+00	3.82E+03	2.04E+05	3.75E+03	5.49E+00	3.82E+03	4.23E+05	3.79E+03	1.32E+01
Phenol		6.48E+04	4.58E+02	4.55E+02	2.42E+04	6.48E+04	6.95E+02	6.88E+02	3.81E+04	6.48E+04	1.19E+03	1.17E+03	7.03E+04
Total Petroleum Hydrocarbons													
Aliphatic hydrocarbons EC ₅ -EC ₆		3.23E+05	4.24E+01	4.24E+01	3.04E+02	3.23E+05	7.79E+01	7.79E+01	5.58E+02	3.23E+05	1.61E+02	1.61E+02	1.15E+03
Aliphatic hydrocarbons >EC ₆ -EC ₈		3.23E+05	1.04E+02	1.04E+02	1.44E+02	3.23E+05	2.31E+02	2.31E+02	3.22E+02	3.23E+05	5.29E+02	5.29E+02	7.36E+02
Aliphatic hydrocarbons >EC ₈ -EC ₁₀		6.45E+03	2.68E+01	2.68E+01	7.77E+01	6.45E+03	6.55E+01	6.53E+01	1.90E+02	6.45E+03	1.56E+02	1.55E+02	4.51E+02
Aliphatic hydrocarbons >EC ₁₀ -EC ₁₂		6.45E+03	1.33E+02	1.32E+02	4.75E+01	6.45E+03	3.31E+02	3.27E+02	1.18E+02	6.45E+03	7.93E+02	7.67E+02	2.83E+02
Aliphatic hydrocarbons >EC ₁₂ -EC ₁₆		6.45E+03	1.11E+03	1.06E+03	2.37E+01	6.45E+03	2.78E+03	2.42E+03	5.91E+01	6.45E+03	6.67E+03	4.37E+03	1.42E+02
Aliphatic hydrocarbons >EC ₁₆ -EC ₂₅	(b)	6.50E+04	NR	NR	8.48E+00	9.25E+04	NR	NR	2.12E+01	1.11E+05	NR	NR	5.09E+01
Aliphatic hydrocarbons >EC ₃₅ -EC ₄₄	(b)	6.50E+04	NR	NR	8.48E+00	9.25E+04	NR	NR	2.12E+01	1.11E+05	NR	NR	5.09E+01
Aromatic hydrocarbons >EC ₈ -EC ₁₀		2.58E+03	4.74E+01	4.72E+01	6.13E+02	2.58E+03	1.16E+02	1.15E+02	1.50E+03	2.58E+03	2.77E+02	2.69E+02	3.58E+03
Aromatic hydrocarbons >EC ₁₀ -EC ₁₂		2.58E+03	2.58E+02	2.52E+02	3.64E+02	2.58E+03	6.39E+02	5.94E+02	8.99E+02	2.58E+03	1.52E+03	1.24E+03	2.15E+03
Aromatic hydrocarbons >EC ₁₂ -EC ₁₆		2.58E+03	2.85E+03	1.80E+03	1.69E+02	2.58E+03	7.07E+03	2.30E+03	4.19E+02	2.58E+03	1.68E+04	2.48E+03	1.00E+03
Aromatic hydrocarbons >EC ₁₆ -EC ₂₁	(b)	1.86E+03	NR	NR	5.37E+01	1.90E+03	NR	NR	1.34E+02	1.92E+03	NR	NR	3.21E+02
Aromatic hydrocarbons >EC ₂₁ -EC ₃₅	(b)	1.93E+03	NR	NR	4.83E+00	1.93E+03	NR	NR	1.21E+01	1.93E+03	NR	NR	2.90E+01
Aromatic hydrocarbons >EC ₃₅ -EC ₄₄	(b)	1.93E+03	NR	NR	4.83E+00	1.93E+03	NR	NR	1.21E+01	1.93E+03	NR	NR	2.90E+01

Notes:

EC - equivalent carbon. GrAC - groundwater assessment criteria. SAC - soil assessment criteria.

The CLEA model output is colour coded depending upon whether the soil saturation limit has been exceeded.

Calculated SAC exceeds soil saturation limit and may significantly affect the interpretation of any exceedances as the contribution of the indoor and outdoor vapour pathway to total exposure is >10%.

Calculated SAC exceeds soil saturation limit but the exceedance will not affect the SAC significantly as the contribution of the indoor and outdoor vapour pathway to total exposure is <10%.

Calculated SAC does not exceed the soil saturation limit.

The SAC for organic compounds are dependant upon soil organic matter (SOM) (%) content. To obtain SOM from total organic carbon (TOC) (%) divide by 0.58. 1% SOM is 0.58% TOC. DL Rowell Soil Science: Methods and Applications, Longmans, 1994.

SAC for TPH fractions, PAHs naphthalene, acenaphthene and acenaphthylene, BTEX and trimethylbenzene compounds were produced using an attenuation factor for the indoor air inhalation pathway of 10 to reduce conservatism associated with the vapour inhalation pathway (Section 10.1.1, SR3)

(a) SAC for arsenic, benzene, benzo(a)pyrene, cadmium, chromium VI and lead are derived using the C4SL toxicology data.

(b) SAC for boron and selenium should not include the inhalation pathway as no expert group HCV has been derived; aliphatic and aromatic hydrocarbons >EC16 should not include inhalation pathway due to their non-volatile nature and inhalation exposure being minimal (oral, dermal and inhalation exposure is compared to the oral HCV); arsenic should only be based on oral contribution (rather than combined) owing to the relative small contribution from inhalation in accordance with the SGV report. The Oral SAC should be adopted for zinc and benzo(a)pyrene.

(c) SAC for Cr(II) should be based on the lower of the oral and inhalation SAC (see LQM/CIEH 2015 Section 6.8)

(d) SAC for elemental mercury, chromium VI and nickel should be based on the inhalation pathway only.

(e) SAC for 1,3,5-trimethylbenzene is not recorded owing to the lack of toxicological data, SAC for 1,2,4 trimethylbenzene may be used.

Table 4
Human health generic assessment criteria for residential without home-grown produce

Compound	SAC for Soil SOM 1% (mg/kg)	SAC for Soil SOM 2.5% (mg/kg)	SAC for Soil SOM 6% (mg/kg)			
Metals						
Arsenic	40	40	40			
Barium	1,300	1,300	1,300			
Beryllium	1.7	1.7	1.7			
Boron	11,000	11,000	11,000			
Cadmium	149	149	149			
Chromium (III) - trivalent	910	910	910			
Chromium (VI) - hexavalent	21	21	21			
Copper	7,100	7,100	7,100			
Lead	310	310	310			
Elemental Mercury (Hg^0)	0.2	0.6	1.2			
Inorganic Mercury (Hg^{2+})	56	56	56			
Methyl Mercury (Hg^{4+})	9	12	15			
Nickel	180	180	180			
Selenium	430	430	430			
Vanadium	1,200	1,200	1,200			
Zinc	40,000	40,000	40,000			
Cyanide (free)	40	40	40			
Volatile Organic Compounds						
Benzene	0.9	1.6	3.3			
Toluene	900 (869)	1,900	3,900			
Ethylbenzene	80	190	440			
Xylene - m	80	190	450			
Xylene - o	90	210	480			
Xylene - p	80	180	430			
Total xylene	80	180	430			
Methyl tertiary-Butyl ether (MTBE)	100	170	320			
Trichloroethene	0.02	0.04	0.08			
Tetrachloroethene	0.2	0.4	0.9			
1,1,1-Trichloroethane	9.0	18.4	40.4			
1,1,1,2-Tetrachloroethane	1.5	3.5	8.2			
1,1,2,2-Tetrachloroethane	3.9	8.0	17.2			
Carbon Tetrachloride	0.026	0.056	0.128			
1,2-Dichloroethane	0.009	0.013	0.023			
Vinyl Chloride	0.0008	0.0010	0.0015			
1,2,4-Trimethylbenzene	5.6	12.9	26.9			
1,3,5-Trimethylbenzene	NR	NR	NR			
Semi-Volatile Organic Compounds						
Acenaphthene	6,600 (57)	7,200	7,400			
Acenaphthylene	6,600 (86)	7,200	7,400			
Anthracene	31,000 (1.17)	35,000	37,000			
Benzo(a)anthracene	11.0	13.6	15.0			
Benzo(a)pyrene	5.3	5.3	5.3			
Benzo(b)fluoranthene	4.0	4.0	4.1			
Benzo(g,h,i)perylene	355	358	359			
Benzo(k)fluoranthene	106	107	107			
Chrysene	30	31	32			
Dibenz(a,h)anthracene	0.31	0.32	0.32			
Fluoranthene	1,500	1,600	1,600			
Fluorene	2,800 (31)	3,800 (77)	4,500 (183)			
Indeno(1,2,3-cd)pyrene	45	46	46			
Naphthalene	23	55	125			
Phenanthrene	1,300 (36)	1,450	1,520			
Pyrene	3,700	3,800	3,800			
Phenol	440*	688	1,170			
Total Petroleum Hydrocarbons						
Aliphatic hydrocarbons EC_5-EC_6	42	78	161			
Aliphatic hydrocarbons $>EC_6-EC_8$	100	230	530			
Aliphatic hydrocarbons $>EC_8-EC_{10}$	27	65	155			
Aliphatic hydrocarbons $>EC_{10}-EC_{12}$	130 (48)	330 (118)	770 (283)			
Aliphatic hydrocarbons $>EC_{12}-EC_{16}$	1,100 (24)	2,400 (59)	4,400 (142)			
Aliphatic hydrocarbons $>EC_{16}-EC_{35}$	65,000 (8)	92,000 (21)	111,000			
Aliphatic hydrocarbons $>EC_{35}-EC_{44}$	65,000 (8)	92,000 (21)	111,000			
Aromatic hydrocarbons $>EC_8-EC_{10}$	47	115	269			
Aromatic hydrocarbons $>EC_{10}-EC_{12}$	300	600	1,200			
Aromatic hydrocarbons $>EC_{12}-EC_{16}$	1,800 (169)	2,300 (419)	2,500			
Aromatic hydrocarbons $>EC_{16}-EC_{21}$	1,900	1,900	1,900			
Aromatic hydrocarbons $>EC_{21}-EC_{35}$	1,900	1,900	1,900			
Aromatic hydrocarbons $>EC_{35}-EC_{44}$	1,900	1,900	1,900			
Minerals						
Asbestos	Stage 1 test – No asbestos detected with ID; Stage 2 test - <0.001% dry weight (exceedance of either equates to an exceedance of the GAC) ¹					
Notes:						
* Generic assessment criteria not calculated owing to low volatility of substance and therefore no pathway, or an absence of toxicological data.						
NR - SAC for 1,3,5-trimethylbenzene is not recorded owing to the lack of toxicological data, SAC for 1,2,4 trimethylbenzene may be used						
EC - equivalent carbon. SAC - soil assessment criteria.						
¹ LOD for weight of asbestos per unit weight of soil calculated on a dry weight basis using PLM, handpicking and gravimetry.						
The SAC for organic compounds are dependent on Soil Organic Matter (SOM) (%) content. To obtain SOM from total organic carbon (TOC) (%) divide by 0.58.						
1% SOM is 0.58% TOC. DL Rowell Soil Science: Methods and Applications, Longmans, 1994.						
SAC for TPH fractions, PAHs naphthalene, acenaphthene and acenaphthylene, BTEX and trimethylbenzene compounds were produced using an attenuation factor for the indoor air inhalation pathway of 10 to reduce conservatism associated with the vapour inhalation pathway, section 10.1.1, SR3.						
(VALUE IN BRACKETS)						
RSK has adopted an approach for petroleum hydrocarbons in accordance with LQM/CIEH whereby the concentration modelled for each petroleum hydrocarbon fraction has been tabulated as the SAC with the corresponding solubility or vapour saturation limits given in brackets.						

APPENDIX D

PHYTOTOXIC SOILS GAC

GENERIC ASSESSMENT CRITERIA FOR PHYTOTOXIC EFFECTS

Several compounds can inhibit plant growth; hence it is important to have generic assessment criteria (GAC) to promote healthy plant growth. In the absence of other published GAC, the GAC have been obtained from legislation (UK and European) and guidance related to the use of sewage sludge on agricultural fields.

The Council of European Communities Sewage Sludge Directive (86/278/EEC) dated 1986, has been transposed into UK law by Statutory Instrument No. 1263, The Sludge (use in Agriculture) Regulations 1989 (Public Health England, Wales and Scotland), as amended in 1990 and The Sludge (use in Agriculture) Regulations (Northern Ireland) SR No. 245, 1990. In addition the Department of Environment (DoE) produced a Code of Practice (CoP) (Updated 2nd Edition) in 2006 which provided guidance on the application of sewage sludge on agricultural land (however the status of this document is unclear as it is on the archive section of the Defra website).

The directive seeks to encourage the use of sewage sludge in agriculture and to regulate its use in such a way as to "**prevent harmful effects on soil, vegetation, animals and man**". To this end, it prohibits the use of untreated sludge on agricultural land unless it is injected or incorporated into the soil. Treated sludge is defined as having undergone "biological, chemical or heat treatment, long-term storage or any other appropriate process so as significantly to reduce its fermentability and the health hazards resulting from its use". To provide protection against potential health risks from residual pathogens, sludge must not be applied to soil in which fruit and vegetable crops are growing, or less than ten months before fruit and vegetable crops are to be harvested. Grazing animals must not be allowed access to grassland or forage land less than three weeks after the application of sludge.

The specified limits of concentrations of selected elements in soil are presented in Table 4 of the updated 2nd Edition of the DoE Code of Practice and are designed to protect plant growth. It is noted that these values are more stringent than the values set in current UK regulations. However since they were amended following recommendations from the Independent Scientific Committee in 1993. (MAFF/DOE 1993). The GAC are presented in Table 1.

Table 1: Generic assessment criteria

Determinant	Generic assessment criteria (mg/kg)			
	pH 5.0 < 5.5	pH 5.5 < 6.0	pH 6.0 < 7.0	pH > 7.0
Zinc	200	200	200	300
Copper	80	100	135	200
Nickel	50	60	75	110
Lead	300	300	300	300
Cadmium	3	3	3	3
Mercury	1	1	1	1

Note: Only compounds with assessment criteria documented within the Directive 86/278/EEC have been included, although criteria for 5 additional compounds have been presented within the 2006 CoP.