

CAPITAL TRANSPORT PLANNING

Demolition and Construction Management Plan

**39 Parkfield Road, Ickenham
November, 2024**

Capital Transport Planning is a Transport Planning and Highways consultancy, specialised in assisting clients through the planning process. Our transport consultant has vast transport planning experience acting on behalf of clients to overturn refused planning applications, providing documents to support planning applications, working on the behalf of Highway Authorities within a County Council and London Borough Council.

Prepared for:

KDA Designs Ltd

Prepared by:

Capital Transport Planning LTD

Michael Okubajo BSc, MSc, MCIHT, MRTPI

Transport Consultant
Construction Logistics Practitioner (00232)

Revision History

Project and Document Details

Project Name	39 Parkfield Road
Project No	00382
Document Title	Demolition and Construction Management Plan

Document History

Rev	Amendments	Prepared By	Date
First Issue	N/A	MO	25/11/2024

Table of Contents

1. Introduction.....	- 1 -
2. Policy Context.....	- 4 -
3. Site Context.....	- 5 -
4. Construction programme and overview.....	- 6 -
5. Vehicle routing and site access	- 9 -
6. Strategies to reduce impacts	- 11 -
7. Control of Dust, Noise and Vibration	- 13 -
8. Estimated vehicle movements.....	- 17 -
9. Implementing, monitoring and updating	- 20 -

List of Figures and Tables

Table. 1 Construction Programme

Table 2. Number of vehicles in peak phase (By phase)

Table 3. Number of vehicles in peak phase (including overlaps)

Figure 1. Regional Context Plan

Figure 2. Local Context Plan

Figure 3. Construction Vehicle Routing - Regional

Figure 4. Construction Vehicle Routing - Local

Figure 5. Construction Site Plan

Figure 6. Swept-path analysis

Figure 7. Total number of vehicles through construction programme

Figure 8. Number of vehicles by type during peak of phase

Figure 9. Number of vehicles by types during peak of phase

1. Introduction

1.1. This Demolition and Construction Management Plan has been prepared by Capital Transport Planning on behalf of KDA Designs Ltd (the agent). Capital Transport Planning have been commissioned to assess the highway and transportation implications associated with proposal for the development at 39 Parkfield Road in the London Borough of Hillingdon.

Site Context

1.2. The application site is located north of the centre of the London Borough of Hillingdon on Parkfield Road, which is an unclassified local access road under the jurisdiction of the Local Highway Authority (LHA). The site is located approximately 0.5 miles west of Ruislip rail station.

Development Proposal

1.3. The approve planning permission is for proposal includes the demolition of the existing dwelling and the construction of a replacement dwelling with associated cycle and car parking. The wording for condition 5 of planning permission 24825/APP/2023/81 is set out below:

'Prior to commencement of the development a Demolition & Construction Management Plan shall be submitted to & approved in writing.'

The plan shall detail:

1. *The phasing of the development works.*
2. *The hours during which development works will occur*
3. *Measures to prevent mud & dirt tracking onto footways & adjoining roads (Including wheel washing facilities)*
4. *Traffic management & access arrangement & parking provisions for contractors during the development process (Including measures to reduce the number of construction vehicles accessing the site during peak hours)*
5. *Measures to reduce the impact of the development on local air quality & dust through minimising emissions throughout the demolition & construction process.*
6. *The storage of demolition/construction materials on site.*

The approved details shall be implemented and maintained throughout the duration of the demolition and construction process.

REASON

To safeguard the amenity of surrounding areas in accordance with Policy DMHB 11 of the Hillingdon Local Plan Part 2 (2020).'

Hours of Operation

1.4. Standard hours construction hours will be as per Hillingdon council's permissible hours for noisy works:

- 08:00 to 18:00 hours Monday to Friday.
- 08:00 to 13:00 hours Saturday.
- No noisy activities on site at any other times.

1.5. Operations that need to be undertaken outside of standard working hours will be agreed with Hillingdon council with notice being provided to the neighbours at least 14 days ahead of these activities occurring or on the day for extenuating circumstances. Parking suspensions are not expected to be required during construction.

Site Specific Objectives

1.6. The site-specific objectives of the site during construction are:

- Working considerately and not causing disruption to residents in the immediate vicinity of the site.
- Minimising the impact on parking and the local highway network.
- Minimise any impact to bus services operating on (B466).
- Ensure safety of cyclists in the immediate vicinity of the site.

1.7. Operations that need to be undertaken outside of standard working hours will be agreed with the council with notice being provided to the neighbours at least 14 days ahead of these activities occurring or on the day for extenuating circumstances. Hillingdon Council will be informed of any implications for the public highway

1.8. All employees on site will be made aware of the requirements and will be briefed on the methods employed to reduce the levels of disruption and noise. Special consideration will be taken during excavation and foundation works in connection with the movement of vehicles to and from the site. Notification will be given if any concrete crushers are to be used on site.

1.9. All vehicles and equipment operation on the site will be maintained in good condition to minimise smoke discharge.

1.10. Best Practice Guidance will be followed, and all potential emissions will be prevented, suppressed and contained wherever possible. By following the above measures, the air quality impact of the development on the environment will be reduced. An adequate water supply will be provided to minimise the formation and spread of dust. Machinery will utilise noise suppression/silencers to minimise noise and frequent checks will be made to ensure equipment is working correctly.

CMP Community Liaison Contact

Name: Mr Cristian Chira

Company: Prestige Building Services Ltd

Job Title: Building Contractor

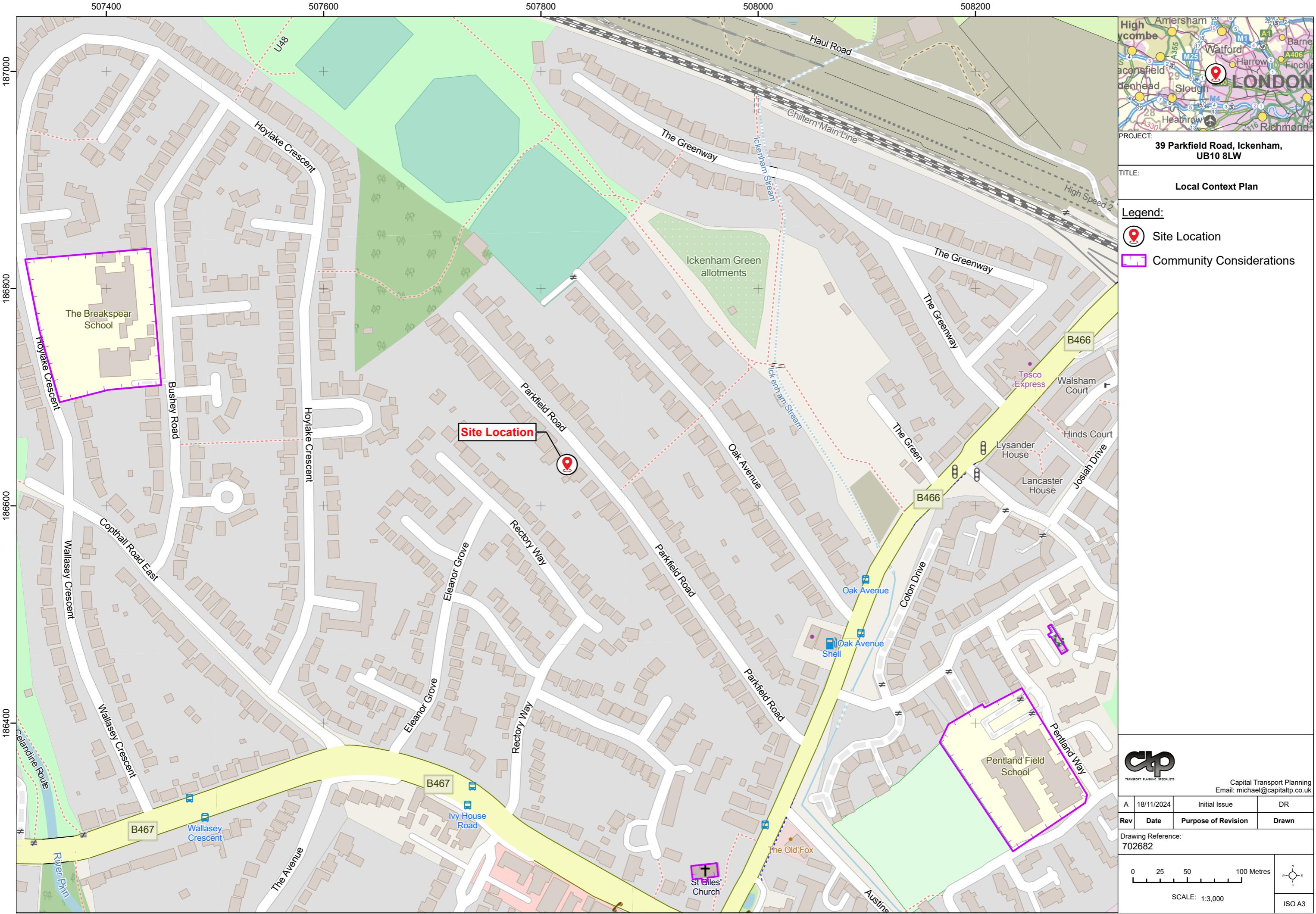
Contact Number: 07711909066

E-mail Address: chira_luci@yahoo.com

2. Policy Context

National Planning Policy Framework (NPPF)

2.1. The NPPF promotes the use of sustainable transport throughout the UK, safe road design, and the efficient and sustainable delivery of goods and supplies. The NPPF sets out the long-term strategy for sustainable development.


Traffic Management Act (2004)

2.2. Part 2 of the Traffic Management Act sets out the responsibility of local authorities to manage traffic networks within their geographical area of responsibility. This includes efficient use of the network and the requirement to take measures to avoid contributing to traffic congestion. Part 5 outlines the responsibility of local authorities in Greater London to manage the strategic route network. This includes TfL's role to manage certain areas of the Greater London route network.

Context Maps

2.3. Regional and local context plans are presented in Figures 1 and 2.

3. Site Context

Highways, carriageways and footways

- 3.1. The application site is located on the western side of Parkfield Road which is a no-through-route which adjoins High Road (B466) to the south. Parkfield Road is an unclassified bi-directional carriageway with single yellow lines present preventing on-street parking between 10am and 12pm Monday-Friday. There are generous footways provided on egress of the application site on both Court Road and Felstead Road.

- 3.2. The London Borough of Hillingdon act as Local Highway Authority, responsible for the management and maintenance of the public highway.

Railway/Underground

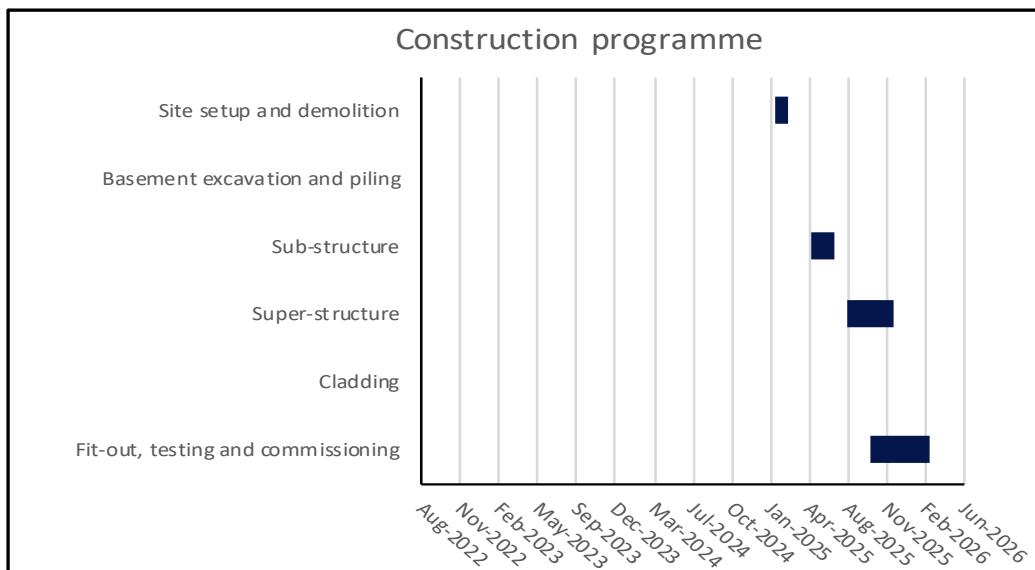
- 3.3. The site is located approximately 0.5 mile west of West Ruislip rail station which is a 10-minute walk from the application site. West Ruislip rail station is on the Central Line on the London underground and Chiltern railway lines.

Bus Routes

- 3.4. The site benefits from bus services within easy walking distance. The closest being the northbound Austin Lane (Stop A) bus stop on High Road (B466), which is within 6-minute walking distance and provide access to the bus 278, U1 and U10.

- 3.5. The site also benefits from the southbound Oak Avenue (Stop T) bus stop on High Road (B466), which is within 6-minutes walking distance and provide access to the bus 278, U1 and U10.

Cycling


- 3.6. There are no dedicated or established cycle routes in the immediate vicinity of the application site. It is not considered that the absence of established cycle routes should prevent cycling to and from the site.

4. Construction programme and overview

4.1. A construction programme has been developed with the project managers to provide an overview of the proposed construction works at the site. The outline construction programme and brief description of each phase is presented below in Table 1.

Table 1. Construction Programme

Construction phase	Start	End
Site setup and demolition	Feb-2025	Mar-2025
Basement excavation and piling	N/A	N/A
Sub-structure	May-2025	Jul-2025
Super-structure	Aug-2025	Dec-2025
Cladding	N/A	N/A
Fit-out, testing and commissioning	Oct-2025	Mar-2026

Site setup and demolition

4.2. Subject to securing planning permission, site preparations are expected to begin in February 2025. This will be followed by demolition works which are forecasted to generate approximately 1 vehicle movement per day transporting materials to and from the site. The lorries will be loaded within the dedicated loading and unloading area. This is expected to take approximately two months to completed.

Basement excavation and piling

4.3. No basement or piling works are also required and therefore no associated vehicular traffic.

Sub-structure

4.4. In the sub-structure phase of the works, following on from the forming of the concrete foundations, it is proposed to address works associated with the damp-proof course, begin the lowest floor assembly, and install any required retaining structures. This phase of the works is not expected to last longer than three months.

4.5. All required plant for this stage will be stored within the site and any additional materials and plant will be delivered and transferred from within the site. A 7-metre rigid lorry will be the largest vehicle expected at the site during this phase of the proposed works.

Super-structure

3.1. This phase includes the provision of the building shell which will be constructed of standard bricks and mortar. It is anticipated that larger vehicles will continue to be required at this stage of construction to deliver the materials and plant required to construct the super-structure of the building.

3.2. A banksman will be responsible for the safe movement of plant and vehicles, where a traffic marshal is the interface control point between the public highway and construction site who will also oversee the safety of pedestrians and cyclists. Vehicles will be unloaded from the proposed loading area with the assistance of a banksman, with support from traffic marshals if any pedestrians are on the footway. It is forecasted that the super-structure works would be carried out across the course of 6 months.

3.3. A 7-metre rigid lorry will be the largest vehicle expected at the site during this phase of the proposed works.

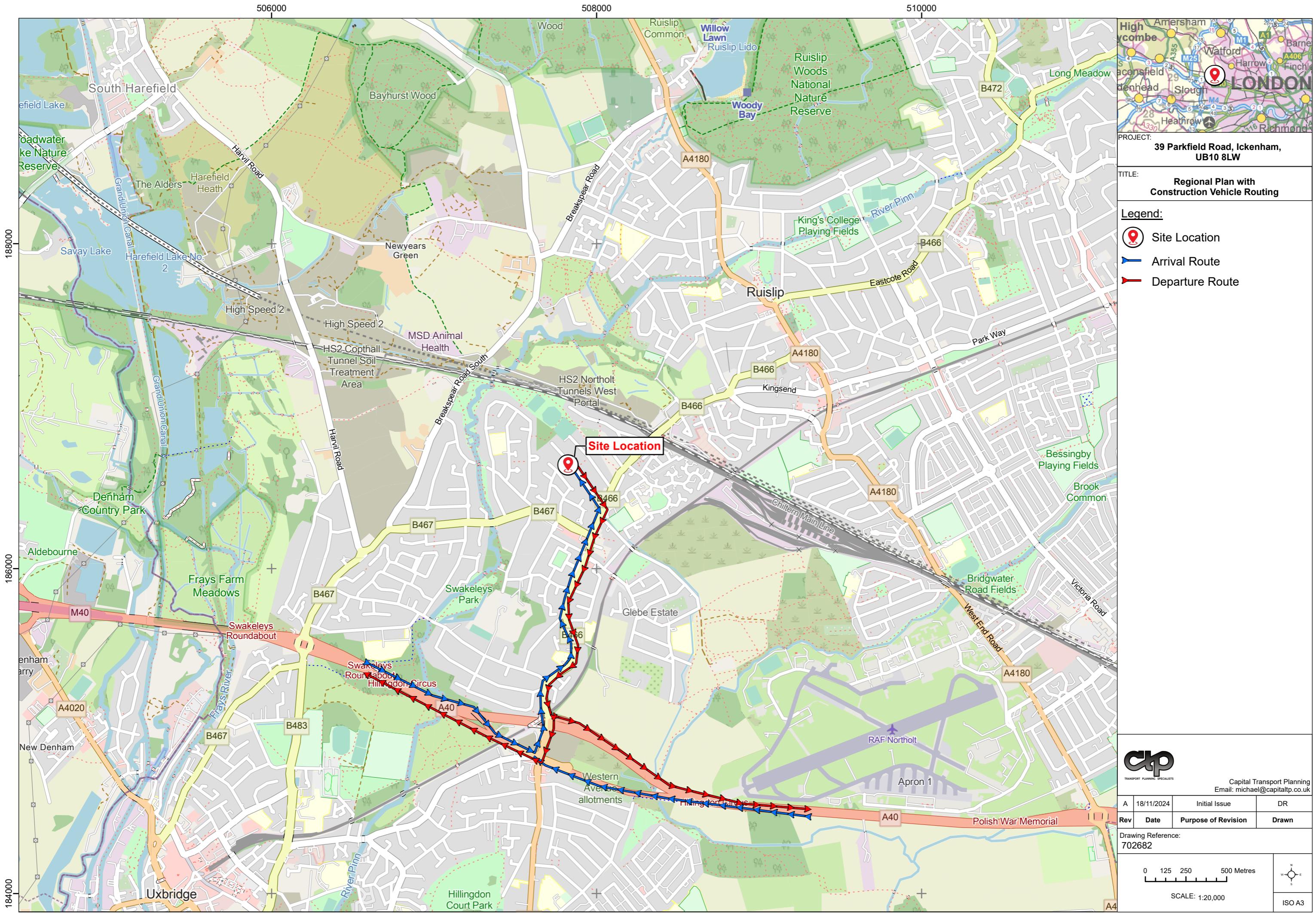
Cladding

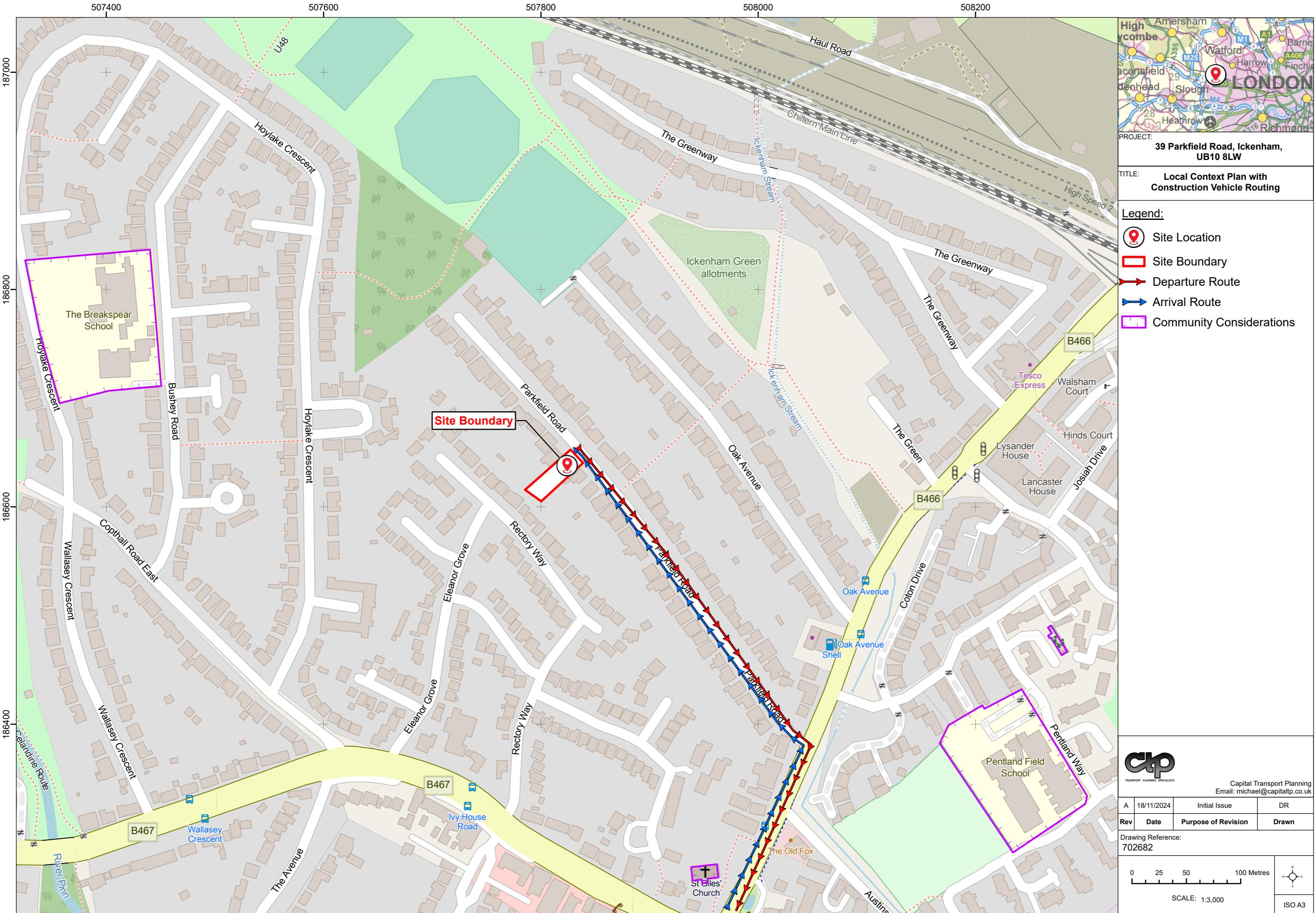
3.4. No cladding is required, and the building will be constructed of traditional bricks and mortar with internal insulation in-keeping with regulations. Therefore, no associated vehicle traffic with this phase.

Fit-out testing and commissioning

3.5. This phase of construction will involve deliveries of materials such as metal framing, plasterboard, plastering materials, ceiling materials, mechanical and ventilation materials, electrical materials, flooring materials, painting and decoration etc. During the last few months of the project, there will be a large amount of furnishing to be installed at the site. This will involve the use of small vans compared to earlier stages of the construction. The fit-out stage of construction is forecasted to take up to 6 months.

3.6. A 7-metre rigid lorry will be the largest vehicle expected at the site during this phase of the proposed works, however mostly small vans will be utilised.


Waste Removal/Skips


3.7. Skips will be required throughout every phase of the project. The loading and unloading of the skip will take place within the site. It is proposed that wait and load skip lorries are used during the proposed works. The lorry would wait in the designated loading and unloading area while materials are transferred from the site into the skip. Once loaded, the vehicle would depart the loading and unloading area. The loading and unloading of the skip lorry will also be encouraged to take place outside of peak hours to reduce the potential for conflict with pedestrians.

3.8. Waste and recycling will also be stored within the site and will be collected on a requested basis.

5. Vehicle routing and site access

- 5.1. The most appropriate construction vehicle route from the site has been considered and proposed in this section of the report.
- 5.2. The primary route for construction and delivery vehicles is to approach the site from the south. Construction vehicles would approach the site from the strategic road network, in this case the A40 Western Avenue.
- 5.3. Vehicles would leave the A40 onto Long Lane (A437) and head north. Vehicles would continue onto Long Lane (B466) for approximately 1.3 kilometres until reaching the junction with Swakeleys Road (B467). Vehicles would continue onto High Road (B466) for approximately 200 metres until reaching the junction with Parkfield Road and turning left. Vehicles would continue north on Parkfield Road until arriving at the site and turning into the proposed loading area.
- 5.4. It is proposed that construction vehicles would primarily leave the site to the south from Parkfield Road to High Road (B466) and head towards the strategic road network in the same route as arrival. Dependant on the prior or next destination of construction related delivery vehicles, alternative arrival and departure routes are presented in Figure 3 and 4.

Accessing the Site

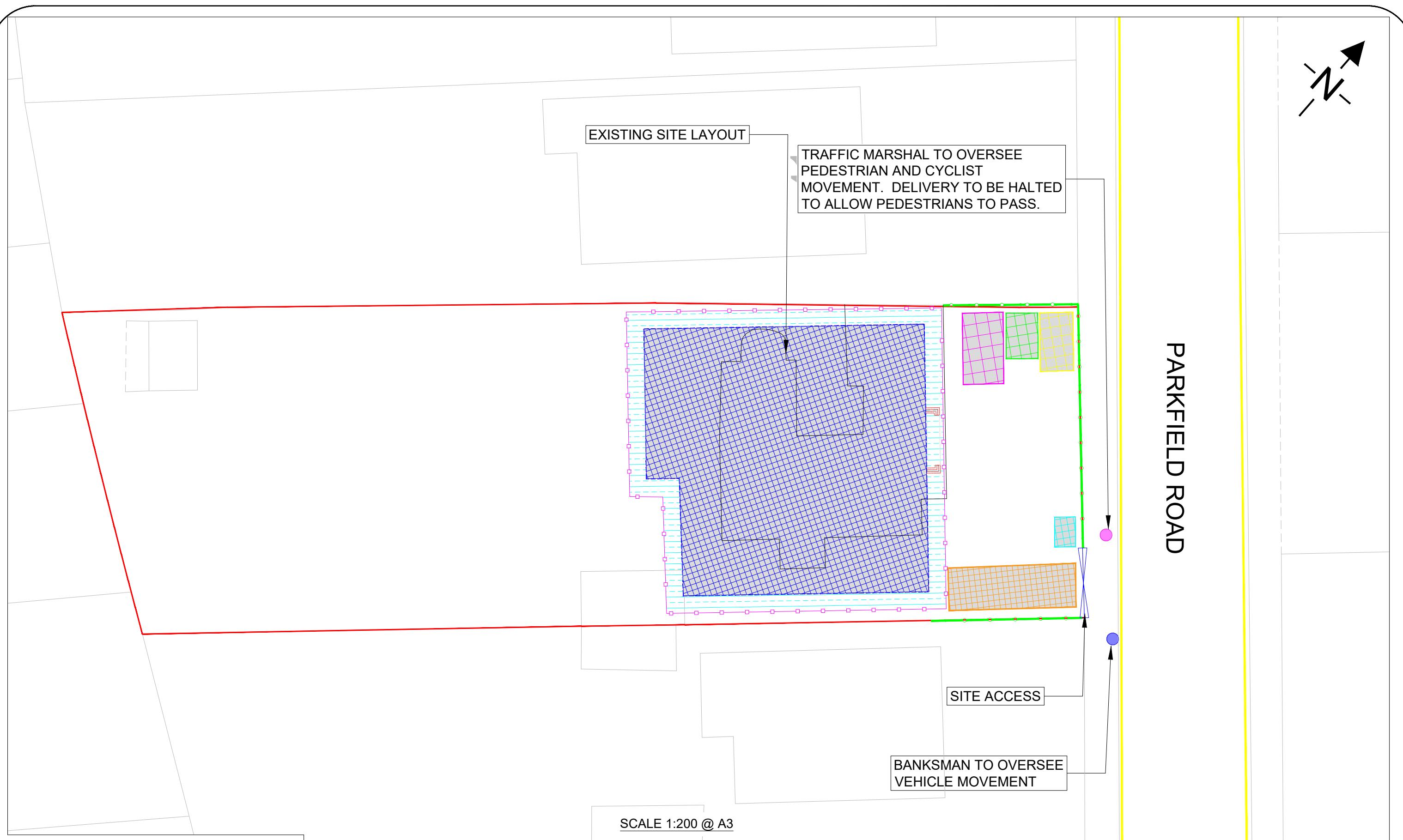
5.5. There is an existing vehicular access from the application site to the public highway, to assist with deliveries for the proposed development works. It is therefore proposed that construction and delivery related vehicles will enter the site and leave in a forward gear. All loading and unloading of plant and materials will occur within the application site.

5.6. The proposed location for loading and unloading of materials, site hoarding, footway and carriageway dimensions, site welfare and waste and recycling facilities are presented in Figure 5.

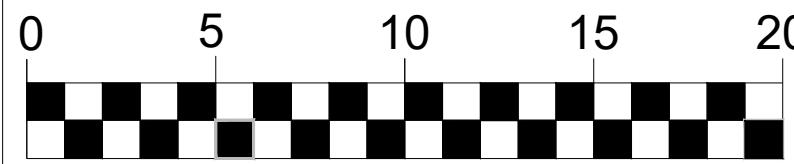
5.7. Swept-path analysis for a rigid lorry accessing and egressing the proposed loading area is presented in Figure 6, with consideration the arrival and departure routes described in para 5.3. To accommodate the required manoeuvres of delivery vehicles and use of the public footpath highway licenses will be required.

5.8. Site operatives will be encouraged to either pool to the site or arrive via sustainable modes such as walking cycling and public transportation.

Banksman


5.9. A competent and fully trained CPCS trained Traffic Marshall will be on site to assist with any movements of construction vehicles and machinery within and interacting with the application site. Full details of banksmen on site can be obtained from the community liaison contact.

Protection of the Public


5.10. A good quality site hoarding will be erected prior to any demolition activities and will remain in place until the final stages of the build, fit out and landscaping. It will be subject to regular check and maintenance as required. The hoarding will advertise the hazards associated with the demolition and construction work.

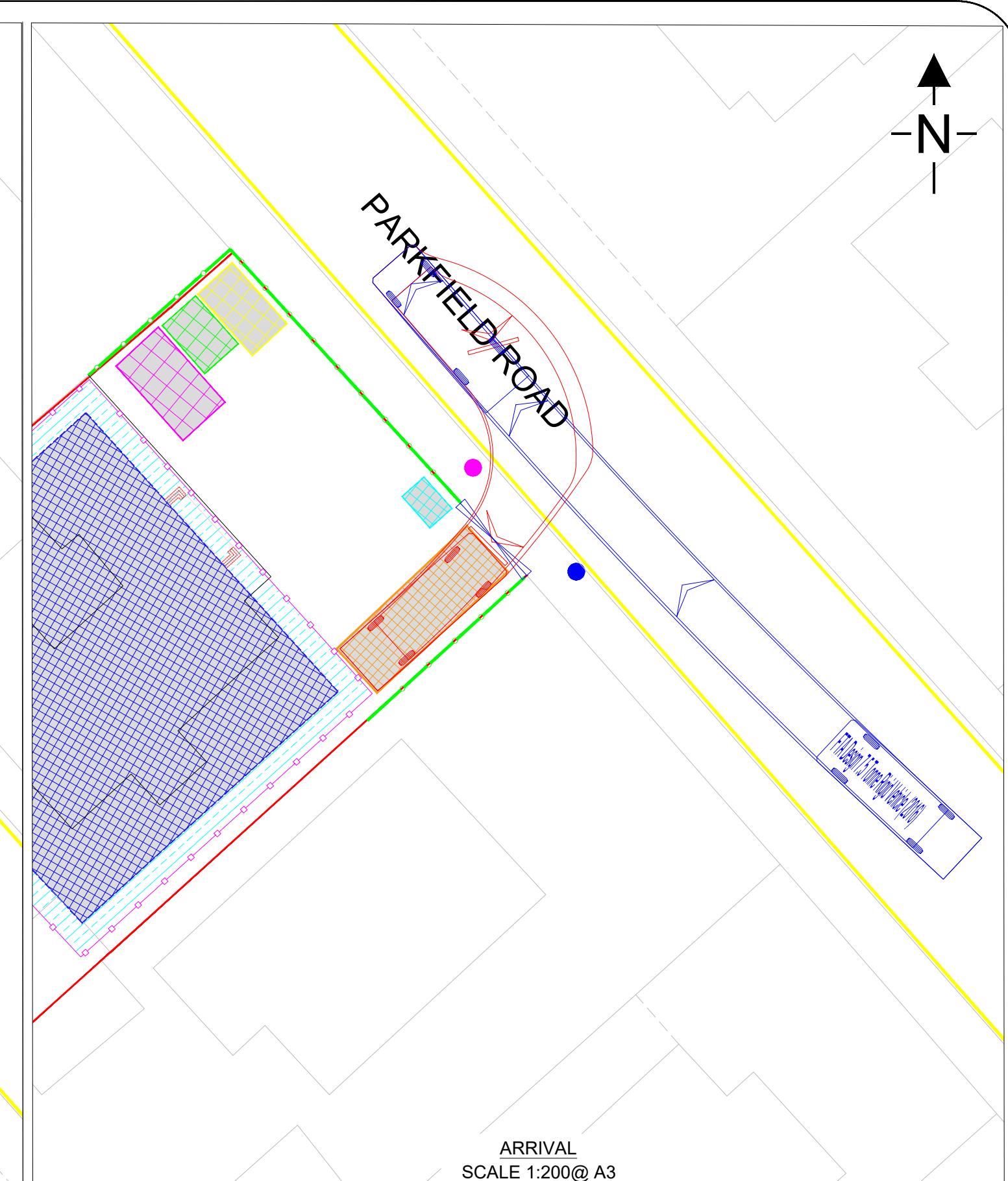
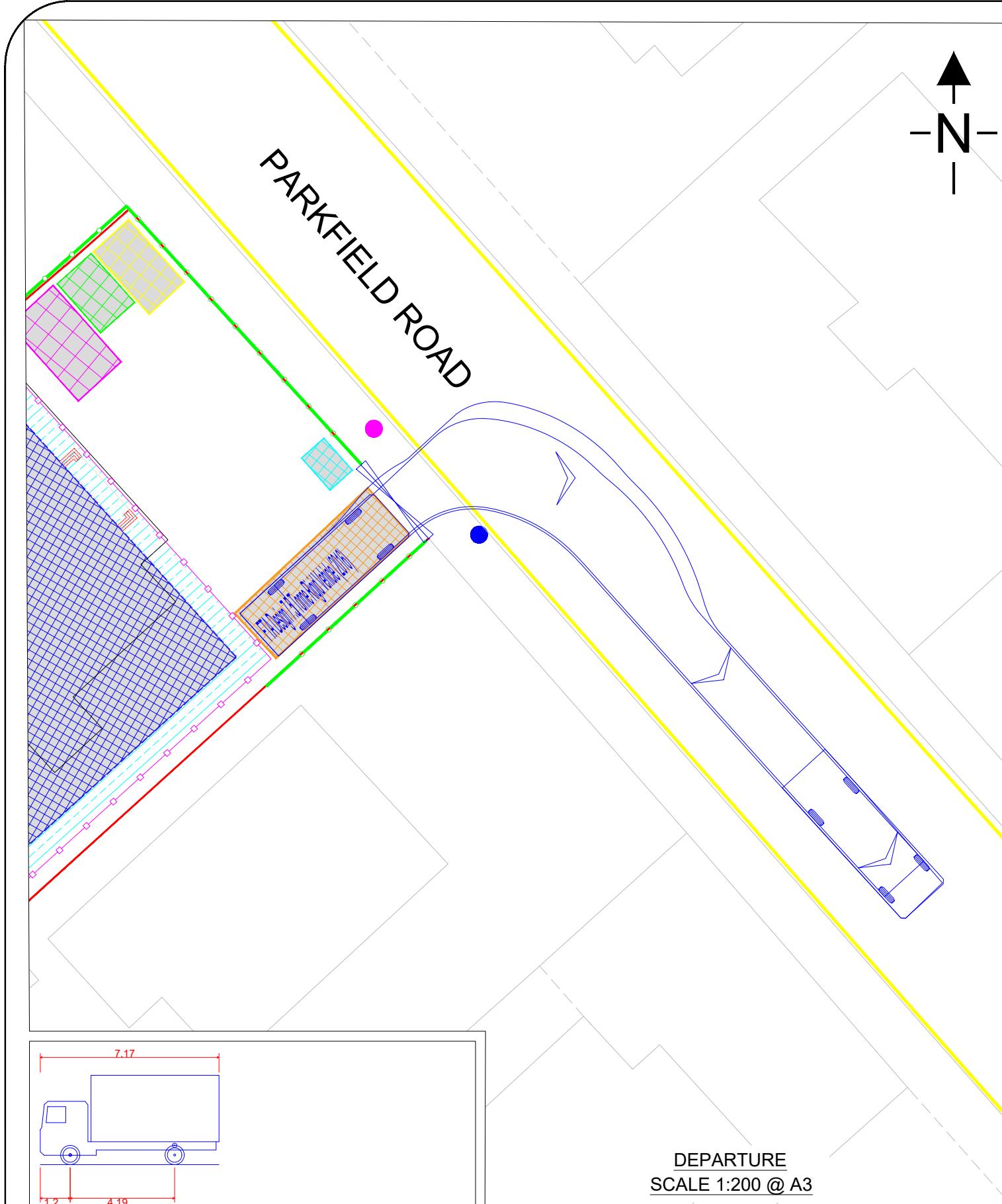
Site Information

5.11. Information regarding the proposed work and relevant contact details will be presented on the site hoarding for use of local residents and the wider public.

KEYS:	
SITE BOUNDARY	OS MAP
WELFARE FACILITY	LOADING BAY
MAIN CONSTRUCTION AREA	RECYCLING/WASTE STORAGE AREA
SCAFFOLDING	PLANT STORAGE
HOARDING	WHEEL WASHING FACILITY

PROJECT: 39 PARKFIELD ROAD,
ICKENHAM, UB10 8LW

DRAWING TITLE:
CONSTRUCTION SITE PLAN



DRAWN BY:
HS

DATE:
NOV 2024

SCALE:
AS SHOWN

REVISION:
P01

DRAWING No:
CT-PFR-SP-01

PROJECT:39 PARKFIELD ROAD,
ICKENHAM, UB10 8LW

DRAWING TITLE:
SWEPT PATH ANALYSIS

DRAWN BY:
HS

DATE:
NOV 2024

SCALE: AS SHOWN

REVISION: P01

DATE: NOV 2024

DRAWING No: CT-PFR-SPA-02

Sheet: 1 of 1

6. Strategies to reduce impacts

Safety and Environmental Standards and Programmes

6.1. The contractor and subcontractors will be required to adhere to several contractual agreements, in line with national and local safety and environmental standards programmes.

Collision Reporting

6.2. All collisions and accidents involving the projects' vehicle and drivers will be reported to the Project Manager and relevant parties. Within 15 days of the contract variation date, the contractor will provide the authority with a collision report. The contractor shall provide the authority with an updated collision report on a quarterly basis or within 5 days of a written request.

Adherence to Designated Routes

6.3. The route plan will be given to all suppliers when orders are placed to ensure drivers are fully briefed on the required route to take. The supplier will be made aware that these routes are required followed at all times unless agreed or alternative diversions are in place.

Delivery Scheduling

6.4. Due to the scale of the development and the projected number of deliveries, it is proposed that a booking delivery system will be used to manage deliveries of materials, plant and equipment to the site. All deliveries and collections must be booked 24 hours in advance and will be considered on a first come first served basis.

6.5. All special deliveries to the site that require licensing (e.g. tower crane and piling rigs) would be delivered outside of standard hours in accordance with the conditions of the licence therefore avoiding any unnecessary closures and minimising disruption to the public highway.

6.6. In the event of vehicles arriving outside of acceptable delivery hours, drivers will be penalised to incentivise adherence to the approved hours of delivery. If no other deliveries are on site, the vehicles will be loaded/unloaded as quickly as possible in a safe manner with all operatives on site assisting to speed up the process.

Retiming for out of peak deliveries

6.7. Wherever possible the contractor will schedule deliveries to avoid the network peaks.

Use of Logistics and Consolidation Centres

6.8. Due to the scale of the development, it is not considered viable or beneficial to use logistics and consolidation centres.

DfMA and off-site manufacture

6.9. Due to the scale of the development, it is not considered beneficial to manufacture elements of the development off-site.

Re-use of materials on site

6.10. The contractor will be required to investigate opportunities to minimise waste and where waste generation is unavoidable, to maximise the recycling and reuse potential of demolition and construction materials.

Smart Procurement

6.11. The contractor will investigate the use of local suppliers wherever possible to minimise the length of journeys associated with deliveries. Opportunities to source materials and equipment from the same supplier will be sought to reduce vehicle movements.

7. Control of Dust, Noise and Vibration

7.1. The property is not adjacent to any sensitive properties and is in a residential area. The nature of the proposals means that no special measures are necessary for the ordinary consequences of project execution. Instead, this Plan includes measures to practicably mitigate those ordinary consequences from such activities and as a matter of good practice:

Control of Nuisance & Dust

7.2. The contractor will have in place Health & Safety and Environmental procedures to ensure that the site team is fully aware of all those who may be affected by the work and to put in place control measures to minimise any nuisance or inconvenience. The contractor shall use best practice measures to minimise dust and air quality impacts from the works.

7.3. Effective planning and management of dust control requires a thorough understanding of the construction programme, the operations and their likely impact due to the changing weather conditions. The control measures that will be introduced reflect the site team's knowledge of the programme and site operations to combat dust. The contractor will attempt to work in such a way that emissions to the air of dust and pollutants are minimised and that best practicable means are used to avoid creating a statutory nuisance.

7.4. Measures to be considered for limiting emissions and avoiding nuisance from machines and vehicles on site will include one or more of the following as appropriate and as far as reasonably practicable:

Vehicles

- Ensuring that the engines of all vehicles and plant on site are not left running unnecessarily to prevent exhaust emissions and noise;
- Using low emission vehicles and plant fitted with catalysts, diesel particulate filters or similar devices;
- Requiring that all plant will be well maintained, with routine servicing of plant and vehicles to be completed in accordance with the manufacturers recommendations and records maintained for the work undertaken;
- Requiring that all project vehicles, including off-road vehicles, will hold current MOT certificates where required due to the age of the vehicle, and that they will comply with exhaust emission regulations for their class;

- Avoiding the use of diesel or petrol powered generators and using mains electricity or battery powered equipment;
- Ensure all vehicles carrying loose or potentially dusty material to or from site are fully sheeted;
- Sweep public roads regularly when potential traffic movements containing soil, spoil, hardcore, concrete etc. are being taken in or out of the site;
- Ensure that all dust generating materials transported to and from site are covered by tarpaulins.

Plant and Materials

7.5. To minimise the nuisance of dust generated by the other construction operations the following operational constraints will be implemented:

- Ensure that any crushing or grinding machine/tools used on site have appropriate permits issued and are maintained appropriately;
- All steel beams and columns will be cut in the manufacturers warehouse and assembled onsite;
- Construction methods will be reviewed to limit the generation of dust i.e. wet cutting in lieu of dry cutting where practicable;
- Plant and equipment to be selected to minimise the generation of dust,
- Dust migration to adjoining properties to be restricted by the use of debris netting fixed to all the perimeter fences;
- Where materials are mixed on site, ensure these works are undertaken in designated areas;
- Ensure that sand and other aggregates are stored on bunded areas and are not allowed to dry out;
- Only use cutting, grinding or sawing equipment fitted or in conjunction with suitable dust suppression techniques such as water sprays or local extraction;
- Minimise drop heights from conveyors, loading shovels, hoppers and other loading or handling equipment and use fine water sprays on such equipment wherever possible.

Environmental

- Ensure no burning of waste materials takes place on site;
- Ensure an adequate water supply on the site;
- Ensure disposal of run-off water from dust suppression activities;
- Minimise the amount of excavated material held on site;
- Sheet, seal or damp down unavoidable stockpiles of excavated material held on site;
- Ensure water suppression is used during demolition operations;
- Use enclosed rubble shoots and conveyors where reasonably practicable or use water to suppress dust emissions from such equipment;
- Sheet or otherwise enclose loaded skips or bins;
- Seal or re-vegetate completed earthworks as soon as reasonably practicable after completion;
- Use design/prefabrication to reduce the need for grinding, sawing and cutting on site wherever reasonably practicable;
- Ensure slopes on stockpiles are no deeper than the natural angle of repose of the material and maintain a smooth profile;
- Ensure equipment is available on site to clean any spillages and clean spillages as soon as possible after the event using wet cleaning methods.
- Record any exceptional incidents causing dust episodes on or off the site and the action taken to resolve the situation;

7.6. In case of work extending to the summer, and during very dry conditions, consideration would be given to suspension of soil handling operations if wind speeds give rise to dust generation that could cause a nuisance to dust sensitive locations in the vicinity of the site, particularly during dry and windy conditions. Being aware of the impact of dust creating operations is key to good dust management. Having good communications, including on-site inductions, toolbox talks, notices, site briefings to staff are therefore essential.

7.7. The monitoring of operations with even minor potential to cause airborne dust emissions will be regularly undertaken by the Project Manager or his appointed representative. This will predominantly take the form of personal visual assessments. All findings, including the prevailing weather conditions, will be recorded in a log book kept specifically for recording site conditions and events. As a minimum, entries in the log book would be made at least daily. The hoarding will be 2m high to reduce to minimum amount of dust and work as a high noise barrier from the site.

Noise and Vibration Impact

7.8. The developer shall use best practice measures in line with the CPCS to minimise noise & vibration from the works. Noise reduction is to be controlled using best practice:-

- All plants/equipment are to be the most modern available for the work;
- All breakers are muffled;
- Sequence of demolition & construction to provide noise and dust barrier to vulnerable facades;
- No shouting;
- No stereos;
- Any vehicle alarms will be broadband or white noise type sounders and will have the volume reduced or disabled following a risk assessment;

7.9. All plant that operates on the site will be fitted with noise suppression equipment such that noise levels do not develop over 85db 1m beyond the perimeter of the works. The type of plant, equipment and construction techniques are to be selected to reduce noise production. As part of the planning process for the works and to ensure that noise is kept to a minimum, the following points will be utilised to reduce the effects of noise on site.

7.10. Vibration will be minimised by best practicable means i.e. crushing instead of breaking method and minimise the use of impact breakers. All reasonable measures will be taken by during demolition works to prevent mud being deposited on the site access road and the main road.

Rodents

7.11. Rodent traps will be placed strategically across the site to prevent any migration of any potential rodents from the site. Should any rodents be captured, they will be disposed of in accordance with best practice and latest health and safety guidance.

8. Estimated vehicle movements

8.1. The number of average vehicle movements has been estimated using the TfL toolkit and are summarised in Tables 2 and 3.

Table 2. Number of vehicles in peak phase (By phase)

Construction phase	Period of stage	No. of trips (monthly)	Peak no. of trips (daily)
Site setup and demolition	Q1 2025 - Q1 2025	40	1
Basement excavation and piling	N/A	N/A	N/A
Sub-structure	Q2 2025 - Q3 2025	40	1
Super-structure	Q3 2025 - Q4 2025	80	3
Cladding	N/A	N/A	N/A
Fit-out, testing and commissioning	Q4 2025 - Q1 2026	50	2
Peak period of construction	Q4 2025 - Q4 2025	90	3

8.2. Table 2, presents the number of vehicles in a peak phase throughout the project. Table 2, suggests that the peak number of monthly trips will be 5, occurring in Q4 of 2025.

Table 3. Number of vehicles in peak phase (including overlaps)

Construction phase	Period of stage	No. of trips (monthly)	Peak no. of trips (daily)
Site setup and demolition	Q1 2025 - Q1 2025	40	1
Basement excavation and piling	N/A	N/A	N/A
Sub-structure	Q2 2025 - Q3 2025	40	1
Super-structure	Q3 2025 - Q4 2025	90	3
Cladding	N/A	N/A	N/A
Fit-out, testing and commissioning	Q4 2025 - Q1 2026	90	3

8.3. Table 3, presents the number of vehicles in a peak phase throughout the project including overlaps. Table 3, suggests that the peak period for construction related vehicles will be between Q4 of 2024 and Q2 of 2025.

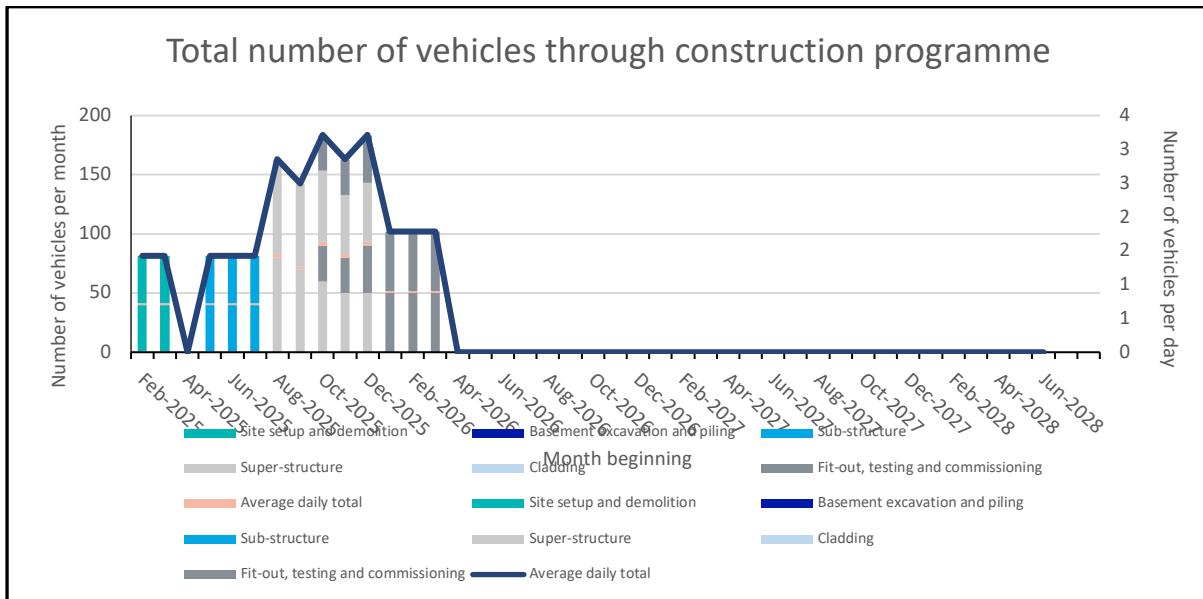


Figure 7. Total number of vehicles through construction programme

8.4. Figure 7, presents the total number of vehicle through the proposed construction programme. The graph demonstrates that peak vehicles per month will occur between October and December 2025.

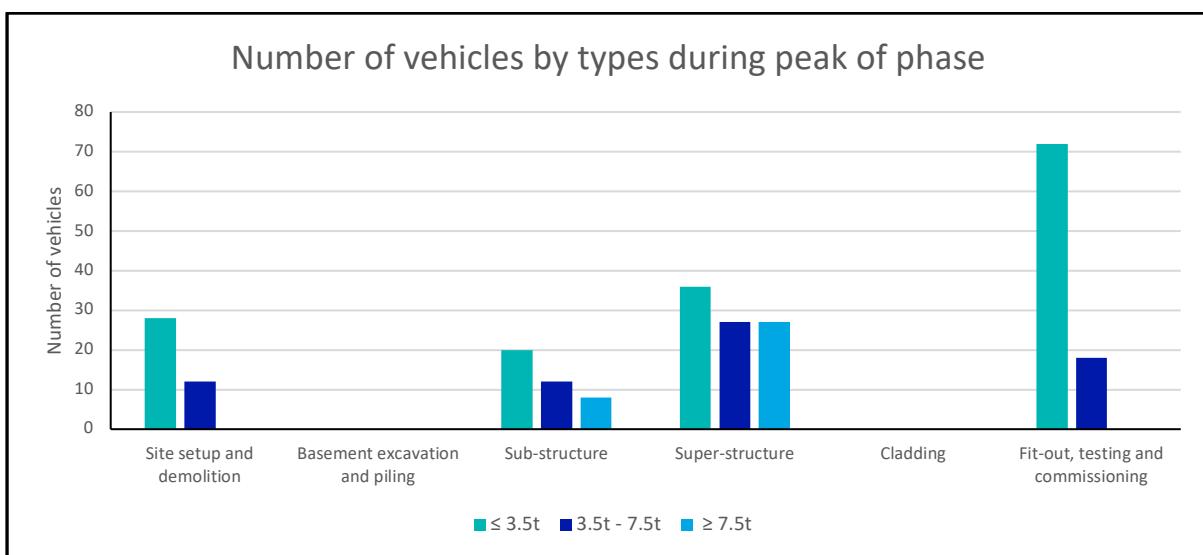


Figure 8. Number of vehicles by type during peak of phase

8.5. Figure 8, presents the number of construction related vehicles by type of vehicle throughout the phases. The types of vehicles are categorised by less than 3.5tn, 3.5tn to 7.5tn and above 7.5 tn. Figure 8, demonstrates that larger vehicles will be in use towards the beginning and mid periods of the project, with smaller vehicles required towards the end of the construction.

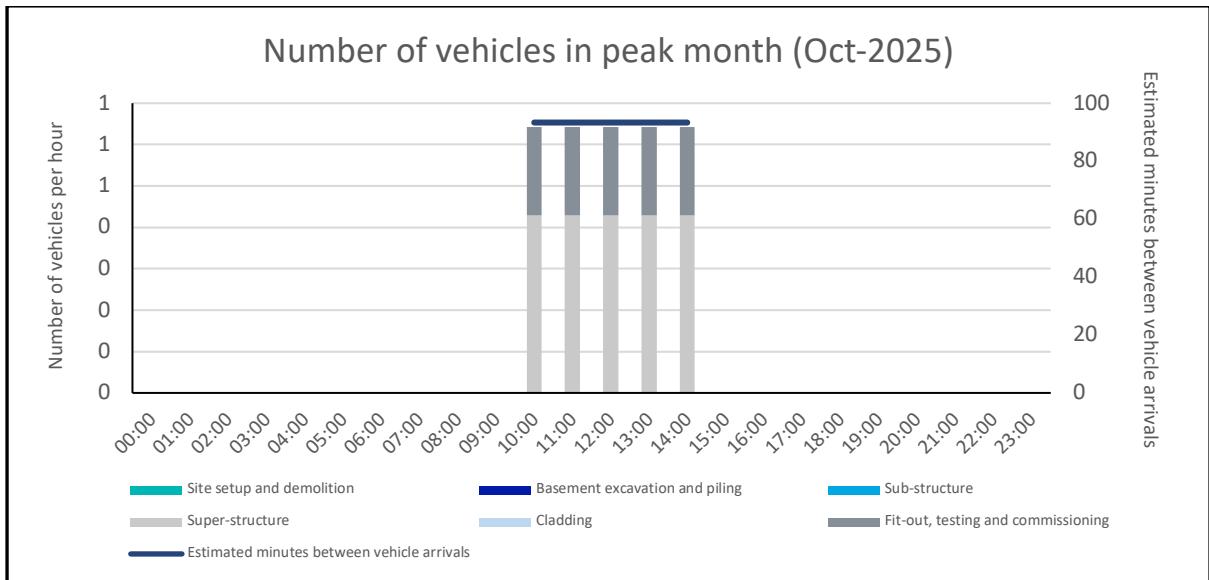


Figure 9. Number of vehicles by types during peak of phase

8.6. Figure 9, presents the number of vehicle by types during peak of phase. The graph also demonstrates the commitment to keep all construction related vehicles and deliveries between the hours of 10:00 and 14:00.

9. Implementing, monitoring and updating

9.1. This CMP will be implemented, monitored and updated by the Construction Management Plan Co-ordinator and will oversee the implementation of the CMP. The CMP Co-ordinator will collect the following information and data:

Number of vehicle movements to site:

- Total vehicle, rail or barge movements
- By vehicle type/size/age
- Time spent on site
- Consolidation centre utilisation
- Origin and destination of vehicle, barge or train arriving at or leaving site (or wharf/railhead in use)
- Delivery/collection accuracy compared to schedule

Breaches and complaints:

- Community concerns about construction activities
- Vehicle routing
- Unacceptable queuing or parking
- Adherence to safety & environmental standards & programmes
- Low Emissions Zone (LEZ) and Ultra Low Emissions Zone
- (ULEZ) compliance
- Anti-idling

Safety:

- Logistics-related incidents
- Record of associated fatalities and serious injuries
- Methods staff are travelling to site
- Vehicles and operators not meeting safety requirements
- Personal safety surrounding the site

Collision Reporting

9.2. All collisions and accidents involving the projects' vehicle and drivers will be reported to the Project Manager and relevant parties. Within 15 days of the contract variation date, the contractor will provide the authority with a collision report. The contractor shall provide the authority with an updated collision report on a quarterly basis or within 5 days of a written request. The data collected will be reported back to the client with full transparency to local authority.