

FINAL

London Borough of Hillingdon

Phase II

Geotechnical and Geo-Environmental Report

(First Phase of Intrusive Investigation

Covering Accessible Areas of the Peninsula)

Hillingdon Water Sports Facility and Activity Centre (HWSFAC)

Broadwater Lake

Moorhall Road

Harefield

UB9 6PE

Report No: 23-09-03B

September 2023

Geo-Integrity, 4 Church Street, Maids Moreton, Bucks. MK18 1QE

Landline: (01280) 816409 Mob.: 07858 367 125 Email:- murraybateman@geo-integrity.co.uk

DOCUMENT RECORD

Report Title Phase II Geotechnical and Geo-Environmental Report

Project Address Hillingdon Water Sports Facility and Activity Centre (HWSFAC),

Broadwater Lake, Moorhall Road, Harefield, UB9 6PE

Project Number 23-09-03B

Client Name London Borough of Hillingdon

Issue No Date	Status	Prepared by	Checked by	
1		Lee Ashworth B.Sc. M.Sc. F.G.S Engineering Geologist	Murray Bateman, M.Sc. DIC C.Geol Pg. Cert. Director	
	Draft Report	SIGNATURE	SIGNATURE	
September 2023		Car	Muray Patomae	
1	Final Report	Lee Ashworth B.Sc. M.Sc. F.G.S Engineering Geologist	Murray Bateman, M.Sc. DIC C.Geol Pg. Cert. Director	
		SIGNATURE	SIGNATURE	
September 2023		Las	Muray katomae	

© This Report is the copyright of Geo-Integrity Ltd. Any unauthorised reproduction or usage by any person other than the addressee is strictly prohibited.

CONTENTS

F	ACTUAL	2
	1.1 INTRODUCTION	2
	1.2 SOURCES OF INFORMATION	3
	1.3 DEVELOPMENT PROPOSALS	4
2		4
_	2.1 PHASE I DESKSTUDY (REF. 22-10-12)	4
	2.1.1 Geotechnical Summary	4
	2.1.2 Geo-Environmental Summary	5
	2.2 SITE WALKOVER	6
3		7
	3.1 SITE WORK AND SAMPLING STRATEGY	7
	3.2 LIMITATIONS	7
	3.3 GROUND CONDITIONS	8
	3.3.1 Summary	8
	3.3.2 Hardstanding	8
	3.3.3 Made Ground	9
	3.3.4 Reworked Ground	9
	3.3.5 Alluvium	9
	3.3.6 Shepperton Gravel Member	10
	3.3.7 Upper Chalk	10
	3.3.8 Sulphate and pH Tests	11
	3.3.9 Groundwater	12
	3.3.10 Infiltration Tests	12
	3.3.11 Plate Load (Equivalent CBR) Tests and Laboratory CBR Tests 3.3.12 Ground Gas	13 14
	3.3.13 Evidence of Contamination	14
4		15
5		16
J	5.1 GENERAL GROUND CONDITIONS INTERPRETATION	16
	5.2 EXCAVATIONS	17
	5.3 FOUNDATIONS	17
	5.3.1 Shallow Foundations	17
	5.3.2 Piled Foundations	18
	5.4 FLOOR SLAB DESIGN	20
	5.5 SULPHATE ATTACK ON UNDERGROUND CONCRETE	20
	5.6 ACCESS ROADS AND PARKING	21
	5.7 INFILTRATION	22
	5.8 GAS PROTECTION	24
6		25
U	6.1 RISKS TO HUMAN HEALTH	25 25
	6.1.1 Introduction	25 25
	6.2 RESULTS OF CHEMICAL TESTING	27
	6.2.1 Asbestos	27 27
	6.2.2 Total Petroleum Hydrocarbons	28
	6.2.3 Polyaromatic Hydrocarbons (PAHs)	29
	6.2.4 Polychlorinated Biphenyls	29
	6.2.5 Natural Soil	30
	6.2.6 On-site Landfill	30
	6.3 RISK TO END USERS	30
	6.3.1 Reducing Risk to End Users	31
	6.3.2 Reducing Risk to Construction Workers	31

6.4 POST REMEDIATION VERIFICATION	32
6.5 RISK TO CONTROLLED WATERS	32
6.5.1 Preliminary Analysis	32
6.5.2 Chemical Testing	33
6.5.3 The Metal Bioavailability Assessment Tool (M-BAT)	34
6.5.4 Risk to Controlled Waters Conclusions	34
6.6 RISK TO UNDERGROUND WATER SUPPLY PIPES	36
7 WASTE DISPOSAL CLASSIFICATION	37
7.1 Introduction	37
7.2 RESULTS OF HAZARD ASSESSMENT	37
7.2.1 Waste Acceptance Criteria (WAC) Testing Results	38
7.3 Re-Use of Material on Site	39
8 CONCLUSIONS AND RECOMMENDATIONS	40
REFERENCES	42

APPENDICES

APPENDIX A - PLANS

- Site Location Plan
- Site Boundary Plan
- Development Proposal Plan
- Topographical Plan
- Area of Investigation Plan
- Walkover Plan
- Exploratory Hole Plan-Proposed
- Site Photographs
- Hardstanding Plan
- Landfill Plan
- Remedial Plan

APPENDIX B-SITE INFORMATION

- Deep Cable Percussive Borehole Log
- Trial Pit Logs
- Soakaway Logs
- Soakaway Results
- **♥** CBR Logs
- **♥** CBR Results
- Gas and Groundwater Monitoring Results

APPENDIX C - LABORATORY INFORMATION

- Geotechnical Laboratory Results
- Geoenvironmental Laboratory Results
- HazWasteOnline Classification

	Executive Summary			
Site Location	Land adjacent to Broadwater Lake, Moorhall Road, Harefield, UB9, 6PE			
OS Grid Reference	TQ 04741 89189			
Development Proposals	Redevelopment of the site to create the Hillingdon Watersports Facility and Activity Centre including demolition of existing Broadwater Lake Sailing Club (BSC) clubhouse at the north of the lake and erection of a building to be occupied by HOAC and BSC including changing facilities, meeting rooms, storage, workshop and seasonal worker accommodation (sui generis), seven activity shelters; three pontoons; two concrete slipways; one boat shed; two equipment storage huts (north of lake and at entrance); boat parking and racking areas; camping area; outdoor activity areas; ecological enhancement throughout the site; new pedestrian routes through the peninsula; landscaping including new woodland, dense vegetation screens and boundary treatment; new access and access road; localised dredging and land reclamation; relocation of existing sailing area and creation of floating and fixed islands within the lake; coach drop off and turning area; vehicle parking; cycle parking; and associated works.			
Published Geology	The site is likely underlain by thick Made Ground associated with the historic processing of aggregate on site with some concrete obstructions overlying Alluvium, overlying Shepperton Gravel, overlying Upper Chalk. Groundwater is likely to be between 1m to 2m below ground level.			
Site History	The previous desk study indicates that the site has been in agricultural usage from at least 1881 until the 1960's when it started to be exploited for its underlying sand and gravel deposits. Processing of this material occurred towards the southeast of the site, accessed from a trackway leading down to Moorhall Road to the site. Extraction continued until the end of the 1990's. Currently the site area is a Nature Reserve and the lake is used by fishing clubs and the Broadwater Sailing Club, there is also one residential house to the very southeast corner of the main site.			
Ground Conditions Encountered	Concrete hardstanding was encountered across the majority of the eastern side of the site and part of the proposed activity field at the southern end of the site, associated with the historic gravel extraction activities. The lateral extent of concrete is shown on the hardstanding plan within Appendix A.			
	Made Ground soils were also encountered across the entire site from ground level and und the hardstanding down to depths between 1.00m and 2.00m bgl, however some areas encoulocally deeper Made Ground including BH3 and BH4 down to depths of 2.45m and 3.45m bg were located along the eastern side of the site.			
	Reworked soils were located locally along the northern boundary becoming thicker westwards. These reworked natural gravels were encountered down to depths ranging between 2.45m and 3.25m bgl interpreted to reflect the infilling processes which was noted on the historical OS maps from 2001.			
	The first natural soil encountered is a consistent layer of Alluvium which is present across the entire site. Alluvium was encountered down to depths ranging between 1.30m and 4.50m bgl.			
	This was underlain by a consistent medium dense to dense granular layer of superficial gravel known as the Shepperton Gravel Member down to depths ranging between 6.10m and 8.00m bgl.			
	The superficial gravels were underlain by structureless chalk comprising layers of gravelly silt (Grade Dm) and silty gravel (Grade Dc) down to the base of the exploratory holes in excess of 15.00m bgl.			
Groundwater Encountered	Groundwater was encountered as water strikes ranging between 1.00m and 4.90m bgl and standing levels between 1.20m and 4.60m bgl within the Made Ground, Alluvium and Shepperton Gravel Member soils across the entire site. Subsequent groundwater monitoring recorded standing water levels between 0.75m and 2.39m bgl. It is considered the groundwater is in continuity with Broadwater Lake.			

Contamination	An area of Made Ground impacted by hydrocarbons was encountered at the north of the site, the levels recorded fall below the relevant S4UL for a commercial land-use, however are elevated for a residential land-use. Therefore, remedial measure will be required. An assessment of the risk to controlled waters is described in detail within section 6.4.
Sulphate Attack on Underground Concrete	The following design sulphate class and aggressive chemical environment classification should be applied: Made Ground: DS-1/AC-1 Reworked Ground: DS-2/AC-2 Alluvium: DS-2/AC-2 Shepperton Gravel Member: DS-1/AC-1 Upper Chalk: DS-1/AC-1
Shallow Foundations	Given the poor near surface ground conditions which includes deep Made Ground/Reworked Ground overlying highly compressible alluvial soils with shallow groundwater levels (0.75m bgl) it is considered conventional shallow foundations will not be viable at this site for settlement sensitive buildings. However, advice has been given for raft foundations where settlement is less sensitive.
Pile Foundations	Preliminary working loads for a range of pile sizes, depths are provided for areas and structures within the proposed development. See section 5.3.2 for further details.
Waste Soil Classification	Two sets of Made Ground are considered which are delineated on the Remedial Plan in Appendix A. Impacted Made Ground (Hydrocarbons): 17 05 04 Stable Non-Reactive Hazardous Waste in a Non-hazardous Landfill General Made Ground/Reworked Ground: 17 05 04 Inert Natural Soil: Inert
Recommendations	We recommend a watching brief should be undertaken during the construction phase, and if during development any previously undiscovered contamination (including visual or olfactory evidence) is found then site management should be immediately informed and inspection by a suitably qualified person should be undertaken. Barrier pipe will be required at this site due to elevated levels of hydrocarbons, SVOC's and VOC's within the Made Ground soils. This first phase of intrusive investigation was undertaken solely on the accessible areas of the peninsula. The data collected to date is sufficient to support the conclusions of this report. The surrounding area of the site mainly covered by the lake and islands is not covered by this investigation and it is anticipated further investigation will be required prior to construction works commencing. Given the development proposals have changed this has altered the location of the proposed buildings. It is considered further investigation including boreholes will be required prior to the development works immediately north of the peninsula where it is proposed to extend the peninsula and construct commercial structures. This ground investigation has identified a single hotspot of contamination associated with elevated levels of hydrocarbons identified within two exploratory holes surrounding a concrete bund situated at the north of the peninsula. It is considered remedial measures will be required to protect against the end users of the site which overall is deemed to be commercial with minor residential land-use associated with camping areas. It may be requested to undertake additional testing in areas across the peninsula and the wider site area which were previously inaccessible during this intrusive investigation. It is understood additional intrusive investigations are being undertaken by HydroGeo associated with sampling the lake bed covering the area surrounding the peninsula. A preliminary assessment of the gas regime was undertaken at the site which identifi

FACTUAL

1.1 INTRODUCTION

Geo-Integrity Ltd were commissioned by Mace Group via Purchase Order (No. MLIMPD0028877) on the 5th of September to update the existing Phase II Factual and Interpretative Geotechnical and Geo-Environmental Report (23-01-09) for the proposed Hillingdon Water Sports Facility and Activity Centre (HWSFAC), Broadwater Lake, Moorhall Road, Harefield, UB9 6PE in order to inform the design and construction of the proposed development. This updated report has been given a new reference number 23-03-09B. The development proposal has changed and therefore the ground investigation previously undertaken (ref.23-01-09) does not accurately reflect the updated development proposal.

This report describes desk-based searches of geological, environmental and historical information, a summary of the previous Phase I Desk Study (ref. 22-10-12), the fieldwork and laboratory testing undertaken and provides an interpretative section of the geotechnical and geo-environmental data from this investigation to inform the proposed development.

This report should be read in conjunction with the previous Phase I Desk Study Report undertaken by Geo-Integrity Ltd., ref. 22-10-12, dated November 2022.

This ground investigation covers the accessible areas of the peninsula only. It is understood subsequent phases of investigation will be undertaken within the wider site area to aid the proposed development.

This report supersedes the previous Phase II Ground Investigation Report (Ref. 23-01-19) undertaken by Geo-Integrity Ltd. This updated report makes aware further investigation covering the entire site boundary will be undertaken. In addition, amendments to the development proposal have changed the land-use scenario to commercial with some areas of residential therefore the human health risk assessment has been updated and recommendations for further work.

The site is located at National Grid Reference TQ 04741 89189.

The report is likely to be reviewed by Hillingdon Council with reference to the NPPF. The NPPF states that a site must be "suitable for its proposed use taking account of ground conditions and any risks arising from land instability and contamination. This includes risks arising from natural hazards or former activities such as mining".

Once the development is completed, and as a minimum, land must not be capable of being determined as 'contaminated land' under the terms of Part IIA of the Environmental Protection Act 1990. However, it also states that "Where a site is affected by contamination or land stability issues, responsibility for securing a safe development rests with the developer and/or landowner."

As such the previous Phase I Desk Study Report (ref. 22-10-12) was the first stage in investigating whether the site is likely to be considered "contaminated", in accordance with clause 183 and 184 of the NPPF.

The objectives of this Phase II Geotechnical and Geo-Environmental Interpretive Report are:-

- To briefly summarise the findings of the previous investigation including historical, geological and environmental information
- To briefly summarise the site development proposals and site setting
- To describe and report the fieldwork undertaken at the site
- To describe and report the geotechnical and chemical laboratory work undertaken on selected samples
- To provide an interpretation of the results of this investigation with regards to the geotechnical properties, and geo-environmental and waste disposal implications for the proposed development

The investigation was performed in accordance with the general requirements of BS 5930:2015, BS EN 1997-2 (2007), BS EN ISO 22475-1 (2006) and other relevant related standards identified below. The fieldwork took place across ten days between the 15th and 28th of February 2023.

1.2 SOURCES OF INFORMATION

The following sources of information have been used to compile this report:-

- Phase I Desk Study Report undertaken by Geo-Integrity Ltd., ref. 22-10-12, dated November 2022
- The British Geological Survey (BGS) and Environment Agency (EA) websites
- ► A site reconnaissance visit undertaken on the 20th of December 2022
- Information from various internet sites on site history and environmental setting

1.3 DEVELOPMENT PROPOSALS

The proposed development involves the redevelopment of the site to create the Hillingdon Watersports Facility and Activity Centre including demolition of existing Broadwater Lake Sailing Club (BSC) clubhouse at the north of the lake and erection of a building to be occupied by HOAC and BSC including changing facilities, meeting rooms, storage, workshop and seasonal worker accommodation (sui generis), seven activity shelters; three pontoons; two concrete slipways; one boat shed; two equipment storage huts (north of lake and at entrance); boat parking and racking areas; camping area; outdoor activity areas; ecological enhancement throughout the site; new pedestrian routes through the peninsula; landscaping including new woodland, dense vegetation screens and boundary treatment; new access and access road; localised dredging and land reclamation; relocation of existing sailing area and creation of floating and fixed islands within the lake; coach drop off and turning area; vehicle parking; cycle parking; and associated works.

2 PREVIOUS INVESTIGATION

2.1 PHASE I DESKSTUDY (REF. 22-10-12)

2.1.1 Geotechnical Summary

The previous desk study undertaken by Geo-Integrity Ltd identified the site is likely underlain by thick Made Ground associated with the historic processing of aggregate on site with some concrete obstructions overlying Alluvium, overlying Shepperton Gravel with Chalk strata at approximately 6m below ground level. Groundwater is likely to be between 1m to 2m below ground level.

Given the site is underlain by chalk, which is highly susceptible to dissolution, a natural cavities risk assessment was undertaken by the previous desk study. The score for the site was 28, which means there is predicted to be no anticipated subsidence hazard risk of natural cavities beneath the site (0% occurrence).

From the historic OS maps the site was once mainly open agricultural land with a network of ditches named Harefield Moor, presumably due to the damp nature of the ground. It is noted the site remains undeveloped for some time however by 1960 it can be seen gravel extraction has begun north and south of the site with Harefield Pit and Troy Mill Gravel Pit both having been extracted and shown as lakes. By 1968 it shows the gravel extraction from the main site area had started with the central and western areas having been extracted. It is not until the plan of 2001 that the site boundaries as seen during the walkover are the same, and this involves a large September 2023

4 Report No.:- 23-03-09B

amount of refilling to the west of the land promontory on the site (therefore this is not original land). No significant changes are recorded after this time.

Given the findings of the previous desk study the ground conditions are likely to comprise of deep Made Ground soils (more so on the western half of the site where the refilling has taken place), overlying Alluvium, overlying Shepperton Gravel Member, overlying Upper Chalk.

A desk study of the deeper ground conditions indicates the site will likely be underlain by Upper Chalk which comprises of:

- Seaford and Newhaven Chalk Formations (Undifferentiated) down to a depth of 50-60m bgl. Described as soft chalk with sporadic nodular flint beds
- Lewes Nodular Chalk down to a depth of 80-90m bgl. Described as hard white/yellow chalk with sporadic flints and thin marls

This is underlain by the Middle Chalk which comprises of:

- New Pit Chalk down to a depth of 125-135m bgl. Described as soft which chalk with thin marls and sporadic flints.
- ► Holywell Nodular Chalk down to a depth of 140m to 150m bgl. Described as hard white to pale grey chalk

This is underlain by the Lower Chalk which comprises of:

Grey Chalk Subgroup down to a depth of 210-220m bgl. Described as grey chalk with interbedded limestone and marl beds

2.1.2 Geo-Environmental Summary

The previous desk study indicates that the site has been in agricultural usage from at least 1881 until the 1960's when it started to be exploited for its underlying sand and gravel deposits. Processing of this material occurred towards the southeast of the site, accessed from a trackway leading down to Moorhall Road to the site. Extraction continued until the end of the 1990's. Currently the site area is a Nature Reserve and the lake is used by fishing clubs and the Broadwater Sailing Club, there is also one residential house to the very southeast corner of the main site.

Given the proposed development of the site as a commercial end usage, it is considered that there is a low to moderate risk to end users. However, the risk of encountered localised pockets of

September 2023 5 Report No.:- 23-03-09B

contamination is considered to be moderate to high. There is also a perceived moderate risk of encountered contamination sources that may be affecting the Principal groundwater Aquifer beneath the site and as the site is in a Source Protection Zone, this would need to be dealt with as part of the development.

The surrounding uses of the site generally poses no risk of contamination, however, there is a large old landfill site to the east of the site that is undoubtedly a large source of landfill gases.

The majority of the rest of the land use on the site is a nature reserve and as such no potentially contaminative land uses have been identified.

As such the main potential sources of contamination which will be investigated as part of this Phase II investigation include:

- ➡ Historic hydrocarbons within the ground from human history in the area of aggregate processing
- ► Historic asbestos within any made ground from human history in the area of aggregate processing
- Historic metals and PAH's within any made ground from human history in the area of aggregate processing
- Ground gas from on and off-site landfills
- PCB from electricity sub-station

2.2 SITE WALKOVER

A site walkover was undertaken as part of this phase II ground investigation on the 20th of December 2022 with Richard Weston of Hillingdon Council (Client) and Stephanie Harper of Greengage Environmental Ltd. (Ecologist).

The site walkover survey was undertaken to agree the locations of the exploratory holes given the site is a site of special scientific interest (SSSI) and the risk of quicksand arising from the historic processing of aggregate. In addition, it was also agreed which areas required clearing of invasive species such as buddleia to enable access for the drilling rigs and excavator to complete the exploratory holes. The walkover plan showing the agreed areas of investigation is shown in Appendix A (the plan shows the previous development proposal).

3 PHASE II INTRUSIVE INVESTIGATION

3.1 SITE WORK AND SAMPLING STRATEGY

The fieldwork was undertaken in accordance with BS 5930:2015, BS EN 1997-2 (2007) and BS EN ISO 22475-1 (2006), with the exploratory locations being selected by Geo-Integrity Ltd and agreed by Richard Weston of Hillingdon Council and Stephanie Harper of Greengage Environmental Ltd. (Ecologist). The exploratory hole locations can be seen in the Appendices.

The fieldwork was undertaken across ten days between the 15th and 28th of February 2023. The sitework consisted of nine cable percussive boreholes down to 15.00m bgl (BH1-BH9), three machine excavated infiltration pits (SA1 – SA3) using a JCB 3CX, fourteen machine excavated trial pits (TP1 – TP14), and seven plate load (equivalent CBR) tests (CBR1 – CBR7). In addition, monitoring wells were installed within boreholes BH3, BH6 and BH9 to undertake subsequent groundwater and gas monitoring and groundwater sampling. Standpipes were installed within boreholes positioned to target potential sources of gas:

- BH3 was positioned within the boundary of the on-site historic landfill (shown on the exploratory hole and landfill plan in Appendix A) identified from the previous Phase I Desk Study.
- BH6 was located at the north-east corner of the site the closest point on the peninsula to the off-site historic landfill identified from the previous desk study
- BH9 was positioned at the north-west corner of the peninsula where deeper Reworked Ground (>3m thick) was encountered

Disturbed samples were taken at selected depths down to the base of the exploratory holes for subsequent laboratory testing and inspection. On completion, all trial pits were carefully backfilled with arisings in thin layers, ensuring that excavated material was replaced in the same order as it had been removed.

3.2 LIMITATIONS

The limitations of this ground investigation which may warrant further investigation are as follows.

1) The development proposal plans were altered after the intrusive investigation had been completed. Therefore, this investigation does not cover areas of the updated development

proposal which include new pontoons, a camping ground, an extension of land to the north of peninsula and construction of new islands.

- 2) The ground investigation was undertaken whilst the site was being cleared of vegetation which limited the extent which could be covered.
- 3) Unsafe ground conditions including sinking sand and soft wet ground were outlined on a topographical survey (shown in Appendix A) further limiting the areas which could be safely investigated.

A plan showing the area investigated during this ground investigation is shown in Appendix A. The red highlighted area shows the area covered by the investigation. The areas highlighted black were not accessible during the ground investigation due to quick sand to the south and soft ground and dense tree coverage at the centre and north of the site. The wider site area was not covered by this investigation. It is understood HydroGeo are undertaking ground investigation covering the surrounding lake bed.

3.3 GROUND CONDITIONS

3.3.1 Summary

The site and laboratory test work revealed that the general succession of strata can be represented by localised hardstanding, overlying Made Ground, overlying localised Reworked Ground, overlying Alluvium, overlying the Shepperton Gravel Member, overlying the Upper Chalk.

Descriptions of the strata encountered are given on the exploratory hole records and are summarised below. Further information is provided on the exploratory hole logs within the Appendices.

3.3.2 Hardstanding

Hardstanding was encountered as concrete within the southern and eastern areas of the site within exploratory holes (BH1, BH3, BH4, BH5, CBR2, CBR3, TP6, TP7, and TP10 – TP12). Concrete was encountered down to depths ranging between 0.05m and 0.70m bgl.

In addition, in trial pits TP6 and TP7 located within the proposed camping area at the southern end of the site encountered very dense weathered concrete down to depths of 0.80m and 1.60m bgl upon which the trial pits refused. The 'weathered concrete' is considered to be sourced from the

refilling process indicated by the desk study information. A plan showing the areas of concrete hardstanding is shown in Appendix A.

3.3.3 Made Ground

Encountered in each of the exploratory holes from depths ranging between ground level and 0.70m bgl down to depths ranging between 0.30m and 3.45m bgl.

The material was generally encountered as loose, orange, brown, silty, sandy gravel, gravel is fine to coarse brick, flint, concrete, ash, slag, slate, and quartz with occasional cobbles and boulder size fragments of concrete.

Localised layers of soft to firm, dark brown, beige, silty, slightly gravelly clay (less than 1m in thickness) were encountered at the north-west and southern areas of the site covered by BH2, TP2, TP9, TP9, TP10 and CBR6.

Distinct hydrocarbon staining and odour was encountered within the Made Ground soils surrounding the historic concrete bund located at the north of the site covered by TP4 and CBR5. Additional trial pits were undertaken around the historic concrete bund which did not encounter hydrocarbon staining and odour these include TP3, TP5, BH7. As such, it is considered the main impact from hydrocarbons is localised to the immediate west side of the historic bund.

3.3.4 Reworked Ground

Encountered locally at the north-west area of the site within exploratory holes BH6 – BH7 underlying the Made Ground soils from depths ranging between 0.30m and 0.45m bgl down to depths ranging between 2.45m and 3.25m bgl. The material was encountered as medium dense to dense, light brown, sandy gravel, gravels being fine to coarse flint and quartz.

Particle size distribution test undertaken on a representative sample recorded the following grain size percentages: Fines:-3%, Sand:- 38%, Gravel:- 59%. These percentages indicate the material is predominantly a gravel with lesser amounts of sand and fines, respectively.

SPT tests undertaken within this material recorded 'N' values between 19 and 32 indicating a medium dense to dense granular soil.

3.3.5 Alluvium

Encountered within the majority of the exploratory holes except the shallow ones including the CBR pits and those located at the south-west area of the site. It is considered Alluvium is encountered

September 2023

9

Report No.:- 23-03-09B

across the entire site at depth, which from this investigation has been proven at depths from 0.60m and 3.45m bgl down to depths ranging between 1.30m and 4.50m bgl. The material was encountered as very soft, dark brown, black, grey, green, highly organic, silty, slightly gravelly clay with peat and plant debris. Gravels were encountered as fine to coarse flint.

Laboratory tests undertaken on representative samples revealed a moisture content range between 66% and 112% and a modified plasticity index range of 11% to 18% which equates to a low shrinkage soil in accordance with NHBC guidelines. The extremely high recorded moisture content indicates the high organic content within this material, as organic matter characteristically enables high water retention. Given the high organic content this material is considered to be highly compressible and unsuitable as a founding stratum due to unacceptable settlements.

SPT tests undertaken within this material recorded 'N' values between 3 and 7 indicating very soft cohesive soil.

3.3.6 Shepperton Gravel Member

Encountered only in the majority of the deeper exploratory holes (BH1 – BH9, TP11 – TP14) from depths ranging between 0.50m bgl and 4.50m bgl down to depths ranging between 6.10m and 8.00m bgl. The material was encountered as medium dense to dense, dark grey, orange, brown, sandy gravel, gravels being fine to coarse, sub-angular to sub-rounded flint and quartz. Local layers of loose granular material was also located within BH5

Particle size distribution tests undertaken on representative samples recorded the following grain size percentages: Fines:- 0% - 3%, Sand:- 6% - 38%, Gravel:- 59% - 94%. Cobbles were also recorded within two samples however these were excluded from the total percentage as they are not representative of the material.

SPT tests undertaken within this material recorded 'N' values generally between 17 and 50 indicating a medium dense to very dense granular soil. Some lower 'N' values were also recorded between 6 and 9 which corresponded to the top of the formation in BH5 and the bottom of the formation within BH2 and BH4. It is considered the lower 'N' values likely reflect transitional water softened soils given the lower values are located at the top and base of the formation.

3.3.7 Upper Chalk

Encountered only in the deep cable percussive boreholes (BH1 – BH9) at a depth of 4.50m bgl down to the base of the exploratory holes in excess of 19.95m bgl. The material was encountered September 2023

10

Report No.:- 23-03-09B

at depths ranging between 6.10m and 8.00m bgl down to the base of the exploratory holes in excess of 15.00m bgl. The material was encountered as structureless off-white chalk comprising both gravelly silt (Grade Dm) and silty gravel (Grade Dc).

Laboratory tests undertaken on representative samples of the coarse chalk gravel recorded saturated moisture contents between 21% and 27%, intact dry density between 1.57 and 1.73mg/m³ and intact bulk density between 1.97 and 2.09mg/m³. This equates to medium to high density chalk in accordance with CIRIA C574.

SPT tests undertaken within this material generally recorded 'N' values between 10 and 35 with values increasing with depth. The only variation was recorded within BH1 which recorded 'N' values of 0 and 4 at depths of 7.00m and 8.50m bgl, respectively. The value of 0 indicates the SPT fell under its own weight and is considered to be a localised zone of weakness at the top of the formation in this area. The 'N' values increased to >10 below 10.00m bgl.

3.3.8 Sulphate and pH Tests

Soluble sulphate and pH tests were carried out on samples of Made Ground recovered from depths ranging between of 0.10m and 1.65m bgl, the Reworked Ground recovered from depths ranging between 0.30m and 1.65m bgl, Alluvium recovered from depths ranging between 1.20m and 3.45m bgl, the Shepperton Gravel Member recovered from depths ranging between 5.00m and 5.45m bgl and the Upper Chalk from depths ranging between 7.00m and 7.45m bgl. In addition, total sulphur and acid soluble sulphate tests were undertaken on Alluvial samples as sulphates may found in locally significant concentrations in Alluvium and Peat.

These recorded values are shown in the table below:

Parameter	Range
Soluble Sulphate (g/l)	<0.010 – 0.52
pH units	8.5 – 9.8
Acid Soluble (Alluvium)	0.044 - 0.097
Total Sulphur (Alluvium)	0.10 – 0.18

3.3.9 Groundwater

Groundwater was encountered during the intrusive investigation within the majority of the exploratory holes with water strikes ranging between 1.00m and 4.90m bgl and standing levels between 1.20m and 4.60m bgl within the Made Ground, Alluvium and Shepperton Gravel Member soils.

Subsequent groundwater monitoring undertaken between 09/03/2023 and 29/03/2023 within the standpipes installed within BH3, BH6 and BH9 recorded standing water levels between 0.75m and 2.39m bgl.

Spot heights using GPS were taken to provide accurate elevations for the groundwater levels to estimate the general direction of groundwater flow. It is considered the elevation collected for BH9 is inaccurate due to tree canopy cover and therefore has been discarded. The following table presents the groundwater levels recorded for BH3 and BH6.

Borehole	Groundwater Levels (mOD)				
	09/03/2023 15/03/2023 29/03/202				
ВН3	38.56	38.65	38.65		
ВН6	38.67	38.82	38.82		

The results indicate groundwater levels are consistently lower within BH3 which is located south of BH6. Therefore, the general direction of groundwater is considered to be to the south which corresponds to the direction of the River Colne.

3.3.10 Infiltration Tests

Infiltration testing was carried out in three locations (SA1 – SA3). The soakaway tests were excavated down to depths ranging between 0.50m to 1.50m bgl within the Made Ground and Alluvium. Given the high water table and general depth to natural soils it was not possible to undertake infiltration testing within the natural soils. Therefore, infiltration tests were undertaken within the near surface Made Ground soils covered by SA2 and SA3 and Alluvium within SA1. Currently rainwater is continuously percolating through the Made Ground soils so the proposed development is unlikely to impact this. However, as part of this investigation leachate tests have also been undertaken on Made Ground soils to assess the risk of conventional soakaways within September 2023

12

Report No.:- 23-03-09B

Made Ground to controlled waters given the proximity to Broadwater Lake and the underlying Principle Aquifer. The results of the leachate tests are discussed within section 6.4.

The general methods set out in BRE 365 Digest were followed and the infiltration rates for each BRE 365 test are presented below and the graphs are shown in Appendix B.

	Infiltration Rates (m/s)				
Test Location	Test 1	Test 2	Test 3	Average	
SA1	No recorded drop in water level over 44 hours	-	-	-	
SA2	2.94x10 ⁻⁴	1.99x10 ⁻⁴	1.95x10 ⁻⁴	2.29x10 ⁻⁴	
SA3	5.72x10 ⁻⁴	1.99x10 ⁻⁴	3.53x10 ⁻⁴	3.74x10 ⁻⁴	

The results indicate three repeat infiltration tests were completed within the Made Ground soils of SA2 and SA3 as required by the guidance within BRE 365 Digest.

The infiltration test undertaken within the Alluvium (SA1) recorded no drop in water level over a period of 44 hours.

3.3.11 Plate Load (Equivalent CBR) Tests and Laboratory CBR Tests

Seven Plate Load (equivalent CBR) Tests were undertaken at depths ranging between 0.10m and 0.45m bgl. Three plate load tests were undertaken on the concrete including CBR2 – CBR4 at depths ranging between 0.10m and 0.20m bgl and recorded equivalent CBR values between 9.95% and 41.87%.

The remaining four plate load tests were undertaken within the Made Ground soils and recorded equivalent CBR values between 5.24% and 19.47%.

Laboratory CBR tests were undertaken on selected near surface samples including two samples from the Made Ground taken at depths of 0.10m bgl and 0.50m bgl and two samples of the Reworked Ground taken at a consistent depth of 0.50m bgl.

The Made Ground samples recorded CBR values between 0.5% and 22.1% and the Reworked Ground samples recorded CBR values between 35.3% and 73.4%.

3.3.12 Ground Gas

Four gas monitoring visits were undertaken alongside groundwater monitoring within BH3, BH6 and BH9 to confirm the ground gas regime at the site between 09/03/2023 and 29/03/2023. Methane was recorded between below detection limits and 0.6% in all visits with lower explosive limits between 13.6% and 15.7%; carbon dioxide was recorded between 0.1% and 0.8% with oxygen between 0.6% and 19.3%. Peak flow was recorded at 0.27l/h and atmospheric pressure was recorded between 986mb to 1011mb.

3.3.13 Evidence of Contamination

Some obvious signs of contamination were identified locally within the Made Ground soils encountered during the field work. This relates to significant hydrocarbon staining and odour within two trial pits (TP4 and CBR5) positioned next to a historic concrete bund situated at the north of the site. In addition, some man-made materials were encountered within the Made Ground such as brick, concrete, ash, slag and slate with occasional cobbles and boulder size fragments of concrete.

4 GEO-ENVIRONMENTAL TESTING

Geo-environmental laboratory testing was scheduled by Geo-Integrity on thirteen soil samples recovered during the fieldwork. The testing was carried out at a MCERTS and UKAS accredited laboratory. The results are presented in the Appendices.

Thirteen soil samples were tested for a varied suite containing the following:

- Metals and inorganic substances
- Speciated Polyaromatic Hydrocarbons (PAH)
- Benzene, Toluene, Ethylbenzene and Xylene (BTEX)
- Total Petroleum Hydrocarbons (TPH), with eight band split
- ▶ In addition, the three Made Ground samples were tested for the presence of asbestos

Two samples of Made Ground taken from TP4 which identified significant hydrocarbon staining and odour were specifically tested for aliphatic and aromatic petroleum hydrocarbons.

Two samples of Made Ground taken from trial pits situated adjacent to the two soakaway pits SA2 and SA3 were tested for leachates to aid with the risk assessment to controlled waters.

Four samples were tested for a suite of hydrocarbons, volatile organic compounds (VOCs), Semi-volatile organic compounds (SVOCs) as part of the UKWIR Suite to assess whether barrier pipe is required for underground water pipes.

Three groundwater samples were collected and tested for a suite of chemicals in accord with the environmental quality standards for fresh water including a range of heavy metals, TPH, a range of PAH's, dissolved organic carbon, pH, a range of essential minerals including calcium, potassium, magnesium and sodium and chemical oxygen demand to assess the risk to controlled waters.

In addition, WAC testing was undertaken on two near surface samples of Made Ground to aid with waste classification.

5 GEOTECHNICAL INTERPRETIVE SECTION

5.1 GENERAL GROUND CONDITIONS INTERPRETATION

This intrusive investigation identified concrete hardstanding across the majority of the eastern side of the site and part of the proposed activity field at the southern end of the site, associated with the historic gravel extraction activities. The lateral extent of concrete is shown on the hardstanding plan within Appendix A. The thickness of the concrete ranged from 0.05m and 0.70m.

Made Ground soils were also encountered across the entire site from ground level and underlying the hardstanding. Made Ground soils were generally recorded down to depths between 1.00m and 2.00m bgl, however some areas encountered locally deeper Made Ground including BH3 and BH4 down to depths of 2.45m and 3.45m bgl which were located along the eastern side of the site.

Reworked soils were located locally along the northern boundary becoming thicker westwards. These reworked natural gravels were encountered down to depths ranging between 2.45m and 3.25m bgl interpreted to reflect the infilling processes which was noted on the historical OS maps from 2001.

The first natural soil encountered is a consistent layer of Alluvium which is present across the entire site. Alluvium was encountered down to depths ranging between 1.30m and 4.50m bgl. Given the high organic content this material is considered to be highly compressible and unsuitable as a founding stratum due to unacceptable settlements.

This was underlain by a consistent medium dense to dense granular layer of superficial gravel known as the Shepperton Gravel Member down to depths ranging between 6.10m and 8.00m bgl.

The superficial gravels were underlain by structureless chalk comprising layers of gravelly silt (Grade Dm) and silty gravel (Grade Dc) down to the base of the exploratory holes in excess of 15.00m bgl. BH1 encountered a weak zone between 7.00m and 8.50m bgl indicated by low SPT 'N' values of 0 and 4 interpreted localised zone of weakness at the top of the formation in this area. No other significant zones of weakness were encountered across the site within this material which supports the conclusions of the natural cavities risk assessment that there is no anticipated risk of subsidence from natural cavities beneath the site.

Groundwater was encountered as water strikes ranging between 1.00m and 4.90m bgl and standing levels between 1.20m and 4.60m bgl within the Made Ground, Alluvium and Shepperton Gravel Member soils across the entire site. Subsequent groundwater monitoring recorded standing September 2023

16

Report No.:- 23-03-09B

water levels between 0.75m and 2.39m bgl. It is considered the groundwater is in continuity with Broadwater Lake.

5.2 EXCAVATIONS

Conventional plant should be sufficient for the excavation of the underlying soils at the site, however breaking equipment will be required within the areas highlighted yellow on the hardstanding plan. Given the granular nature of the Made Ground soils it is likely shallow excavations will be unstable in the short term, therefore likely requiring trench support.

Excavations should remain dry down to a depth of 0.75m bgl, taken from the shallowest groundwater reading during winter when it is considered the wettest period of the year.

5.3 FOUNDATIONS

This ground investigation has identified variably deep Made Ground and Reworked Ground overlying highly compressible soft Alluvium accompanied with shallow groundwater levels of which is considered to be in continuity with the adjacent lake. Therefore, the ground conditions listed above will be problematic for shallow foundations and it is likely alternative foundations such as piles will be required for the proposed development.

The deep boreholes (BH1-BH9) undertaken as part of this ground investigation were positioned in areas where proposed structures were proposed to aid with foundation design. However, given the development proposal has changed the majority of the larger structures are proposed to be constructed on proposed reclaimed land forming the extension to the north of the peninsula. This area was not covered by this intrusive investigation. Therefore, it is considered further ground investigation will be required to form an accurate foundation solution. Further deep boreholes in this area to locate the depth of the underlying chalk will be required.

5.3.1 Shallow Foundations

Given the presence of thick near surface Made Ground, Reworked Ground and Alluvial soils it is considered shallow foundations will be unsuitable for settlement sensitive structures due to unacceptable total and differential settlements under applied foundations loadings.

Shallow reinforced raft foundations may be considered for small, low-bearing structures where a small amount of settlement can be tolerated, while keeping differential settlement to a minimum. A reinforced raft foundation could be considered founded within the underlying near surface Made

Ground or Reworked Ground. The following measures should be taken prior to construction of the raft:-

- Excavation of the underlying soil to a depth of 1.00m with heavy proof rolling of the resultant sub-grade.
- Making up the void with a Type 1 aggregate, properly rolled and reinforced with geotextile at 0.30m centres.
- Engineer designed reinforced raft foundation in accordance with NHBC Standards Chapter 4.4.

The amount of settlement will be reflective of the properties of the engineered fill. Consideration should also be given to the shallow groundwater levels (~0.75m bgl) which further limit the suitability of shallow foundations.

5.3.2 Piled Foundations

This intrusive investigation was tailored to the previous development proposal and therefore preliminary working loads for piles were calculated for specific areas of the peninsula where structures were proposed. The updated development proposal (shown in Appendix A) indicates the majority of the structures are located on a proposed extension to the northern side of the peninsula. As discussed above further investigation will be required to form a suitable foundation design in this area of reclaimed land.

However, for reference the preliminary working loads for specific areas of the peninsula investigated by this investigation are provided below.

Given the variable near surface ground conditions located across the peninsula, working loads for a range of pile depths and sizes have been calculated using specific boreholes as shown in the table below.

Location	Boreholes
North-west corner	BH8 and BH9
Centrally along the northern boundary	BH7
North-east corner	BH5 and BH6
Centrally along the southern boundary	BH2
Centrally along the eastern boundary	BH3 and BH4

Piles would extend through the Made Ground, Reworked Ground, Alluvium and Shepperton Gravel Member and terminate within the underlying Upper Chalk.

The advice of specialist piling contractors should be sought to formulate a suitable piling technique and type for the ground conditions encountered at this site, before commencement of the works.

It is anticipated that a CFA pile system will be the most appropriate on this site given the ground conditions. The ground water is likely to be relatively static given the fact it is considered to be in continuity with the adjacent lake. However, care should be taken to ensure that washing away of concrete does not take place which could weaken the pile, also known as 'necking'.

The following table provides working loads for a range pile diameters and depths for the specified areas. The working loads are based on the skin friction of the superficial gravel and the base resistance of the Upper Chalk. The Made Ground and Reworked Ground soils have been ignored as part of the calculations and a negative skin friction has been applied to the Alluvial soils.

(Location)	Depth of the	Founding	Pile Working Loads (kN)		
	pile (m bgl)	Stratum	Pile diameter	Pile	Pile
			300mm	diameter	diameter
				450mm	600mm
North-west	7.5	Upper Chalk	35	85	150
corner	10	Upper Chalk	35	85	150
(BH8 and BH9)	12.5	Upper Chalk	65	150	270
Centrally north	7.5	Upper Chalk	30	80	140
(BH7)	10	Upper Chalk	60	140	260
	12.5	Upper Chalk	60	140	260
North-east	7.5	Upper Chalk	45	95	175
corner	10	Upper Chalk	55	130	230
(BH5 and BH6)	12.5	Upper Chalk	70	160	280
Centrally south	7.5	Upper Chalk	25	70	140
(BH2)	10	Upper Chalk	35	85	160
	12.5	Upper Chalk	35	100	185
Centrally east	7.5	Upper Chalk	40	90	160
(BH3 and BH4)	10	Upper Chalk	50	120	220
	12.5	Upper Chalk	65	160	280

September 2023 19 Report No.:- 23-03-09B

An overall FOS of 3.0 has been applied

The proposed development indicates there are no buildings structures located within the area surrounding BH1. However, should the proposed development change to including buildings structures in this area further investigation is likely to be required given the zone of weakness identified between 7.00m and 8.50m bgl.

5.4 FLOOR SLAB DESIGN

Floor slabs at the site should be suspended given the general depth of Made Ground across the site.

The advice given within the NHBC Standards regarding the construction of floor slabs should be followed.

5.5 SULPHATE ATTACK ON UNDERGROUND CONCRETE

Sulphate tests were undertaken to give an indication of the aggressivity of the ground in relation to buried concrete, as set out in the Building Research Establishment (BRE) Special Digest 1 (2005) Concrete in Aggressive Ground, Part 1: Assessing the aggressive chemical environment.

Therefore in accordance with the BRE Special Digest, these results have been given in the table below, in relation to strata type and required Design Sulphate Class and site Aggressive Chemical Environment Classification (ACEC).

Strata	Design Sulphate Class	Aggressive	Chemical	Environment
		Classification		
Made Ground	DS-1		AC-1	
Reworked Ground	DS-2		AC-2	
Alluvium	DS-2		AC-2	
Shepperton Gravel	DS-1		AC-1	
Member				
Upper Chalk	DS-1		AC-1	

5.6 ACCESS ROADS AND PARKING

Seven Plate Load (equivalent CBR) Tests were undertaken at depths ranging between 0.10m and 0.45m bgl. Three plate load tests were undertaken on the concrete including CBR2 – CBR4 at depths ranging between 0.10m and 0.20m bgl and recorded equivalent CBR values between 9.95% and 41.87%.

The remaining four plate load tests were undertaken within the Made Ground soils and recorded equivalent CBR values between 5.24% and 19.47%.

Laboratory CBR tests were undertaken on selected near surface samples. The Made Ground samples recorded CBR values between 0.5% and 22.1% and the Reworked Ground samples recorded CBR values between 35.3% and 73.4%.

Made Ground has been proven across the site, and given the unknown origin of the soil, its variability and the likelihood and proven possibility for soft-spots, we recommend that any areas of soft or deleterious material should be excavated, replaced with a properly compacted coarse-grained fill and proof rolled prior to construction.

In addition, to avoid uneven and excessive settlement in hard-standing areas it is recommended that the following precautions are taken:-

- Heavy proof-rolling of the exposed sub-grade strata
- Excavation of soft spots encountered and replacement with well compacted granular material
- The usage of a geo-textile separator layer above the sub-grade.
- A design CBR value of 5% is adopted

5.7 INFILTRATION

Appropriately designed sustainable drainage systems (SuDS) are more sustainable than using piped drainage to local sewer systems. However, infiltration measures close to buildings may result in undermining of foundations and softening of soils leading to instability. Attenuation measures should be located at suitable distances from foundations and infrastructure.

Given the high water table and general depth to natural soils it was not possible to undertake infiltration testing within the natural soils. Therefore, infiltration tests were undertaken within the near surface Made Ground soils covered by SA2 and SA3 and Alluvium within SA1.

Currently rainwater is continuously infiltrating through the Made Ground soils so the proposed development is unlikely to impact this. However, as part of this investigation leachate testing has also been undertaken on Made Ground soils to assess the risk of conventional soakaways within Made Ground to controlled waters given the proximity to Broadwater Lake and the underlying principle aquifer. The results of the leachate tests are discussed within section 6.2.

The general methods set out in BRE 365 Digest were followed and the infiltration rates for each BRE 365 test are presented below and the graphs are shown in Appendix B.

	Infiltration Rates (m/s)				
Test Location	Test 1	Test 2	Test 3	Average	
SA1	No recorded drop in water level over 44 hours	-	-	-	
SA2	2.94x10 ⁻⁴	1.99x10 ⁻⁴	1.95x10 ⁻⁴	2.29x10 ⁻⁴	
SA3	5.72x10 ⁻⁴	1.99x10 ⁻⁴	3.53x10 ⁻⁴	3.74x10 ⁻⁴	

The results indicate three repeat infiltration tests were completed within the Made Ground soils of SA2 and SA3 as required by the guidance within BRE 365 Digest. As such it is considered conventional soakaways are viable at this site within the Made Ground soils.

The results are presented in Appendix B.

Given the water table is located well above the chalk interface and there is no evidence of dissolution features at this site the risk of soakaways reactivating existing dissolution features is considered to be negligible.

5.8 GAS PROTECTION

The risk of ground gases impacting the site was assessed by reference to the paper "A pragmatic approach to ground gas risk assessment for the 21st Century" Card and Wilson, 2011. And determined that the site may be at risk from ground gases should deepened Made Ground soils be encountered.

Four gas monitoring visits were undertaken alongside groundwater monitoring within BH3, BH6 and BH9 to provide a preliminary review of the ground gas regime at the site between 09/03/2023 and 29/03/2023. Methane was recorded between below detection limits and 0.6% in all visits with lower exposure limits between 13.6% and 15.7%; carbon dioxide was recorded between 0.1% and 0.8% with oxygen between 0.6% and 19.3%. Peak flow was recorded at 0.27l/h and atmospheric pressure was recorded between 986mb to 1011mb.

Therefore, the worst-case gas screening value (GSV) is 0.00216.

Based on the conditions measured during the monitoring visits carried out to date, in accordance with BS8485:2015 and CIRIA C665, 2007 this would be considered as a Characteristic Situation 1 (CS1) due to no significantly elevated levels recorded.

It is considered further investigation may be required given the potential sources of gas present both on-site and off-site. Further investigation will likely involve additional monitoring visits within the standpipes already installed. Additional monitoring wells may also be requested in the wider site area.

The site is located in an area where less than 1% of homes exceed the action level of 200Bq/m³ for radon gas, and therefore no radon protection measures are necessary in the construction of new dwellings or extensions.

The area of Made Ground impacted by hydrocarbons may cause a vapour risk, however given this area is proposed to be a mixture of hardstanding and soft landscaping with no proposed structures as such there is currently no risk to the end users. Should the proposed development change to include buildings in this area where vapours can enter confined rooms further assessment by a suitably qualified engineer should be undertaken.

Full details of gas concentrations and gas flow data recorded during the monitoring visits are given in Appendices.

6 GEO-ENVIRONMENTAL INTERPRETATIVE SECTION

6.1 RISKS TO HUMAN HEALTH

6.1.1 Introduction

Environment Agency guidance LCRM *Land Contamination: Risk Management*, (EA, 2019), states that human health risk assessment should be undertaken by a tiered approach using the source-pathway-receptor principle. A desk study constitutes the first tier, and this was previously undertaken by Geo-integrity Ltd., ref. 22-10-12, dated November 2022.

The conclusions of this phase were that:-

"Given the proposed development of the site will be mainly commercial with some minor residential end usage, it is considered that there is a low to moderate risk to end users. However, the risk of encountered localised pockets of contamination is considered to be moderate to high. There is also a perceived moderate risk of contamination sources that may be affecting the Principal groundwater Aquifer beneath the site and as the site is in a Source Protection Zone, this would need to be dealt with as part of the development."

It was determined that there are several primary potential sources of contamination on-site relating to:

- * "Historical Hydrocarbons within the ground from the human history in the area of aggregate processing
- ▶ Historic asbestos within any made ground from human history in the area of aggregate processing
- Historic metals and PAH's within any made ground from human history in the area of aggregate processing
- PCB's from the on-site electricity sub-station
- Ground gas from on and off-site landfill sites
- Elevated levels of contaminants associated with the on-site landfill"

Results are analysed under the second tier, known as a Generic Quantitative Risk Assessment (GQRA), which uses generic guideline values to compare site chemical data against, and the final tier would be a Detailed Quantitative Risk Assessment (DQRA), which use data derived from the ground investigation to assess risks to identified receptors.

The assessment included in this report comprises a GQRA, which is undertaken by comparing soil contaminant concentrations from this investigation with conservative Generic Assessment Criteria (GAC). GAC for various land use and exposure scenarios have been selected from the following sources:

- CL:AIRE Category 4 Screening Levels (C4SL);
- LQM Suitable for Use Levels (S4UL);
- CL:AIRE/EIC/AGS GAC

The GAC have been derived using the Environment Agency Contaminated Land Exposure Assessment (CLEA) model, for a range of land uses and exposure scenarios, including:

- Residential with the consumption of home-grown produce;
- Residential without the consumption of home-grown produce;
- ♥ Commercial:
- Allotments;
- Public Open Space near residential housing (POS_{resi}); and
- ♥ Public Open Space public park scenario (POS_{park})

Given the proposed development will be mainly commercial with some minor residential end-use both a "Commercial" and "residential with the consumption of home-grown produce" land-use scenario has been selected, for this assessment.

6.2 RESULTS OF CHEMICAL TESTING

Thirteen near surface soil samples were chemically tested the details of which are specified in section 4. The samples tested include:

Made Ground Samples:

- ► TP1 at a depth of 0.50m bgl
- TP10 at a depth of 0.80m bgl
- ▼ TP12 at a depth of 0.80m bgl
- ▼ TP6 at a depth of 0.50m bgl
- ► TP9 at a depth of 1.40m bgl
- ► TP14 at a depth of 0.60m bgl
- ► TP5 at a depth of 0.50m bgl
- ▼ TP3 at a depth of 1.20m bgl
- ▼ TP4 at a depth of 0.75m bgl
- ♥ TP4 at a depth of 2.00m bgl
- CBR5 at a depth of 0.75m bgl
- ► TP2 at a depth of 0.50m bgl

Natural Soil Sample

TP13 at a depth of 1.30m bgl

The above samples were screened against the relevant GAC for a 'Commercial' land use scenario as described above and identified no significantly elevated levels.

The above samples were also screened against the relevant GAC for a "residential with the consumption of home-grown produce" land-use scenario and identified elevated levels of polyaromatic hydrocarbons (not deemed a risk see section 6.2.3) within four Made Ground samples and total petroleum hydrocarbons within three Made Ground Samples.

6.2.1 Asbestos

Screening for the presence of asbestos indicated no asbestos was present within each of the twelve Made Ground samples tested.

6.2.2 Total Petroleum Hydrocarbons

The intrusive investigation identified a localised area of hydrocarbon odour and staining within TP4 and CBR5 situated adjacent to a historic concrete bund located at the north of the site. As such specific testing including an assessment of both aromatic and aliphatic hydrocarbons was undertaken on three representative samples. When compared to the relevant S4UL's for a 'Commercial' land-use scenario no significantly elevated levels were recorded.

Hydrocarbon levels were much higher within the Made Ground soil samples taken from TP4 and CBR5 compared to the rest of the site, being located adjacent to the historic bund identified at the north of the site. The levels were below the relevant S4UL's for a 'Commercial' land-use scenario and therefore there is no risk to the end users for a proposed commercial site.

However, when compared to a "residential with the consumption of home-grown produce" land-use scenario elevated levels of TPH were encountered within TP4 and CBR5.

A total of three samples recorded elevated levels of total petroleum hydrocarbons including two samples taken from TP4 at depths of 0.75m and 2.00m bgl and one sample taken from CBR5 at a depth of 0.75m bgl. Elevated levels of TPH C8 – C10, TPH C10 – C12, TPH C12 – C16, TPH C16 – C21, TPH C21 – C35. The table below shows the range of elevated levels, the number of samples elevated and the relevant GAC.

TPH Band	No. of	samples	Recorded Elevation	Relevant GAC (mg/kg)
	exceeded	(out of	Range (mg/kg)	
	thirteen)			
TPH C8 – C10	2		76 - 86	27
TPH C10 – C12	2		400 - 490	74
TPH C12 – C16	3		600 – 4500	140
TPH C16 – C21	3		1000 – 6900	260
TPH C21 – C35	1		3400	1100

6.2.3 Polyaromatic Hydrocarbons (PAHs)

Elevated levels of polyaromatic hydrocarbons were encountered within four out of the thirteen samples tested when compared to the GAC for a "residential with the consumption of home-grown produce" land-use scenario. Four sample recorded elevated levels of dibenz(a,h)anthracene and one sample recorded elevated levels of three PAHs including benzo(b)fluoranthene, benzo(a)pyrene and dibenz(a,h)anthracene.

Dibenz(a,h)anthracene was recorded to be elevated within four samples taken from TP5 at a depth of 0.50m bgl, TP14 at a depth of 0.60m bgl, TP4 at a depth of 2.00m bgl and CBR5 at a depth of 0.75m bgl. Elevated levels ranged between 0.25mg/kg and 1.2mg/kg.

Three PAH's were elevated within one sample taken from CBR5 at a depth of 0.75m bgl. Thes included dibenz(a,h)anthracene recorded at 1.2mg/kg, benzo(b)fluoranthene recorded at 6.1mg/kg with the relevant GAC being 2.6mg/kg and benzo(a)pyrene recorded at 4.7mg/kg with the relevant GAC being 2.2mg/kg.

Due to the conservative approach to calculating the S4UL"s we have decided to use the C4SL for BaP as a surrogate marker for the PAH mixture encountered on site. In order to do this the three criteria below need to be met:-

- The SM (BaP) must be present in all soil samples.
- The profile of the different PAH relative to BaP should be similar in all samples.
- The PAH profile in the soil samples should be similar to that used in the pivotal toxicity study on which HBGV was based i.e. the Culp study.

This was the case within all samples where PAHs were encountered and the soil concentration of BaP in all cases was less than the relevant C4SL of 5mg/kg. Therefore, it is considered that the risk to end users of the site was below the C4SL level which is defined as "there is no risk that land poses a significant possibility of significant harm", therefore in line with DEFRA authorised guidance we consider that the PAHs do not cause a risk to end users across the site. The BaP Surrogate Marker calculation sheets are including in Appendix C.

6.2.4 Polychlorinated Biphenyls

One sample of Made Ground taken from TP14, positioned adjacent to the on-site electricity substation, at a depth of 0.60m was tested for PCB's and recorded below detectable limits for each of the twelve congeners.

September 2023 29 Report No.:- 23-03-09B

6.2.5 Natural Soil

The natural soil sample recovered from the underlying Alluvium recorded no significantly elevated levels of contaminants and therefore poses no significant risk to human health or the environment.

6.2.6 On-site Landfill

The previous desk study identified an unregistered historic landfill which covers the south-east corner of the peninsula (a landfill plan is shown in Appendix A) and extends eastwards where a lake currently exists. Exploratory holes BH3, TP12, TP11 and TP10 were positioned within the boundary along the eastern side of the peninsula to assess the ground conditions and collect samples for laboratory testing.

The ground condition indicated Made Ground soils down to a maximum depth of 2.45m bgl comprising loose sandy gravels with some anthropogenic material including brick, concrete with some slag and ash. The composition of the Made Ground and depth gave no clear indication that a historic landfill is still present along the east side of the peninsula. In addition, no significantly elevated levels of contaminants were recorded within the Made Ground samples taken from TP10 at a depth of 0.80m bgl and TP12 at a depth of 0.80m bgl.

6.3 RISK TO END USERS

Given the findings of the desk study, walkover survey, intrusive investigation and laboratory testing it is considered that the risk of contamination to construction workers, end users and surrounding residents from the proposed commercial development at this site is low. However, given the updated development proposal will include minor residential land-uses including camping areas it is considered there may be a risk to the end users from localised hotspots of contamination. This ground investigation identified elevated levels of hydrocarbons locally at the north of the peninsula surrounding a historic bund. Given the limitations outlined within section 3.2 it is considered there may be additional hotspots of contamination within both the peninsula and the wider site area.

Therefore, it is considered some remedial measures may be required to protect the end users of the site. Currently a single hotspot has been identified surrounding the concrete bund shown on the remedial plan.

The on-site landfill indicated by the previous desk study located at the south-east corner of the peninsula was investigated with a deep borehole and trial pits. No significant evidence of landfill material was encountered. The desk study information indicates it was run between 1993 and 2004

September 2023 30 Report No.:- 23-03-09B

and was used to dispose non-biodegradable waste therefore the risk of elevated levels of contaminants is unlikely to be significant. The historic landfill does extend eastwards underlying a lake. Further investigation could be undertaken to assess the ground conditions below the lake immediately east of the peninsula.

We recommend that the conclusions of this report are agreed with the relevant Local Authority at the earliest stage, to reduce potential delays to the development.

6.3.1 Reducing Risk to End Users

To break the exposure pathways to site users, it is considered that the pathway between the zoned area of impacted Made Ground soils and the end users needs to be broken (area shown on the remedial plan in Appendix A).

To remediate the zoned area of Made Ground impacted by hydrocarbons shown on the remedial plan, a cover system could be engineered within areas of soft landscaping where there is a risk. It is considered that any disturbance or intermixing of soils is unlikely to exceed 600mm depth from earthworm activity, double digging and root depth as stated in "Cover Systems for Land Regeneration" prepared by RSK ENSR Ltd. Therefore, a cover system would require 600mm layer of clean cover, consisting of at least 150mm of topsoil and 450mm of clean imported clay. This cover system is not required in areas of hardstanding (driveways, paving areas and under the building), where this will break the pathway between contaminated soils and site users.

During the development it is recommended that this process of placing the cover layer is tightly monitored and recorded (soil tests, photographs, depth measurements etc) as a verification report will be required to prove its existence to Local Authorities or financing organisations (mortgage companies etc).

6.3.2 Reducing Risk to Construction Workers

For the construction workers, remedial measures would not be in place when they undertake the site work and therefore different measures should be taken to reduce the risk of coming into contact with the soil and break the pollutant linkage with these receptors.

To reduce the risk to as low as reasonably practicable for the construction workers it is recommended that high standards of personal hygiene should be maintained amongst the site personnel at all times. All personnel coming into contact with the soil, ground workers in particular, should be instructed to use gloves when on site to avoid dermal contact and restrict inadvertent September 2023

31

Report No.:- 23-03-09B

hand-to-mouth ingestion. Washing facilities should be provided for the site staff to use, and should be used prior to eating or smoking. Reference should be made to the HSE Document, "Protection of Workers and the General Public during Development of Contaminated Land".

It is however recommended that a watching brief for undiscovered contamination is included in the Works Method Statement. Given the long human history of the surrounding area, it is always possible that some previously undiscovered contamination may be encountered. If this is the case, the area should be isolated and contact be made to a suitably qualified professional for further advice. This is particularly important if the contamination is possibly ACM or liquid based.

6.4 POST REMEDIATION VERIFICATION

Any remedial measures undertaken at the site will require independent verification once completed to satisfy the relevant regulatory authorities and other interested parties, including future owners of the site, banks, insurers, and mortgage companies. This usually involves a small validation investigation to confirm that the recommended work has been successful.

6.5 RISK TO CONTROLLED WATERS

6.5.1 Preliminary Analysis

The assessment of risks to controlled waters follows guidance provided by the Environment Agency and DEFRA in association with the Contaminated Land (England) Regulations 2000 (SI 2000/227). This guidance is Environment Agency's Remedial Targets Methodology Hydrogeological risk assessment for contaminated land (2006), as such these procedures have been followed.

The previous phase I desk study (ref. 22-10-12) identified the following:

- The site is underlain by a "Secondary A" Aquifer associated with the Superficial Aquifer, overlying a Principal Aquifer associated with the Upper Chalk
- The site is located within a source protection zone (SPZ1 Inner Catchment)
- The nearest active groundwater abstraction licenses are within 100m south of the site run by Affinity Water at Northmoor Pumping Station
- There are no surface water abstraction licenses recorded within 1000m of the site
- The fieldwork undertaken by this phase II investigation indicated that groundwater levels were recorded at a shallowest depth of 0.75m bgl and it is considered the groundwater is in continuity with Broadwater Lake

September 2023 32 Report No.:- 23-03-09B

The previous desk study indicated there is a moderate risk of contamination sources that may be affecting the Principal Aquifer beneath the site. Therefore, as part of this investigation groundwater monitoring, sampling and testing has been undertaken.

The groundwater monitoring has indicated groundwater generally flows south.

6.5.2 Chemical Testing

Leachate tests were undertaken on two Made Ground samples taken from TP1 at a depth of 0.50m and TP2 at a depth of 0.50m bgl. Leachate tests were undertaken as part of the controlled waters risk assessment to investigate the risk of placing soakaways in the granular Made Ground soils. The results indicated marginally elevated levels of chromium, copper, nickel, lead and zinc when compared to the EQS values for fresh water, however when compared to the limit values for United Kingdom Drinking Water Standards (UKDWS) none were significantly elevated.

Groundwater samples taken from BH3, BH6 and BH9 were tested for a general suite of contaminants including heavy metals, TPH, a range of PAH's, dissolved organic carbon, pH, a range of essential minerals including calcium, potassium, magnesium and sodium and chemical oxygen demand to assess the risk to controlled waters.

The results were compared to EQS for freshwaters and screening values from the UKDWS. The majority of the determinants were recorded below their respective screening values when compared to both the EQS and UKDWS and were generally below the limit of detection.

Marginally elevated levels of heavy metals were encountered including copper, manganese and nickel as shown in the table below:

Heavy Metal	Recorded Value Range (µg/I)	Number Exceedences	EQS Freshwater (µg/I)	UKDWS (μg/l)
Copper	<0.50 – 1.80	1	1(bioavailable)	2000
Manganese	150 - 760	3	123(bioavailable)	50
Nickel	3.2 – 4.8	2	4(bioavailable)	20

6.5.3 The Metal Bioavailability Assessment Tool (M-BAT)

To assess the bioavailability we have used The Metal Bioavailability Assessment Tool (M-BAT), the results are shown in Appendix C. The results show the bioavailable nickel falls below the site-specific PNEC for dissolved nickel.

The results for manganese show one of the levels now falls below the specific PNEC for dissolved manganese. The bioavailable manganese concentrations have been reduced to between 135µg/l and 350µg/l with the specific PNEC for dissolved manganese ranging between 123µg/l and 266µg/l. Therefore, it can be seen the levels of manganese are only marginally elevated.

The results show copper is still very marginally elevated above the specific PNEC for dissolved Copper. The bioavailable copper concentration remained 1.80µg/l with the specific PNEC for dissolved copper being 1µg/l.

6.5.4 Risk to Controlled Waters Conclusions

Underlying Principal Aquifer

Given the results of the chemical testing it is considered the proposed development is unlikely to pose a significant risk of significant harm to the underlying principal aquifer. This is based on evidence that from the leachate tests no significantly elevated levels were recorded when compared to the UKDWS. In addition, the groundwater samples also recorded no significantly elevated levels of contaminants when compared to the UKDWS other than manganese.

Manganese occurs naturally in many waters but is usually removed during treatment. Black deposits of manganese dioxide can cause discoloured water and the standard is set by UKDWS for aesthetic reasons. Therefore, the overall risk to the underlying principal aquifer from the proposed development is considered to be very low.

Broadwater Lake

Given the results of the chemical testing it is considered the proposed development is unlikely to pose a significant risk of significant harm to the adjacent freshwater lake (Broadwater Lake).

The leachate tests recorded marginally elevated levels of heavy metals including chromium, copper, nickel, lead and zinc when compared to the EQS values for fresh water. In addition, copper and manganese were also marginally elevated within the groundwater samples.

The leachate tests have proved the Made Ground contains quantities of five leachable heavy metals. However, the number of elevated levels recorded within the underlying groundwater which is considered to be in continuity with the adjacent lake were limited to just two heavy metals including copper and manganese which were only marginally elevated once the bioavailability assessment had been completed.

To say there is no risk at all would not be accurate however based on the fact the site has and is currently allowing rainwater to percolate through the near surface soils it is considered the proposed developed will pose no additional risk to the adjacent lake. In fact the proposed commercial development is likely to improve the overall site conditions by removing parts of the Made Ground, during the excavation of soils from the construction of foundations, roads and pavements. The proposed increased hardstanding cover will also reduce leaching activity within the near surface Made Ground soils.

Therefore, the overall risk to the adjacent freshwater lake (Broadwater Lake) from the proposed development is considered to be low.

The Environment Agency is the regulatory body charged with protection of controlled waters and may be a consultee in the planning process. We recommend that the conclusions of this report are agreed with the relevant Local Authority at the earliest stage, to reduce potential delays to the development. It is possible the local authority may request further testing given marginally elevated levels of heavy metals have been recorded.

Suitability of Conventional Soakaways

Based on the findings of the chemical testing it is considered there are some quantities of leachable heavy metals within the near surface Made Ground soils. Therefore, it is considered conventional soakaways are not suitable within the near surface soils as this will increase leaching activity.

OR

Based on the findings of the chemical testing it is considered there are some quantities of leachable heavy metals within the near surface Made Ground soils. However, given the fact the site actively allows rainwater to percolate through the near surface soils constructing conventional soakaways within the near surface soils will pose no additional risk to controlled waters. Therefore, it is considered conventional soakaways are suitable within the near surface soils.

The Environment Agency is the regulatory body charged with protection of controlled waters and may be a consultee in the planning process. We recommend that the conclusions of this report are agreed with the relevant Local Authority at the earliest stage, to reduce potential delays to the development.

6.6 RISK TO UNDERGROUND WATER SUPPLY PIPES

Based upon the guidance document from the UK Water Industry Research (UK WIR), 'Contaminated Land Assessment Guidance', February 2014, and the results of the samples tested from the site, it is considered that conventional PE water pipes will not be suitable at this site due to elevated levels of hydrocarbons within the Made Ground soils as shown in the table below.

Test Group	PE Threshold	Range of Elevated	Number of
		Levels	exceedances
EC10-16 TPH	10mg/kg	10 – 4990mg/kg	7
EC16-40 TPH	500mg/kg	2100 – 10300mg/kg	
VOC	2μg/kg	31µg/kg	1
SVOC	2mg/kg	10.06mg/kg	1

Therefore, it is recommended barrier pipe is used across the site. This should be confirmed with the local water company as not all authorities use this guidance.

7 WASTE DISPOSAL CLASSIFICATION

7.1 INTRODUCTION

Excavation for foundations or services will produce waste soil and possibly other waste streams. As a waste producer you have a duty of care under section 34 of the Environmental Protection Act 1990 to ensure, amongst other things that these wastes are:-

- Correctly stored
- Correctly classify
- Handed only to an authorised person
- Disposed of properly.

To aid with these obligations we have used HazWasteOnline to undertake the Hazard Assessment Screen as part of this investigation, to establish whether the sampled soils should be considered as either hazardous or non-hazardous waste. This classification process is in line with the Environment Agency's guidance WM3 "Guidance on the classification and assessment of waste", Version 1.2,2021.

7.2 RESULTS OF HAZARD ASSESSMENT

The twelve Made Ground samples and one natural sample analysed for the human health risk assessment, listed in section 7.2, have been classified using HazWasteOnline. This intrusive investigation identified three Made Ground soil types across the site which have all been sampled and tested to provide a waste classification for landfill disposal.

The full results of the HazWasteOnline analyses can be seen in the Appendices.

The HazWasteOnline classification summary sheet from this investigation provides a waste classification of non-hazardous waste for ten soil samples including nine Made Ground samples and one natural soil sample. However, three Made Ground soil samples provided a waste classification of hazardous waste.

The three Made Ground samples which were classified as hazardous were taken from TP4 and CBR5 where significant hydrocarbon staining and odour was encountered. The hazwaste online assessment has declared these three samples contain three hazardous properties including:

▶ HP3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

- HP7: Carcinogenic "waste which induces cancer or increases its incidence"
- ▶ HP 11: Mutagenic "waste which may cause a mutation, that is a permanent change in the amount or structure of the genetic material in a cell"

7.2.1 Waste Acceptance Criteria (WAC) Testing Results

To further classify the waste soil for landfill disposal, Waste Acceptance Criteria (WAC) testing has been carried out on one worst case Made Ground sample taken from TP4 within soils impacted by hydrocarbons at a depth of 0.75m. In addition, WAC testing was undertaken on a representative Made Ground sample taken from TP12 at a depth of 0.80m bgl.

The Made Ground soils impacted by hydrocarbons identified within TP4 and CBR5 were originally classified as hazardous waste from the hazwasteonline assessment. The second stage in classification utilises the WAC test results to determine whether the material is classified as either stable non-reactive hazardous waste in a non-hazardous landfill or hazardous waste. The WAC test results indicate there are no elevated levels when compared to the limit values for stable non-reactive hazardous waste. A remedial plan showing the area comprising Made Ground soils impacted by hydrocarbons is shown in Appendix A.

The remaining near surface Made Ground soils have been originally classified as non-hazardous waste from the hazwasteonline assessment. The second stage in classification utilises the WAC test results to determine whether the material is classified as either inert or non-hazardous waste. The WAC testing has recorded no significantly elevated levels and therefore the near surface Made Ground soils can be classified as inert.

Additionally, it is considered that the underlying natural soils beneath the site qualify in accordance with EU Council Decision 2003/33/EC para. 2.1.1. "uncontaminated soil can be classified as inert without testing".

As such, given the testing results, currently the underlying soils from the site are considered to be classified as follows:-

Strata	Description of Material	Classification	List of	Recommended	
			Waste	Landfill Tax	
			code	Rate	
Made	Naturally occurring soils	Inert	17 05 04	Lower Rate	
Ground/Reworked	and stones with man-				
Ground	made materials including				
	brick				
Made Ground	Naturally occurring soils	Stable Non-	17 05 03	Standard Rate	
(Locally impacted	and stones with man-	reactive			
by Hydrocarbons,	made materials including	hazardous			
area shown on	brick and trace amounts of	waste in non-			
plan in Appendix	asbestos (0.001%)	hazardous			
A)		landfill			
Natural Soil	Naturally occurring soils	Inert	17 05 04	Lower Rate	
	and stones (subsoil)				

All wastes removed from site should be consigned, transported and disposed of in full accordance with all relevant UK legislation.

7.3 RE-USE OF MATERIAL ON SITE

Currently, if surplus arisings are 'fit for re-use' on the site and have not been treated, its re-use is allowed within the planning law. If it needs treating prior to re-use, exemptions can be sought from the Environment Agency to allow this activity.

Based upon the human health and groundwater risk assessments, the underlying Made Ground soil is currently considered to be suitable for re-use on a commercial/residential land-use scenario. However, the locally impacted Made Ground is not suitable for re-use, the extent of this material is shown in Appendix A on the remedial plan. This analysis is, however, dependent on the agreement of the Local Authority.

8 CONCLUSIONS AND RECOMMENDATIONS

We recommend a watching brief should be undertaken during the construction phase, and if during development any previously undiscovered contamination (including visual or olfactory evidence) is found then site management should be immediately informed and inspection by a suitably qualified person should be undertaken.

Barrier pipe will be required at this site due to elevated levels of hydrocarbons, SVOC's and VOC's within the Made Ground soils.

This first phase of intrusive investigation was undertaken solely on the accessible areas of the peninsula. The data collected to date is sufficient to support the conclusions of this report. The surrounding area of the site mainly covered by the lake and islands is not covered by this investigation and it is anticipated further investigation will be required prior to construction works commencing.

Given the development proposals have changed this has altered the location of the proposed buildings. It is considered further investigation including boreholes will be required prior to the development works immediately north of the peninsula where it is proposed to extend the peninsula and construct commercial structures.

This ground investigation has identified a single hotspot of contamination associated with elevated levels of hydrocarbons identified within two exploratory holes surrounding a concrete bund situated at the north of the peninsula. It is considered remedial measures will be required to protect against the end users of the site which overall is deemed to be commercial with minor residential land-use associated with camping areas. It may be requested to undertake additional testing in areas across the peninsula and the wider site area which were previously inaccessible during this intrusive investigation. It is understood additional intrusive investigations are being undertaken by HydroGeo associated with sampling the lake bed covering the area surrounding the peninsula.

A preliminary assessment of the gas regime was undertaken at the site which identified low gas levels indicating a CS1 site, however it may be requested to undertake additional monitoring visits within the standpipes previously installed and/or installation of additional standpipes in the wider site area.

The on-site historic landfill recorded in the previous desk study was not found to extend onto the peninsula. Further investigation could be undertaken prior to the development phase to assess the ground conditions below the lake immediately east of the peninsula.

REFERENCES

Building Research Establishment (BRE) BR 211, Radon: guidance on protective measures for new buildings. 2007.

National House Building Council (NHBC) Standards, Chapter 4.2 Building Near Trees. 2011.

National House Building Council (NHBC) Standards, Chapter 4.1 Land Quality – Managing Ground Conditions, 2011.

Environment Agency, 'Land contamination: risk management', LCRM, 2019.

Health and Safety Executive (HSE), "Protection of Workers and the General Public during Development of Contaminated Land" HS(G) 66. HMSO London 1991.

Environment Agency, 'Human Health Toxicological Assessment of Contaminants in Soil', September 2008.

BGS Geology of Britain Viewer: 2016. www.bgs.ac.uk. British Geological Survey.

BRE Special Digest 1 : 2005 : Concrete in aggressive ground. Building Research Establishment.

BS 1377 : 1990 : Methods of test for soils for civil engineering purposes. British Standards Institution.

BS 5930: 2015: Code of practice for ground investigations. British Standards Institution.

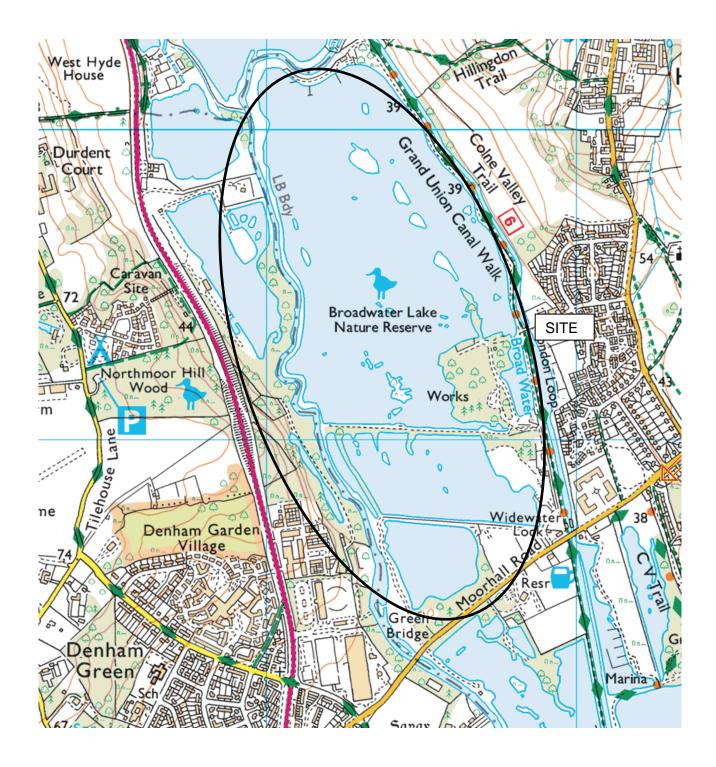
BS EN 1997-2 : 2007 : Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing. British Standards Institution.

BS EN ISO 14688-1:2002+A1 : 2013 : Geotechnical investigation and testing - Identification and classification of soil - Part 1 Identification and description. British Standards Institution.

BS EN ISO 14688-2:2004+A1 : 2013 : Geotechnical investigation and testing - Identification and classification of soil - Part 2 Principles for a classification. British Standards Institution. Investigation of Potentially Contaminated Sites – Code of Practice, BS10175, 2011.

Environment Agency, "Waste Sampling and Testing for Disposal to Landfill" March 2013

G Card and S Wilson, An Alternative Approach for Ground Gas Risk Assessment, 2011.



APPENDIX A

Site Plan

September 2023

SITE LOCATION PLAN

Report No:- 23-09-03B

TP1

TP2

TP3

TP3

TP4

TP4

TP4 and historic bund

TP5

TP6

TP7

TP8

TP9

TP10

TP12

TP12

SA1

SA2

SA3

CBR1

CBR2

CBR3

CBR4

CBR5

CBR5

CBR6

CBR7

BH1

BH2

ВН3

BH3 Monitoring Well

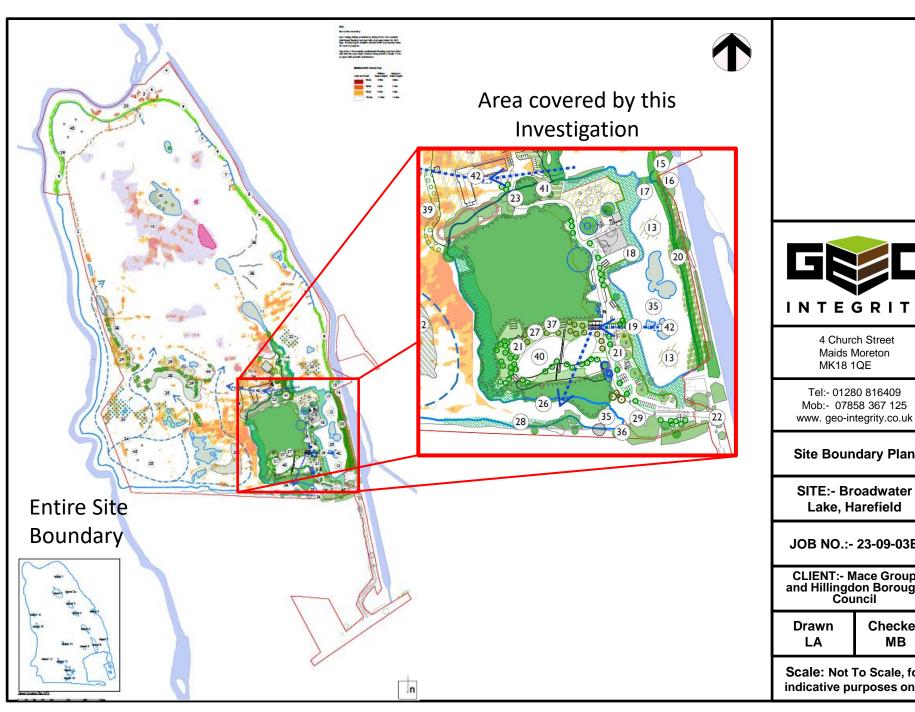
Location of BH4

Location of BH5 and TP14

BH6 Monitoring Well

Location of BH7

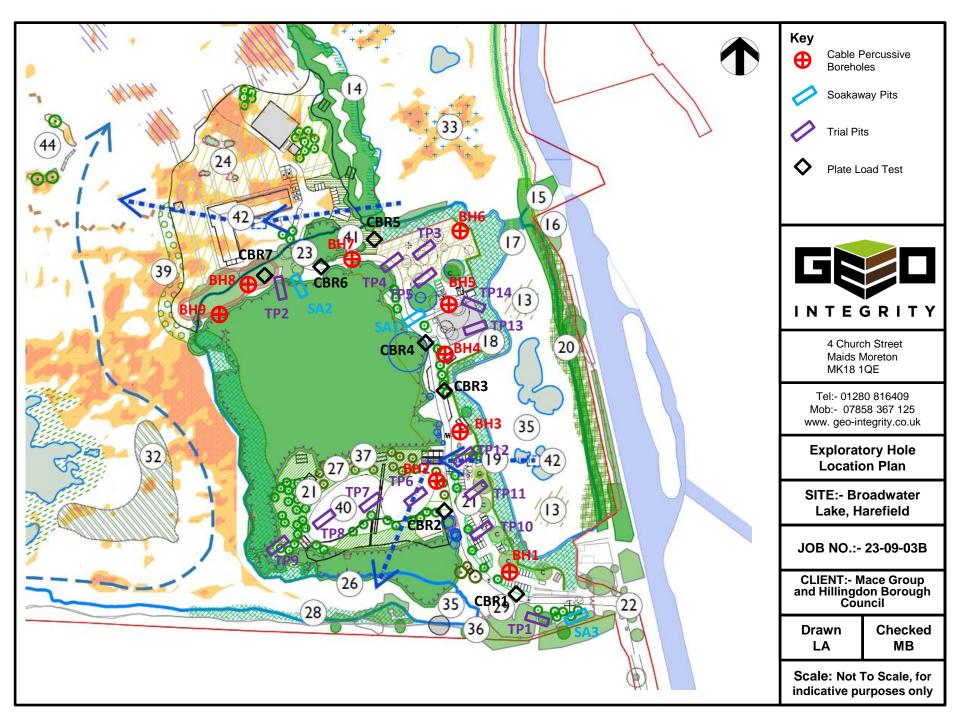
Location of BH8

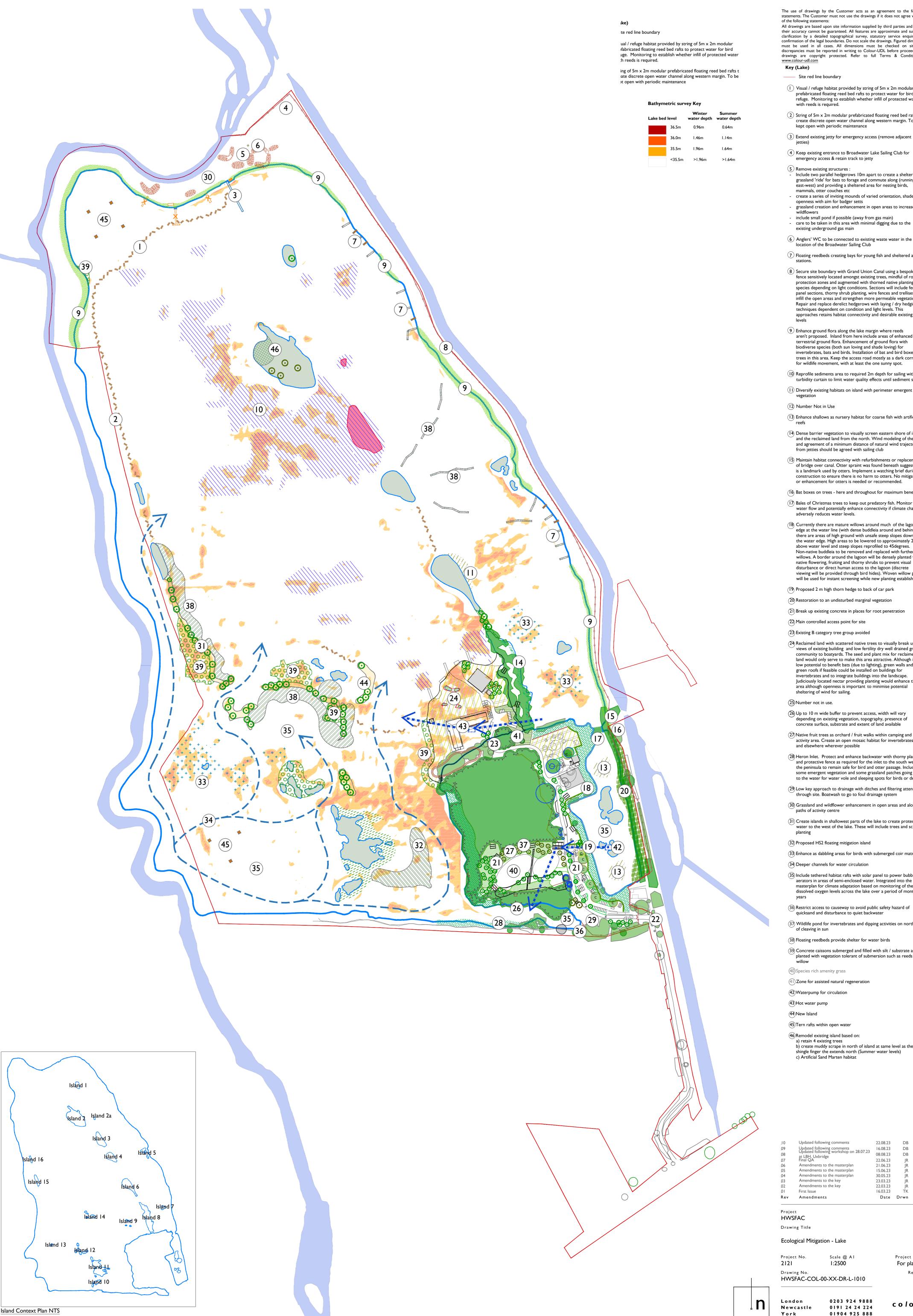

Location of BH9

BH9 Monitoring Well

Tel:- 01280 816409 Mob:- 07858 367 125

Site Boundary Plan


Lake, Harefield


JOB NO.:- 23-09-03B

CLIENT:- Mace Group and Hillingdon Borough Council

Checked MB

Scale: Not To Scale, for indicative purposes only

The use of drawings by the Customer acts as an agreement to the following statements. The Customer must not use the drawings if it does not agree with any of the following statements: All drawings are based upon site information supplied by third parties and as such

their accuracy cannot be guaranteed. All features are approximate and subject to clarification by a detailed topographical survey, statutory service enquiries and confirmation of the legal boundaries. Do not scale the drawings. Figured dimensions must be used in all cases. All dimensions must be checked on site. Any discrepancies must be reported in writing to Colour-UDL before proceeding. All drawings are copyright protected. Refer to full Terms & Conditions at www.colour-udl.com

— Site red line boundary

() Visual / refuge habitat provided by string of 5m x 2m modular prefabricated floating reed bed rafts to protect water for bird refuge. Monitoring to establish whether infill of protected water with reeds is required.

2 String of 5m x 2m modular prefabricated floating reed bed rafts to create discrete open water channel along western margin. To be kept open with periodic maintenance

3 Extend existing jetty for emergency access (remove adjacent

(4) Keep existing entrance to Broadwater Lake Sailing Club for emergency access & retain track to jetty

(5) Remove existing structures : - Include two parallel hedgerows 10m apart to create a sheltered grassland 'ride' for bats to forage and commute along (running east-west) and providing a sheltered area for nesting birds, mammals, otter couches etc

- create a series of inviting mounds of varied orientation, shade and openness with aim for badger setts - grassland creation and enhancement in open areas to increase - include small pond if possible (away from gas main)

existing underground gas main 6 Anglers' WC to be connected to existing waste water in the

location of the Broadwater Sailing Club

7 Floating reedbeds creating bays for young fish and sheltered angling

8 Secure site boundary with Grand Union Canal using a bespoke

fence sensitively located amongst existing trees, mindful of root protection zones and augmented with thorned native planting species depending on light conditions. Sections will include fence panel sections, thorny shrub planting, wire fences and trellises, to infill the open areas and strengthen more permeable vegetation. Repair and replace derelict hedgerows with laying / dry hedging techniques dependent on condition and light levels. This approaches retains habitat connectivity and desirable existing light

9 Enhance ground flora along the lake margin where reeds aren't proposed. Inland from here include areas of enhanced terrestrial ground flora. Enhancement of ground flora with biodiverse species (both sun loving and shade loving) for invertebrates, bats and birds. Installation of bat and bird boxes on trees in this area. Keep the access road mostly as a dark corridor for wildlife movement, with at least the one sunny spot.

(10) Reprofile sediments area to required 2m depth for sailing with turbidity curtain to limit water quality effects until sediment settled

(I) Diversify existing habitats on island with perimeter emergent

(12) Number Not in Use

(13) Enhance shallows as nursery habitat for coarse fish with artificial

 $(\overline{14})$ Dense barrier vegetation to visually screen eastern shore of islands and the reclaimed land from the north. Wind modeling of the lake and agreement of a minimum distance of natural wind trajectory from jetties should be agreed with sailing club

(15) Maintain habitat connectivity with refurbishments or replacement of bridge over canal. Otter spraint was found beneath suggesting it is a landmark used by otters. Implement a watching brief during construction to ensure there is no harm to otters. No mitigation or enhancement for otters is needed or recommended.

(16) Bat boxes on trees - here and throughout for maximum benefit

(17) Bales of Christmas trees to keep out predatory fish. Monitor water flow and potentially enhance connectivity if climate change adversely reduces water levels.

(18) Currently there are mature willows around much of the lagoon edge at the water line (with dense buddleia around and behind) and there are areas of high ground with unsafe steep slopes down to the water edge. High areas to be lowered to approximately 2m above water level and steep slopes reprofiled to 45degrees. Non-native buddleia to be removed and replaced with further willows. A border around the lagoon will be densely planted with native flowering, fruiting and thorny shrubs to prevent visual disturbance or direct human access to the lagoon (discrete viewing will be provided through bird hides). Woven willow panels will be used for instant screening while new planting establishes.

(19) Proposed 2 m high thorn hedge to back of car park

(20) Restoration to an undisturbed marginal vegetation $\widehat{(21)}$ Break up existing concrete in places for root penetration

(22) Main controlled access point for site

(23) Existing B category tree group avoided

(24) Reclaimed land with scattered native trees to visually break up views of existing building and low fertility dry well drained grass community to boatyards. The seed and plant mix for reclaimed land would only serve to make this area attractive. Although it has low potential to benefit bats (due to lighting), green walls and green roofs if feasible could be installed on buildings for invertebrates and to integrate buildings into the landscape. Judiciously located nectar providing planting would enhance the area although openness is important to minimise potential sheltering of wind for sailing.

(25) Number not in use.

 $\ensuremath{\cancel{26}}\xspace$ Up to 10 m wide buffer to prevent access, width will vary depending on existing vegetation, topography, presence of concrete surface, substrate and extent of land available

 $(\overline{27})$ Native fruit trees as orchard / fruit walks within camping and activity area. Create an open mosaic habitat for invertebrates here and elsewhere wherever possible

(28) Heron Inlet. Protect and enhance backwater with thorny planting and protective fence as required for the inlet to the south west of the peninsula to remain safe for bird and otter passage. Include some emergent vegetation and some grassland patches going down to the water for water vole and sleeping spots for birds or deer

(29) Low key approach to drainage with ditches and filtering attenuation through site. Boatwash to go to foul drainage system

(30) Grassland and wildflower enhancement in open areas and alongside paths of activity centre

 $(\overline{\bf 31})$ Create islands in shallowest parts of the lake to create protective water to the west of the lake. These will include trees and scrub

(32) Proposed HS2 floating mitigation island

(33) Enhance as dabbling areas for birds with submerged coir matresses

(34) Deeper channels for water circulation (35) Include tethered habitat rafts with solar panel to power bubbling

aerators in areas of semi-enclosed water. Integrated into the masterplan for climate adaptation based on monitoring of the dissolved oxygen levels across the lake over a period of months /

(36) Restrict access to causeway to avoid public safety hazard of quicksand and disturbance to quiet backwater (37) Wildlife pond for invertebrates and dipping activities on north side

(38) Floating reedbeds provide shelter for water birds

(39) Concrete caissons submerged and filled with silt / substrate and planted with vegetation tolerant of submersion such as reeds and

40 Species rich amenity grass

(41) Zone for assisted natural regeneration

(42) Waterpump for circulation (43)Hot water pump

(44) New Island

(45) Tern rafts within open water

(46) Remodel existing island based on: a) retain 4 existing trees b) create muddy scrape in north of island at same level as the shingle finger the extends north (Summer water levels) c) Artificial Sand Marten habitat

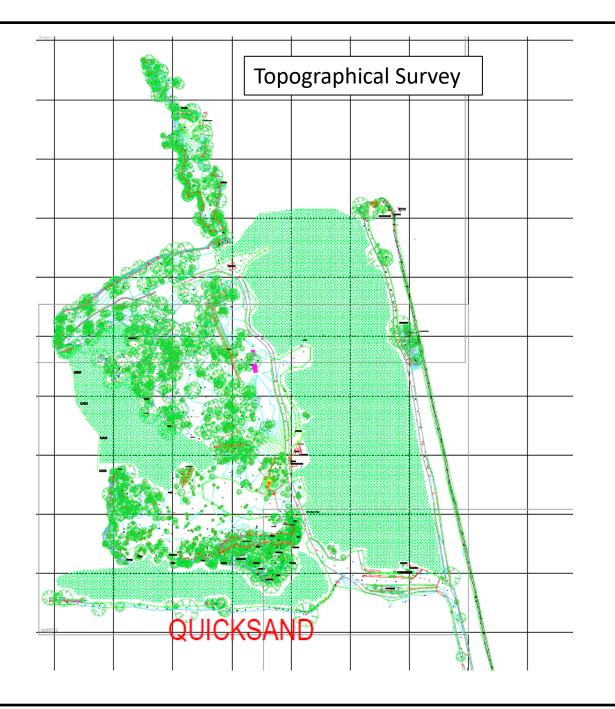
Rev	Amendments	Date	Drwn	Chkd
.01	First Issue	16.03.23	TK	PO
.02	Amendments to the key	22.03.23	JR	PO
.03	Amendments to the key	23.03.23	JR	PO
.04	Amendments to the masterplan	30.05.23	JR	PO
.05	Amendments to the masterplan	15.06.23	JR	PO
.06	Amendments to the masterplan	21.06.23	JR	PO
.07	Final QA	22.06.23	JR	PO
.08	at LBH, Uxbridge	08.08.23	DB	PO
.09	Updated following comments Updated following workshop on 28.07.23	16.08.23	DB	PO
.10	Updated following comments	22.08.23	DB	PO

HWSFAC

Drawing Title

Ecological Mitigation - Lake

Project No. Scale @ Al 1:2500 Drawing No. HWSFAC-COL-00-XX-DR-L-1010


colour-udl.com

London 0203 924 9888 0191 24 24 224 Newcastle 01904 925 888

colour

Project Status

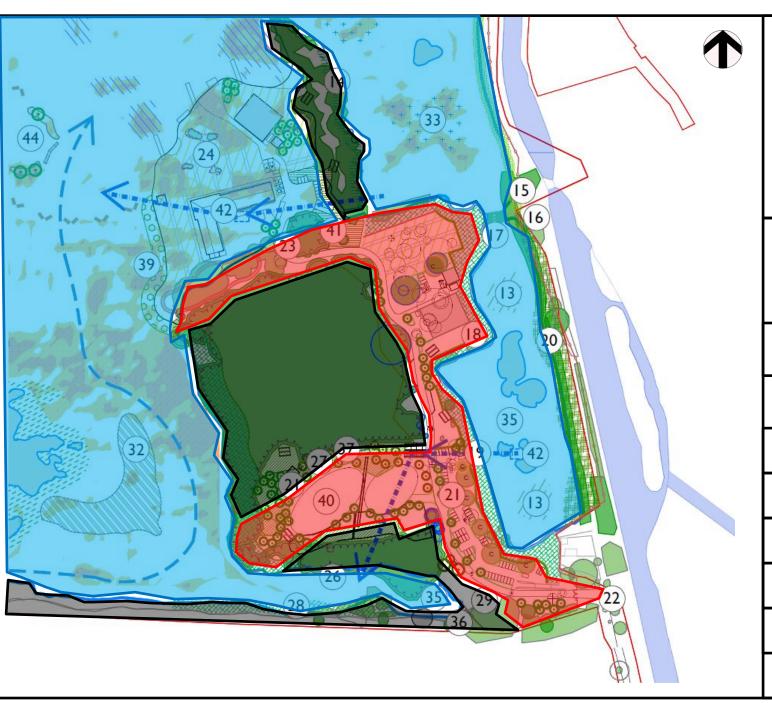
For planning

Key

4 Church Street Maids Moreton MK18 1QE

Tel:- 01280 816409 Mob:- 07858 367 125 www. geo-integrity.co.uk

Topographical Survey


SITE:- Broadwater Lake, Harefield

JOB NO.:- 23-09-03B

CLIENT:- Mace Group and Hillingdon Borough Council

Drawn LA Checked MB

Scale: Not To Scale, for indicative purposes only

Key

Accessible Areas

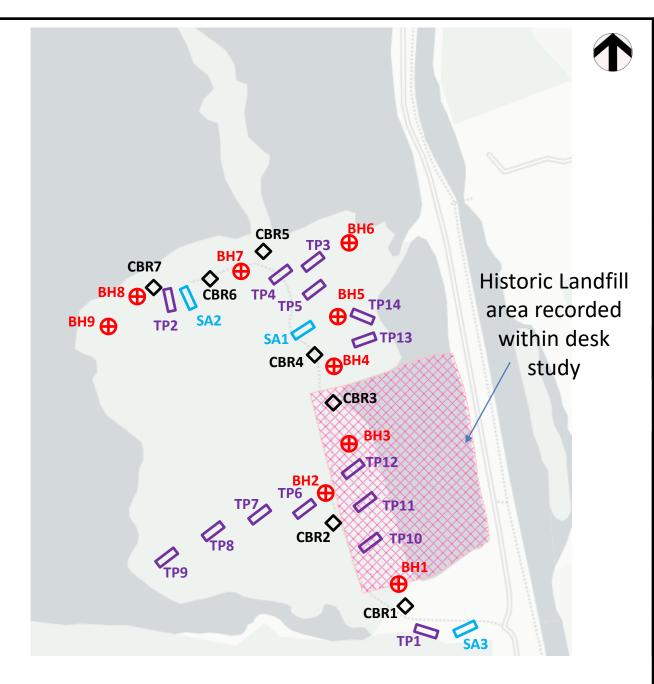
Areas not accessible

Lake (Not Investigated)

4 Church Street Maids Moreton MK18 1QE

Tel:- 01280 816409 Mob:- 07858 367 125 www. geo-integrity.co.uk

Area of Investigation Plan


SITE:- Broadwater Lake, Harefield

JOB NO.:- 23-09-03B

CLIENT:- Mace Group and Hillingdon Borough Council

Drawn LA Checked MB

Scale: Not To Scale, for indicative purposes only

Key

Cable Percussive Boreholes

Soakaway Pits

Trial Pits

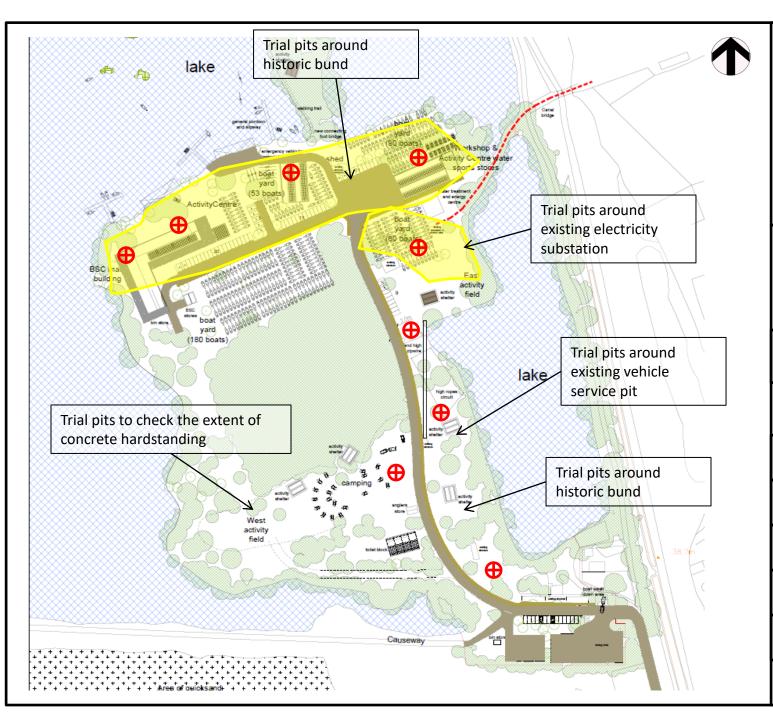
Plate Load Test

4 Church Street Maids Moreton MK18 1QE

Tel:- 01280 816409 Mob:- 07858 367 125 www. geo-integrity.co.uk

Exploratory Hole Location and Historic Landfill Plan

SITE:- Broadwater Lake, Harefield


JOB NO .: - 23-09-03B

CLIENT:- Mace Group and Hillingdon Borough Council

Drawn LA

Checked MB

Scale: Not To Scale, for indicative purposes only

Key

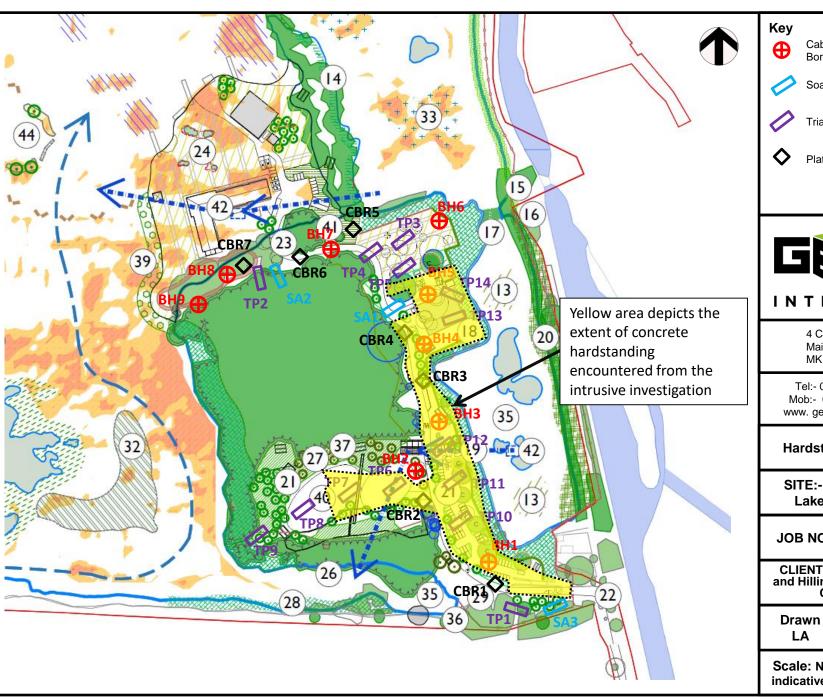
Agreed Locations of Cable Percussive Boreholes

Areas which require clearing of invasive species to allow access

4 Church Street Maids Moreton MK18 1QE

Tel:- 01280 816409 Mob:- 07858 367 125 www. geo-integrity.co.uk

Walkover Plan


SITE:- Broadwater Lake, Harefield

JOB NO.:- 23-01-21

CLIENT:- Mace Group and Hillingdon Borough Council

Drawn LA Checked DL

Scale: Not To Scale, for indicative purposes only

Cable Percussive Boreholes

Soakaway Pits

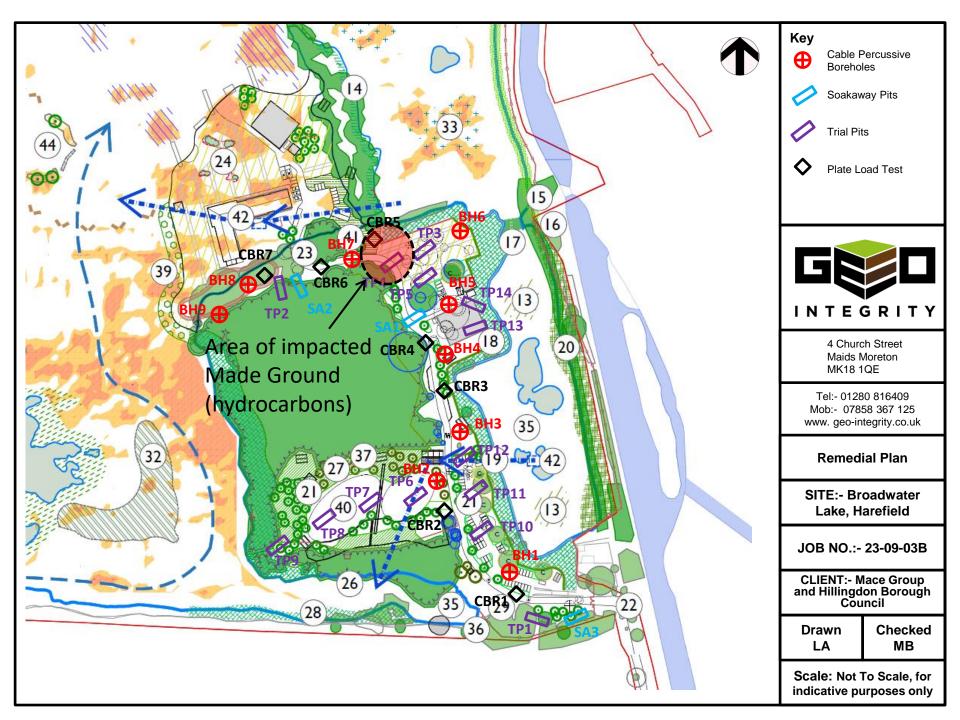
Trial Pits

Plate Load Test

4 Church Street Maids Moreton MK18 1QE

Tel:- 01280 816409 Mob:- 07858 367 125 www. geo-integrity.co.uk

Hardstanding Plan


SITE:- Broadwater Lake, Harefield

JOB NO.:- 23-09-03B

CLIENT:- Mace Group and Hillingdon Borough Council

Checked MB

Scale: Not To Scale, for indicative purposes only

APPENDIX B

NTEGR	ITY		816409	grity.co.uk			Broadwater Lake, Moorhall Road, Harefield, UB9 6PE	BH 1
Machine:Da Method:Ca	ando 3000 able Percussion	_	Diamete 0mm to			Level (mOD) 39.39	Client Mace	Job Numbe 23-01-2
			•	neld GPS) 189071.93 N	Dates 16	/02/2023	Project Contractor Geo-Integrity	Sheet 1/2
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)		Legend
		(m)	(m)		20.20			
.10-0.20 .10-0.30	D B				39.29 39.09 38.89	0.30	TARMAC MADE GROUND Loose dark brown silty sandy GRAVEL. Gravel is flint, brick, quartz, ash and coal	
.80-0.90	D					(0.50)	MADE GROUND CONCRETE SLAB]
.80-1.00 .00-1.10 .00-1.10	B D D				38.39	1.00	MADE GROUND Loose brown black slightly clayey silty sandy GRAVEL. Gravel is fine to coarse concrete, brick, flint and glass	
.00-1.20 .20-1.65 .20-1.65	B SPT N=4 B			1,1/1,1,1,1		(1.10)	ALLUVIUM Very soft dark brown black slightly gravelly organic CLAY with peat horizons	
.00-2.45 .00-2.45	SPT N=24 B	2.00		3,4/5,5,6,8 Water strike(1) at	37.29	2.10	SHEPPERTON GRAVEL MEMBER Medium dense to	
				2.10m, rose to 1.57m in 20 mins.		(0.90)	dense dark grey sandy GRAVEL	1
.00-3.45 .00-3.45	SPT(C) N=25 B	3.00	2.10	1,4/4,5,7,9		3.00	SHEPPERTON GRAVEL MEMBER Medium dense to dense orange brown slightly sandy fine to coarse GRAVEL Gravel is fine to coarse sub-angular to sub-rounded flint and quartz	2
.00-4.45 .00-4.45	SPT(C) N=29 B	4.00	1.80	2,3/4,7,9,9		(3.10)		
.00-5.45 .00-5.45	SPT(C) N=20 B	5.00	2.25	2,3/4,4,5,7		(3.10)		
.00 .30-6.40 .40-6.70	D D B				33.29	6.10	UPPER CHALK Structureless off-white CHALK comprising slightly gravelly SILT (Grade Dm)	
.00-7.45	SPT(C) N=0			1/				
						(2.90)		
.00-8.10	D					<u></u>		
.50-8.95 .50-8.95	SPT N=4 B	8.00	4.10	1,1/1,1,1,1	30.39	9.00		
	_				30.39	5.00 	UPPER CHALK Structureless off-white CHALK comprising silty GRAVEL (Grade Dc)	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
.50-9.60	D					=		11111111111111111111111111111111111111
0.00-10.45 Remarks	SPT N=10			1,2/2,2,3,3			01-	1 0 7 7 7
							Scale (approx) Logge By
							1:50	LA
							Figure	NO.

G IN TEGRI	TY	www.g info@g 01280	eo-integ geo-integ 816409	rity.co.uk grity.co.uk			Site Broadwater Lake, Moorh	all Road, Harefield, UB9	6PE	Boreh Numb BH	er
Machine : Da		Casing	Diamete			Level (mOD) 39.39	Client Mace			Job Numb 23-01-	
				neld GPS) 189071.93 N	Dates 16	6/02/2023	Project Contractor Geo-Integrity			Sheet 2/2	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)		Description		Legend	
11.00-11.10 11.50-11.95 12.50 13.00-13.45 14.00-14.10 14.50-14.95 14.90-15.00	D SPT N=14 D SPT N=21 D SPT N=31 D	12.00	5.406.10	3,3/3,3,4,4 3,4/4,5,5,7 4,4/6,8,8,9	24.39	(6.00)	Complete at 15.00m				
Remarks						<u> </u>			Scale (approx)	Logge By	d
									1:50	LA	
								\ \\AGS	Figure N		_

Source S	NTEGR		01280	816409				Broadwater Lake, Moorhall Road, Harefield, UB9 6PE	BH 2
Description Sample Tests Start At 1 1 1 1 1 1 1 1 1			_				, ,		Numbe
Sample / Tests Capital			Location	n (Handh	neld GPS)	Dates 17	7/02/2023	Project Contractor	
1.00		I	1		E 189115.55 N	.,		Geo-Integrity	
100-100 100	Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
1.00		D B					(0.60)	MADE GROUND Loose brown silty sandy GRAVEL. Gravel is fine to coarse sub-angular to sub-rounded brick, concrete, flint and ash	
2.21-1.5 SPTIC) N-4 2.41,1,1,1 37.98 1.65 ALLUVIUM Very soft dark brown grey silly slightly organic CLAY. Occasional peat horizons CLAY. Occasional peat							(0.40)		
1,00	1.20-1.65 1.20-1.65	SPT(C) N=4 B			2,4/1,1,1,1			slightly organic CLAY. Gravel is concrete, flint and brick	
1.50-4.60 D B 5.00 3.70 Water strike(1) at 4.50 m, rose to 1.50-4.95 SPT(C) N=36 SPT(C) N=36 SPT(C) N=9 3.50-6.95 SPT(C) N=9 3.33/2.2.2.3 SPT(C) N=9 SPT(C	1.80-1.90 1.80-2.00 2.00-2.45	В				37.93	1.65	ALLUVIUM Very soft dark brown grey silty slightly organic CLAY. Occasional peat horizons	× × × × × × × × × × × × × × × × × × ×
1.50-4.60 D B 5.00 3.70 Water strike(1) at 4.50 m, rose to 1.50-4.95 SPT(C) N=36 SPT(C) N=36 SPT(C) N=9 3.50-6.95 SPT(C) N=9 3.33/2.2.2.3 SPT(C) N=9 SPT(C	3.00-3.45	В					(2.80)		× × × × × × × × × × × × × × × × × × ×
1.50-4.60 B	4.00-4.45	SPT N=5			1,1/1,1,1,2	05.40			××
3.00-6.10 D 3.50-6.95 SPT(C) N=9 3.90-6.95 B 6.40 4.20 3.20-7.30 D 7.60 4.50 1,3/5,5,7,8 2.00-9.10 D 9.00 5.00 3.00-9.10 D 9.00 5.00 3.05-9.95 SPT N=19 2.3/4,4,5,6 3.00-9.10 September 2.3/4,4,5,6 3.00-9.10 Se	4.50-4.60 4.50-4.95		5.00	3.70	4.50m, rose to	35.13	4.45	dense beige brown sandy GRAVEL. Gravel is fine to coarse	
3.00-6.10 D 3.00-6.95 SPT(C) N=9 3.3/2,2,2,3 32.58 7.00 UPPER CHALK Structureless off-white CHALK comprising gravelly SILT. Gravels are line to coarse chalk and flint (Grade Dm) 3.00-8.45 SPT N=25 1,3/5,5,7,8 30.58 9.00 UPPER CHALK Structureless off-white CHALK comprising gravelly SILT. Gravels are line to coarse chalk and flint (Grade Dm) 4.50 9.00-9.10 D 9.00 5.00 9.00 9.00 9.00 9.00 1,3/5,5,7,8 9.00 1,3/5,5,7,8 9.00 1,3/5,5,7,8 9.00 1,3/5,5,7,8 9.00 1,3/5,5,7,8 1,3/5,5,7,8 9.00 1,3/5,5,7,8 1,3/5,5,7,8 9.00 1,3/5,5,7,8 1,3/5,5,7,8 9.00 1,3/5,5,7,8 1,3/5,5,	5.00-5.45	SPT(C) N=36			3,5/8,9,9,10				
1.30-6.95 B 6.40 4.20 32.58 7.00 UPPER CHALK Structureless off-white CHALK comprising gravelly SILT. Gravels are fine to coarse chalk and flint (Grade Dm) 1.30-8.45 SPT N=25 1,3/5,5,7,8 (2.00) 1.3/5,5,7,8 9.00 1.3/5,5,7,8 9.0	6.00-6.10	D					(2.55)		
20-7.30 D 7.60 4.50 32-58 7.00 UPPER CHALK Structureless off-white CHALK comprising gravelly SILT. Gravels are fine to coarse chalk and flint (Grade Dm) 30-8.45 SPT N=25 1,3/5,5,7,8 9.00 UPPER CHALK Structureless off-white CHALK comprising silty GRAVEL. Gravel is coarse chalk (Grade Dc) 4.50 PREMARKS 30-9.00 SPT N=19 2,3/4,4,5,6 SCale (approx.) By Characteristics (Grade Dc) 30-9.10 SPT N=19 2,3/4,4,5,6 SCale (approx.) By Characteristics (Grade Dc) 30-9.10 UPPER CHALK Structureless off-white CHALK comprising silty GRAVEL. Gravel is coarse chalk (Grade Dc) 30-9.10 SPT N=19 2,3/4,4,5,6 SCale (approx.) By Characteristics (Grade Dc) 30-9.10 UPPER CHALK Structureless off-white CHALK comprising silty GRAVEL. Gravel is coarse chalk (Grade Dc) 30-9.10 UPPER CHALK Structureless off-white CHALK comprising silty GRAVEL. Gravel is coarse chalk (Grade Dc) 4-4-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-	.50-6.95	SPT(C) N=9			3,3/2,2,2,3		<u>=</u> = =		
20-7.30 D 7.60 4.50 1,3/5,5,7,8 (2.00) (Grade Dm)	.90-6.95	В	6.40	4.20		32.58	7.00	UPPER CHALK Structureless off-white CHALK comprising	1 1 1 1
1.00-9.10 D 9.00 5.00 30.58 9.00 UPPER CHALK Structureless off-white CHALK comprising silty GRAVEL. Gravel is coarse chalk (Grade Dc) in the coarse chalk (7.20-7.30	D	7.60	4.50			E E E	(Grade Dm)	
Solution in the characteristic coarse chalk (Grade Dc) silty GRAVEL. Gravel is coarse chalk (Gravel Dc) silty GRAVEL. Gravel is coarse chalk (Gravel Dc) silty GRAVEL. Gravel is coarse chalk (Gravel Dc) silty GRAVEL. Gravel	3.00-8.45	SPT N=25			1,3/5,5,7,8		(2.00)		
Remarks Scale (approx) By	.00-9.10	D	9.00	5.00		30.58	9.00	UPPER CHALK Structureless off-white CHALK comprising silty GRAVEL. Gravel is coarse chalk (Grade Dc)	
(approx) By	.50-9.95	SPT N=19			2,3/4,4,5,6		= = = = = = = = =		
	Remarks	I					<u> </u>	Scale (approx)	Logged

NTEGRI		info@(01280	geo-inte 816409	rity.co.uk grity.co.uk			Broadwater Lake, Moorha	all Road, Harefield, UB9	6PE	Numbe BH 2
lachine : Da lethod : Ca	indo 3000 ible Percussion	1	Diamete Omm to 1			Level (mOD) 39.58	Client Mace			Job Numbe 23-01-2
		Locatio	n (Handh	neld GPS)	Dates	7/02/2023	Project Contractor			Sheet
				E 189115.55 N			Geo-Integrity			2/2
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	ι	Description		Legend
						<u>-</u>				1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
0.50-10.60	D	10.00	6.30			-				
.00-11.45	SPT N=19			3,4/4,5,5,5						
						<u>-</u>				
						(6.00)				
2.00-12.10	D	12.00	6.00			(0.00)				1111111
2.50-12.95	SPT N=24			1,3/5,5,6,8		<u>-</u>				
										1,1,1,1,1,1,
						<u>-</u>				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
.50-13.60	D					<u>=</u>				
1.00-14.45 1.00-14.45	SPT N=29 B	14.00	6.35	2,4/6,6,8,9		<u>-</u>				1,1,1,1,1,
						<u> </u>				1 11 11 11 1 11 11 11 1 11 11 11
4.90-15.00	D				24.58	15.00				1111111
						<u>-</u>	Complete at 15.00m			
						<u>-</u>				
						<u>-</u>				
						E E				
						E				
lemarks									Scale (approx)	Logged By
									1:50	LA
								\ \\AGS	Figure N	lo. -21.BH 2

INTEGR	LITY	info@g	eo-integ geo-inte 816409	grity.co.uk grity.co.uk)			Site Broadwater Lake, Moorhall Road, Harefield, UB9	6PE	N	orehole umber 3H 3
Machine : D	Dando 3000 Cable Percussion	_	Diamete 0mm to 1			Level (mOD) 40.95	Client Mace		N	ob umber 3-01-21
		Locatio	n (Handl	held GPS)	Dates	/02/2023	Project Contractor			neet
		504	4753.63	E 189171.17 N	20/	02/2020	Geo-Integrity			1/2
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
					40.65	(0.30)	CONCRETE	, a , a , a , a , a , a , a , a , a , a		
0.20-0.30 0.50-1.00	D B				40.65	0.30	MADE GROUND medium dense brown sandy GRAVEL. Gravel is fine to coarse flint, quartz and			
0.50-1.00	В						concrete			
1.20-1.65	SPT(C) N=23			3,4/4,6,6,7		(2.15)				
1.20-1.65	D (5) 11 = 5			2, 3, 3,2,2,1		(2.13) = = =				
2.00-2.45	SPT(C) N=25			3,3/5,5,7,8						
2.00-2.45	D D			0,0,0,0,7,0	38.50	2.45				
0.00.000					00.00		ALLUVIUM very soft dark brown slightly gravelly organic silty CLAY	××		
2.80-3.30 3.00-3.45	B SPT N=3			0,1/0,1,1,1		(1.05)		×		
3.00-3.45	D				37.45	-		× × ×		
						3.50	SHEPPERTON GRAVEL MEMBER Medium dense to dense grey brown slightly sandy GRAVEL Gravel is fine to coarse sub-rounded.			
4.00-4.45	SPT(C) N=29			4,5/6,6,8,9			Gravel is flint and quartz			
4.00-4.45	D					(3.70)			_	
4.50-5.00	В								▼ 1 ▽ 1	
5.00-5.45	D	5.00	4.25	Water strike(1) at 4.90m, rose to 4.60m in 20 mins.		<u>-</u> -			X 1	
5.00-5.45	SPT(C) N=36			4,6/7,9,9,11		(3.70)		1		
6.00-6.10	D					<u>-</u> -				
6.50-6.95	SPT(C) N=27			4,5/6,6,7,8						
6.50-6.95	D D	6.50	4.00	1,0/0,0,7,0						
						7.20	UPPER CHALK Structureless off-white CHALK	1.1.1.1.		
7.50-7.60	D						comprising gravelly SILT (Grade Dm)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
								1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
8.00-8.45 8.00-8.45	SPT N=17 D	8.00	4.20	2,2/3,3,5,6				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
								1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
								1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
9.00-9.10	D					(3.80)		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
9.50-9.95 9.50-9.95	SPT N=20 D	9.50	4.50	2,2/4,5,5,6		<u>-</u>				
9.50-9.95		9.50	4.50					1 1 1 1 1		
Remarks		1			'			Scale (approx)	Lo B	ogged /
								1:50		LA
							\ \\AGS	Figure N		3H 3
							MAGS	20-01	-1.6	0

Method	INTEGR		www.g info@(01280	eo-integ geo-integ 816409	grity.co.uk grity.co.uk			Site Broadwater Lake, Moorhall Road, Harefield, UBS	9 6PE	N	orehole lumber BH 3
Control Cont	Machine : Da	ando 3000	1							N	lumber
10.50 10.5						Dates 20	0/02/2023			S	
11.00-11.45 SPT N-24	Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
Remarks Scale (approx) Logged 1:50 LA Figure No.	11.00-11.45 11.00-11.45 12.00-12.10 12.50-12.95 12.50-12.95 13.50-13.60 14.00-14.45 14.00-14.45 14.00-15.00	SPT N=24 D D SPT N=25 D D SPT N=29 D B SPT N=33	11.00	4.50	3,4/5,6,6,8		11.00	UPPER CHALK Structureless yellow brown CHALK comprising silty GRAVEL (Grade Dc)			
MACS 23-01-21.BH 3	Remarks						<u> </u>		1:50	No.	LA

G IN TEGR	IT Y	info@g	eo-integ geo-integ 816409	rity.co.uk grity.co.uk			Site Broadwater Lake, Moorhall Road, Harefield, UB9 6PE	Boreho Numbe	er
Machine : D		Casing	Diamete Omm to 1		Ground	Level (mOD) 39.35	Client Mace	Job Numbe 23-01-2	
				neld GPS) E 189228.83 N	Dates 2	1/02/2023	Project Contractor Geo-Integrity	Sheet 1/2	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness	Description	Legend	Water
0.10-0.20	D				39.05	(0.30)	CONCRETE		
0.50-1.00	В				33.63		MADE GROUND Loose brown slightly sandy GRAVEL. Gravel is fine to coarse flint, brick, quartz and coal		
1.20-1.65 1.20-1.65	SPT(C) N=25 D			3,3/5,6,6,8					
2.00-2.45 2.00-2.45	SPT(C) N=25 D			3,4/5,5,7,8	39.05	(3.15)			
3.00-3.45 3.00-3.45	SPT N=4 D			3,3/3,0,0,1	35.90	3.45	ALLUVIUM Very soft brown silty organic CLAY with occasional peat	× — ×	
4.00-4.45 4.00-4.45	SPT N=31 D			3,5/6,8,8,9		(1.05)	Cooddonal peak	× × × × × × × × × × × × × × × × × × ×	▼ 1
5.00-5.45 5.00-5.45	SPT(C) N=26 D	5.00	4.80	Water strike(1) at 4.60m, rose to 4.35m in 20 mins. 2,4/5,5,8,8	34.85		SHEPPERTON GRAVEL MEMBER Medium dense to dense grey brown slightly sandy GRAVEL. Gravel is fine to coarse flint and quartz		∇ 1
6.00-6.50	В					(2.50)			
6.50-6.95 6.50-6.95	SPT(C) N=9 D	6.50	5.00	3,4/2,2,2,3	32.35	7.00	UPPER CHALK Structureless off-white yellow CHALK comprising silty GRAVEL. Gravel is fine to coase chalk an	d 111111	
7.50-7.60	D						flint (Garde Dc)		
8.00-8.45 8.00-8.45	SPT N=19 D	8.00	5.00	2,3/3,3,6,7		<u>-</u> - - - -		11, 11, 11, 11, 11, 11, 11, 11, 11, 11,	
8.50-9.00	В								
9.50-9.95 9.50-9.95 9.50-9.95	SPT N=25 D D	9.50	5.00	2,2/4,6,6,9					
Remarks				l	1		Scal (appro	Logge x) By	d
							1:50	LA	
							NAGS Figur	e No. 01-21.BH 4	

Source Section Februaries Section Se	NTEGR		info@g	geo-inte 816409	grity.co.uk grity.co.uk			Broadwater Lake, Moorha	all Road, Harefield, UB9	6PE	Numbe BH 4
Digit Sample / Tests Control Flanchold (PS) Sol 74/2 15 1992/28/83 N Project Contractor Geo-Integrity Sol			1								Job Number 23-01-2
September Sept			Locatio	n (Handh	neld GPS)	Dates		Project Contractor			Sheet
2.50-12.60 D			504	4742.13	E 189228.83 N	2	1/02/2023	Geo-Integrity			2/2
1.00-11.45 SPT N=29	Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)]	Description		Legend
1.00-11.45 SPT N=29							<u> </u>				11 11 11 11 11 11 11 11 11 11 11 11 11
200-11-65 D N N S PT N = 27	0.50-10.60	D									
200-11-65 D N N S PT N = 27							(8 00)				
2.50-12.95 DT N-27 12.50 5.50 3.3/5.6.6.10 E E E E E E E E E E E E E E E E E E E	1.00-11.45 1.00-11.45	SPT N=29 D	11.00	5.00	3,3/6,6,8,9		(0.00)				1,1,1,1,1,1, 1,1,1,1,1,1,1,1,1,1,1,1,1,
2.50-12.95 DT N-27 12.50 5.50 3.3/5.6.6.10 E E E E E E E E E E E E E E E E E E E											
2.50-12.95 DT N-27 12.50 5.50 3.3/5.6.6.10 E E E E E E E E E E E E E E E E E E E	2 00 12 10	D					<u>-</u>				
28-12-95 DT N-27	2.00-12.10	D					E				1,11,11,11 1,11,11,11 1,11,11,11
1.00-14.45 SPT N=29 D 13.00 6.00 3,4/5,77,10	2.50-12.95 2.50-12.95	SPT N=27 D	12.50	5.50	3,3/5,6,6,10						111111
1.00-14.45 SPT N=29 D 13.00 6.00 3,4/5,7,7,10							<u>-</u>				
1.00-14.45 SPT N=29 D 13.00 6.00 3,4/5,77,10											
1.00-14.45 D 13.00 6.00 3.3/6.6.8.9 24.35	3.50-13.60	D	13.00	5.80							
3.3/6.6.8.9 24.35	1.00-14.45 1.00-14.45	SPT N=29	13.00	6.00	3,4/5,7,7,10		<u>-</u>				11111111111111111111111111111111111111
Scale Scal	1.00 11.10	J	10.00	0.00							
Scale Scal							<u>-</u>				1111111
Remarks Capprox Log By Log By	5.00-15.45 5.00-15.45				3,3/6,6,8,9	24.35	15.00	Complete at 15.45m			·
Remarks Capprox Log By Log By							<u>-</u>				
Scale (approx) Log By 1:50 L Figure No.											
Scale (approx) Log By 1:50 L Figure No.											
Scale (approx) Log By 1:50 L Figure No.							<u>-</u>				
Scale (approx) Log By 1:50 L Figure No.											
Scale (approx) Log By 1:50 L Figure No.											
Scale (approx) Log By 1:50 L Figure No.											
emarks Scale (approx) 1:50 Figure No.											
emarks Scale (approx) 1:50 Figure No.							<u>-</u>				
emarks Scale (approx) 1:50 Figure No.											
Scale (approx) Log By 1:50 L Figure No.							<u>-</u>				
Scale (approx) Log By 1:50 L Figure No.											
Scale (approx) Log By 1:50 L Figure No.											
1:50 L	Remarks									Scale (approx)	Logged
Figure No.											LA
\\\\AGS 23-01-21.BH									1 1) 4 0 0	Figure N	lo.

INTEGR	ITY	info@g	geo-integ 816409	rity.co.uk grity.co.uk			Site Broadwater Lake, Moorhall Road, Harefield, UB9 6P	E	Number BH 5	
Machine : Da		1	Diamete			Level (mOl			Job Numbe	r
Method : Ca	able Percussion	150	0mm 15.0	0m to 15.0m		39.44	Mace		23-01-2	
		Locatio	n (Handh	neld GPS)	Dates 22	2/02/2023	Project Contractor		Sheet	
		50-	4742.11 E	E 189290.21 N			Geo-Integrity		1/2	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thicknes	Description)		Legend	Woton
						(0.30			, , ,	
					39.14 38.94	→ (0.20)	MADE GROUND Loose dark brown slightly clayey sing GRAVEL. Gravel is concrete, flint and occasional per	lty at -		
0.50-0.60	D	1.20	0.80		00.54	E 0.5	SHEPPERTON GRAVEL MEMBER Dense grey brow slightly sandy GRAVEL. Gravel is fine to coarse flint,			
							slightly sandy GRAVEL. Gravel is fine to coarse flint, and sandstone	quartz		
1.20-1.65	SPT(C) N=6			1,3/1,1,2,2		E				
1.20-2.00	B	3.00	1.80	1,0/1,1,2,2		E				
1.70-1.80	D	4.00	1.90			Ē				
2.00-2.43	SPT(C) 50/280			7,11/6,11,15,18						
						(3.50				
2.50-2.60	D	5.00	2.20			E				
										Ţ
3.00-3.37	SPT(C) 50/220			10,11/15,18,17,0						
		. 50				E				
3.50-3.60	D	6.50	5.50			E				
				Water strike(1) at	35.44	4.0	SHEPPERTON GRAVEL MEMBER Dense grey brow	wn	7	V
				4.00m, rose to 3.00m in 20 mins.		Ē	SHEPPERTON GRAVEL MEMBER Dense grey brov slightly sandy GRAVEL with traces of alluvium. Grave fine to coarse flint and quartz	el is		
4.00-4.45 4.50-4.60	SPT(C) N=8 D	8.00	3.00	2,1/1,2,2,3		E	·			
						E				
5.00-5.45	SPT(C) N=20			3,4/4,4,5,7						
						E				
						E				
		. 50				(4.00				
6.00-6.10	D	9.50	5.50			Ē ,				
6.50-6.95	SPT(C) N=17			3,3/3,4,5,5						
	(0)			2,0,0,1,0,0		Ē				
7.00-7.10	D	11.00	4.90							
						Ē				
						Ē				
8.00-8.45 8.00-9.00	SPT(C) N=24 B	12.50	9.80	3,5/5,5,7,7	31.44	8.0	UPPER CHALK Structureless off-white CHALK comp gravelly SILT. Gravel is chalk and flint	orising	11.11.11	
						Ē	g.a, o.a		11,1,1,1,1,	
						E			1, 1, 1,	
9.00-9.10	D	14.00	12.00			E			1, 1, 1,	
5.10		17.00	. 2.00			E			1' 1' 1' 1' 1' 1' 1' 1' 1' 1' 1'	
9.50-9.95	SPT(C) N=14			2,2/2,3,4,5						
						E			1,1,1,1,	
Remarks						<u> </u>	,,	Scale	Logged By	1
							(é			
								1:50 Figure N	LA	_
							\\ \AGS	•	.21.BH 5	

NTEGR		www.ged info@ge 01280 8	eo-integ 316409	grity.co.uk				hall Road, Harefield, UB9 (SPE	BH 5
achine: Da ethod: Ca	ando 3000 able Percussion	Casing Di		0m to 15.0m		Level (mOD) 39.44	Client Mace			Job Number 23-01-2
		Location 5047		eld GPS) E 189290.21 N	Dates 22	2/02/2023	Project Contractor Geo-Integrity			Sheet 2/2
Depth (m)	Sample / Tests	Casing \Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)		Description		Legend
2.00-12.10 2.00-12.10 2.50-12.95 3.00-13.10 4.00-14.45	D SPT(C) N=20 D SPT(C) N=24 D D			4,4/5,5,5,5 2,3/5,6,6,7 1,3/5,6,7,9	24.44	(7.00)	Complete at 15.00m			
emarks									Scale (approx)	Logge By
										l .
									1:50	LA

G I I I I I I I I I I I I I I I I I I I	LTY	info@	eo-integ geo-integ 816409	rity.co.uk grity.co.uk			Site Broadwater Lake, Moorhall Road, Harefield, UB9	6PE	Borehole Number BH 6
Machine: D		1	Diamete 0mm to 1			Level (mOD) 40.94	Client Mace		Job Number 23-01-21
			-	neld GPS) E 189330.98 N	Dates 23	3/02/2023	Project Contractor Geo-Integrity		Sheet 1/2
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Mater Instr
0.30-0.40 0.50-1.00	D B	5.00 6.50	4.70 5.00		40.64	(0.30)	MADE GROUND TOPSOIL REWORKED GROUND Dense brown slightly sandy fine to coarse GRAVEL. is fine to coarse quartz and flint		
1.20-1.65 1.20-1.65	SPT(C) N=30 D	8.00	5.00	3,6/6,6,9,9		(2.30)			Andrews of the control of the contro
2.00-2.45 2.00-2.45	SPT(C) N=26 D	9.50	5.20	4,5/6,6,6,8	38.34	2.60	ALLUVIUM Very soft dark brown black organic CLAY		20 20 20 20 20 20 20 20 20 20 20 20 20 2
3.00-3.45 3.00-3.45	SPT N=3 D	11.00	5.20	1,0/0,1,1,1	37.49	3.45	SHEPPERTON GRAVEL MEMBER Dense light brown grey GRAVEL. Gravel is fine to coarse flint and quartz		
4.00-4.45 4.00-4.45	SPT(C) N=29 D	12.50	5.00	4,5/6,6,8,9			and quarter		స్ట్రెట్ క్లో స్ట్రాల్ క్లోని స్ట్రెట్ క్లిస్ స్ట్రాల్ క్లోని స్ట్రాల్ క్లోని స్ట్రాల్ క్లోనిక్ స్ట్రాల్ క్లోని ట్లోని స్ట్రిల్ క్లోని స్ట్రాల క్లోని స్ట్రిలక్లోని చెల్లిని స్ట్రాల్ క్లోని స్ట్రిలక్లోని చెల్లని స్ట్రిల్ స్ట్ట్ స్ట్రిల్
5.00-5.45 5.00-5.45	SPT(C) N=33 D	13.00	5.00	5,5/7,8,8,10		(3.15)			2
6.00-6.10	D	13.00	5.10			<u> </u>			
6.50-6.95 6.50-6.95	SPT(C) N=28 D			3,6/6,6,8,8	34.34	6.60	UPPER CHALK Structureless off-white CHALK comprising gravelly SILT. Gravel is flint and chalk (Grade Dm)		
7.50-7.60 8.00-8.45 8.00-8.45	D SPT N=19 D			2,3/3,5,5,6					
9.00-9.10	D								
9.50-9.95 9.50-9.95	SPT N=23 D			2,4/4,5,7,7					
Remarks	I	1		<u> </u>			I	Scale (approx)	Logged By
								1:50	LA
							\ \\AGS	Figure N 23-01-	lo. -21.BH 6

INTEGR		www.g info@g 01280	jeo-integ geo-inte 816409	grity.co.uk grity.co.uk			Site Broadwater Lake, Moorhall Road, Harefield, Ul	B9 6PE	N	orehole lumber BH 6
Machine : Da		Casing	Diamete	r	Ground	Level (mOD)	Client		J	ob
Method : Ca	able Percussion	15	0mm to 1	5.0m		40.94	Mace			lumber 3-01-21
		Locatio	n (Handi	neld GPS)	Dates	3/02/2023	Project Contractor		s	heet
		50	4730.87	E 189330.98 N	20	5/02/2023	Geo-Integrity			2/2
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legeno	Water	Instr
10.50-10.60	D					(8.40)				
11.00-11.45 11.00-11.45	SPT N=26 D			3,4/5,5,8,8						
12.00-12.10	D					<u>-</u> - - - - - - - -				
12.50-12.95 12.50-12.95	SPT N=29 D			3,3/5,7,8,9						
13.50-13.60	D					=_ =_ =_ =_ =_ =_				
14.00-14.45 14.00-14.45	SPT N=26 D			3,4/5,5,8,8		(8.40)				
15.00-15.45 15.00-15.45	SPT N=33 D			4,5/5,8,9,11	25.94		Complete at 15.45m			
Remarks								Scale (approx)	L B	ogged By
								Figure I	No.	
							M/AG	23-01		BH 6

G IN TEGR		info@g	eo-integ geo-integ 816409	rity.co.uk grity.co.uk			Site Broadwater Lake, Moorhall Road, Harefield, UB9 6PE	Borehole Number BH 7
Machine : Da		Casing	Diamete	r	Ground	Level (mOD	Client	Job
Method: Ca	able Percussion	_	0mm to 1		;	39.67	Mace	Number 23-01-21
		Location	n (Handh	neld GPS)	Dates		Project Contractor	Sheet
		504	4673.94	E 189305.85 N	24	/02/2023	Geo-Integrity	1/2
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness	Description	Legend ja
					39.57	0.10 (0.20) 0.30	MADE GROUND TOPSOIL	
0.20-0.30	D	4.00	3.80		39.37	0.30	MADE GROUND Soft brown silty gravelly CLAY. Gravel is fine to coarse brick, flint and coal	
							REWORKED GROUND Medium dense to dense light	
						<u> </u>	brown grey sandy GRAVEL. Gravel is fine to coarse flint and quartz	
1.20-1.65	SPT(C) N=26			2,2/5,5,8,8		(2.15)		
1.20-1.65	D	5.00	4.40	_,_ ,,,,,,,		(2.13)		
1.65-2.00	D	6.50	4.80			Ē		
2.00-2.45 2.00-2.45	SPT(C) N=32 D	8.00	4.80	3,5/5,8,9,10		<u> </u>		
	_				37.22	2.45	ALLUVIUM Very soft dark brown organic silty CLAY.	×
						E	Horizons of peat throughout	x
3.00-3.45	SPT(C) N=4			3,5/2,1,0,1				×
3.00-3.45	D `´	9.50	5.00			(1.75)		× × × × × × × × × × × × × × × × × × ×
						E		<u>×</u> × ▼1
						<u>-</u>		<u>^ x</u> ∑ 1
4.00-4.45	D	11.00	5.20	Slow(1) at 4.00m, rose to 3.55m in	35.47	4.20	SHEPPERTON GRAVEL MEMBER Medium dense to	××
4.00-4.45	SPT N=23			20 mins. 1,2/4,6,6,7		Ē.	dense GRAVEL. Gravel is coarse rounded to sub-rounded flint	
						Ē		
5.00-5.45	SPT(C) N=29	12.50	5.20	3,3/6,6,8,9		(0.00)		
5.00-5.45	D	12.30	5.20			(2.00)		, , , , ,
						<u> </u>		
6.00-6.10	D	12.50	5.40			<u> </u>		
0.00-0.10	D	12.30	3.40		33.47	6.20	UPPER CHALK Structureless off-white CHALK comprising	1 1 1 1
6.50-6.95	SPT(C) N=11	10.50	5.50	2,2/2,3,3,3			silty GRAVEL. Gravel is chalk and flint (Grade Dc)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6.50-6.95	D	12.50	5.50			E E		11 11 11 11 11 11 11 11 11 11 11
7.00-7.50	В							1,1,1,1,1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,
						- - - - - - -		111111
						<u>-</u>		11 11 11
8.00-8.45	SPT N=18			3,3/3,4,5,6		<u>-</u>		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
						<u>-</u> -		1,11,11,11 11,11,11,11
	_							1 11 11 11 1 11 11 11 1 11 11 11
9.00-9.10	D					_		11111111111111111111111111111111111111
9.50-9.95	SPT N=25			3,4/6,6,6,7		Ē		1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
9.50-9.95	D			, ,-,-,				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Remarks						<u> </u>	Scale	Lonned
							Scale (approx	
							1:50	LA
							NAGS Figure 23-0	9 NO. 01-21.BH 7

G IN TEGR	I T Y	info@g	eo-integ geo-inte 816409	grity.co.uk grity.co.uk			Site Broadwater Lake, Moorh	nall Road, Harefield, UB9	6PE	Boreho Numbe BH 7	er
Machine : Da		Casing	Diamete Omm to 1			Level (mOD) 39.67	Client Mace			Job Number 23-01-2	
				neld GPS) E 189305.85 N	Dates 24	1/02/2023	Project Contractor Geo-Integrity			Sheet 2/2	_
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)		Description		Legend	Water
						<u>-</u> - - - - -					
10.50-10.60	D					(8.80)					
11.00-11.45 11.00-11.45	SPT N=27 D			3,4/5,5,8,9		(8.80)					
12.00-12.10	D					<u></u>					
12.50-12.95 12.50-12.95	SPT N=28 D			2,4/4,7,7,10							
13.50-13.60	D					<u>E</u> .					
14.00-14.45 14.00-14.45	SPT N=31 D			3,4/6,6,9,10							
15.00-15.45 15.00-15.45	SPT N=35 D			4,4/6,8,10,11	24.67	E	Complete at 15.45m			<u> </u>	
						<u>E.</u> <u>E.</u> <u>E.</u>					
Remarks						<u>E</u>			Scale (approx)	Logged By	d
									1:50	LA	
								\ \AGS	Figure N 23-01-	o. 21.BH 7	

INTEGR	LTY	info@g	geo-inte	rity.co.uk grity.co.uk			Broadwater Lake, Moorhall Road, Harefield, UB9 6PE	Number BH 8
Machine : Da		Casing	Diamete	<u> </u>	Ground	Level (mOD)	Client	Job
Method : Ca	able Percussion	15	0mm to 1	5.0m	4	41.29	Mace	Number 23-01-2
		Locatio	n (Handh	neld GPS)	Dates	//02/2023	Project Contractor	Sheet
		50-	4595.54	E 189286.92 N	21	702/2020	Geo-Integrity	1/2
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
						(0.45)	MADE GROUND RED BRICK	
0.20-0.30 0.50-1.00	D B	4.00 5.00	3.60 4.50		40.84		REWORKED GROUND Medium dense to dense light	
J.30-1.00	В	3.00	4.50			<u>-</u>	brown sandy GRAVEL. Gravel is fine to coarse flint and quartz	
1.20-1.65 1.20-1.65	SPT(C) N=19 D	6.50	4.80	3,3/3,5,5,6		(2.45)		
						(2.45)		
2.00-2.45	SPT(C) N=27			3,4/6,6,7,8				
2.00-2.45	D	8.00	5.00			E		
						E		
3.00-3.45	SPT N=7			1,0/0,1,1,5	38.39	2.90	ALLUVIUM Very soft dark brown black green slightly gravelly organic CLAY (Peat). Gravel is fine to coarse flint	
3.00-3.45	D	9.50	5.10			E		0 0 0
				Water strike(1) at		(1.55)		0 0 0 0
4.00-4.45	SPT(C) N=30			3.60m, rose to 3.00m in 20 mins. 3,5/5,8,8,9				0 0 0
4.00-4.45	D	11.00	5.30		36.84	4.45		0 0 0
						E	SHEPPERTON GRAVEL MEMBER Dense medium to coarse GRAVEL. Gravel is fine to coarse flint and quartz	
5.00-5.45	SPT(C) N=32			4,5/5,8,9,10		_		
5.00-5.45	D	12.00	5.30			E		
						(2.35)		, , , , ,
6.00-6.10	D	12.00	5.50			<u>-</u> -		
						Ē		· · · · · ·
6.50-6.95 6.50-6.95	SPT(C) N=30 D	12.00	5.60	3,5/5,8,8,9	24.40	6.80		, , , ,
7.00-7.50	В				34.49	=_	UPPER CHALK Structureless off-white CHALK comprisin gravelly SILT. Gravel is fine to coarse chalk and flint (Grac Dm)	le Tririr
						<u>-</u> - - -		
8.00-8.45	SPT N=16			2,2/3,3,5,5				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
8.00-8.45	D					<u> </u>		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
								1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
9.00-9.10	D							11 11 11 1 11 11 11 1 11 11 11
-								11 11 11 11 11 11 11 11 11
9.50-9.95 9.50-9.95	SPT N=20 D			3,3/3,5,6,6		(5.70)		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
								1, 1, 1,
Remarks							Scal (appro	Logged By
							1:50	LA
								e No. -01-21.BH 8

Casing Diameter Short State St	NTEGRI	TY	info@g	eo-integ geo-integ 816409	rity.co.uk grity.co.uk			Site Broadwater Lake, Moorhall Road, Harefield, UB9 6PE	Boreho Numbe BH 8
150mm to 1	Machine : Da	ndo 3000							Job Numbe
Depth Sample / Tests Control	Method : Ca	ble Percussion	150	Omm to 1	5.0m		41.29	Mace	23-01-2
Description						Dates 27	7/02/2023		
1.50 D 1.50 D 1.50 D 1.50 SPT N-25 4.4/4.7.8.8 28.79 12.50 12	Depth					Level	Depth		
2.00-11.45 DT N-25 D	(ṁ)	Sample / Tests	Depth (m)	Depth (m)	Field Records	(mOD)	(前) (Thickness)	Description	Legend
Second S	10.50 11.00-11.45 11.00-11.45	SPT N=25 D			3,3/5,5,7,8				
1.00-14.45 SPT N=35 D 4.5/8,9,9,10	I3.50-13.60 D				28.79	12.50	UPPER CHALK Structureless off-white CHALK comprisisity GRAVEL. Gravel is fine to coarse chalk and flint (Grade Dc)	19 11 11 11 11 11 11 11 11 11 11 11 11 1	
Spr N=37	4.00-14.45 4.00-14.45				4,5/8,8,9,10		(2.50)		
Scale (approx) 1:50 LA Figure No.	15.00-15.45 15.00-15.45				4,5/6,9,10,12	26.29		Complete at 15.45m	
1:50 LA Figure No.	Remarks							Sca (appr	le Logged ox) By
Figure No.									
								Figu	re No.

NTEGR	I T Y	info@	geo-integ geo-inte 816409	grity.co.uk grity.co.uk			Site Broadwater Lake, Moorhall Road, Harefield, UB9	6PE	Borehole Number BH 9
Machine : Da	ando 3000 able Percussion	1	Diamete 0mm to			Level (mOD) 42.96	Client Mace		Job Number 23-01-21
		Locatio	n (Handi	neld GPS)	Dates 28	8/02/2023	Project Contractor		Sheet
		50	4570.97	E 189263.99 N			Geo-Integrity		1/2
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Mater Instr
).40-0.50	D	5.00	4.50		42.66	(0.30)	MADE GROUND REWORKED GROUND Medium dense to dense GRAVEL. Gravel is fine to medium flint and quartz		
					41.76	(0.90)	REWORKED GROUND Medium dense GRAVEL.		
.20-1.65 .20-1.65	SPT N=23 D	6.50	4.70	2,5/5,6,6,6			Gravel is coarse sub-rounded flint		
2.00-2.45 2.00-2.45	SPT(C) N=25 D	8.00	4.80	3,5/5,5,7,8		(2.05)			ලේ පුළු මිනි දැකි. මෙය නිය සිට
3.00-3.45 3.00-3.45	SPT(C) N=14 D	9.50	5.00	3,4/4,5,4,1	39.71	3.25	ALLUVIUM Very soft dark brown organic CLAY		16.0 20.00
1.00-4.45 1.00-4.45	D SPT N=22	11.00	5.00	Water strike(1) at 3.80m, rose to 3.40m in 20 mins. 2,3/3,6,6,7		(1.20)			V 1
5.00-5.45 5.00-5.45	SPT(C) N=27 D	12.00	5.20	4,4/5,5,8,9	38.51		SHEPPERTON GRAVEL MEMBER Medium dense to dense GRAVEL. Gravel is coarse sub-rounded flint		
5.00-6.10	D	12.00	5.20			(1.85)			
6.50-6.95	SPT(C) N=30	12.00	0.20	3,5/5,8,8,9	36.66	6.30	UPPER CHALK Structureless off-white CHALK comprising gravelly SILT. Gravel is fine to coarse chalk and flint (Grade Dm)		
7.50-8.00	В	12.00	5.30						
3.00-8.45 3.00-8.45	SPT N=14 D			2,3/3,3,4,4					
9.00-9.10	D					= = = = = = = = = =			
9.50-9.95 9.50-9.95	SPT N=21 D			3,4/4,5,6,6					
Remarks								Scale (approx)	Logged By
								1:50	LA
							\ \\AGS	Figure N 23-01	lo. -21.BH 9

NTEGRITY		info@g	eo-integ geo-integ 816409	rity.co.uk grity.co.uk			Site Broadwater Lake, Moorhall Road, Harefield, UB9 6PE			orehole umber 3H 9
Machine: Da			Diamete			Level (mOD) 42.96	Client Mace			ob umber 3-01-21
				neld GPS) E 189263.99 N	Dates 28	3/02/2023	Project Contractor Geo-Integrity		Sh	neet 2/2
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
10.50-10.60 11.00-11.45 11.00-11.45 12.00-12.10 12.50-12.95 12.50-12.95 13.50-13.60 14.00-14.45 15.00-15.45 15.00-15.45	D SPT N=27 D SPT N=33 D SPT N=34 D	Casing Depth (m)	Water Depth (m)	3,5/6,8,8,9 4,4/5,5,8,9 5,5/6,8,9,11	27.96	(8.70)	Complete at 15.45m	Legend	Water	Instr
Remarks								Scale (approx)		ogged Y
							W AGS	Figure N	lo. -21 F	3H 9

G F		info@	eo-integrity.co.uk geo-integrity.co.uk 816409			Site Broadwater Lake, Moorha	ll Road, Harefield, UB9 6PE	N	rial Pit umber TP 1
Machine : J		Dimens	ions	Ground	Level (mOD)	Client		Jo	ob
Method : T	rial Pit				39.39	Mace			umber 3-01-21
		Locatio	n (Handheld GPS)	Dates		Project Contractor		SI	heet
			4835.68 E 189033.61 N	15	5/02/2023	Geo-Integrity			1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Leç	Mater Pued
0.50	D			39.34	0.05		ark brown clayey gravelly sa coal, ash and slag rown orange silty sandy GRA µuartz and slag	—— XXX	
D.80 D			Water strike(1) at 1.30m, fell to 2.10m in 5 mins.	38.59	- 0.80 (0.70)	MADE GROUND Loose b bouldery GRAVEL. Grave with boulders of concrete	rown silty sandy cobbly sligh is flint, quartz, slag, concrete	ily ∋	∇1
1.50	D			37.89	1.50	ALLUVIUM Very soft dark gravelly organic CLAY. Gra	brown black grey silty slightly avel is fine to coarse flint	/ × × - × - × - × - × - × - × - × -	* × × × × × × × × × × × × × × × × × × ×
				37.09	2.30	Complete at 2.30m		× * * *_ * *_ * *_ * *_ *	
Plan .					!	 Remarks			
		•							
		_					1	TIV	AGS
		•			.	Scale (approx)	Logged By	Figure No).
						1:20	Lee Ashworth	23-01-2	1.TP 1

G F		info@	jeo-integri geo-integi 816409	ity.co.uk rity.co.uk			Site Broadwater Lake, Moorha	ıll Road, Harefield, UB9 6PE	Nu	al Pit Imber P 2
Machine : J		Dimens	ions		Ground	Level (mOD)	Client		Jol	b
Method : T	rial Pit					40.67	Mace		Nu	imber -01-21
		Locatio	n (Handhe	eld GPS)	Dates		Project Contractor		Sh	eet
				189281.43 N	15	5/02/2023	Geo-Integrity			1/1
Depth (m)	Sample / Tests	Water Depth (m)	Fie	eld Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Leg	Mater bne
0.50 D					40.47 39.47	- - - - - - - - - - - - - - - - - - -	MADE GROUND Loose li SAND. Gravel is flint and concrete and brick	ark brown clayey gravelly org concrete and quartz ght brown slightly silty gravell quartz. Occasional boulders of		
1.90	D		Water stri	ike(1) at 1.80m, 70m in 5 mins.	38.77	- (0.70) - (1.90	Complete at 1.90m	int and brick		▼ 11
Plan .							Remarks			
		•				• •				
		•	•	•		•				
								T		AGS
-	-			-			Scale (approx)	Logged By	Figure No.	
							1:20	Lee Ashworth	23-01-21	.TP 2

G F		www.g info@g 01280	jeo-integrit geo-integri 816409	y.co.uk ty.co.uk			Site Broadwater Lake, Moorha	all Road, Harefield, UB9 6PE		Trial Pir Numbe	r
Machine : J		Dimens	ions		Ground	Level (mOD)	Client			Job	
Method : T	rial Pit					40.60	Mace			Numbe 23-01-2	
		Locatio	n (Handheld	d GPS)	Dates		Project Contractor			Sheet	_
			4714.7 E 18		15	5/02/2023	Geo-Integrity			1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Fiel	d Records	Level (mOD)	Depth (m) (Thickness)	ι	Description	L	egend	Water
0.20	D				40.30			orown orange silty SAND AND o coarse flint, brick and concr nse weathered concrete RAVEL. Gravel is fine to coars and rare fragments of wood			
1.20	D		Refusal at	1.60m	39.00	- (1.30) - (1.30) - (1.30)	Complete at 1.60m				
Plan .							Remarks				
		•	•		•						
		•	•		•						
									**	\\	
						-	,	1		\AG	5
						5	Scale (approx)	Logged By	Figure N		
							1:20	Lee Ashworth	23-01-	21.TP 3	3

G F		info@g	eo-integrity.co.uk geo-integrity.co.uk 816409			Site Broadwater Lake, Moorha	ıll Road, Harefield, UB9 6PE	Nur	al Pit mber P 4
Machine : J		Dimens	ions	Ground	Level (mOD)	Client		Job	,
Method : T	rial Pit				39.91	Mace			mber 01-21
		Location	n (Handheld GPS)	Dates		Project Contractor		She	-et
		504	4696.86 E 189316.11 N	15	5/02/2023	Geo-Integrity			1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Б	escription	Lege	Mater bne
0.20	D			39.61	- (0.30) - 0.30 - 0.30 		rown silty slightly clayey sand coarse flint, brick and ash rey gravelly sandy SILT. Grav sk. Distinct hydrocarbon odou		
0.75	D			38.91					
0.75 D				56.31	- 1.00 (1.00)	MADE GROUND Loose g is fine to coarse flint and to boulders of cement and b and signifcant staining	rey silty sandy GRAVEL. Gra prick with pieces of metal loos rick. Distinct hydrocarbon odd	vel e bur	
2.00	D			37.91	2.00	Complete at 2.00m			
					- - - - - - - - - - - -				
Plan .						Remarks			
				-					
									AGS
		•		-		Scale (approx)	Logged By	Figure No.	
						1:20	Lee Ashworth	23-01-21.	

G F		www.g info@g 01280	eo-integrity.co.uk geo-integrity.co.uk 816409			Site Broadwater Lake, Moorha	ll Road, Harefield, UB9 6PE	N	rial Pit lumbei	r
Machine : J		Dimens	ions	Ground	Level (mOD)	Client		.10	ob	\dashv
Method : T		Dimens	ions		39.98	Mace		N	umbe 3-01-2	
		Location	n (Handheld GPS)	Dates		Project Contractor		s	heet	
		504	4710.04 E 189309.74 N	15	5/02/2023	Geo-Integrity			1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Le	gend	Water
0.50	D			38.98		Complete at 1.00m	ark grey silty sandy GRAVEL. It, brick and slag with weather The state of the sta	red		
Plan .		•				Remarks				
•	•	-		·						
					-				AG	S
					(Scale (approx)		Figure No		
						1:20	Lee Ashworth	23-01-2	1.TP 5	.

G F		www.g info@g 01280	geo-integrity.co.uk geo-integrity.co.uk 816409			Site Broadwater Lake, Moorha	ll Road, Harefield, UB9 6PE	N	rial Pit umber TP 6
Machine : J		Dimens	sions	Ground	Level (mOD)	Client		Jo	ob
Method : T					39.54	Mace		N	umber 3-01-21
		Locatio	n (Handheld GPS)	Dates	5/02/2023	Project Contractor		SI	heet
		50	4726.99 E 189118.96 N	13	10212023	Geo-Integrity			1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Leç	Mater Pueb
0.50	D		Water strike(1) at 1.00m.	38.44	- (1.05) - (1.05) - (1.05)	Complete at 1.10m	ETE ght brown beige slightly clay thered concrete)	₩	
Plan .		•			• • '	Remarks			
		ě							
•		•		•	•				
								T/\	AGS
		•				Scale (approx)	Logged By	Figure No	
						1:20	Lee Ashworth	23-01-2	1.TP 6

G		www.ge info@ge 01280 8	o-integrity.co.uk eo-integrity.co.uk 816409			Site Broadwater Lake, Moorha	ll Road, Harefield, UB9 6PE	Trial Pit Number
INTEGR Machine: J				Cround	Laval (mOD)	Client		
Method : Trial Pit		Dimensio	ons		Level (mOD) 39.83	Mace	Job Number 23-01-21	
		Location (Handheld GPS) 504685.83 E 189099.52 N		Dates 15/02/2023		Project Contractor Geo-Integrity		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Vater Vater
0.50	D			39.53	- - - (0.50)	MADE GROUND Dense li sandy gravelly SILT. (Wea	ght brown beige slightly clar thered concrete)	yey
Plan .					!	Remarks		
	•	-		·	-			\ \\AGS
						Scale (approx)	Logged By	Figure No.
						1:20	Lee Ashworth	23-01-21.TP 7

www.geo-integrity.co.uk info@geo-integrity.co.uk 01280 816409						Site Broadwater Lake, Moorhall Road, Harefield, UB9 6PE TI				
Machine : JCB 3CX		Dimens	sions	Ground	Level (mOD)	D) Client) .	
Method : T	rial Pit			39.70		Mace			nber 01-21	
		Locatio	on (Handheld GPS)	Dates		Project Contractor		She	et	
		50	4658.26 E 189095.62 N	15/02/2023		Geo-Integrity		1	1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Lege	Mater bn	
0.10	D			39.50	- - - - -		t brown silty gravelly organic rete and brick ight bron beige sandy grave lint and brick (concrete matr			
0.50	D		Water strike(1) at 1.00m, fell to 1.20m in 20 mins.	38.80	- (0.70) - 0.90 (0.70)	MADE GROUND Loose o Gravel is flint, quartz, sand concrete	range brown silty sandy GR dstone and rare cobbles of	AVEL.	∑ 1	
1.40	D			38.10	- 1.60	Complete at 1.60m				
Plan .		•				Remarks				
		•			•			W 1 .		
					-				4GS	
					5	Scale (approx) 1:20	Logged By Lee Ashworth	Figure No. 23-01-21.7	TD 0	
1					1	1.20	Lee Ashworth	20-01-21.	11.0	

IN TEGR		info@g	eo-integrity.co.uk jeo-integrity.co.uk 816409			Site Broadwater Lake, Moorha	Trial Pit Number TP 9		
Machine : J		Dimensi	ons	Ground	Level (mOD)	Client		Job	
Method : T	rial Pit				42.16	Mace		Number 23-01-21	
		Lacation	n (Handheld GPS)	Dates		Project Contractor		Sheet	
			1621.91 E 189080.6	15	5/02/2023	Geo-Integrity		1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Reco	rds Level (mOD)	Depth (m) (Thickness)	D	Description		
				42.11	0.05	MADE GROUND Soft dar organic CLAY. Gravel is fli	k brown silty sandy gravelly nt, brick and concrete		
						Loose light brown beige so concrete, brick in a matrix	andy gravelly SILT. Gravel is of weathered concrete	flint,	
					(0.65)			X @ X * * X # X * * X * X * X * * X * X * X * * X * X * X * * X * X	
0.50	D				-			* * * * * * * * * * * * * * * * * * *	
				41.46	0.70	MADE GROUND Soft to fi gravelly CLAY. Gravel is fi fragments of wood	rm dark brown black green s ne to coarse concrete, flint, s	silty slate,	
					(0.95)				
1.40	D								
1.40	D								
				40.51	- 1.65 -	Complete at 1.65m			
					-				
					_				
					_ 				
					_ _ - _				
Plan						Remarks			
		•							
		•							
		•						I II) 4.00	
				i i		Seele (enn::-:-)	Lawred St.	MAGS	
						Scale (approx) 1:20	Logged By Lee Ashworth	Figure No. 23-01-21.TP 9	

www.geo-integrity.co.uk info@geo-integrity.co.uk 01280 816409						Site Broadwater Lake, Moorha	Trial P Number TP 1	er	
Machine: JCB 3CX		Dimens	ions	Ground	Level (mOD))) Client		Job	
Method : To	rial Pit				40.15	Mace		Number 23-01-	
			//						
			n (Handheld GPS)	Dates 15	5/02/2023	Project Contractor		Sheet	
		304	4776.78 E 189107.98 N			Geo-Integrity		1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend	Water
0.80	D			39.45	- (0.30) - 1.00	MADE GROUND Soft to figravelly CLAY. Gravel is fislag Complete at 1.00m	irm brown grey silty sandy ne to coarse flint, iron, brick a	and	
		•		•					
		•							
		•		•					
								1 11 A 4	``
						Deals (summers)	Lammad Box	NAC	کډ
						Scale (approx)		Figure No.	10
						1:20	Lee Ashworth	23-01-21.TP	ıU

INTEGRITY Machine: JCB 3CX		info@g	eo-integrity.co.uk geo-integrity.co.uk 816409			Site Broadwater Lake, Moorha	Trial Pit Number TP 11		
		Dimens	ions	Ground	Level (mOD)	Client	Job	\exists	
Method : T	rial Pit				39.61	Mace		Number 23-01-21	
		Locatio	n (Handheld GPS)	Dates		Project Contractor		Sheet	-
			4759.44 E 189133.45 N	15	5/02/2023	Geo-Integrity		1/1	
Depth Sample / Tests 0.75 D 1.20 D 2.20 D		Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	MADE GROUND Loose grey orange brown silty sandy GRAVEL. Gravel is fine to coarse flint, bick, concrete and ash ALLUVIUM Very soft dark brown grey green organic silty slightly gravelly CLAY with peat SHEPPERTON GRAVEL MEMBER Loose grey slightly silty sandy GRAVEL. Gravel is fine to coarse flint and quartz		Legend bases	
			Water strike(1) at 1.40m.	39.11 38.71 37.51 37.31	- (0.40) - 0.90 - (1.20) - (0.20)			y	∑ 1
Plan						Remarks			_
• • • •		•		•	• •				
		•		•					
		•		•					
								\\\AGS	
		•		-		Scale (approx)	Logged By	Figure No.	
						1:20	Lee Ashworth	23-01-21.TP 11	

G F		info@	eo-integrity.co.uk geo-integrity.co.uk 816409			Site Broadwater Lake, Moorhall Road, Harefield, UB9 6PE				
Machine: JCB 3CX		Dimens	ions	Ground	Level (mOD)	Client		J	Job Number	
Method : T	rial Pit			;	39.55	Mace			23-01-21	
			n (Handheld GPS) 4756.27 E 189148.68 N	Dates 15/02/2023		Project Contractor Geo-Integrity		\$	Sheet 1/1	
Depth (m) Sample / Tests 0.80 D		Water Depth (m)	Field Records	39.40 39.40 37.75 37.65	Depth (m) (Thickness)	D	escription	Le	egend	Water
			Water strike(1) at 1.20m.		- (0.95) - (0.95) - (0.70) - (0.70) - (0.70) - (0.70)	MADE GROUND Loose orange brown silty sandy GRAVEI Gravel is fine to coarse brick, flint, concrete with occasional boulders of concrete ALLUVIUM Very soft dark brown black green grey organic silty slightly gravelly CLAY with peat roots and tree debris. Gravel is fine to coarse flint		nic ris.	Σ Σ Σ Σ Σ Σ Σ Σ Σ Σ Σ Σ Σ Σ Σ Σ Σ Σ Σ	☑ 1
Plan					-	Remarks				_
• • • •		•								
		•								
		•								
		•								
								W	\AG:	S
		•				Scale (approx)	Logged By	Figure N		
						1:20	Lee Ashworth	23-01-2	1.TP 12	2

G F		info@	geo-integrity.co geo-integrity.co 816409	o.uk o.uk			Site Broadwater Lake, Moorha	all Road, Harefield, UB9 6PE		Trial Pit Number	r
Machine : J	CB 3CX	Dimens	sions			Level (mOD) 39.52	Client Mace			Job Number 23-01-2	
			n (Handheld GF 4761.42 E 1892		Dates 15	5/02/2023	Project Contractor Geo-Integrity			Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field R	ecords	Level (mOD)	Depth (m) (Thickness)	С	Description	L	egend	Water
Plan			Water strike(1)	at 1.30m.	38.92 38.22 37.92	- (0.70) - 1.30 - (0.30) - 1.60		brown black grey organic silt n peat and plat??? debris. Gra MEMBER Loose grey slightly fine to coarse flint quartz and	× × × × × × × × × × × × ×	×	∀ 1
		•		•							
		•									
		•			•						
		•									
						· ·	Scale (approx)	Logged By	Figure I	\AG	S
							1:20	Lee Ashworth		10. 21.TP 10	3

G F		info@	geo-integrity.co.ugeo-integrity.co.ugeo-integrity.co.uge	uk .uk			Site Broadwater Lake, Moorh	all Road, Harefield, UB9 6PE	. 1	Trial Pit Number TP 14	
Machine : J		Dimens	ions		Ground	Level (mOD)	Client			Job	1
Method : T	rial Pit					39.47	Mace		1	Number 23-01-21	
		Locatio	n (Handheld GPS	3)	Dates		Project Contractor			Sheet	-
			4752.33 E 18928		15	/02/2023	Geo-Integrity			1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Red	cords	Level (mOD)	Depth (m) (Thickness)	I	Description	L	egend X	
0.60	D				39.17 38.67	- - - - - -		orown slightly clayey silty san o coarse flint, brick and conci or coarse flint, brick and conci or coarse flint, brick and coarse or coarse flint, brick and plant debris.		V1	
1.40	D D		Water strike(1) a Water strike(2) a rose to 1.30m in		37.87	- - (0.30)	SHEPPERTON GRAVEL GRAVEL. Gravel is fine t	MEMBER Loose grey silty so o coarse flint, quartz and cha	x x x x x x x x x x x x x x x x x x x	▼ 2	2
					37.57		Complete at 1.90m			5	
Plan .						. 1	Remarks				
 	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·							N	
						. -				\AGS	>
						S	Scale (approx) 1:20	Logged By lee Ashworth	23-01-2	No. 21.TP 14	

G		www.ge info@ge 01280 8	eo-integrity.co.uk eo-integrity.co.uk 816409			Site Broadwater Lake, Moorha	ll Road, Harefield, UB9 6PE	Trial Pit Number SA 1
Machine: J	CB 3CX	Dimensio			Level (mOD) 39.39	Client Mace		Job Number
			(Handheld GPS) 719.3 E 189280.9 N	Dates	5/02/2023	Project Contractor Geo-Integrity		23-01-21 Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend Nater
0.40	D			39.19		MADE GROUND Loose of Gravel is flint and brick MADE GROUND Loose of GRAVEL. Gravel is fine to brick	range brown silty sandy GR. ark grey brown black silty sa coarse flint, ceramic, tarma	indy c and
1.00	D			36.79	- (0.90)	POSSIBLE MADE GROU brown silty slightly gravell wood with frequent branch	ND/ALLUVIUM Very soft dar y organic CLAY. Gravel is flir nes and roots	k it and
1.40	D			37.89	1.50	Complete at 1.50m		
					- - - - - - - - - -			
					- - - - - - - - - -			
Plan .					!	Remarks		
								\ \\AGS
		-		•		Scale (approx)	Logged By	Figure No.
						1:20	Lee Ashworth	23-01-21.SA 1

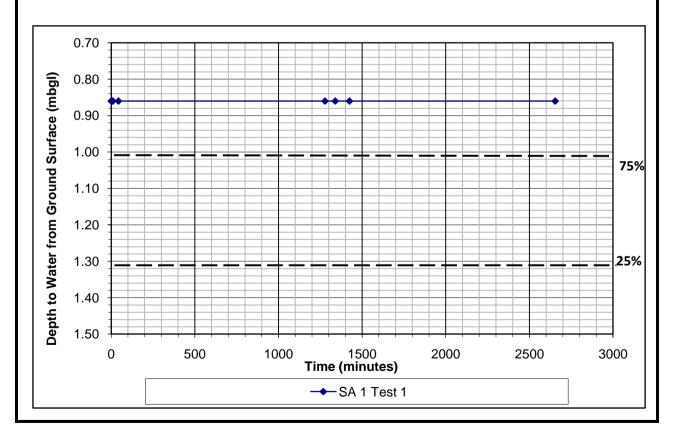
G F		www.g info@(01280	eo-integrity.co.uk geo-integrity.co.uk 816409			Site Broadwater Lake, Moorha	ull Road, Harefield, UB9 6PE	Trial Pit Number SA 2
Machine : Jo		Dimens	ions	Ground	Level (mOD)	Client		Job
Method : To	rial Pit		x 1.30m x 0.65m		42.74	Mace		Number 23-01-21
		Locatio	n (Handheld GPS)	Dates		Project Contractor		Sheet
			4614.8 E 189285.19 N	15	5/02/2023	Geo-Integrity		1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	С	escription	Legend Nater
0.50	D			42.54	- (0.45) - 0.65	MADE GROUND Loose li SAND. Gravel is flint and concrete and brick Complete at 0.65m	ark brown clayey gravelly org concrete and quartz ght brown slightly silty gravelly quartz. Occasional boulders of	
Plan .		٠			'	Remarks		
		•						
		٠			•			
		·						
								\ \\AGS
						Scale (approx)	Logged By	Figure No.
						1:20	Lee Ashworth	23-01-21.SA 2

		www.ge info@g 01280	eo-integrity.co.uk eo-integrity.co.uk			Site Broadwater Lake, Moorha	II Road, Harefield, UB9 6PB	Trial Pit Number
INTEGR Machine: J				0		Olland		
Method : T		Dimensi 0.60m x	ons 1.50m x 0.55m		Level (mOD) 39.24	Mace		Job Number 23-01-21
			(Handheld GPS) 844.26 E 189034.16 N	Dates 15	5/02/2023	Project Contractor Geo-Integrity		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend Nate.
0.50	D			38.74	- (0.50) - (MADE GROUND Loose d gravelly SILT. Gravel is flir	ark brown slightly clayey sa	ndy
Plan .						Remarks		
•	•	•		•	•			1 11 ACC
				-		Scale (approx)	Logged By	NAGS Figure No.
						1:20	Lee Ashworth	23-01-21.SA 3

Trial Pit Infiltration Testing to BRE Digest 365

Client: Mace Report No: 23-01-21

Broadwater Lake, Moorhall Road, Harefield, UB9 6PE Site: **Date Tested:** 15/02/23 Test Location: SA 1


Dimensions: 0.60m x 1.50m x 1.47m

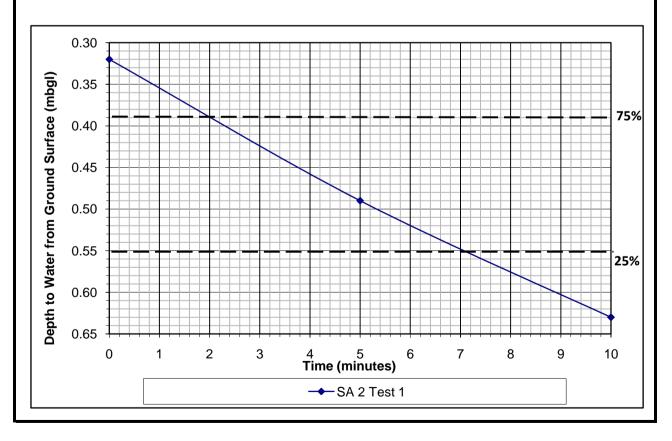
(width x length x depth)

Test Response Zone Description -: Made Ground/Alluvium

Time	Depth BGL	Time	Depth BGL	Time	Depth BGL
0	0.86	2654	0.86		
5	0.86				
10	0.86				
43	0.86				
1278	0.86				
1339	0.86				
1424	0.86				

Unable to Calculate Average Soil Infiltration Rate

Trial Pit Infiltration Testing to BRE Digest 365


Client: Mace Report No: 23-01-21
Site: Broadwater Lake, Moorhall Road, Harefield, UB9 6PE Date Tested: 15/02/23

(width x length x depth)

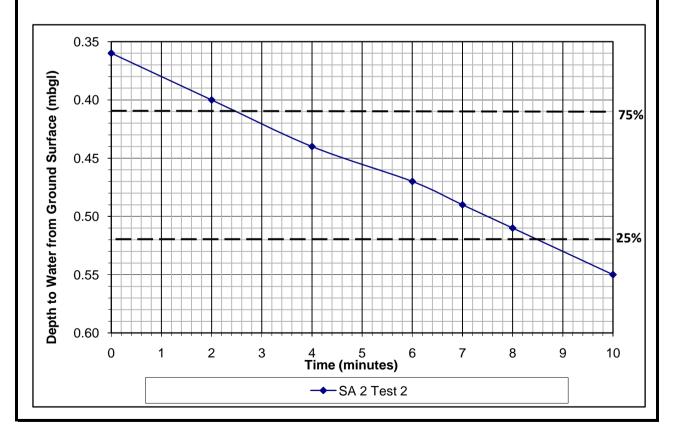
Test Response Zone Description -: Made Ground

Time	Depth BGL	Time	Depth BGL	Time	Depth BGL
0	0.32				
5	0.49				
10	0.63				

Average Soil Infiltration Rate = 2.94 x 10⁻⁴ m/s

Trial Pit Infiltration Testing to BRE Digest 365

Client: Mace Report No: 23-01-21
Site: Broadwater Lake, Moorhall Road, Harefield, UB9 6PE Date Tested: 15/02/23


Dimensions: 0.60m x 1.30m x 0.58m **Test Location:** SA 2

(width x length x depth)

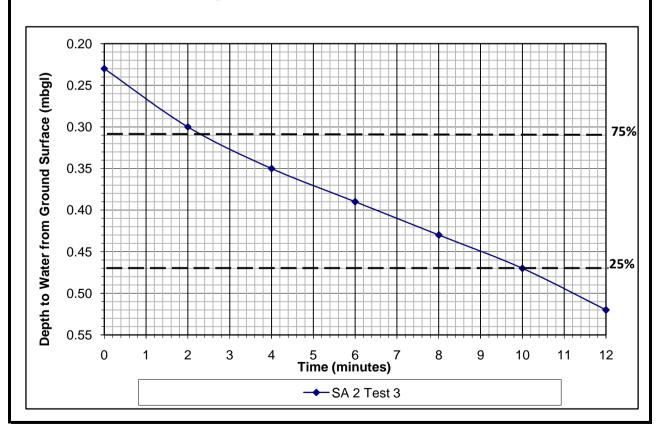
Test Response Zone Description -: MADE GROUND

Time	Depth BGL	Time	Depth BGL	Time	Depth BGL
0	0.36				
2	0.40				
4	0.44				
6	0.47				
7	0.49				
8	0.51				
10	0.55				

Average Soil Infiltration Rate = 1.99 x 10⁻⁴ m/s

Trial Pit Infiltration Testing to BRE Digest 365

Client: Mace Report No: 23-01-21
Site: Broadwater Lake, Moorhall Road, Harefield, UB9 6PE Date Tested: 15/02/23


Dimensions: 0.60m x 1.30m x 0.55m **Test Location:** SA 2

(width x length x depth)

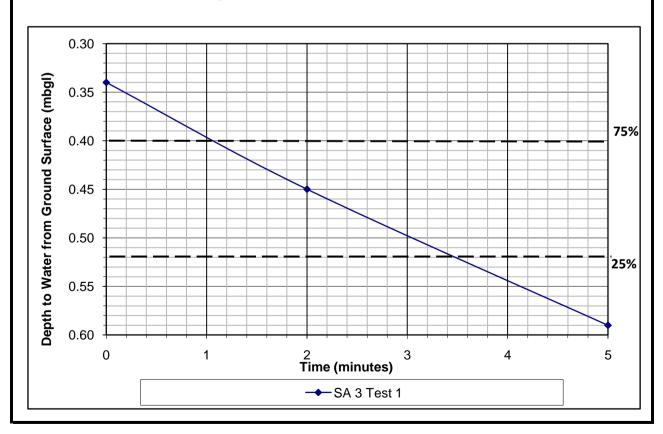
Test Response Zone Description -: MADE GROUND

Time	Depth BGL	Time	Depth BGL	Time	Depth BGL
0	0.23				
2	0.30				
4	0.35				
6	0.39				
8	0.43				
10	0.47				
12	0.52				

Average Soil Infiltration Rate = 1.95 x 10⁻⁴ m/s

Trial Pit Infiltration Testing to BRE Digest 365

Client: Mace Report No: 23-01-21
Site: Broadwater Lake, Moorhall Road, Harefield, UB9 6PE Date Tested: 15/02/23


Dimensions: 0.60m x 1.50m x 0.59m **Test Location:** SA 3

(width x length x depth)

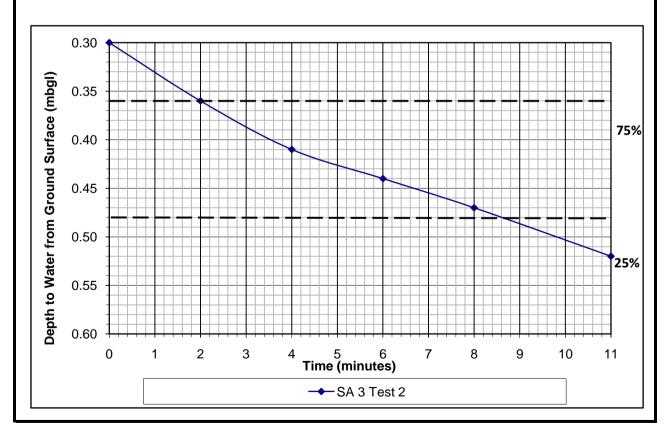
Test Response Zone Description -: MADE GROUND

Time	Depth BGL	Time	Depth BGL	Time	Depth BGL
0	0.34				
2	0.45				
5	0.59				

Average Soil Infiltration Rate = 5.72 x 10⁻⁴ m/s

Trial Pit Infiltration Testing to BRE Digest 365

Client: Mace Report No: 23-01-21
Site: Broadwater Lake, Moorhall Road, Harefield, UB9 6PE Date Tested: 15/02/23


Dimensions: 0.60m x 1.50m x 0.55m **Test Location**: SA 3

(width x length x depth)

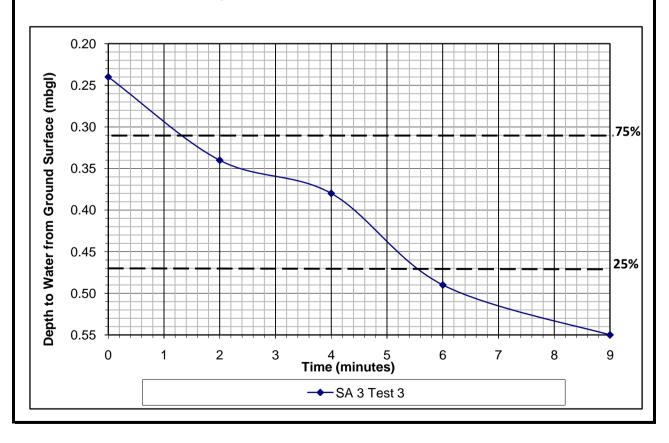
Test Response Zone Description -: MADE GROUND

Time	Depth BGL	Time	Depth BGL	Time	Depth BGL
0	0.30				
2	0.36				
4	0.41				
6	0.44				
8	0.47				
11	0.52				

Average Soil Infiltration Rate = 1.99 x 10⁻⁴ m/s

Trial Pit Infiltration Testing to BRE Digest 365

Client: Mace Report No: 23-01-21
Site: Broadwater Lake, Moorhall Road, Harefield, UB9 6PE Date Tested: 15/02/23


Dimensions: 0.60m x 1.50m x 0.55m **Test Location:** SA 3

(width x length x depth)

Test Response Zone Description -: MADE GROUND

Time	Depth BGL	Time	Depth BGL	Time	Depth BGL
0	0.24				
2	0.34				
4	0.38				
6	0.49				
9	0.55				

Average Soil Infiltration Rate = 3.53 x 10⁻⁴ m/s

G		www.geo info@ge 01280 8	o-integrity.co.uk eo-integrity.co.uk 16409			Site Broadwater Lake, Moorha	II Road, Harefield, UB9 6PE	Trial Pit Number
INTEGR Machine: J				Craund	Lavel (mOD)	Client		
Method : T		Dimensio	ns		Level (mOD) 39.19	Mace		Job Number 23-01-21
			(Handheld GPS) 797.89 E 189051.27 N	Dates 15	/02/2023	Project Contractor Geo-Integrity		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Vater Variet
				38.99	- (0.20) - 0.20 - (0.25) - 0.45	MADE GROUND Soft dark sandy gravelly CLAY. MADE GROUND Loose lig Gravel is fine to coarse bring to complete at 0.45m	k brown organic silty slightly ght frey silty sandy GRAVEL ick and concrete	
Plan .		•				Remarks		
					•			
					-			
								\ \\AGS
					. s	Scale (approx)	Logged By	Figure No.
						1:20	LA	23-01-21.CBR1

G		www.ge info@ge 01280 8	o-integrity.co.uk			Site Broadwater Lake, Moorha	ll Road, Harefield, UB9 6PE	Trial Pit Number CBR2
INTEGR		_						
Machine : J		Dimensio	ons		Level (mOD) 39.63	Client Mace		Job Number 23-01-21
			(Handheld GPS)	Dates 15	/02/2023	Project Contractor		Sheet
			750.12 E 189115.43 N			Geo-Integrity		1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend Nate
				39.53 39.43	⊢ (0.10)	MADE GROUND Loose o is flint, brick and cement CONCRETE	range sandy gravelly SILT. G	aravel
					_ _ -	Complete at 0.20m		
					_			
					_			
					-			
					_ _			
					-			
					_			
					-			
					_			
					-			
					_			
					-			
					_			
					-			
					_			
					-			
Plan .		•			'	Remarks		
	-		-		-			
		•			•			
		•						
								\ \\AGS
		•			· s	Scale (approx)	Logged By	Figure No.
						1:20	LA	23-01-21.CBR2

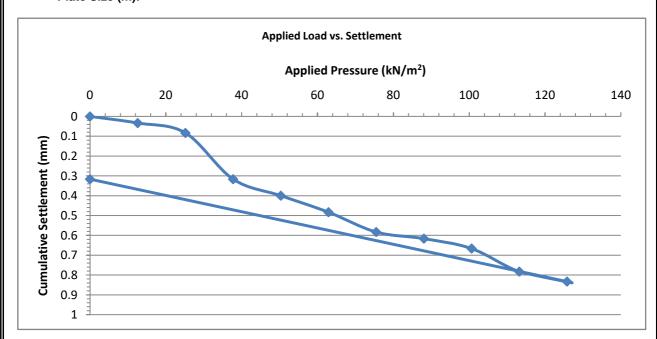
G		www.geo info@ge 01280 8	o-integrity.co.uk eo-integrity.co.uk 16409			Site Broadwater Lake, Moorha	ll Road, Harefield, UB9 6PE	Trial Pi Numbe CBR	er
INTEGR Machine: J		Dimensio		Ground	Level (mOD)	Client		loh	_
Method : T		Dimensio	ilis		39.40	Mace		Job Numbe 23-01-2	∍r 21
			(Handheld GPS) 744.68 E 189206.12 N	Dates 15	5/02/2023	Project Contractor Geo-Integrity		Sheet	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend	Vater
		(111)							_
				39.30	- (0.10) - 0.10	CONCRETE Complete at 0.10m			Ì
					_	Complete at 0.10m			ì
					-				ì
					 -				1
					-				1
					-				1
					_				
					-				
					<u>-</u>				
					-				1
					_				
					<u>-</u>				
					_				
					_				
					-				
					-				
					- -				
					_				
					E				
					_				
					_				ì
					_				
					L				
					-				ì
					_				
					_				
					_				1
Plan						 Remarks			
		•							
		•							
								N AC	ìS
		•				Scale (approx)	Logged By	Figure No.	
						1:20	LA	23-01-21.CBF	13

G		www.ge info@ge 01280 8	o-integrity.co.uk eo-integrity.co.uk			Site Broadwater Lake, Moorha	ll Road, Harefield, UB9 6PE	Trial Pit Number CBR4
INTEGR Machine: J						a		
Method : T		Dimensio	ons		Level (mOD) 39.45	Mace		Job Number 23-01-21
		Location	(Handheld GPS)	Dates 15	/02/2023	Project Contractor		Sheet
		5047	718.56 E 189276.29 N	10	,02,2020	Geo-Integrity		1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend bate Mark
				39.30	(0.15) - 0.15		rown orange silty sandy GRA nt brick and concrete	AVEL.
					-	Complete at 0.15m		
					_			
					-			
					-			
					_			
					_			
					_			
					_			
					-			
					_ _			
					-			
					-			
					-			
					_			
					_			
					_			
					_			
					_			
					_			
Plan .		•				Remarks		
		•			•			
		·						
								\ \\AGS
		٠				Scale (approx)	Logged By	Figure No.
						1:20	LA	23-01-21.CBR4

G F		www.g info@g 01280	eo-integrity.co.uk geo-integrity.co.uk 816409			Site Broadwater Lake, Moorha	ll Road, Harefield, UB9 6PE	Nui	I Pit mber 3 R 5
Machine : J		Dimens	ions	Ground	Level (mOD)	Client		Jok)
Method : T	rial Pit				39.86	Mace			nber 01-21
		Locatio	n (Handheld GPS)	Dates		Project Contractor		She	eet
		504	4690.04 E 189321.71 N	15	5/02/2023	Geo-Integrity			1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Lege	Mater bne
				00.40	(0.40)		range brown silty sandy GRA\ nt, brick and concrete		
				39.46	- 0.40 (0.49)	MADE GROUND Loose d Gravelis fine to coarse flin distinct hydrocarbon odou	ark grey silty sandy GARVEL. t brick rubber cocnrete with a r and staining		
				38.97 38.96	0.89	CONCRETE Complete at 0.90m			<u>×</u>
Dlan						Remarks			
Plan .		•				Remarks Excavating from 0.00m.			
		•							
		·		•					
		·		-					
									AGS
		٠		-		Scale (approx)	Logged By F	igure No.	ws
						1:20		23-01-21.0	CBR5

G F		www.g info@g 01280	eo-integrity.co.uk geo-integrity.co.uk 816409			Site Broadwater Lake, Moorha	ll Road, Harefield, UB9 6PE	1	Trial Pit Number CBR6	r
Excavation Trial Pit		Dimens	ions		Level (mOD) 39.81	Client Mace		1	Job Numbei 23-01-2	
			n (Handheld GPS) 4648.73 E 189307.1 N	Dates 15	5/02/2023	Project Contractor Geo-Integrity		S	Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Le	egend	Water
1.40	D1		Water strike(1) at 1.50m, no rise after 5 mins.	39.51 39.21 38.16	- (0.30) - 0.60 (1.00) (1.00)	MADE GROUND Loose d GRAVEL. Gravel is fine to	ck flint and chalk ark grey mottled white silty sa coarse brick flint chalk k brown beige silty slightly rick and flint	andy		₹ 1
Plan .		-		-	'	Remarks				
				-						
				-						
						Scale (approx)	Logged By	Figure N 23-01-2		

G		www.ge	eo-integrity.co.uk leo-integrity.co.uk			Site Broadwater Lake, Moorha	ll Road, Harefield, UB9 6PE	Trial Pit Number CBR7
INTEĞR		_	816409					
Machine: Jo	CB 3CX	Dimensi	ons		Level (mOD)			Job Number
Method :					42.64	Mace		23-01-21
		Location	n (Handheld GPS)	Dates		Project Contractor		Sheet
			1604.51 E 189290.68 N	15	5/02/2023	Geo-Integrity		1/1
		304	109290.00 N			Geo-integrity		
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend Nate
					(0.20)	MADE GROUND Loose of Gravel is flint brick concre	range brown silty sandy GRA te	AVEL.
				42.44	0.20	Complete et 0.00m		
					_	Complete at 0.20m		
					_			
					_			
					_			
					Ł			
					_			
					-			
					-			
					_			
					_			
					_			
					_			
					-			
					_			
					_			
					L			
					-			
					-			
					-			
					_			
					E			
					F			
					_			
					_			
					_			
					_			
					_			
					-			
					-			
					-			
					_			
					_			
					<u> </u>			
Plan .		-				Remarks		
	_	_		_				
		•			.			
		•			•			
								\ \\AGS
		-				Scale (approx)	Logged By	Figure No.
						1:20	LA LA	23-01-21.CBR7



Calculation of Modulus of Sub-Grade Reaction and CBR from Plate Bearing Test

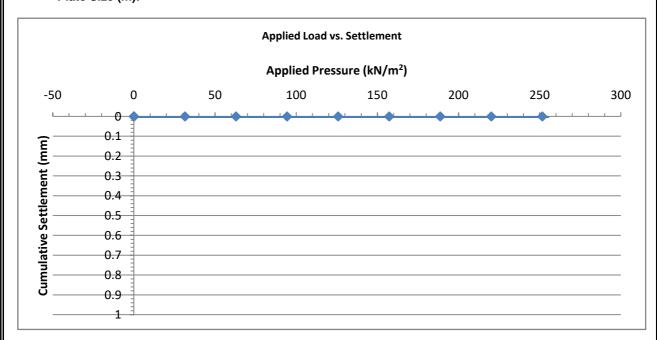
Client: KLR Industrial Ltd Job No: 23-01-21

Site: Farm Complex, Silvesrtone Circuit NN12 8GZ Date: 16/02/2023

Depth (bgl): 0.45 m **TP No:** CBR 1

Applied Load (kN)	Applied Pressure (kN/m²)	Average Settlement (mm)
0	0	0.00
2	13	0.03
4	25	0.08
6	38	0.32
8	50	0.40
10	63	0.48
12	75	0.58
14	88	0.62
16	101	0.67
18	113	0.78
20	126	0.83
0	0	0.32
0	0	0.00
0	0	0.00
0	0	0.00
0	0	0.00

Seating Pressure for 1.5mm initial settlement
132 kN/m ²
Pressure at 1.25mm (kN/m2)
126 kN/m²
Modulus of Subgrade Reaction (MN/m/m2)
62.80 MN/m²/m
Equivalent CBR Value (%)
12.60 %



Calculation of Modulus of Sub-Grade Reaction and CBR from Plate Bearing Test

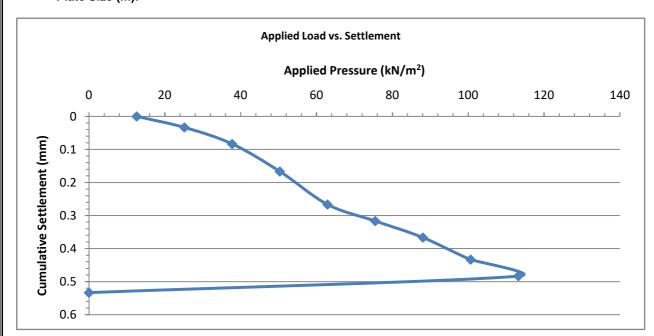
Client: Mace Group Job No: 23-01-21

Site: Broadwater Lake, Moorhall Road, Harefield, UB9 6PE Date: 16/02/2023

Depth (bgl): 0.2 m **TP No:** CBR 2

Applied Load (kN)	Applied Pressure (kN/m²)	Average Settlement (mm)
0	0	0.00
5	31	0.00
10	63	0.00
15	94	0.00
20	126	0.00
25	157	0.00
30	189	0.00
35	220	0.00
40	252	0.00
0	0	0.00
0	0	0.00
0	0	0.00
0	0	0.00
0	0	0.00
0	0	0.00
0	0	0.00

Seating Pressure for 1.5mm initial settlement
252 kN/m ²
Pressure at 1.25mm (kN/m2)
252 kN/m²
Modulus of Subgrade Reaction (MN/m/m2)
125.61 MN/m²/m
Equivalent CBR Value (%)
41.87 %



Calculation of Modulus of Sub-Grade Reaction and CBR from Plate Bearing Test

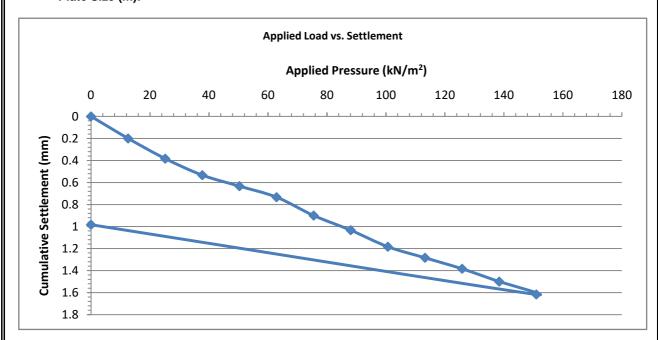
Client: Mace Group Job No: 23-01-21

Site: Broadwater Lake, Moorhall Road, Harefield, UB9 6PE Date: 16/02/2023

Depth (bgl): 0.1 m **TP No:** CBR 3

Applied Load (kN)	Pressure (kN/m²)	Average Settlement (mm)
0	0	0.00
2	13	0.03
4	25	0.08
6	38	0.17
8	50	0.27
10	63	0.32
12	75	0.37
14	88	0.43
16	101	0.48
18	113	0.53
0	0	0.00
0		0.00
0	0	0.00
0	0	0.00
0	0	0.00
0	0	0.00

Seating Pressure for 1.5mm initial settlement
182 kN/m²
Pressure at 1.25mm (kN/m2)
113 kN/m²
Modulus of Subgrade Reaction (MN/m/m2)
56.32 MN/m²/m
Equivalent CBR Value (%)
10.43 %



Calculation of Modulus of Sub-Grade Reaction and CBR from Plate Bearing Test

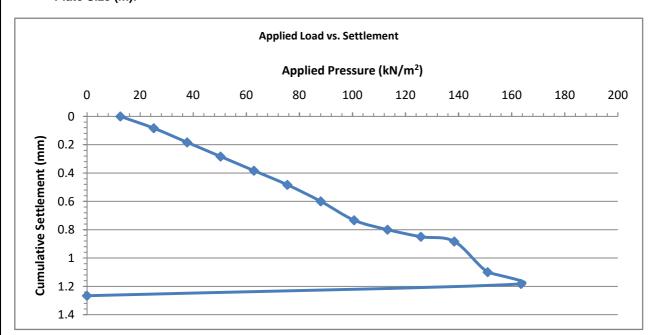
Client: Mace Group Job No: 23-01-21

Site: Broadwater Lake, Moorhall Road, Harefield, UB9 6PE Date: 16/02/2023

Depth (bgl): 0.15 m **TP No:** CBR 4

Applied Load (kN)	Applied Pressure (kN/m²)	Average Settlement (mm)
0	0	0.00
2	13	0.20
4	25	0.38
6	38	0.53
8	50	0.63
10	63	0.73
12	75	0.90
14	88	1.03
16	101	1.18
18	113	1.28
20	126	1.38
22	138	1.50
24	151	1.62
0	0	0.98
0	0	0.00
0	0	0.00

Seating Pressure for 1.5mm initial settlement
50 kN/m ²
Pressure at 1.25mm (kN/m2)
110 kN/m²
Modulus of Subgrade Reaction (MN/m/m2)
54.83 MN/m²/m
Equivalent CBR Value (%)
9.95 %



Calculation of Modulus of Sub-Grade Reaction and CBR from Plate Bearing Test

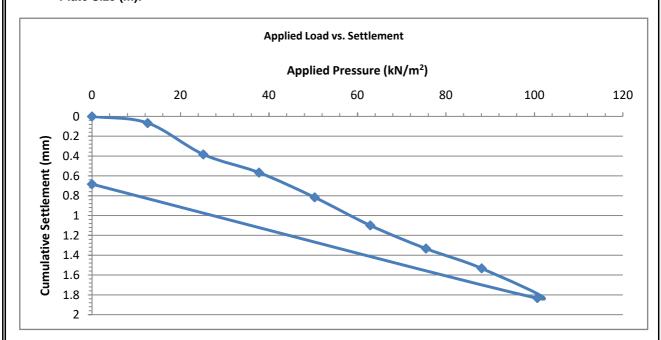
Client: Mace Group Job No: 23-01-21

Site: Broadwater Lake, Moorhall Road, Harefield, UB9 6PE Date: 16/02/2023

Depth (bgl): 0.15 m TP No: CBR 5

Applied Load (kN)	Applied Pressure (kN/m²)	Average Settlement (mm)
0	0	0.00
2	13	0.08
4	25	0.18
6	38	0.28
8	50	0.38
10	63	0.48
12	75	0.60
14	88	0.73
16	101	0.80
18	113	0.85
20	126	0.88
22	138	1.10
24	151	1.18
26	164	1.27
0	0	0.82
0	0	0.00

Seating Pressure for 1.5mm initial settlement
63 kN/m²
Pressure at 1.25mm (kN/m2)
162 kN/m ²
Modulus of Subgrade Reaction (MN/m/m2)
80.75 MN/m²/m
Equivalent CBR Value (%)
19.47 %



Calculation of Modulus of Sub-Grade Reaction and CBR from Plate Bearing Test

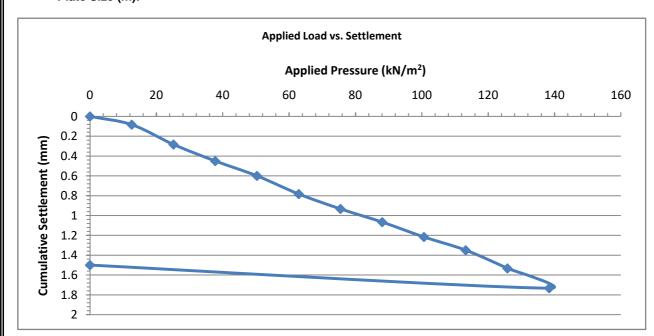
Client: Mace Group Job No: 23-01-21

Site: Broadwater Lake, Moorhall Road, Harefield, UB9 6PE Date: 16/02/2023

Depth (bgl): 0.2 m **TP No:** CBR 6

Applied Load (kN)	Applied Pressure (kN/m²)	Average Settlement (mm)
0	0	0.00
2	13	0.07
4	25	0.38
6	38	0.57
8	50	0.82
10	63	1.10
12	75	1.33
14	88	1.53
16	101	1.83
0	0	0.68
0	0	0.00
0	0	0.00
0	0	0.00
0	0	0.00
0	0	0.00
0	0	0.00

Seating Pressure for 1.5mm initial settlement
94 kN/m²
Pressure at 1.25mm (kN/m2)
76 kN/m²
Modulus of Subgrade Reaction (MN/m/m2)
37.88 MN/m²/m
Equivalent CBR Value (%)
5.24 %



Calculation of Modulus of Sub-Grade Reaction and CBR from Plate Bearing Test

Client: Mace Group Job No: 23-01-21

Site: Broadwater Lake, Moorhall Road, Harefield, UB9 6PE Date: 16/02/2023

Depth (bgl): 0.2 m **TP No:** CBR 7

Applied Load (kN)	Applied Pressure (kN/m²)	Average Settlement (mm)				
0	0	0.00				
2	13	0.08				
4	25	0.28				
6	38	0.45				
8	50	0.60				
10	63	0.78				
12	75	0.93				
14	88	1.07				
16	101	1.22				
18	113	1.35				
20	126	1.53				
22	138	1.73				
0	0	1.50				
0	0	0.00				
0	0	0.00				
0	0	0.00				

Seating Pressure for 1.5mm initial settlement
57 kN/m ²
Pressure at 1.25mm (kN/m2)
105 kN/m²
Modulus of Subgrade Reaction (kN/m/m2)
52.34 MN/m²/m
Equivalent CBR Value (%)
9.18 %

Date	Job No.	ВН	CH4(%)	LEL(%)	CO2(%)	O2(%)	H2S (ppm)	CO (ppm)	Hex(%)	PIDCf()	PkFlw (lh)	AP (mbar)	GW (m bgl)	Pmp (s)	Bal(%)
09/03/23	23-01-21	BH 3	0	0	0.3	19.1	0	0	0.027	1	0	986	2.39	69	80.6
09/03/23	23-01-21	BH 6	0.6	15.7	0.2	6.7	0	10	0.043	1.2	0	986	2.27	61	92.7
09/03/23	23-01-21	BH 9	0	0	0.8	16.9	0	0	0.029	1	0	986	0.8	61	82.3
15/03/23	23-01-21	BH 3	0	0	0.6	19.3	0	0	0.026	1	0.27	1011	2.3	62	80.1
15/03/23	23-01-21	BH 6	0.5	13.6	0.1	0.6	0	0	0.041	1.2	0	1011	2.12	61	98.9
15/03/23	23-01-21	BH 9	0	0	0.5	18.4	0	0	0.027	1	0	1011	1.78	61	81.1
20/03/23	23-01-21	BH 3	0	0	0.6	19.2	0	0	0.031	1	0	1010	-	60	80.2
20/03/23	23-01-21	BH 6	0.6	15.4	0.1	3.3	0	0	0.042	1.2	0	1010	-	60	96.1
20/03/23	23-01-21	BH 9	0	0	0.2	19.2	0	0	0.028	1	0	1010	-	60	80.6
29/03/23	23-01-21	вн3	0	0	0.8	19.4	0	0	0	1	0	1003	2.3	61	79.8
29/03/23	23-01-21	вн6	0	0	0	0.9	0	0	0.018	1	0	1002	2.12	63	99.1
29/03/23	23-01-21	ВН9	0	0	0.4	19.9	0	0	0	1	0	1002	0.75	62	79.7

APPENDIX C

Geotechnical Testing Facility

Slapton Hill Barn, Blakesley Road, Slapton, Towcester, Northants. NN12 8QD

Telephone:- 01327 860947/860060 Email: lab@listersgeotechnics.co.uk

	PROJECT INFORMATION	SAMPI	LE INFORMATION				
Site Location:-	Broadwater Lake Harefield	Laboratory Tests Undertaken:- TEST TYPE	TEST METHO	D TEST			
		Natural Moisture Contents (MC%)	(BS 1377:Part 2:1990 Clau	se 3.2)			
		Liquid Limits (%)	(BS 1377:Part 2:1990 Clau	se 4.3)			
		Plastic Limits (%)	(BS 1377:Part 2:1990 Clau	se 5.3)			
		Plasticity Index (%)	(BS 1377:Part 2:1990 Clau	se 5.4)			
		Linear Shrinkage (%)	(BS 1377:Part 2:1990 Clau	se 6.5)			
		PSD - Wet Sieving	(BS 1377:Part 2:1990 Clau	se 9.2)			
Client Reference:-	23-01-21	Engineering Sample Descriptions	(BS 5930 : Section 6)	ŕ			
		Passing 425/63 (µm)	-	✓			
		Hydrometer	(BS 1377:Part 2:1990 Clau	se 9.5)			
Date Samples Recei	ved:- 03 March 2023	Loss on Ignition (%)	-				
Date Testing Compl	leted:- 10 March 2023	Soil Suctions (kPa)	BRE Digest IP 4/93, 1993				
		Bulk Density (Mg/m ³)	(BS 1377:Part 2:1990 Clau	se 7.2)			
		Strength Tests	(BS 1377:Part 7:1990 Clau	se 8 & 9)			
		Soluble Sulphate Content (SO ₄ g/l)	(BS 1377:Part 3:1990 Clau	se 5.3)			
		pH value	(BS 1377:Part 3:1990 Clau	se 9.4)			
		California Bearing Ratios (CBR)	(BS 1377:Part 4:1990 Clau	se 7) ✓			
		Compaction Tests	(BS 1377:Part 4:1990 Clauses 3.0-3.6)				
The results relate only to							
	be reproduced, except with full and written approval of	Laboratory testing in accord with BS EN					
GROUNDTECH LABO	RATORIES	Quality Management in accord with ISC	9001				
Signed on behalf of (GroundTech Laboratories:	Technical Signa	tory	Quality Assure to ISO 9001			
G	EOTECHNICAL LABORATORY T	EST RESULTS	Report No:	23.03.008			

Geotechnical Testing Facility

Slapton Hill Barn, Blakesley Road, Slapton, Towcester, Northants. NN12 8QD Telephone: 01327 860947/860060 Fax: 01327 860430 Email: groundtech@listersgeotechnics.co.uk														Quality Assured to ISO 9001											
—	SAMI								N TEST	ΓS	CLASSIFICATION TESTS STRENGTH TESTS									<u>S</u>	CHEMICAL				
										_											TESTS			TESTS	
Test Location	Sample Type	Sample Depth -m	Test Type	WC %	LL %	PL %	PI %	Passing 425 µm %	Modified PI %	Class	Passing 63 µm %	WC/ LL	PL+ 2%	Liquidity Index	Loss on Ignition %	Soil Suction kPa	Bulk Density Mg/m³	Test Type	Cell Pressure kN/m²	Deviator Stress kN/m²	Apparent Cohesion kN/m²	ф	pH Value	Soluble Sulphate Content SO4 g/l	
BH 01	D D	1.00 3.00	PI/63 PSD	112	66	54	12	92	11	МН	82	1.70	56	4.83											
BH 02	D D	3.00 4.50	PI/63 PSD	72	53	34	19	96	18	МН	92	1.36	36	2.00											
BH 03	D D	3.00 4.50	PI/63 PSD	68	52	33	19	81	15	МН	64	1.31	35	1.84											
BH 04 BH 05	D D	6.00 1.20	PSD PSD																						
BH 06	D D	3.00 4.00	PI/63 PSD	66	45	26	19	86	16	CI	55	1.47	28	2.11											
BH 08	D D	1.65 3.00	PSD PSD																						
Symb	ols:			U	Undist	urbed Sa	ample			R	Remould	ed		PI	Plasticity	Index		Т	Triaxial U	Jndrained		L	100mm spec	cimen	
	D Disturbed Sample 63 B Bulk Sample H W Water Sample							Passing 6 Hydrome	eter		F CC	Filter Pap Continuo		Tests	HP	Multistag Hand Pen Vane Tes	etrometer		S	38mm speci	men				
	W Water Sample PSD Wet Sieving V Vane Test LABORATORY TEST RESULTS												Project Reference 23.03.008												

Geotechnical Testing Facility

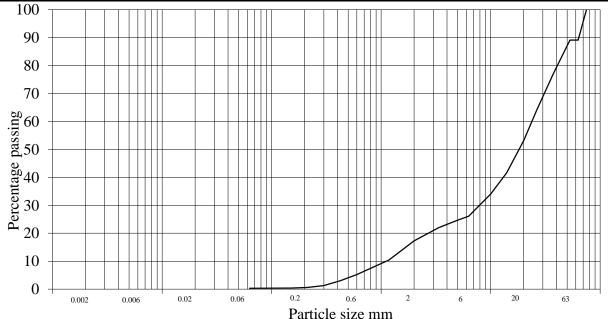
Slapton Hill Barn, Blakesley Road, Slapton, Towcester, Northants. NN12 8QD

Quality Assured ISO 9001

		1 050 111	cuioa. Bb 15	//: Part 2: 1990	
		BS test sieve	Cumulative Passing	Hydrometer Particle Diameter	Cumulative Passing
Site: Broadwater La	ake		- %		- %
Harefield		75mm	100.00		
		63mm	100.00		
Test Location:	BH 01	50mm	100.00		
Sample Depth:	3.00m -3.45m	37.5mm	91.30		
Sample Description:		26.5mm	78.00		
		20mm	70.20		
		14mm	60.50		
		10mm	52.90		
		6.3mm	42.90		
		5mm	38.00		
Hydrometer No.:		3.5mm	31.90		
SG Gs:		2mm	23.50		
Water Visc. (N):		1.18mm	15.60		
Dry Mass of Soil after	r pretreatment (g):	600µm	8.90		
	-	425µm	4.40		
		300μm	2.20		
		212µm	1.40		
		150µm	1.20		
		63μm	1.10		

CLAY	AY SILT Fine Medium Coarse		SAND			GRAVEL			COBBLES	
CLAT	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	COBBLES
	1%	•			22%			77%		0%

PARTICLE SIZE DISTRIBUTION


Geotechnical Testing Facility

Slapton Hill Barn, Blakesley Road, Slapton, Towcester, Northants. NN12 8QD

Telephone: 01327 860947/860060 Fax: 01327 860430 Email: groundtech@listersgeotechnics.co.uk

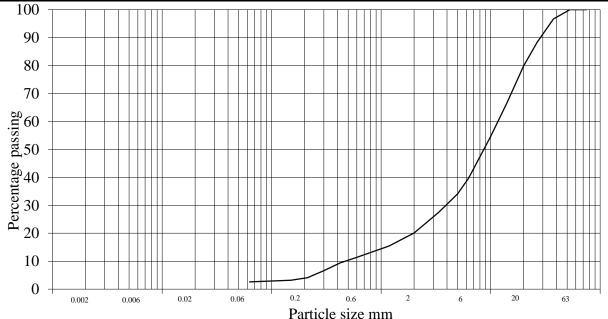
Quality Assured ISO 9001

		Test M	ethod: BS 13	77 : Part 2 : 1990	: 9.2
Site: Broadwater L	ake	BS test sieve	Cumulative Passing - %	Hydrometer Particle Diameter	Cumulative Passing - %
Harefield		75mm	100.00		
		63mm	89.10		
Test Location:	BH 02	50mm	89.10		
Sample Depth:	4.50m -4.95m	37.5mm	77.20		
Sample Description:		26.5mm	64.30		
		20mm	53.00		
		14mm	41.60		
		10mm	34.00		
		6.3mm	26.10		
		5mm	24.70		
Hydrometer No.:		3.5mm	22.00		
SG Gs:		2mm	17.30		
Water Visc. (N):		1.18mm	10.40		
Dry Mass of Soil afte	r pretreatment (g):	600µm	5.20		
•	-	425μm	3.00		
		300μm	1.30		
		212µm	0.60		
		150µm	0.40		
		63µm	0.30		
100					

CLAY		SILT			SAND			GRAVEL		COBBLES
CLAT	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	CODDLLS
(i)0%	(ii)0%		(i)17%	ó (ii)19%	(i)72	% (ii)81%	11%

(i) Percentage of whole sample (ii) Percentage of sample excluding very coarse soils

PARTICLE SIZE DISTRIBUTION


Geotechnical Testing Facility

Slapton Hill Barn, Blakesley Road, Slapton, Towcester, Northants. NN12 8QD

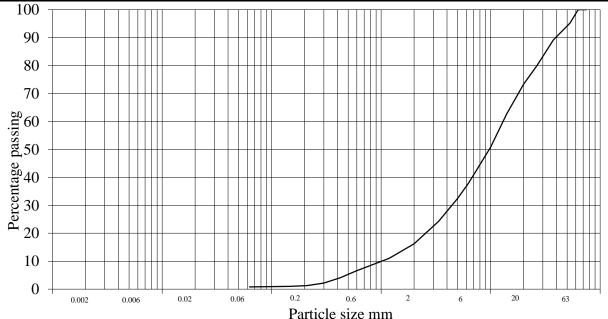
Telephone: 01327 860947/860060 Fax: 01327 860430 Email: groundtech@listersgeotechnics.co.uk

Quality Assured ISO 9001

		Test M	ethod: BS 13	//: Part 2: 1990	: 9.2
Site: Broadwater I	Lake	BS test sieve	Cumulative Passing - %	Hydrometer Particle Diameter	Cumulative Passing - %
Harefield		75mm	100.00		
		63mm	100.00		
Test Location:	BH 03	50mm	100.00		
Sample Depth:	4.50m -5.00m	37.5mm	96.70		
Sample Description:		26.5mm	88.30		
		20mm	79.80		
		14mm	66.40		
		10mm	54.60		
		6.3mm	39.70		
		5mm	34.10		
Hydrometer No.:		3.5mm	27.50		
SG Gs:		2mm	20.10		
Water Visc. (N):		1.18mm	15.40		
	er pretreatment (g):	600μm	11.40		
•		425μm	9.40		
		300μm	6.60		
		212μm	4.10		
		150μm	3.20		
		63μm	2.60		
100					

CLAY		SILT			SAND			GRAVEL		
CLAT	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	COBBLES
	3%				18%			80%		0%

PARTICLE SIZE DISTRIBUTION


Geotechnical Testing Facility

Slapton Hill Barn, Blakesley Road, Slapton, Towcester, Northants. NN12 8QD

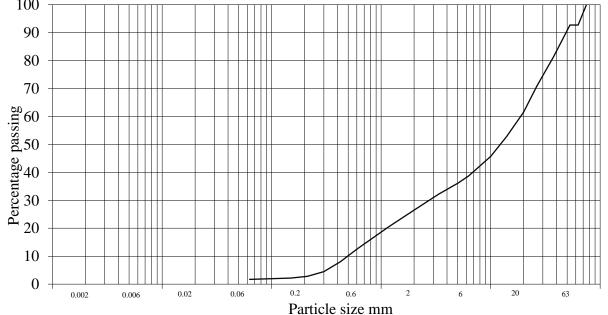
Telephone: 01327 860947/860060 Fax: 01327 860430 Email: groundtech@listersgeotechnics.co.uk

Quality Assured ISO 9001

		Test M	ethod: BS 13	//: Part 2: 1990	: 9.2
Site: Broadwater	Lake	BS test sieve	Cumulative Passing - %	Hydrometer Particle Diameter	Cumulative Passing - %
Harefield		75mm	100.00		
		63mm	100.00		
Test Location:	BH 04	50mm	95.20		
Sample Depth:	6.00m -6.50m	37.5mm	89.20		
Sample Description:		26.5mm	80.00		
		20mm	73.30		
		14mm	62.60		
		10mm	50.80		
		6.3mm	38.00		
		5mm	32.50		
Hydrometer No.:		3.5mm	24.30		
SG Gs:		2mm	16.20		
Water Visc. (N):		1.18mm	11.00		
Dry Mass of Soil aft	er pretreatment (g):	600μm	6.60		
•	_	425μm	4.10		
		300µm	2.20		
		212µm	1.30		
		150µm	1.00		
		63µm	0.80		
100		<u> </u>			7 TTT

CLAY				SAND			GRAVEL			
CLAT	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	COBBLES
	1%	ı			15%			84%		0%

PARTICLE SIZE DISTRIBUTION


Geotechnical Testing Facility

Slapton Hill Barn, Blakesley Road, Slapton, Towcester, Northants. NN12 8QD

Telephone: 01327 860947/860060 Fax: 01327 860430 Email: groundtech@listersgeotechnics.co.uk

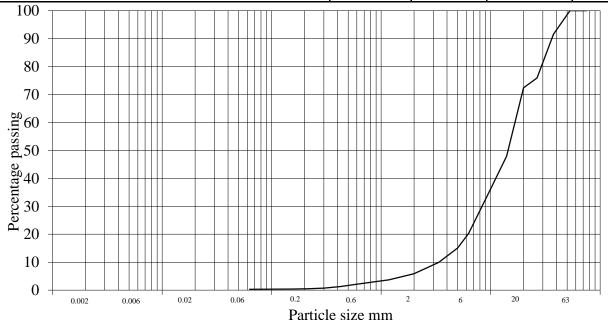
Quality Assured ISO 9001

	Test M	ethod: BS 13	77 : Part 2 : 1990): 9.2
Site: Broadwater Lake	BS test sieve	Cumulative Passing - %	Hydrometer Particle Diameter	Cumulative Passing - %
Harefield	75mm	100.00		, ,
	63mm	92.70		
Test Location: BH 05	50mm	92.70		
Sample Depth: 1.20m -2.00m	37.5mm	81.30		
Sample Description:	26.5mm	71.00		
	20mm	61.50		
	14mm	52.80		
	10mm	45.70		
	6.3mm	38.70		
	5mm	36.10		
Hydrometer No.:	3.5mm	32.20		
SG Gs:	2mm	26.50		
Water Visc. (N):	1.18mm	20.60		
Dry Mass of Soil after pretreatment (g):	600μm	12.50		
	425μm	8.00		
	300μm	4.50		
	212μm	2.80		
	150µm	2.20		
	63µm	1.70		
100	_			

CLA	v		SILT			SAND			GRAVEL		COBBLES
CLA	1	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	COBBLES
	(i)2%	(ii)2%		(i)25%	ó (ii)27%	(i)66	% (ii	1)71%	7%

(i) Percentage of whole sample (ii) Percentage of sample excluding very coarse soils

PARTICLE SIZE DISTRIBUTION


Geotechnical Testing Facility

Slapton Hill Barn, Blakesley Road, Slapton, Towcester, Northants. NN12 8QD

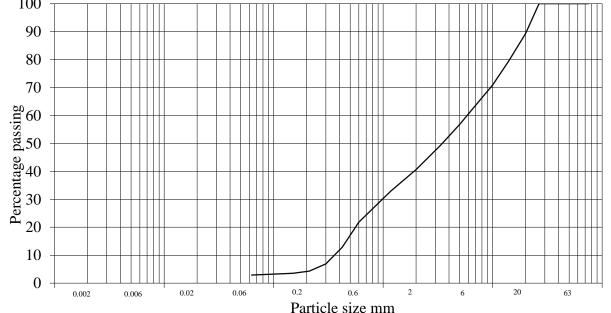
Telephone: 01327 860947/860060 Fax: 01327 860430 Email: groundtech@listersgeotechnics.co.uk

Quality Assured ISO 9001

		l est M	ethod: BS 13	//: Part 2: 1990	: 9.2
Site: Broadwater I	Lake	BS test sieve	Cumulative Passing - %	Hydrometer Particle Diameter	Cumulative Passing - %
Harefield		75mm	100.00		
		63mm	100.00		
Test Location:	BH 06	50mm	100.00		
Sample Depth:	4.00m -4.45m	37.5mm	91.60		
Sample Description:		26.5mm	75.90		
		20mm	72.40		
		14mm	47.90		
		10mm	36.20		
		6.3mm	20.30		
		5mm	15.10		
Hydrometer No.:		3.5mm	9.90		
SG Gs:		2mm	5.90		
Water Visc. (N):		1.18mm	3.70		
Dry Mass of Soil afte	er pretreatment (g):	600μm	2.10		
		425μm	1.30		
		300μm	0.70		
		212µm	0.50		
		150μm	0.40		
		63µm	0.30		
100				<u> </u>	

CLAY		SILT		SAND			GRAVEL			COBBLES
CLAT	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	COBBLES
	0%	1			6%			94%		0%

PARTICLE SIZE DISTRIBUTION


Geotechnical Testing Facility

Slapton Hill Barn, Blakesley Road, Slapton, Towcester, Northants. NN12 8QD

Telephone: 01327 860947/860060 Fax: 01327 860430 Email: groundtech@listersgeotechnics.co.uk

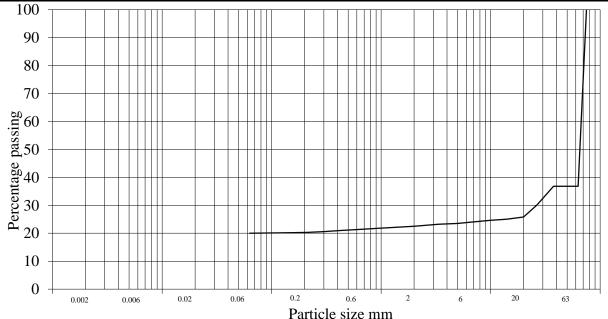
Quality Assured ISO 9001

		Test M	ethod: BS 13	77 : Part 2 : 1990	: 9.2
Site: Broadwater I	.ake	BS test sieve	Cumulative Passing - %	Hydrometer Particle Diameter	Cumulative Passing - %
Harefield		75mm	100.00		
		63mm	100.00		
Test Location:	BH 08	50mm	100.00		
Sample Depth:	1.65m -2.00m	37.5mm	100.00		
Sample Description:		26.5mm	100.00		
		20mm	89.30		
		14mm	79.40		
		10mm	70.90		
		6.3mm	61.50		
		5mm	56.80		
Hydrometer No.:		3.5mm	49.40		
SG Gs:		2mm	40.60		
Water Visc. (N):		1.18mm	33.00		
Dry Mass of Soil afte	er pretreatment (g):	600μm	21.80		
		425μm	12.90		
		300μm	6.90		
		212μm	4.30		
		150μm	3.50		
		63μm	2.90		
100				<u>. </u>	

CLAY		SILT			SAND			GRAVEL		COBBLES
CLAT	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	COBBLES
	3%	ı			38%			59%		0%

PARTICLE SIZE DISTRIBUTION

Project Reference 23.03.008


Geotechnical Testing Facility

Slapton Hill Barn, Blakesley Road, Slapton, Towcester, Northants. NN12 8QD

Telephone: 01327 860947/860060 Fax: 01327 860430 Email: groundtech@listersgeotechnics.co.uk

Quality Assured ISO 9001

		Test M	ethod: BS 13'	77 : Part 2 : 1990): 9.2
Site: B	Broadwater Lake	BS test sieve	Cumulative Passing - %	Hydrometer Particle Diameter	Cumulative Passing - %
	Harefield	75mm	100.00		- 70
		63mm	36.80		
Test Locat	tion: BH 08	50mm	36.80		
Sample De	epth: 3.00m -3.45m	37.5mm	36.80		
Sample De	escription:	26.5mm	30.10		
		20mm	25.80		
		14mm	25.00		
		10mm	24.60		
		6.3mm	23.90		
		5mm	23.50		
Hydromet	er No.:	3.5mm	23.20		
SG Gs:		2mm	22.50		
Water Vis	c. (N):	1.18mm	22.00		
Dry Mass	of Soil after pretreatment (g):	600μm	21.30		
		425μm	21.00		
		300μm	20.60		
		212μm	20.30		
		150μm	20.20		
		63µm	20.00		

CLAY		SILT			SAND			GRAVEL		COBBLES
CLAT	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	CODDLLS
(i)	20%	(ii)54%		(i)3%	ó (ii)7%	(i)14	% (ii	1)39%	63%

 $(i)\ Percentage\ of\ whole\ sample\quad (ii)\ Percentage\ of\ sample\ excluding\ very\ coarse\ soils$

PARTICLE SIZE DISTRIBUTION

Project Reference 23.03.008

Geotechnical Testing Facility

Slapton Hill Barn, Blakesley Road, Slapton, Towcester, Northants. NN12 8QD

Telephone: 01327 860947/860060 Fax: 01327 860430

Test	Depth	C.B.R.	Final	Bulk	Dry	Remarks
Location	(m)	Value %	Water Content	Density	Density	
		Top: Base	%	Mg/m ³	Mg/m ³	
BH 02	0.10	0.5 4.1	15	2.23	1.95	Grey silty, sandy GRAVEL. Gravel is fine to coarse subangular to angular flint.
BH 04	0.50	10.9 22.1	5	1.95	1.86	Grey brown, slightly sandy GRAVEL. Gravel is fine to coarse subangular to subrounded flint and rare quarzitic gravel.
BH 06	0.50	42.3 35.3	13	2.13	1.89	Grey silty sandy GRAVEL. Gravel is fine to coarse, subrounded to angular flint and rare quarzitic gravel.
BH 07	0.50	37.1 73.4	6	2.09	1.96	Grey sandy GRAVEL. Gravel is fine to coarse, subrounded to angular flint and rare quarzitic gravel.
				Samples re	compacted u	using standard compaction harge 8kg
	CALIFO	RNIA BEAR	ING			Report No.
		RATIO				23.03.008

Geotechnical Testing Facility

Slapton Hill Barn Blakesley Road Slapton Towcester Northamptonshire NN12 8QD

Telephone: 01327 860947/860060 Fax: 01327 860430

Telephone: 01327			nple			SWC	Intact Bulk	Intact Dry	
Test Location	Ref	Тор	Base	Туре	Spec Ref.	SWC	Density	Density	CIRIA C574 Density Sclae
						%	Mg/m³	Mg/m³	
BH 01	3	9.50	9.60	D	1	21	2.09	1.73	Н
BH 02	7	9.00	9.10	D	1	23	2.05	1.67	M
BH 03	10	12.50	12.95	D	1	25	2.02	1.62	M
BH 07	18	7.50		D	1	27	1.97	1.57	M
BH 08	21	12.50	12.95	D	1	25	2.02	1.62	M
Date 10/03/2023	SAT	ΓURAT	ION W	ATER	CONT	ENT	Report No.	3.008	L: Low M: Medium
	sted in acco	rdance with	BS1377 : Pa	rt 2 : 1990,	clause 3.3 ur	nless annotat	ed otherwise.		H: High VH: Very High

eurofins Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

Final Report

Report No.: 23-06239-1

Initial Date of Issue: 08-Mar-2023

Client Geo Integrity

Client Address: Units 7 Burcote Wood Farm

Business Park Wood Burcote Towcester NN12 8TA

Contact(s): Lee Ashworth

Project 23-01-21 Broadwater Lake, Moorhall

Road, Harefield, UB9 6PE

Quotation No.: Q21-23824 Date Received: 23-Feb-2023

Order No.: Date Instructed: 23-Feb-2023

No. of Samples: 15

Turnaround (Wkdays): 7 Results Due: 03-Mar-2023

Date Approved: 08-Mar-2023

Approved By:

Details: Stuart Henderson, Technical

Manager

Results - Leachate

Project: 23-01-21 Broadwater Lake, Moorhall Road, Harefield, UB9 6PE

<u>000 01 E</u>							
Client: Geo Integrity			Chem	ntest Jo	b No.:	23-06239	23-06239
Quotation No.: Q21-23824		С	hemtes	st Samp	le ID.:	1595876	1595888
			Sar	mple Lo	cation:	TP1	TP2
				Sample	Type:	SOIL	SOIL
			T	op Dep	th (m):	0.50	0.50
			[Date Sar	mpled:	15-Feb-2023	15-Feb-2023
Determinand	Accred.	SOP	Туре	Units	LOD		
Arsenic (Dissolved)	U	1455	10:1	μg/l	0.20	1.6	3.1
Cadmium (Dissolved)	U	1455	10:1	μg/l	0.11	< 0.11	< 0.11
Chromium (Dissolved)	U	1455	10:1	μg/l	0.50	2.3	4.8
Copper (Dissolved)	U	1455	10:1	μg/l	0.50	12	4.1
Mercury (Dissolved)	U	1455	10:1	μg/l	0.05	< 0.05	< 0.05
Nickel (Dissolved)	U	1455	10:1	μg/l	0.50	5.5	5.3
Lead (Dissolved)	U	1455	10:1	μg/l	0.50	1.9	0.91
Selenium (Dissolved)	U	1455	10:1	μg/l	0.50	2.4	0.66
Zinc (Dissolved)	U	1455	10:1	μg/l	2.5	8.3	25

<u>Project: 23-01-21 Broadwater Lake, Moorhall Road, Harefield, UB9 6PE</u>

<u>UB9 6PE</u>													
Client: Geo Integrity		Ch	emtest .	Job No.:	23-06239	23-06239	23-06239	23-06239	23-06239	23-06239	23-06239	23-06239	23-06239
Quotation No.: Q21-23824		Chem	test Sar	nple ID.:	1595876	1595877	1595878	1595879	1595880	1595881	1595882	1595883	1595884
		5	Sample I	Location:	TP1	TP10	TP12	TP6	TP9	TP13	TP14	TP5	TP3
			Samp	ole Type:	SOIL								
			Top Do	epth (m):	0.50	0.80	0.80	0.50	1.40	1.30	0.60	0.50	1.20
			Date S	Sampled:	15-Feb-2023	16-Feb-2023	17-Feb-2023	16-Feb-2023	16-Feb-2023	17-Feb-2023	17-Feb-2023	15-Feb-2023	15-Feb-2023
			Asbes	stos Lab:	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY		COVENTRY	COVENTRY	COVENTRY
Determinand	Accred.	SOP	Units	LOD									
ACM Type	U	2192		N/A	-	-	-	-	-		-	-	-
Asbestos Identification	U	2192		N/A	No Asbestos		No Asbestos	No Asbestos	No Asbestos				
Aspestos identification	U	2192		IN/A	Detected	Detected	Detected	Detected	Detected		Detected	Detected	Detected
Moisture	N	2030	%	0.020	48	18	13	18	21	11	8.8	5.2	6.3
Arsenic	М	2455	mg/kg	0.5	17	10	4.7	4.5	13	14	15	14	12
Cadmium	М	2455	mg/kg	0.10	0.50	0.19	0.14	< 0.10	0.21	0.10	0.44	0.38	0.24
Chromium	М	2455	mg/kg	0.5	38	24	9.7	11	25	20	30	28	24
Copper	М	2455	mg/kg	0.50	40	27	12	4.8	20	4.7	27	23	27
Mercury	М	2455	mg/kg	0.05	0.26	0.09	< 0.05	< 0.05	0.35	< 0.05	0.08	0.08	0.09
Nickel	М	2455	mg/kg	0.50	36	19	10	7.8	21	11	21	21	20
Lead	М	2455	mg/kg	0.50	76	50	29	7.6	120	9.8	57	58	51
Selenium	М	2455	mg/kg	0.25	4.4	0.66	0.39	0.25	1.1	0.43	0.76	0.77	0.70
Zinc	М	2455	mg/kg	0.50	72	67	31	22	95	13	91	85	67
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Aliphatic VPH >C5-C6	М	2780	mg/kg	0.05									
Aliphatic VPH >C6-C7	М	2780	mg/kg	0.05									
Aliphatic VPH >C7-C8	М	2780	mg/kg	0.05									
Aliphatic VPH >C8-C10	М	2780	mg/kg	0.05									
Total Aliphatic VPH >C5-C10	М	2780	mg/kg	0.25									
Aliphatic EPH >C10-C12	М	2690	mg/kg	2.00									
Aliphatic EPH >C12-C16	М	2690	mg/kg	1.00									
Aliphatic EPH >C16-C21	М	2690	mg/kg	2.00									
Aliphatic EPH >C21-C35	М	2690	mg/kg	3.00									
Aliphatic EPH >C35-C40	N	2690	mg/kg	10.00									
Total Aliphatic EPH >C10-C35	М	2690	mg/kg	5.00									
Total Aliphatic EPH >C10-C40	N	2690	mg/kg	10.00									
Aromatic VPH >C5-C7	М	2780	mg/kg	0.05									
Aromatic VPH >C7-C8	М	2780	mg/kg	0.05									
Aromatic VPH >C8-C10	М	2780	mg/kg	0.05									
Total Aromatic VPH >C5-C10	М	2780	mg/kg	0.25									
Aromatic EPH >C10-C12	M	2690	mg/kg	1.00									
Aromatic EPH >C12-C16	М	2690	mg/kg	1.00									
Aromatic EPH >C16-C21	N	2690	mg/kg	2.00									
Aromatic EPH >C21-C35	М	2690	mg/kg	2.00									
Aromatic EPH >C35-C40	N	2690	mg/kg	1.00									
Total Aromatic EPH >C10-C35	М	2690	mg/kg	5.00									
Total Aromatic EPH >C10-C40	N	2690	mg/kg	10.00									
Total VPH >C5-C10	М	2780	mg/kg	0.50									

<u>Project: 23-01-21 Broadwater Lake, Moorhall Road, Harefield, UB9 6PE</u>

<u>UB9 6PE</u>													
Client: Geo Integrity		Ch	emtest .	Job No.:	23-06239	23-06239	23-06239	23-06239	23-06239	23-06239	23-06239	23-06239	23-06239
Quotation No.: Q21-23824		Chem	test Sar	nple ID.:	1595876	1595877	1595878	1595879	1595880	1595881	1595882	1595883	1595884
		,	Sample I	Location:	TP1	TP10	TP12	TP6	TP9	TP13	TP14	TP5	TP3
				ole Type:	SOIL								
			Top Do	epth (m):	0.50	0.80	0.80	0.50	1.40	1.30	0.60	0.50	1.20
				Sampled:	15-Feb-2023	16-Feb-2023	17-Feb-2023	16-Feb-2023	16-Feb-2023	17-Feb-2023	17-Feb-2023	15-Feb-2023	15-Feb-2023
			Asbes	stos Lab:	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY		COVENTRY	COVENTRY	COVENTRY
Determinand	Accred.	SOP	Units	LOD									
Total EPH >C10-C35	M	2690	mg/kg	10.00									
Total EPH >C10-C40	N	2690	mg/kg										
Fraction of Organic Carbon	М	2625		0.0010	0.092					0.015			0.013
Total Organic Carbon	М	2625	%	0.20									
TPH >C5-C6	N	2670	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH >C6-C7	N	2670	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH >C7-C8	N	2670	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH >C8-C10	N	2670	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH >C10-C12	N	2670	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH >C12-C16	N	2670	mg/kg	1.0	17	< 1.0	< 1.0	< 1.0	10	< 1.0	< 1.0	27	8.1
TPH >C16-C21	N	2670	mg/kg	1.0	40	< 1.0	< 1.0	< 1.0	20	< 1.0	< 1.0	86	20
TPH >C21-C35	N	2670	mg/kg	1.0	160	< 1.0	< 1.0	< 1.0	40	< 1.0	< 1.0	70	37
Total TPH >C5-C35	N	2670	mg/kg	10	220	< 10	< 10	< 10	70	< 10	< 10	180	65
Naphthalene	М	2700	mg/kg	0.10	0.50	0.90	< 0.10	< 0.10	1.1	< 0.10	0.65	0.62	0.72
Acenaphthylene	М	2700	mg/kg	0.10	0.21	0.35	< 0.10	< 0.10	0.31	< 0.10	0.45	0.41	0.20
Acenaphthene	М	2700	mg/kg	0.10	0.15	0.40	< 0.10	< 0.10	0.19	< 0.10	0.24	0.21	0.31
Fluorene	М	2700	mg/kg	0.10	0.17	0.26	< 0.10	< 0.10	0.16	< 0.10	0.40	0.18	0.23
Phenanthrene	М	2700	mg/kg	0.10	0.87	1.4	< 0.10	< 0.10	0.79	< 0.10	0.78	0.68	1.2
Anthracene	М	2700	mg/kg	0.10	0.34	0.36	< 0.10	< 0.10	0.27	< 0.10	0.44	0.75	0.39
Fluoranthene	М	2700	mg/kg	0.10	2.5	1.4	< 0.10	0.52	1.5	0.12	1.5	1.2	1.2
Pyrene	М	2700	mg/kg	0.10	2.6	1.6	< 0.10	0.65	1.6	0.29	2.0	1.7	1.5
Benzo[a]anthracene	М	2700	mg/kg	0.10	1.5	0.88	< 0.10	< 0.10	0.86	< 0.10	1.2	0.93	0.74
Chrysene	М	2700	mg/kg	0.10	4.4	1.1	< 0.10	< 0.10	2.7	< 0.10	1.5	1.1	0.92
Benzo[b]fluoranthene	М	2700	mg/kg	0.10	1.8	0.93	< 0.10	< 0.10	1.2	< 0.10	1.7	1.2	0.87
Benzo[k]fluoranthene	М	2700	mg/kg	0.10	0.76	0.56	< 0.10	< 0.10	0.59	< 0.10	0.62	0.58	0.63
Benzo[a]pyrene	М	2700	mg/kg	0.10	1.5	0.83	< 0.10	< 0.10	0.84	< 0.10	1.5	0.98	0.67
Indeno(1,2,3-c,d)Pyrene	М	2700	mg/kg	0.10	1.3	0.60	< 0.10	< 0.10	0.67	< 0.10	1.1	1.1	0.53
Dibenz(a,h)Anthracene	М	2700	mg/kg	0.10	0.18	0.11	< 0.10	< 0.10	0.16	< 0.10	0.25	0.44	< 0.10
Benzo[g,h,i]perylene	М	2700	mg/kg	0.10	2.5	0.95	< 0.10	< 0.10	1.3	< 0.10	1.6	1.2	0.86
Total Of 16 PAH's	М	2700	mg/kg	2.0	21	13	< 2.0	< 2.0	14	< 2.0	16	13	11
Dichlorodifluoromethane	U	2760	μg/kg	1.0		< 1.0			< 1.0				
Chloromethane	М	2760	μg/kg	1.0		< 1.0			< 1.0				
Vinyl Chloride	М	2760	μg/kg	1.0		< 1.0			< 1.0				
Bromomethane	М	2760	μg/kg	20		< 20			< 20				
Chloroethane	U	2760	μg/kg	2.0		< 2.0			< 2.0				
Trichlorofluoromethane	М	2760	μg/kg	1.0		< 1.0			< 1.0				
1,1-Dichloroethene	М	2760	μg/kg	1.0		< 1.0			< 1.0				
Trans 1,2-Dichloroethene	М	2760	μg/kg	1.0		< 1.0			< 1.0				
	-	•		-								•	

<u>Project: 23-01-21 Broadwater Lake, Moorhall Road, Harefield, UB9 6PE</u>

UB9 6PE													
Client: Geo Integrity		Cho	emtest .	Job No.:	23-06239	23-06239	23-06239	23-06239	23-06239	23-06239	23-06239	23-06239	23-06239
Quotation No.: Q21-23824		Chem	test San	nple ID.:	1595876	1595877	1595878	1595879	1595880	1595881	1595882	1595883	1595884
		5	Sample l	Location:	TP1	TP10	TP12	TP6	TP9	TP13	TP14	TP5	TP3
				ole Type:	SOIL								
				epth (m):	0.50	0.80	0.80	0.50	1.40	1.30	0.60	0.50	1.20
				Sampled:	15-Feb-2023	16-Feb-2023	17-Feb-2023	16-Feb-2023	16-Feb-2023	17-Feb-2023	17-Feb-2023	15-Feb-2023	15-Feb-2023
				stos Lab:	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY		COVENTRY	COVENTRY	COVENTRY
Determinand	Accred.	SOP	Units	LOD									
1,1-Dichloroethane	M	2760	μg/kg	1.0		< 1.0			< 1.0				
cis 1,2-Dichloroethene	М	2760	μg/kg	1.0		< 1.0			< 1.0				
Bromochloromethane	U	2760	μg/kg	5.0		< 5.0			< 5.0				
Trichloromethane	М	2760	μg/kg	1.0		< 1.0			< 1.0				
1,1,1-Trichloroethane	M	2760	μg/kg	1.0		< 1.0			< 1.0				
Tetrachloromethane	M	2760	μg/kg	1.0		< 1.0			< 1.0				
1,1-Dichloropropene	U	2760	μg/kg	1.0		< 1.0			< 1.0				
Benzene	M	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichloroethane	M	2760	μg/kg	2.0		< 2.0			< 2.0				
Trichloroethene	N	2760	μg/kg	1.0		< 1.0			< 1.0				
1,2-Dichloropropane	M	2760	μg/kg	1.0		< 1.0			< 1.0				
Dibromomethane	М	2760	μg/kg	1.0		< 1.0			< 1.0				
Bromodichloromethane	М	2760	μg/kg	5.0		< 5.0			< 5.0				
cis-1,3-Dichloropropene	N	2760	μg/kg	10		< 10			< 10				
Toluene	М	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trans-1,3-Dichloropropene	N	2760	μg/kg	10		< 10			< 10				
1,1,2-Trichloroethane	M	2760	μg/kg	10		< 10			< 10				
Tetrachloroethene	M	2760	μg/kg	1.0		< 1.0			< 1.0				
1,3-Dichloropropane	U	2760	μg/kg	2.0		< 2.0			< 2.0				
Dibromochloromethane	U	2760	μg/kg	10		< 10			< 10				
1,2-Dibromoethane	M	2760	μg/kg	5.0		< 5.0			< 5.0				
Chlorobenzene	М	2760	μg/kg	1.0		< 1.0			< 1.0				
1,1,1,2-Tetrachloroethane	М	2760	μg/kg	2.0		< 2.0			< 2.0				
Ethylbenzene	М	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
m & p-Xylene	М	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-Xylene	М	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Styrene	М	2760	μg/kg	1.0		< 1.0			< 1.0				
Tribromomethane	U	2760	μg/kg	1.0		< 1.0			< 1.0				
Isopropylbenzene	М	2760	μg/kg	1.0		< 1.0			< 1.0				
Bromobenzene	М	2760	μg/kg	1.0		< 1.0			< 1.0				
1,2,3-Trichloropropane	N	2760	μg/kg	50		< 50			< 50				
N-Propylbenzene	U	2760	μg/kg	1.0		< 1.0			< 1.0				
2-Chlorotoluene	М	2760	μg/kg	1.0		< 1.0			< 1.0				
1,3,5-Trimethylbenzene	М	2760	μg/kg	1.0		< 1.0			< 1.0	1			
4-Chlorotoluene	U	2760	μg/kg	1.0		< 1.0			< 1.0				
Tert-Butylbenzene	U	2760	μg/kg	1.0		< 1.0			< 1.0				
1,2,4-Trimethylbenzene	М	2760	μg/kg	1.0		< 1.0			< 1.0				
Sec-Butylbenzene	U	2760	μg/kg	1.0		< 1.0			< 1.0				
									•		•	•	

<u>Project: 23-01-21 Broadwater Lake, Moorhall Road, Harefield, UB9 6PE</u>

UB9 6PE													
Client: Geo Integrity		Ch	emtest .	Job No.:	23-06239	23-06239	23-06239	23-06239	23-06239	23-06239	23-06239	23-06239	23-06239
Quotation No.: Q21-23824		Chem	test San	nple ID.:	1595876	1595877	1595878	1595879	1595880	1595881	1595882	1595883	1595884
		5	Sample L	_ocation:	TP1	TP10	TP12	TP6	TP9	TP13	TP14	TP5	TP3
				le Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				epth (m):	0.50	0.80	0.80	0.50	1.40	1.30	0.60	0.50	1.20
				Sampled:		16-Feb-2023	17-Feb-2023	16-Feb-2023	16-Feb-2023	17-Feb-2023	17-Feb-2023	15-Feb-2023	15-Feb-2023
				tos Lab:	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY		COVENTRY	COVENTRY	COVENTRY
Determinand	Accred.	SOP	Units	LOD									
1,3-Dichlorobenzene	M	2760	μg/kg	1.0		< 1.0			< 1.0				
4-Isopropyltoluene	U	2760	μg/kg	1.0		< 1.0			< 1.0				
1,4-Dichlorobenzene	M	2760	μg/kg	1.0		< 1.0			< 1.0				
N-Butylbenzene	U	2760	μg/kg	1.0		< 1.0			< 1.0				
1,2-Dichlorobenzene	М	2760	μg/kg	1.0		< 1.0			< 1.0				
1,2-Dibromo-3-Chloropropane	U	2760	μg/kg	50		< 50			< 50				
1,2,4-Trichlorobenzene	М	2760	μg/kg	1.0		< 1.0			< 1.0				
Hexachlorobutadiene	N	2760	μg/kg	1.0		< 1.0			< 1.0				
1,2,3-Trichlorobenzene	U	2760	μg/kg	2.0		< 2.0			< 2.0				
Methyl Tert-Butyl Ether	М	2760	μg/kg	1.0		< 1.0			< 1.0				
N-Nitrosodimethylamine	М	2790	mg/kg	0.50		< 0.50			< 0.50				
Phenol	M	2790	mg/kg	0.50		< 0.50			< 0.50				
2-Chlorophenol	M	2790	mg/kg	0.50		< 0.50			< 0.50				
Bis-(2-Chloroethyl)Ether	M	2790	mg/kg	0.50		< 0.50			< 0.50				
1,3-Dichlorobenzene	М	2790	mg/kg	0.50		< 0.50			< 0.50				
1,4-Dichlorobenzene	N	2790	mg/kg	0.50		< 0.50			< 0.50				
1,2-Dichlorobenzene	M	2790	mg/kg	0.50		< 0.50			< 0.50				
2-Methylphenol	М	2790	mg/kg	0.50		< 0.50			< 0.50				
Bis(2-Chloroisopropyl)Ether	M	2790	mg/kg	0.50		< 0.50			< 0.50				
Hexachloroethane	N	2790	mg/kg	0.50		< 0.50			< 0.50				
N-Nitrosodi-n-propylamine	M	2790	mg/kg	0.50		< 0.50			< 0.50				
4-Methylphenol	M	2790	mg/kg	0.50		< 0.50			< 0.50				
Nitrobenzene	М	2790	mg/kg	0.50		< 0.50			< 0.50				
Isophorone	М	2790	mg/kg	0.50		< 0.50			< 0.50				
2-Nitrophenol	N	2790	mg/kg	0.50		< 0.50			< 0.50				
2,4-Dimethylphenol	N	2790	mg/kg	0.50		< 0.50			< 0.50				
Bis(2-Chloroethoxy)Methane	М	2790	mg/kg	0.50		< 0.50			< 0.50				
2,4-Dichlorophenol	М	2790	mg/kg	0.50		< 0.50			< 0.50				
1,2,4-Trichlorobenzene	М	2790	mg/kg	0.50		< 0.50			< 0.50				
Naphthalene	М	2790	mg/kg	0.50		< 0.50			< 0.50				
4-Chloroaniline	N	2790	mg/kg	0.50		< 0.50			< 0.50				
Hexachlorobutadiene	М	2790	mg/kg	0.50		< 0.50			< 0.50				
4-Chloro-3-Methylphenol	М	2790	mg/kg	0.50		< 0.50			< 0.50				
2-Methylnaphthalene	М	2790	mg/kg	0.50		< 0.50			< 0.50				
4-Nitrophenol	N	2790	mg/kg	0.50		< 0.50			< 0.50				
Hexachlorocyclopentadiene	N	2790	mg/kg	0.50		< 0.50			< 0.50				
2,4,6-Trichlorophenol	М	2790	mg/kg	0.50		< 0.50			< 0.50				
2,4,5-Trichlorophenol	М	2790	mg/kg	0.50		< 0.50			< 0.50				
								_					

<u>Project: 23-01-21 Broadwater Lake, Moorhall Road, Harefield, UB9 6PE</u>

<u>UB9 6PE</u>													
Client: Geo Integrity		Ch	emtest .	lob No.:	23-06239	23-06239	23-06239	23-06239	23-06239	23-06239	23-06239	23-06239	23-06239
Quotation No.: Q21-23824		Chem	test San	iple ID.:	1595876	1595877	1595878	1595879	1595880	1595881	1595882	1595883	1595884
		5	Sample L	ocation:	TP1	TP10	TP12	TP6	TP9	TP13	TP14	TP5	TP3
				le Type:	SOIL								
			Top De	epth (m):	0.50	0.80	0.80	0.50	1.40	1.30	0.60	0.50	1.20
			Date S	ampled:	15-Feb-2023	16-Feb-2023	17-Feb-2023	16-Feb-2023	16-Feb-2023	17-Feb-2023	17-Feb-2023	15-Feb-2023	15-Feb-2023
			Asbes	tos Lab:	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY		COVENTRY	COVENTRY	COVENTRY
Determinand	Accred.	SOP	Units	LOD									
2-Chloronaphthalene	М	2790	mg/kg	0.50		< 0.50			< 0.50				
2-Nitroaniline	М	2790	mg/kg	0.50		< 0.50			< 0.50				
Acenaphthylene	М	2790	mg/kg	0.50		< 0.50			< 0.50				
Dimethylphthalate	М	2790	mg/kg	0.50		< 0.50			< 0.50				
2,6-Dinitrotoluene	М	2790	mg/kg	0.50		< 0.50			< 0.50				
Acenaphthene	М	2790	mg/kg	0.50		< 0.50			< 0.50				
3-Nitroaniline	N	2790	mg/kg	0.50		< 0.50			< 0.50				
Dibenzofuran	М	2790	mg/kg	0.50		< 0.50			< 0.50				
4-Chlorophenylphenylether	М	2790	mg/kg	0.50		< 0.50			< 0.50				
2,4-Dinitrotoluene	М	2790	mg/kg	0.50		< 0.50			< 0.50				
Fluorene	M	2790	mg/kg	0.50		< 0.50			< 0.50				
Diethyl Phthalate	М	2790	mg/kg	0.50		< 0.50			< 0.50				
4-Nitroaniline	М	2790	mg/kg	0.50		< 0.50			< 0.50				
2-Methyl-4,6-Dinitrophenol	N	2790	mg/kg	0.50		< 0.50			< 0.50				
Azobenzene	М	2790	mg/kg	0.50		< 0.50			< 0.50				
4-Bromophenylphenyl Ether	М	2790	mg/kg	0.50		< 0.50			< 0.50				
Hexachlorobenzene	М	2790	mg/kg	0.50		< 0.50			< 0.50				
Pentachlorophenol	N	2790	mg/kg	0.50		< 0.50			< 0.50				
Phenanthrene	М	2790	mg/kg	0.50		1.2			1.1				
Anthracene	М	2790	mg/kg	0.50		< 0.50			< 0.50				
Carbazole	М	2790	mg/kg	0.50		< 0.50			< 0.50				
Di-N-Butyl Phthalate	М	2790	mg/kg	0.50		< 0.50			< 0.50				
Fluoranthene	М	2790	mg/kg	0.50		0.80			2.9				
Pyrene	М	2790	mg/kg	0.50		0.67			2.4				
Butylbenzyl Phthalate	М	2790	mg/kg	0.50		< 0.50			< 0.50				
Benzo[a]anthracene	М	2790	mg/kg	0.50		< 0.50			1.2				
Chrysene	М	2790	mg/kg	0.50		< 0.50			1.4				
Bis(2-Ethylhexyl)Phthalate	N	2790	mg/kg	0.50		< 0.50			< 0.50				
Di-N-Octyl Phthalate	М	2790	mg/kg	0.50		< 0.50			< 0.50				
Benzo[b]fluoranthene	М	2790	mg/kg	0.50		< 0.50			< 0.50				
Benzo[k]fluoranthene	М	2790	mg/kg	0.50		< 0.50			< 0.50				
Benzo[a]pyrene	М	2790	mg/kg	0.50		< 0.50			1.3				
Indeno(1,2,3-c,d)Pyrene	М	2790	mg/kg	0.50		< 0.50			0.72				
Dibenz(a,h)Anthracene	М	2790	mg/kg	0.50		< 0.50			< 0.50				
Benzo[g,h,i]perylene	М	2790	mg/kg	0.50		< 0.50			0.82				
PCB 81	N	2815	mg/kg	0.010					1		< 0.010		
PCB 77	U	2815	mg/kg	0.010							< 0.010		
PCB 105	N	2815		0.010							< 0.010		
)—————————————————————————————————————		•											•

Project: 23-01-21 Broadwater Lake, Moorhall Road, Harefield, UB9 6PE

													
Client: Geo Integrity		Ch	emtest	Job No.:	23-06239	23-06239	23-06239	23-06239	23-06239	23-06239	23-06239	23-06239	23-06239
Quotation No.: Q21-23824		Chem	test Sa	mple ID.:	1595876	1595877	1595878	1595879	1595880	1595881	1595882	1595883	1595884
		Sample Location:			TP1	TP10	TP12	TP6	TP9	TP13	TP14	TP5	TP3
		Sample Type:			SOIL								
		Top Depth (m):			0.50	0.80	0.80	0.50	1.40	1.30	0.60	0.50	1.20
		Date Sampled:			15-Feb-2023	16-Feb-2023	17-Feb-2023	16-Feb-2023	16-Feb-2023	17-Feb-2023	17-Feb-2023	15-Feb-2023	15-Feb-2023
			Asbe	stos Lab:	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY		COVENTRY	COVENTRY	COVENTRY
Determinand	Accred.	SOP	Units	LOD									
PCB 114	N	2815	mg/kg	0.010							< 0.010		
PCB 118	N	2815	mg/kg	0.010							< 0.010		
PCB 123	N	2815	mg/kg	0.010							< 0.010		
PCB 126	N	2815	mg/kg	0.010							< 0.010		
PCB 156	N	2815	mg/kg	0.010							< 0.010		
PCB 157	N	2815	mg/kg	0.010							< 0.010		
PCB 167	N	2815	mg/kg	0.010							< 0.010		
PCB 169	N	2815	mg/kg	0.010							< 0.010		
PCB 189	N	-		0.010							< 0.010		
Total PCBs (12 Congeners)	N	2815	mg/kg	0.12							< 0.12		

Project: 23-01-21 Broadwater Lake, Moorhall Road, Harefield, UB9 6PE

Client: Geo Integrity		Ch	emtest .	Job No.:	23-06239	23-06239	23-06239	23-06239	23-06239	23-06239
Quotation No.: Q21-23824				nple ID.:	1595885	1595886	1595887	1595888	1595889	1595890
,				ocation:	TP4	TP4	CBR5	TP2	TP11	TP14
			Samp	ole Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Top De	epth (m):	0.75	2.00	0.75	0.50	1.20	1.40
			Date S	Sampled:	15-Feb-2023	15-Feb-2023	16-Feb-2023	15-Feb-2023	17-Feb-2023	17-Feb-2023
			Asbes	stos Lab:	COVENTRY	COVENTRY	COVENTRY	COVENTRY		
Determinand	Accred.	SOP	Units	LOD						
АСМ Туре	U	2192		N/A	-	-	-	-		
Asbestos Identification	U	2192		N/A	No Asbestos	No Asbestos	No Asbestos	No Asbestos		
Aspestos identification	U	2132		IN//A	Detected	Detected	Detected	Detected		
Moisture	N	2030	%	0.020	12	12	10	11	63	43
Arsenic	M	2455	mg/kg	0.5	4.3	6.8	13	7.2		
Cadmium	M	2455	mg/kg	0.10	0.10	0.14	0.33	0.13		
Chromium	M	2455	mg/kg	0.5	11	16	33	17		
Copper	М	2455	mg/kg	0.50	6.1	16	32	15		
Mercury	М	2455	mg/kg	0.05	< 0.05	0.28	0.09	0.28		
Nickel	M	2455	mg/kg	0.50	8.3	12	17	12		
Lead	М	2455	mg/kg	0.50	13	60	120	67		
Selenium	М	2455	mg/kg	0.25	0.31	0.48	0.68	0.46		
Zinc	М	2455	mg/kg	0.50	22	48	120	51		
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50		
Aliphatic VPH >C5-C6	М	2780	mg/kg	0.05	< 0.05	< 0.05				
Aliphatic VPH >C6-C7	М	2780	mg/kg	0.05	< 0.05	< 0.05				
Aliphatic VPH >C7-C8	М	2780	mg/kg	0.05	< 0.05	0.25				
Aliphatic VPH >C8-C10	M	2780	mg/kg	0.05	1.2	4.3				
Total Aliphatic VPH >C5-C10	М	2780	mg/kg	0.25	1.2	4.6				
Aliphatic EPH >C10-C12	М	2690	mg/kg	2.00	340	290				
Aliphatic EPH >C12-C16	M	2690	mg/kg	1.00	2800	1400				
Aliphatic EPH >C16-C21	М	2690	mg/kg	2.00	3700	1700				
Aliphatic EPH >C21-C35	М	2690	mg/kg	3.00	1500	570				
Aliphatic EPH >C35-C40	N	2690	mg/kg	10.00	54	27				
Total Aliphatic EPH >C10-C35	М	2690	mg/kg	5.00	8300	4000				
Total Aliphatic EPH >C10-C40	N	2690	mg/kg	10.00	8400	4000				
Aromatic VPH >C5-C7	М	2780	mg/kg	0.05	< 0.05	< 0.05				
Aromatic VPH >C7-C8	М	2780	mg/kg	0.05	< 0.05	< 0.05				
Aromatic VPH >C8-C10	М	2780	mg/kg	0.05	< 0.05	< 0.05				
Total Aromatic VPH >C5-C10	М	2780	mg/kg	0.25	< 0.25	< 0.25				
Aromatic EPH >C10-C12	М	2690	mg/kg	1.00	100	100				
Aromatic EPH >C12-C16	М	2690	mg/kg	1.00	1600	1200				
Aromatic EPH >C16-C21	N	2690	mg/kg	2.00	1500	530				
Aromatic EPH >C21-C35	М	2690	mg/kg	2.00	140	49				
Aromatic EPH >C35-C40	N	2690	mg/kg	1.00	2.6	< 1.0				
Total Aromatic EPH >C10-C35	М	2690	mg/kg	5.00	3400	1800				
Total Aromatic EPH >C10-C40	N	2690	mg/kg	10.00	3400	1800				
Total VPH >C5-C10	М	2780	mg/kg	0.50	1.2	4.6				

Project: 23-01-21 Broadwater Lake, Moorhall Road, Harefield, UB9 6PE

Client: Geo Integrity		Ch	emtest	Job No.:	23-06239	23-06239	23-06239	23-06239	23-06239	23-06239
Quotation No.: Q21-23824		Chem	test Sar	nple ID.:	1595885	1595886	1595887	1595888	1595889	1595890
		5	Sample	Location:	TP4	TP4	CBR5	TP2	TP11	TP14
			Sam	ole Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				epth (m):	0.75	2.00	0.75	0.50	1.20	1.40
			Date S	Sampled:	15-Feb-2023	15-Feb-2023	16-Feb-2023	15-Feb-2023	17-Feb-2023	17-Feb-2023
			Asbe	stos Lab:	COVENTRY	COVENTRY	COVENTRY	COVENTRY		
Determinand	Accred.	SOP	Units	LOD						
Total EPH >C10-C35	M	2690	mg/kg	10.00	12000	5800				
Total EPH >C10-C40	N	2690	mg/kg		12000	5800				
Fraction of Organic Carbon	M	2625		0.0010		0.0075			0.14	
Total Organic Carbon	M	2625	%	0.20						12
TPH >C5-C6	N	2670	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0		
TPH >C6-C7	N	2670	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0		
TPH >C7-C8	N	2670	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0		
TPH >C8-C10	N	2670	mg/kg	1.0	76	86	18	1.5		
TPH >C10-C12	N	2670	mg/kg	1.0	490	400	67	6.8		
TPH >C12-C16	N	2670	mg/kg	1.0	4500	2600	600	18		
TPH >C16-C21	N	2670	mg/kg	1.0	6900	2900	1000	20		
TPH >C21-C35	N	2670	mg/kg	1.0	3400	990	1100	46		
Total TPH >C5-C35	N	2670	mg/kg	10	15000	7000	2800	93		
Naphthalene	М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10		
Acenaphthylene	М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10		
Acenaphthene	М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10		
Fluorene	М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10		
Phenanthrene	М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10		
Anthracene	M	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10		
Fluoranthene	M	2700	mg/kg	0.10	< 0.10	4.3	7.3	< 0.10		
Pyrene	M	2700	mg/kg	0.10	< 0.10	5.9	12	< 0.10		
Benzo[a]anthracene	M	2700	mg/kg	0.10	< 0.10	2.4	4.7	< 0.10		
Chrysene	M	2700	mg/kg	0.10	< 0.10	4.0	6.5	< 0.10		
Benzo[b]fluoranthene	M	2700	mg/kg	0.10	< 0.10	1.7	6.1	< 0.10		
Benzo[k]fluoranthene	M	2700	mg/kg	0.10	< 0.10	0.58	2.9	< 0.10		
Benzo[a]pyrene	M	2700	mg/kg	0.10	< 0.10	1.5	4.7	< 0.10		
Indeno(1,2,3-c,d)Pyrene	M	2700	mg/kg	0.10	< 0.10	1.1	3.8	< 0.10		
Dibenz(a,h)Anthracene	M	2700	mg/kg	0.10	< 0.10	0.73	1.2	< 0.10		
Benzo[g,h,i]perylene	M	2700	mg/kg	0.10	< 0.10	1.8	4.5	< 0.10		
Total Of 16 PAH's	M	2700	mg/kg	2.0	< 2.0	24	54	< 2.0		
Dichlorodifluoromethane	U	2760	µg/kg	1.0	< 1.0		J- 1	< 1.0		
Chloromethane	M	2760	μg/kg μg/kg	1.0	< 1.0			< 1.0		
Vinyl Chloride	M	2760		1.0	< 1.0			< 1.0		
,	M		μg/kg	20	< 1.0			_		
Bromomethane Chloroethane	U	2760	μg/kg	2.0	< 2.0			< 20 < 2.0		
		2760	μg/kg		_			-		
Trichlorofluoromethane	M	2760	μg/kg	1.0	< 1.0			< 1.0		
1,1-Dichloroethene	M	2760	μg/kg	1.0	< 1.0			< 1.0		
Trans 1,2-Dichloroethene	M	2760	μg/kg	1.0	< 1.0			< 1.0		

Project: 23-01-21 Broadwater Lake, Moorhall Road, Harefield, UR9 6PF

UB9 6PE										
Client: Geo Integrity		Cho	emtest .	Job No.:	23-06239	23-06239	23-06239	23-06239	23-06239	23-06239
Quotation No.: Q21-23824		Chem	est Sar	nple ID.:	1595885	1595886	1595887	1595888	1595889	1595890
		5		Location:	TP4	TP4	CBR5	TP2	TP11	TP14
				ole Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				epth (m):	0.75	2.00	0.75	0.50	1.20	1.40
				Sampled:	15-Feb-2023	15-Feb-2023	16-Feb-2023	15-Feb-2023	17-Feb-2023	17-Feb-2023
				stos Lab:	COVENTRY	COVENTRY	COVENTRY	COVENTRY		
Determinand	Accred.	SOP	Units	LOD						
1,1-Dichloroethane	M	2760	μg/kg	1.0	< 1.0			< 1.0		
cis 1,2-Dichloroethene	M	2760	μg/kg	1.0	< 1.0			< 1.0		
Bromochloromethane	U	2760	μg/kg	5.0	< 5.0			< 5.0		
Trichloromethane	M	2760	μg/kg	1.0	< 1.0			< 1.0		
1,1,1-Trichloroethane	M	2760	μg/kg	1.0	< 1.0			< 1.0		
Tetrachloromethane	M	2760	μg/kg	1.0	< 1.0			< 1.0		
1,1-Dichloropropene	U	2760	μg/kg	1.0	< 1.0			< 1.0		
Benzene	M	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0		
1,2-Dichloroethane	M	2760	μg/kg	2.0	< 2.0			< 2.0		
Trichloroethene	N	2760	μg/kg	1.0	< 1.0			< 1.0		
1,2-Dichloropropane	M	2760	μg/kg	1.0	< 1.0			< 1.0		
Dibromomethane	M	2760	μg/kg	1.0	< 1.0			< 1.0		
Bromodichloromethane	M	2760	μg/kg	5.0	< 5.0			< 5.0		
cis-1,3-Dichloropropene	N	2760	μg/kg	10	< 10			< 10		
Toluene	M	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0		
Trans-1,3-Dichloropropene	N	2760	μg/kg	10	< 10			< 10		
1,1,2-Trichloroethane	M	2760	μg/kg	10	< 10			< 10		
Tetrachloroethene	M	2760	μg/kg	1.0	< 1.0			< 1.0		
1,3-Dichloropropane	U	2760	μg/kg	2.0	< 2.0			< 2.0		
Dibromochloromethane	U	2760	μg/kg	10	< 10			< 10		
1,2-Dibromoethane	M	2760	μg/kg	5.0	< 5.0			< 5.0		
Chlorobenzene	М	2760	μg/kg	1.0	< 1.0			< 1.0		
1,1,1,2-Tetrachloroethane	М	2760	μg/kg	2.0	< 2.0			< 2.0		
Ethylbenzene	M	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0		
m & p-Xylene	M	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0		
o-Xylene	M	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0		
Styrene	M	2760	μg/kg	1.0	< 1.0			< 1.0		
Tribromomethane	U	2760	μg/kg	1.0	< 1.0			< 1.0		
Isopropylbenzene	M	2760	μg/kg	1.0	< 1.0			< 1.0		
Bromobenzene	M	2760	μg/kg	1.0	< 1.0			< 1.0		
1,2,3-Trichloropropane	N	2760	μg/kg	50	< 50			< 50		
N-Propylbenzene	U	2760	μg/kg	1.0	< 1.0			< 1.0		
2-Chlorotoluene	М	2760	μg/kg	1.0	< 1.0			< 1.0		
1,3,5-Trimethylbenzene	М	2760	μg/kg	1.0	14			< 1.0		
4-Chlorotoluene	U	2760	μg/kg	1.0	< 1.0			< 1.0		
Tert-Butylbenzene	U	2760	μg/kg	1.0	2.4			< 1.0		
1,2,4-Trimethylbenzene	М	2760	μg/kg	1.0	11			< 1.0		
Sec-Butylbenzene	U	2760	µg/kg	1.0	< 1.0			< 1.0		

Project: 23-01-21 Broadwater Lake, Moorhall Road, Harefield, UB9 6PE

Client: Geo Integrity		Chem	ntest J	ob No.:	23-06239	23-06239	23-06239	23-06239	23-06239	23-06239
Quotation No.: Q21-23824		Chemtes			1595885	1595886	1595887	1595888	1595889	1595890
				ocation:	TP4	TP4	CBR5	TP2	TP11	TP14
				le Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				pth (m):	0.75	2.00	0.75	0.50	1.20	1.40
			Date S	ampled:	15-Feb-2023	15-Feb-2023	16-Feb-2023	15-Feb-2023	17-Feb-2023	17-Feb-2023
			Asbes	tos Lab:	COVENTRY	COVENTRY	COVENTRY	COVENTRY		
Determinand	Accred.	SOP U	Jnits	LOD						
1,3-Dichlorobenzene	М	2760 μ	ug/kg	1.0	< 1.0			< 1.0		
4-Isopropyltoluene	U		ug/kg	1.0	3.6			< 1.0		
1,4-Dichlorobenzene	М		ıg/kg	1.0	< 1.0			< 1.0		
N-Butylbenzene	U	2760 μ	ıg/kg	1.0	< 1.0			< 1.0		
1,2-Dichlorobenzene	М		ıg/kg	1.0	< 1.0			< 1.0		
1,2-Dibromo-3-Chloropropane	U	2760 μ	ug/kg	50	< 50			< 50		
1,2,4-Trichlorobenzene	М	2760 μ	ug/kg	1.0	< 1.0			< 1.0		
Hexachlorobutadiene	N	2760 μ	ug/kg	1.0	< 1.0			< 1.0		
1,2,3-Trichlorobenzene	U	2760 μ	ıg/kg	2.0	< 2.0			< 2.0		
Methyl Tert-Butyl Ether	М	2760 μ	ıg/kg	1.0	< 1.0			< 1.0		
N-Nitrosodimethylamine	М	2790 m	ng/kg	0.50	< 0.50			< 0.50		
Phenol	M	2790 m	ng/kg	0.50	< 0.50			< 0.50		
2-Chlorophenol	M	2790 m	ng/kg	0.50	< 0.50			< 0.50		
Bis-(2-Chloroethyl)Ether	M	2790 m	ng/kg	0.50	< 0.50			< 0.50		
1,3-Dichlorobenzene	М	2790 m	ng/kg	0.50	< 0.50			< 0.50		
1,4-Dichlorobenzene	N	2790 m	ng/kg	0.50	< 0.50			< 0.50		
1,2-Dichlorobenzene	М	2790 m		0.50	< 0.50			< 0.50		
2-Methylphenol	М	2790 m	ng/kg	0.50	< 0.50			< 0.50		
Bis(2-Chloroisopropyl)Ether	М		ng/kg	0.50	< 0.50			< 0.50		
Hexachloroethane	N	2790 m	ng/kg	0.50	< 0.50			< 0.50		
N-Nitrosodi-n-propylamine	М	2790 m		0.50	< 0.50			< 0.50		
4-Methylphenol	М	2790 m	ng/kg	0.50	< 0.50			< 0.50		
Nitrobenzene	М	2790 m		0.50	< 0.50			< 0.50		
Isophorone	М	2790 m		0.50	< 0.50			< 0.50		
2-Nitrophenol	N	2790 m	0 0	0.50	< 0.50			< 0.50		
2,4-Dimethylphenol	N	2790 m	ng/kg	0.50	< 0.50			< 0.50		
Bis(2-Chloroethoxy)Methane	М	2790 m	0	0.50	< 0.50			< 0.50		
2,4-Dichlorophenol	М	2790 m		0.50	< 0.50			< 0.50		
1,2,4-Trichlorobenzene	М	2790 m		0.50	< 0.50			< 0.50		
Naphthalene	М	2790 m		0.50	0.96			< 0.50		
4-Chloroaniline	N		ng/kg	0.50	< 0.50			< 0.50		
Hexachlorobutadiene	М	2790 m	0	0.50	< 0.50			< 0.50		
4-Chloro-3-Methylphenol	М	2790 m		0.50	< 0.50			< 0.50		
2-Methylnaphthalene	М	2790 m		0.50	6.0			< 0.50		
4-Nitrophenol	N	2790 m		0.50	< 0.50			< 0.50		
Hexachlorocyclopentadiene	N		ng/kg	0.50	< 0.50			< 0.50		
2,4,6-Trichlorophenol	М	2790 m		0.50	< 0.50			< 0.50		
2,4,5-Trichlorophenol	М	2790 m	0	0.50	< 0.50			< 0.50		

Project: 23-01-21 Broadwater Lake, Moorhall Road, Harefield, UR9 6PF

UB9 6PE										
Client: Geo Integrity		Ch	emtest .	Job No.:	23-06239	23-06239	23-06239	23-06239	23-06239	23-06239
Quotation No.: Q21-23824		Chem	test San	nple ID.:	1595885	1595886	1595887	1595888	1595889	1595890
		5		_ocation:	TP4	TP4	CBR5	TP2	TP11	TP14
			Samp	ole Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				epth (m):	0.75	2.00	0.75	0.50	1.20	1.40
			Date S	Sampled:	15-Feb-2023	15-Feb-2023	16-Feb-2023	15-Feb-2023	17-Feb-2023	17-Feb-2023
			Asbes	stos Lab:	COVENTRY	COVENTRY	COVENTRY	COVENTRY		
Determinand	Accred.	SOP	Units	LOD						
2-Chloronaphthalene	M	2790	mg/kg	0.50	< 0.50			< 0.50		
2-Nitroaniline	M	2790	mg/kg	0.50	< 0.50			< 0.50		
Acenaphthylene	М	2790	mg/kg	0.50	< 0.50			< 0.50		
Dimethylphthalate	M	2790	mg/kg	0.50	< 0.50			< 0.50		
2,6-Dinitrotoluene	M	2790	mg/kg	0.50	< 0.50			< 0.50		
Acenaphthene	M	2790	mg/kg	0.50	2.0			< 0.50		
3-Nitroaniline	N	2790	mg/kg	0.50	< 0.50			< 0.50		
Dibenzofuran	M	2790	mg/kg	0.50	1.1			< 0.50		
4-Chlorophenylphenylether	M	2790	mg/kg	0.50	< 0.50			< 0.50		
2,4-Dinitrotoluene	M	2790	mg/kg	0.50	< 0.50			< 0.50		
Fluorene	M	2790	mg/kg	0.50	2.9			< 0.50		
Diethyl Phthalate	M	2790	mg/kg	0.50	< 0.50			< 0.50		
4-Nitroaniline	M	2790	mg/kg	0.50	< 0.50			< 0.50		
2-Methyl-4,6-Dinitrophenol	N	2790	mg/kg	0.50	< 0.50			< 0.50		
Azobenzene	M	2790	mg/kg	0.50	< 0.50			< 0.50		
4-Bromophenylphenyl Ether	М	2790	mg/kg	0.50	< 0.50			< 0.50		
Hexachlorobenzene	М	2790	mg/kg	0.50	< 0.50			< 0.50		
Pentachlorophenol	N	2790	mg/kg	0.50	< 0.50			< 0.50		
Phenanthrene	М	2790	mg/kg	0.50	< 0.50			< 0.50		
Anthracene	М	2790	mg/kg	0.50	< 0.50			< 0.50		
Carbazole	M	2790	mg/kg	0.50	< 0.50			< 0.50		
Di-N-Butyl Phthalate	М	2790	mg/kg	0.50	< 0.50			< 0.50		
Fluoranthene	М	2790	mg/kg	0.50	3.6			1.2		
Pyrene	M	2790	mg/kg	0.50	3.4			1.1		
Butylbenzyl Phthalate	М	2790	mg/kg	0.50	< 0.50			< 0.50		
Benzo[a]anthracene	M	2790	mg/kg	0.50	0.75			0.66		
Chrysene	M	2790	mg/kg	0.50	0.98			0.74		
Bis(2-Ethylhexyl)Phthalate	N	2790	mg/kg	0.50	0.94			< 0.50		
Di-N-Octyl Phthalate	М	2790	mg/kg	0.50	< 0.50			< 0.50		
Benzo[b]fluoranthene	М	2790	mg/kg	0.50	< 0.50			< 0.50		
Benzo[k]fluoranthene	М	2790	mg/kg	0.50	< 0.50			< 0.50		
Benzo[a]pyrene	М	2790	mg/kg	0.50	< 0.50			0.86		
Indeno(1,2,3-c,d)Pyrene	M	2790	mg/kg	0.50	< 0.50			0.61		
Dibenz(a,h)Anthracene	М	2790	mg/kg	0.50	< 0.50			< 0.50		
Benzo[g,h,i]perylene	М	2790	mg/kg	0.50	< 0.50			0.68		
PCB 81	N	2815	mg/kg	0.010						
PCB 77	U		mg/kg	0.010						
PCB 105	N		mg/kg	0.010						

<u>Project: 23-01-21 Broadwater Lake, Moorhall Road, Harefield, UB9 6PE</u>

Client: Geo Integrity		Ch	emtest .	Job No.:	23-06239	23-06239	23-06239	23-06239	23-06239	23-06239
Quotation No.: Q21-23824		Chem	test San	nple ID.:	1595885	1595886	1595887	1595888	1595889	1595890
			Sample I	ocation:	TP4	TP4	CBR5	TP2	TP11	TP14
		Sample Type:			SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
		Top Depth (m):			0.75	2.00	0.75	0.50	1.20	1.40
		/			15-Feb-2023	15-Feb-2023	16-Feb-2023	15-Feb-2023	17-Feb-2023	17-Feb-2023
			Asbes	tos Lab:	COVENTRY	COVENTRY	COVENTRY	COVENTRY		
Determinand	Accred.	SOP	Units	LOD						
PCB 114	N	2815	mg/kg	0.010						
PCB 118	N	2815								
PCB 123	N	2815								
PCB 126	N	2815	mg/kg	0.010						
PCB 156	N	2815	mg/kg	0.010						
PCB 157	N	2815	mg/kg	0.010						
PCB 167	N	2815	mg/kg	0.010						
PCB 169	N	2815	mg/kg	0.010						
PCB 189	N		mg/kg							
Total PCBs (12 Congeners)	N		mg/kg							

Results - Single Stage WAC

Project: 23-01-21 Broadwater Lake, Moorhall Road, Harefield, UB9 6PE

Chemtest Job No:	23-06239				Landflll \	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1595878					Limits	
Sample Ref:						Stable, Non-	
Sample ID:						reactive	
Sample Location:	TP12					hazardous	Hazardous
Top Depth(m):	0.80				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:	17-Feb-2023					Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	M	%	2.1	3	5	6
Loss On Ignition	2610	M	%	4.3			10
Total BTEX	2760	М	mg/kg	< 0.010	6		-
Total PCBs (7 Congeners)	2815	M	mg/kg	< 0.10	1		
TPH Total WAC	2670	M	mg/kg	< 10	500		
Total (Of 17) PAH's	2700	N	mg/kg	< 2.0	100		
pH	2010	M		9.0		>6	
Acid Neutralisation Capacity	2015	N	mol/kg	0.0070		To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance I	eaching test
			mg/l	mg/kg	using B	S EN 12457 at L/S	S 10 I/kg
Arsenic	1455	U	0.0055	0.055	0.5	2	25
Barium	1455	U	0.010	0.097	20	100	300
Cadmium	1455	U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455	U	0.0054	0.054	0.5	10	70
Copper	1455	U	0.023	0.23	2	50	100
Mercury	1455	U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455	U	0.0050	0.050	0.5	10	30
Nickel	1455	U	0.0014	0.015	0.4	10	40
Lead	1455	U	0.0032	0.032	0.5	10	50
Antimony	1455	U	0.0012	0.012	0.06	0.7	5
Selenium	1455	U	0.0018	0.018	0.1	0.5	7
Zinc	1455	U	0.005	0.053	4	50	200
Chloride	1220	U	1.9	19	800	15000	25000
Fluoride	1220	U	0.67	6.7	10	150	500
Sulphate	1220	U	12	120	1000	20000	50000
Total Dissolved Solids	1020	N	100	1000	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610	U	18	180	500	800	1000

Solid Information								
Dry mass of test portion/kg	0.090							
Moisture (%)	13							

Waste Acceptance Criteria

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Results - Single Stage WAC

Project: 23-01-21 Broadwater Lake, Moorhall Road, Harefield, UB9 6PE

Chemtest Job No:	23-06239				Landfill \	Waste Acceptanc	e Criteria
Chemtest Sample ID:	1595885					Limits	
Sample Ref:						Stable, Non-	
Sample ID:						reactive	
Sample Location:	TP4					hazardous	Hazardous
Top Depth(m):	0.75				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:	15-Feb-2023					Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	M	%	0.48	3	5	6
Loss On Ignition	2610	М	%	1.6			10
Total BTEX	2760	M	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815	М	mg/kg	< 0.10	1		
TPH Total WAC	2670	M	mg/kg	15000	500		
Total (Of 17) PAH's	2700	N	mg/kg	< 2.0	100		
pH	2010	M		8.5		>6	
Acid Neutralisation Capacity	2015	N	mol/kg	0.0050		To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance l	leaching test
			mg/l	mg/kg	using B	S EN 12457 at L/	S 10 l/kg
Arsenic	1455	U	0.0056	0.056	0.5	2	25
Barium	1455	U	0.044	0.44	20	100	300
Cadmium	1455	U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455	U	< 0.0005	< 0.0050	0.5	10	70
Copper	1455	U	0.0022	0.022	2	50	100
Mercury	1455	U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455	U	0.0060	0.060	0.5	10	30
Nickel	1455	U	0.0023	0.023	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0050	0.5	10	50
Antimony	1455	U	0.0023	0.023	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0050	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.025	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	1.1	11	10	150	500
Sulphate	1220	U	18	180	1000	20000	50000
Total Dissolved Solids	1020	N	190	1900	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610	U	19	190	500	800	1000

Solid Information							
Dry mass of test portion/kg	0.090						
Moisture (%)	12						

Waste Acceptance Criteria

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Test Methods

SOP	Title	Parameters included	Method summary
1020	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Conductivity Meter
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.
1455	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	determination by inductively coupled plasma
1610	Total/Dissolved Organic Carbon in Waters	Organic Carbon	TOC Analyser using Catalytic Oxidation
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.
2010	pH Value of Soils	рН	pH Meter
2015	Acid Neutralisation Capacity	Acid Reserve	Titration
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2455	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2610	Loss on Ignition	loss on ignition (LOI)	Determination of the proportion by mass that is lost from a soil by ignition at 550°C.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3-band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID
2690	EPH A/A Split	Aliphatics: >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35– C40 Aromatics: >C10–C12, >C12–C16, >C16– C21, >C21– C35, >C35– C40	Acetone/Heptane extraction / GCxGC FID detection
2700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.

Test Methods

SOP	Title	Parameters included	Method summary
2780	VPH A/A Split	Aliphatics: >C5–C6, >C6–C7,>C7–C8,>C8-C10 Aromatics: >C5–C7,>C7-C8,>C8–C10	Water extraction / Headspace GCxGC FID detection
2790	Semi-Volatile Organic Compounds (SVOCs) in Soils by GC-MS	Semi-volatile organic compounds(cf. USEPA Method 8270)	Acetone/Hexane extraction / GC-MS
2810	Polychlorinated Biphenyls (PCB) as Aroclors in Soils by GC-ECD	Polychlorinated Biphenyls expressed as an Aroclor (normally reported as *Aroclor 1242)	Extraction of a soil sample, as received, into hexane/acetone (50:50) followed by gas chromatography (GC) using mass spectrometric (MS) detection for identification of polychlorinated biphenyls and electron capture detection (ECD) for quanitation if present.
2815	Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS	ICES7 PCB congeners	Acetone/Hexane extraction / GC-MS
640	Characterisation of Waste (Leaching C10)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge

Report Information

Key **UKAS** accredited MCERTS and UKAS accredited M Unaccredited Ν This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for S this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis This analysis has been subcontracted to an unaccredited laboratory Т I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated < "less than" "greater than" > SOP Standard operating procedure LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

eurofins Chemtest

Eurofins Chemtest Ltd
Depot Road
Newmarket
CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

Final Report

Report No.: 23-07407-1

Initial Date of Issue: 09-Mar-2023

Client Geo Integrity

Client Address: Units 7 Burcote Wood Farm

Business Park Wood Burcote Towcester NN12 8TA

Contact(s): Lee Ashworth

Project 23-01-21 Broadwater Lake, Moorhall

Road, Harefield

Quotation No.: Q22-26343 Date Received: 03-Mar-2023

Order No.: Date Instructed: 03-Mar-2023

No. of Samples: 3

Turnaround (Wkdays): 5 Results Due: 09-Mar-2023

Date Approved: 09-Mar-2023

Approved By:

Details: Stuart Henderson, Technical

Manager

Results - Water

Project: 23-01-21 Broadwater Lake, Moorhall Road, Harefield

Client: Geo Integrity		Che	mtest Jo	b No.:	23-07407	23-07407	23-07407
Quotation No.: Q22-26343		Chemt	est Samp	le ID.:	1601258	1601259	1601260
		S	ample Lo	cation:	BH3	BH6	BH9
			Sample	Type:	WATER	WATER	WATER
			Top Dept	th (m):	2.20	0.94	2.36
			Date Sar	npled:	01-Mar-2023	01-Mar-2023	01-Mar-2023
Determinand	Accred.	SOP	Units	LOD			
рН	U	1010		N/A	8.3	8.1	7.9
Chemical Oxygen Demand	U	1100	mg O2/I	10	75	12	28
Calcium (Dissolved)	U	1455	mg/l	2.00	85	78	170
Potassium (Dissolved)	U	1455	mg/l	0.50	7.1	4.8	5.5
Magnesium (Dissolved)	U	1455	mg/l	0.20	2.8	3.9	8.8
Sodium (Dissolved)	U	1455	mg/l	1.50	30	41	48
Total Hardness as CaCO3	U	1270	mg/l	15	230	210	470
Arsenic (Dissolved)	U	1455	μg/l	0.20	7.7	3.8	3.3
Boron (Dissolved)	U	1455	μg/l	10.0	50	63	120
Barium (Dissolved)	U	1455	μg/l	5.00	24	32	110
Cadmium (Dissolved)	U	1455	μg/l	0.11	< 0.11	< 0.11	< 0.11
Chromium (Dissolved)	U	1455	μg/l	0.50	< 0.50	< 0.50	< 0.50
Copper (Dissolved)	U	1455	μg/l	0.50	1.8	< 0.50	< 0.50
Iron (Dissolved)	N	1455	μg/l	5.0	69	< 5.0	< 5.0
Mercury (Dissolved)	U	1455	μg/l	0.05	< 0.05	< 0.05	< 0.05
Manganese (Dissolved)	U	1455	μg/l	0.50	150	200	760
Nickel (Dissolved)	U	1455	μg/l	0.50	4.7	3.2	4.8
Lead (Dissolved)	U	1455	μg/l	0.50	< 0.50	< 0.50	< 0.50
Selenium (Dissolved)	U	1455	μg/l	0.50	0.59	< 0.50	< 0.50
Zinc (Dissolved)	U	1455	μg/l	2.5	< 2.5	2.5	5.8
Dissolved Organic Carbon	U	1610	mg/l	2.0	22	7.0	12
Aliphatic TPH >C5-C6	N	1675	μg/l	0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C6-C8	N	1675	μg/l	0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C8-C10	N	1675	μg/l	0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C10-C12	N	1675	μg/l	0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C12-C16	N	1675	μg/l	0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C16-C21	N	1675	μg/l	0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C21-C35	N	1675	μg/l	0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C35-C44	N	1675	μg/l	0.10	< 0.10	< 0.10	< 0.10
Total Aliphatic Hydrocarbons	N	1675	μg/l	5.0	< 5.0	< 5.0	< 5.0
Aromatic TPH >C5-C7	N	1675	μg/l	0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C7-C8	N	1675	μg/l	0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C8-C10	N	1675	μg/l	0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C10-C12	N	1675	μg/l	0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C12-C16	N	1675	μg/l	0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C16-C21	N	1675	μg/l	0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C21-C35	N	1675	μg/l	0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C35-C44	N	1675	μg/l	0.10	< 0.10	< 0.10	< 0.10
Total Aromatic Hydrocarbons	N	1675	μg/l	5.0	< 5.0	< 5.0	< 5.0

Results - Water

Project: 23-01-21 Broadwater Lake, Moorhall Road, Harefield

Client: Geo Integrity		Che	mtest Jo	b No.:	23-07407	23-07407	23-07407
Quotation No.: Q22-26343		Chemte	est Samp	le ID.:	1601258	1601259	1601260
		S	ample Lo	cation:	BH3	BH6	BH9
			Sample	Туре:	WATER	WATER	WATER
			Top Dep	th (m):	2.20	0.94	2.36
			Date Sa	mpled:	01-Mar-2023	01-Mar-2023	01-Mar-2023
Determinand	Accred.	SOP	Units	LOD			
Total Petroleum Hydrocarbons	N	1675	μg/l	10	< 10	< 10	< 10
Naphthalene	U	1700	μg/l	0.10	< 0.10	< 0.10	< 0.10
Acenaphthylene	U	1700	μg/l	0.10	< 0.10	< 0.10	< 0.10
Acenaphthene	U	1700	μg/l	0.10	< 0.10	< 0.10	< 0.10
Fluorene	U	1700	μg/l	0.10	< 0.10	< 0.10	< 0.10
Phenanthrene	U	1700	μg/l	0.10	< 0.10	< 0.10	< 0.10
Anthracene	U	1700	μg/l	0.10	< 0.10	< 0.10	< 0.10
Fluoranthene	U	1700	μg/l	0.10	< 0.10	< 0.10	< 0.10
Pyrene	U	1700	μg/l	0.10	< 0.10	< 0.10	< 0.10
Benzo[a]anthracene	U	1700	μg/l	0.10	< 0.10	< 0.10	< 0.10
Chrysene	N	1700	μg/l	0.10	< 0.10	< 0.10	< 0.10
Benzo[b]fluoranthene	U	1700	μg/l	0.10	< 0.10	< 0.10	< 0.10
Benzo[k]fluoranthene	U	1700	μg/l	0.10	< 0.10	< 0.10	< 0.10
Benzo[a]pyrene	U	1700	μg/l	0.10	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene	U	1700	μg/l	0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene	U	1700	μg/l	0.10	< 0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene	U	1700	μg/l	0.10	< 0.10	< 0.10	< 0.10
Total Of 16 PAH's	N	1700	μg/l	2.0	< 2.0	< 2.0	< 2.0

Test Methods

SOP	Title	Parameters included	Method summary
1010	pH Value of Waters	рН	pH Meter
1100	Chemical Oxygen Demand	Chemical Oxygen demand (COD)	Dichromate oxidation of organic matter in sample followed by colorimetric determination of residual Cr[VI].
1270	Total Hardness of Waters	Total hardness	Calculation applied to calcium and magnesium results, expressed as mg l-1 CaCO3 equivalent.
1455	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	determination by inductively coupled plasma
1610	Total/Dissolved Organic Carbon in Waters	Organic Carbon	TOC Analyser using Catalytic Oxidation
1675	TPH Aliphatic/Aromatic split in Waters by GC-FID(cf. Texas Method 1006 / TPH CWG)	Aliphatics: >C5-C6, >C6-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44Aromatics: >C5-C7, >C7-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44	Pentane extraction / GCxGC FID detection
1700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Waters by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)

Report Information

Key **UKAS** accredited MCERTS and UKAS accredited M Unaccredited Ν This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for S this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis Т This analysis has been subcontracted to an unaccredited laboratory I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated < "less than" "greater than" > SOP Standard operating procedure LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt All water samples will be retained for 14 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

eurofins Chemtest

Eurofins Chemtest Ltd
Depot Road
Newmarket
CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

Final Report

Report No.: 23-07701-1

Initial Date of Issue: 13-Mar-2023

Client Geo Integrity

Client Address: Units 7 Burcote Wood Farm

Business Park Wood Burcote Towcester NN12 8TA

Contact(s): Lee Ashworth

Project 23-01-21 Broadwater Lake, Moorhall

Road, Harefield

Quotation No.: Q22-27618 Date Received: 07-Mar-2023

Order No.: Date Instructed: 07-Mar-2023

No. of Samples: 11

Turnaround (Wkdays): 5 Results Due: 13-Mar-2023

Date Approved: 13-Mar-2023

Approved By:

Details: Stuart Henderson, Technical

Manager

Project: 23-01-21 Broadwater Lake, Moorhall Road, Harefield

Client: Geo Integrity		Che	mtest J	ob No.:	23-07701	23-07701	23-07701	23-07701	23-07701	23-07701	23-07701	23-07701	23-07701
Quotation No.: Q22-27618	(Chemte	st Sam	ple ID.:	1602932	1602933	1602934	1602935	1602936	1602937	1602938	1602939	1602940
		Sa	ample Lo	ocation:	BH1	BH1	BH3	BH6	BH1	BH3	BH7	BH9	BH6
			Sampl	е Туре:	SOIL								
			Top De	oth (m):	0.10	7.00	1.20	0.30	1.20	7.00	3.00	0.40	5.00
		Bot	tom De	oth (m):	0.20	7.45	1.65	0.40	1.65	7.50	3.45	0.50	5.45
			Date Sa	ampled:	16-Feb-2023	16-Feb-2023	20-Feb-2023	21-Feb-2023	26-Feb-2023	20-Feb-2023	21-Feb-2023	22-Feb-2023	21-Feb-2023
Determinand	Accred.	SOP	Units	LOD									
Moisture	N	2030	%	0.020	4.5	23	8.3	14	41	16	37	15	0.98
pH	U	2010		4.0	8.8	9.4	8.9	9.8	8.4	9.4	8.5	9.0	8.8
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010	0.053	< 0.010	0.041	0.52	< 0.010	< 0.010	0.019	< 0.010	< 0.010
Total Sulphur	U	2175	%	0.010					0.18	·	0.10	·	
Sulphate (Acid Soluble)	U	2430	%	0.010					0.044		0.097		

Project: 23-01-21 Broadwater Lake, Moorhall Road, Harefield

Client: Geo Integrity		Che	ntest Jo	ob No.:	23-07701	23-07701
Quotation No.: Q22-27618	(Chemte	st Sam	ple ID.:	1602941	1602942
		Sa	ample Lo	ocation:	BH7	BH8
			Sampl	е Туре:	SOIL	SOIL
			Top Dep	oth (m):	0.20	1.20
		Bot	tom Dep	oth (m):	0.30	1.65
			Date Sa	ampled:	23-Feb-2023	24-Feb-2023
Determinand	Accred.	SOP	Units	LOD		
Moisture	N	2030	%	0.020	11	5.5
рН	U	2010		4.0	8.9	9.2
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010	0.086	< 0.010
Total Sulphur	U	2175	%	0.010		
Sulphate (Acid Soluble)	U	2430	%	0.010		·

Test Methods

SOP	Title	Parameters included	Method summary
2010	pH Value of Soils	рН	pH Meter
	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2175	Total Sulphur in Soils	Total Sulphur	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.

Report Information

Key **UKAS** accredited MCERTS and UKAS accredited M Unaccredited Ν This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for S this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis Т This analysis has been subcontracted to an unaccredited laboratory I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated < "less than" "greater than" > SOP Standard operating procedure LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt All water samples will be retained for 14 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

		NPI	UT DATA									RES	SULTS (Copper)			RE	SULTS (Zinc)			F	RESULTS (Mn)			F	RESULTS (NI)	
ID	Location	Waterbody			Concentration	Measured Mn Concentration (dissolved) (µg l ⁻¹)	Concentration	pН	DOC	Ca	Site-specific PNEC Dissolved Copper (µg l ⁻⁵)	BioF	Bioavailable Copper Concentration (µg I ⁻¹)	Risk Characterisation Ratio	Site-specific PNEC Dissolved Zinc (pg I ⁻¹)	BioF	Bioavailable Zinc Concentration (µg l ⁻¹)	Risk Characterisation Ratio	Site-specific PNEC Dissolved Manganese (µg I ⁻⁹)	BioF	Bioavailable Manganese Concentration (µg I ⁻¹)	Risk Characterisation Ratio	Site-specific PNEC Dissolved Nickel (µg I ⁻¹)	BioF	Bioavailable Nickel Concentration (µg	Risk Characterisation Ratio
1 BH3	G	GW (01/03/2023	1.8	2.5	5 150	4.7	8.3	22	85	1.00	1.00	1.80	1.80	89.29	0.12	0.31	0.03	123.00	1.00	150.00	1.22	20.54	0.19	0.92	0.23
2 BH6	G		01/03/2023	0.6	2.5	5 200	3.2	8.1	7	78	20.43		0.02	0.02	36.37		0.75	0.07	180.91	0.68	135.98	1.11	12.25	0.33	1.05	0.26
3 BH9	G	SW (01/03/2023	0.8	5.	B 760	4.8	7.9	12	170	33.87	0.03	0.01	0.01	52.15	0.21	1.21	0.11	266.45	0.46	350.84	2.85	20.74	0.19	0.93	0.23

Benz	o[a]anthracene	1.2	0.93	2.4	4.70		
	Chrysene	1.50	1.10	4.0	6.50		
Benzo[[b]fluoranthene	1.7	1.20	1.7	6.10		
Benzo	[k]fluoranthene	0.62	0.58	0.6	2.90		
Indeno(1,	2,3-c,d)Pyrene	1.10	1.10	1.1	3.80		
Dibenz(a	a,h)Anthracene	0.25	0.44	0.73	1.20		
Benzo	o[g,h,i]perylene	1.60	1.20	1.8	4.50		
•							
Е	Benzo[a]pyrene	1.50	0.98	1.5	4.70		

	<u>P/</u>	AH/BaP rati	<u>io</u>		
0.8	0.94898	1.6	1		
1	1.122449	2.666667	1.382979		
1.133333	1.22449	1.133333	1.297872		
0.413333	0.591837	0.386667	0.617021		
0.733333	1.122449	0.733333	0.808511		
0.166667	0.44898	0.486667	0.255319		
1.066667	1.22449	1.2	0.957447		

<u>Mean</u>
1.09
1.54
1.20
0.50
0.85
0.34
1.11

Table 2.5: Profile of the genotoxic PAHs relative to BaP in the Culp study with order of magnitude upper and lower limits.

•			
РАН	Mean ratio to BaP	Lower limit	Upper limit
Benz[a]anthracene	1.24	0.12	12.43
Chrysene	1.16	0.12	11.61
Benzo[b]fluoranthene	1.08	0.11	10.85
Benzo[k]fluoranthene	0.37	0.04	3.72
Dibenz[ah]anthracene	0.14	0.01	1.38
Indeno[123-cd]pyrene	0.73	0.07	7.27
Benzo[ghi]perylene	0.82	0.08	8.22

Waste Classification Report

HazWasteOnline™ classifies waste as either **hazardous** or **non-hazardous** based on its chemical composition, related legislation and the rules and data defined in the current UK or EU technical guidance (Appendix C) (note that HP 9 Infectious is not assessed). It is the responsibility of the classifier named below to:

- a) understand the origin of the waste
- b) select the correct List of Waste code(s)
- c) confirm that the list of determinands, results and sampling plan are fit for purpose
- d) select and justify the chosen metal species (Appendix B)
- e) correctly apply moisture correction and other available corrections
- f) add the meta data for their user-defined substances (Appendix A)
- g) check that the classification engine is suitable with respect to the national destination of the waste (Appendix C)

To aid the reviewer, the laboratory results, assumptions and justifications managed by the classifier are highlighted in pale yellow.

TJ6EA-T17ET-I2JW

Job name

Broadwater Lake, Harefield

Description/Comments

Project Site

23-01-21 Broadwater Lake, Moorhall Road, Harefield, UB9 6PE

Classified by

Name: Company:

Murray Bateman Geo-Integrity Limited

Date: 4 Church Street

Date: 4 Church Street
03 Apr 2023 10:55 GMT Maids Moreton
Telephone: MK18 1QE

01280 816409

HazWasteOnline™ provides a two day, hazardous waste classification course that covers the use of the software and both basic and advanced waste classification techniques. Certification has to be renewed every 3 years.

HazWasteOnline™ Certification:

Course

Hazardous Waste Classification

-
Date
-

Purpose of classification

7 - Disposal of Waste

Address of the waste

Broadwater Lake, Moorhall Road, Harefield, UB9 6PE

Post Code UB96PE

SIC for the process giving rise to the waste

41201 Construction of commercial buildings

Description of industry/producer giving rise to the waste

Redevelopment of an area of land historically used for gravel processing with the construction of an outdoor activity centre

Description of the specific process, sub-process and/or activity that created the waste

Waste created during the excavation of soils for foundations, roads etc.

Description of the waste

Made Ground comprising generally granular soils with gravels of brick, flint and concrete, Alluvial soils and reworked natural granular soils.

Job summary

#	Sample name	Depth [m]	Classification Result	Hazard properties	Page
1	TP1	0.50	Non Hazardous		3
2	TP10	0.80	Non Hazardous		5
3	TP12	0.80	Non Hazardous		7
4	TP6	0.50	Non Hazardous		9
5	TP9	1.40	Non Hazardous		11
6	TP13	1.30	Non Hazardous		13
7	TP14	0.60	Non Hazardous		15
8	TP5	0.50	Non Hazardous		17
9	TP3	1.20	Non Hazardous		19
10	TP4	0.75	Hazardous	HP 3(i), HP 7, HP 11	21
11	TP4[2]	2.00	Hazardous	HP 3(i), HP 7, HP 11	24
12	CBR5	0.75	Hazardous	HP 3(i), HP 7, HP 11	27
13	TP2	0.50	Non Hazardous		30

Related documents

# Name	Description
1 WM3 v1.2 2021 compliant	waste stream template used to create this Job

Report

Created by: Murray Bateman Created date: 03 Apr 2023 10:55 GMT

Appendices	Page
Appendix A: Classifier defined and non GB MCL determinands	32
Appendix B: Rationale for selection of metal species	33
Appendix C: Version	33

Page 2 of 34 TJ6EA-T17ET-I2JWB www.hazwasteonline.com

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code:
TP1 Chapter:
Sample Depth:
0.50 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

#		EU CLP index	Determinand EC Number	CAS Number	CLP Note	User enter	ed data	Conv. Factor	Compound	conc.	Classification value	S Applied	Conc. Not Used
		number	EC Number	CAS Number	ر ا							MC	
1	4	arsenic { arsenic tr	•			17	mg/kg	1.32	22.446	mg/kg	0.00224 %	√	
			215-481-4	1327-53-3	╁								
2	4	cadmium { cadmiul 048-009-00-9	233-331-6	10124-36-4	-	0.5	mg/kg	1.855	0.927	mg/kg	0.0000927 %	✓	
3	4	chromium in chrom	nium(III) compound			38	mg/kg	1.462	55.539	mg/kg	0.00555 %	√	
			215-160-9	1308-38-9									
4	4	copper {	Ilphate pentahydra 231-847-6	te } 7758-99-8	-	40	mg/kg	3.929	157.162	mg/kg	0.0157 %	✓	
_	4	mercury { mercury	1		H	0.05		4.055					
5	•		231-299-8	7487-94-7	1	0.26	mg/kg	1.353	0.352	mg/kg	0.0000352 %	√	
6	4	nickel { nickel chro	mate }	14721-18-7		36	mg/kg	2.976	107.146	mg/kg	0.0107 %	√	
_	2	lead { lead chroma		14721 107	t.								
7	•	,	231-846-0	7758-97-6	1	76	mg/kg	1.56	118.546	mg/kg	0.0076 %	√	
8	4	selenium { selenium cadmium sulphose elsewhere in this A	elenide and those s			4.4	mg/kg	1.405	6.182	mg/kg	0.000618 %	✓	
		034-002-00-8											
9	4	zinc { zinc chromat 024-007-00-3	te } 236-878-9	13530-65-9		72	mg/kg	2.774	199.739	mg/kg	0.02 %	✓	
10	4	chromium in chromoxide }	nium(VI) compound	ds { chromium(VI)		<0.5	mg/kg	1.923	<0.962	mg/kg	<0.0000962 %		<lod< td=""></lod<>
			215-607-8	1333-82-0	╁								
11	0	TPH (C6 to C40) p	etroleum group	TPH	-	220	mg/kg		220	mg/kg	0.022 %	√	
12		naphthalene	,	1		0.5	mg/kg		0.5	mg/kg	0.00005 %	√	
		601-052-00-2	202-049-5	91-20-3		0.0				mg/kg	0.00000 70	*	
13	0	acenaphthylene	205-917-1	208-96-8		0.21	mg/kg		0.21	mg/kg	0.000021 %	✓	
14	0	acenaphthene				0.15	mg/kg		0.15	mg/kg	0.000015 %	√	
45	0	fluorene	201-469-6	83-32-9	1	0.47			0.47		0.000047.01		
15			201-695-5	86-73-7		0.17	mg/kg		0.17	mg/kg	0.000017 %	✓	
16	0	phenanthrene	201-581-5	85-01-8	-	0.87	mg/kg		0.87	mg/kg	0.000087 %	√	

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
17	Θ	anthracene	204-371-1	120-12-7		0.34 mg/kg		0.34	mg/kg	0.000034 %	√	
18	0	fluoranthene	205-912-4	206-44-0		2.5 mg/kg		2.5	mg/kg	0.00025 %	√	
19	0	pyrene	204-927-3	129-00-0		2.6 mg/kg		2.6	mg/kg	0.00026 %	✓	
20		benzo[a]anthracen 601-033-00-9	e 200-280-6	56-55-3		1.5 mg/kg		1.5	mg/kg	0.00015 %	√	
21		chrysene 601-048-00-0	205-923-4	218-01-9		4.4 mg/kg		4.4	mg/kg	0.00044 %	✓	
22		benzo[b]fluoranthe	ne 205-911-9	205-99-2		1.8 mg/kg		1.8	mg/kg	0.00018 %	√	
23		benzo[k]fluoranthe	ne 205-916-6	207-08-9		0.76 mg/kg		0.76	mg/kg	0.000076 %	✓	
24		benzo[a]pyrene; be 601-032-00-3	enzo[def]chrysene 200-028-5	50-32-8		1.5 mg/kg		1.5	mg/kg	0.00015 %	✓	
25	0	indeno[123-cd]pyre	ene 205-893-2	193-39-5		1.3 mg/kg		1.3	mg/kg	0.00013 %	✓	
26		dibenz[a,h]anthrac 601-041-00-2	ene 200-181-8	53-70-3		0.18 mg/kg		0.18	mg/kg	0.000018 %	✓	
27	0	benzo[ghi]perylene	205-883-8	191-24-2		2.5 mg/kg		2.5	mg/kg	0.00025 %	✓	
28	0	PAHs (total)				21 mg/kg		21	mg/kg	0.0021 %	√	
29		benzene 601-020-00-8	200-753-7	71-43-2		<1 mg/kg		<1	mg/kg	<0.0001 %		<lod< th=""></lod<>
30		toluene 601-021-00-3	203-625-9	108-88-3		<1 mg/kg		<1	mg/kg	<0.0001 %		<lod< th=""></lod<>
31	0	ethylbenzene 601-023-00-4	202-849-4	100-41-4		<1 mg/kg		<1	mg/kg	<0.0001 %		<lod< th=""></lod<>
32		xylene 601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<1 mg/kg		<1	mg/kg	<0.0001 %		<lod< th=""></lod<>
									Total:	0.0893 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

₫ <LOD Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because Long Chain Hydrocarbons - no free phase - non flammable

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.022%)

Page 4 of 34 TJ6EA-T17ET-I2JWB www.hazwasteonline.com

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code:
TP10 Chapter:
Sample Depth:
0.80 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

#			Determinand		CLP Note	User entere	ed data	Conv.	Compound	conc.	Classification	Applied	Conc. Not
		EU CLP index number	EC Number	CAS Number	CLP			Factor			value	MC A	Used
1	4	arsenic { arsenic tr	•	4007.50.0		10	mg/kg	1.32	13.203	mg/kg	0.00132 %	✓	
		033-003-00-0 cadmium { cadmiu	215-481-4 m sulfate \	1327-53-3	\vdash							+	
2	4	048-009-00-9	233-331-6	10124-36-4	-	0.19	mg/kg	1.855	0.352	mg/kg	0.0000352 %	✓	
3	4	chromium in chrom		ds {		24	mg/kg	1.462	35.077	mg/kg	0.00351 %	√	
			215-160-9	1308-38-9									
4	4	copper { copper su	<mark>ilphate pentahydra</mark>	te }		27	mg/kg	3.929	106.084	mg/kg	0.0106 %	√	
		029-023-00-4	231-847-6	7758-99-8								ľ	
5	æ 🌡	mercury { mercury				0.09	mg/kg	1.353	0.122	mg/kg	0.0000122 %	1	
	_	080-010-00-X	231-299-8	7487-94-7	╀							-	
6	4	nickel { nickel chro 028-035-00-7	mate } 238-766-5	14721-18-7		19	mg/kg	2.976	56.549	mg/kg	0.00565 %	✓	
		lead { lead chroma		14/21-10-/	╁							-	
7	æ 🎉	082-004-00-2	231-846-0	7758-97-6	1	50	mg/kg	1.56	77.991	mg/kg	0.005 %	✓	
8	4	selenium { selenium cadmium sulphose elsewhere in this A	elenide and those s			0.66	mg/kg	1.405	0.927	mg/kg	0.0000927 %	√	
		034-002-00-8											
9	æ 🎉	zinc { zinc chromat				67	mg/kg	2.774	185.868	mg/kg	0.0186 %	√	
		024-007-00-3	236-878-9	13530-65-9	1							ľ	
10	4	chromium in chromoxide }		, , ,		<0.5	mg/kg	1.923	<0.962	mg/kg	<0.0000962 %		<lod< td=""></lod<>
		024-001-00-0	215-607-8	1333-82-0	╀								
11	Θ	TPH (C6 to C40) p	etroleum group	TPH		<10	mg/kg		<10	mg/kg	<0.001 %		<lod< td=""></lod<>
		naphthalene		ILLU	╁								
12		601-052-00-2	202-049-5	91-20-3	-	0.9	mg/kg		0.9	mg/kg	0.00009 %	✓	
13	0	acenaphthylene	F 0.00	. 200	T	0.35	mg/kg		0.35	mg/kg	0.000035 %	1	
			205-917-1	208-96-8		0.00	mg/kg		0.00	ilig/kg	0.000000 /6	V	
14	0	acenaphthene	201-469-6	83-32-9		0.4	mg/kg		0.4	mg/kg	0.00004 %	✓	
15	0	fluorene	201-695-5	86-73-7		0.26	mg/kg		0.26	mg/kg	0.000026 %	√	
16	0	phenanthrene				1.4	mg/kg		1.4	mg/kg	0.00014 %	√	
			201-581-5	85-01-8	_								

#			Determinand		CLP Note	User entered data	Conv.	Compound conc.	Classification value	MC Applied	Conc. Not
		EU CLP index number	EC Number	CAS Number	CLP		Facior		value	MC /	usea
17	•	anthracene				0.36 mg/kg		0.36 mg/l	g 0.000036 %	/	
			204-371-1	120-12-7	-	0 0			9	ļ.	
18	0	fluoranthene	205-912-4	206-44-0	-	1.4 mg/kg		1.4 mg/k	g 0.00014 %	✓	
19	0	pyrene			T	1.6 mg/kg		1.6 mg/k	g 0.00016 %	✓	
			204-927-3	129-00-0				g,.	9 0.000.070	ľ	
20		benzo[a]anthracen	е			0.88 mg/kg		0.88 mg/l	a 0.000088 %	1	
		601-033-00-9	200-280-6	56-55-3		g/g		0.00g,.	9 0.000000 70	ľ	
21		chrysene				1.1 mg/kg		1.1 mg/l	g 0.00011 %	1	
		601-048-00-0	205-923-4	218-01-9		3 3			3	Ţ	
22		benzo[b]fluoranthe				0.93 mg/kg		0.93 mg/ł	g 0.000093 %	1	
	-	601-034-00-4 benzo[k]fluoranthe	205-911-9	205-99-2	+					+	
23			205-916-6	207-08-9	-	0.56 mg/kg		0.56 mg/k	g 0.000056 %	✓	
24		benzo[a]pyrene; be			T	0.83 mg/kg		0.83 mg/k	a 0.000083 %	1	
24		601-032-00-3	200-028-5	50-32-8	1	0.65 Hig/kg		0.65 Hig/r	g 0.000083 %	√	
25	0	indeno[123-cd]pyre	ene			0.6 mg/kg		0.6 mg/l	g 0.00006 %	/	
			205-893-2	193-39-5		0.0 mg/kg		0.0 mg/r	9 0.00000 78		
26		dibenz[a,h]anthrac	ene			0.11 mg/kg		0.11 mg/l	g 0.000011 %	/	
		601-041-00-2	200-181-8	53-70-3		0.11 mg/kg		0.11 mg/1	9 0.000011 70	ľ	
27	0	benzo[ghi]perylene				0.95 mg/kg		0.95 mg/l	g 0.000095 %	1	
			205-883-8	191-24-2		3 3		3	3	Ţ	
28	0	PAHs (total)	T			13 mg/kg		13 mg/l	g 0.0013 %	✓	
	-	benzene	<u> </u>		+						
29			200-753-7	71-43-2	-	<1 mg/kg		<1 mg/k	g <0.0001 %		<lod< td=""></lod<>
30		toluene	<u>. </u>	1		<1 mg/kg		<1 mg/k	q <0.0001 %		<lod< th=""></lod<>
L		601-021-00-3	203-625-9	108-88-3	1	g/kg			3 .0.000 . 70		,
31	•	ethylbenzene				<1 mg/kg		<1 mg/k	g <0.0001 %		<lod< th=""></lod<>
_	1	601-023-00-4	202-849-4	100-41-4	+						
32		xylene 202-422-2 [1] 95-47-6 [1] 203-396-5 [2] 106-42-3 [2] 203-576-3 [3] 108-38-3 [3] 215-535-7 [4] 1330-20-7 [4]				<1 mg/kg		<1 mg/l	g <0.0001 %		<lod< th=""></lod<>
								To	al: 0.0489 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

₫ <LOD Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Page 6 of 34 TJ6EA-T17ET-I2JWB www.hazwasteonline.com

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code:
TP12 Chapter:
Sample Depth:
0.80 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

_	_				_			,				_	
#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	4	arsenic { arsenic tr				4.7	mg/kg	1.32	6.206	mg/kg	0.000621 %	√	
		033-003-00-0	215-481-4	1327-53-3	╄								
2	æ \$	cadmium { cadmiui				0.14	mg/kg	1.855	0.26	mg/kg	0.000026 %	1	
		048-009-00-9	233-331-6	10124-36-4	_							Ľ	
3	4	chromium in chrom chromium(III) oxide		ds {		9.7	mg/kg	1.462	14.177	mg/kg	0.00142 %	✓	
			215-160-9	1308-38-9									
4	æ	copper { copper su	Iphate pentahydra	te }		12	mg/kg	3.929	47.149	mg/kg	0.00471 %	/	
		029-023-00-4	231-847-6	7758-99-8						3 3		Ľ	
5	4	mercury { mercury	dichloride }			<0.05	mg/kg	1.353	<0.0677	mg/kg	<0.00000677 %		<lod< th=""></lod<>
		080-010-00-X	231-299-8	7487-94-7	1								
6	æ\$	nickel { nickel chro	mate }			10	mg/kg	2.976	29.763	mg/kg	0.00298 %	√	
		028-035-00-7	238-766-5	14721-18-7								Ľ	
7	4	lead { lead chroma	te }		1	29	mg/kg	1.56	45.235	mg/kg	0.0029 %	√	
		082-004-00-2	231-846-0	7758-97-6	Ĺ							*	
8	4	selenium { seleniur cadmium sulphose elsewhere in this A	lenide and those s			0.39	mg/kg	1.405	0.548	mg/kg	0.0000548 %	✓	
		034-002-00-8											
9	æ 🎉	zinc { zinc chromat	e }			31	mg/kg	2.774	85.999	mg/kg	0.0086 %	1	
Ľ		024-007-00-3	236-878-9	13530-65-9		0.				9/9	0.0000 /0	ľ	
10	4	chromium in chromoxide }				<0.5	mg/kg	1.923	<0.962	mg/kg	<0.0000962 %		<lod< td=""></lod<>
	-		215-607-8	1333-82-0	+							Н	
11	0	TPH (C6 to C40) p	etroleum group	tro	_	<10	mg/kg		<10	mg/kg	<0.001 %		<lod< th=""></lod<>
	-	1.0.1		TPH	╁							Н	
12		naphthalene 601-052-00-2	b02 040 F	01 20 2	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>
	-	acenaphthylene	202-049-5	91-20-3	+							H	
13	0	. ,	205-917-1	208-96-8	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		acenaphthene	F 0		t							Н	
14		1	201-469-6	83-32-9	1	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
45	0	fluorene	1	1	T	0.4			0.4		0.00004.0/		1.05
15			201-695-5	86-73-7	1	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
16	0	phenanthrene	201-581-5	85-01-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>
	_		E01.001-0	00 01-0									

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	Conc. Not
17	0	anthracene	204-371-1	120-12-7		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %	<lod< th=""></lod<>
18	0	fluoranthene	205-912-4	206-44-0		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %	<lod< th=""></lod<>
19	0	pyrene	204-927-3	129-00-0		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %	<lod< th=""></lod<>
20		benzo[a]anthracen 601-033-00-9	e 200-280-6	56-55-3		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %	<lod< th=""></lod<>
21		chrysene 601-048-00-0	205-923-4	218-01-9		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %	<lod< th=""></lod<>
22		benzo[b]fluoranthe 601-034-00-4	ne 205-911-9	205-99-2		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %	<lod< th=""></lod<>
23		benzo[k]fluoranthe	ne 205-916-6	207-08-9		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %	<lod< th=""></lod<>
24		benzo[a]pyrene; be	enzo[def]chrysene 200-028-5	50-32-8		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %	<lod< th=""></lod<>
25	0	indeno[123-cd]pyre	ene 205-893-2	193-39-5		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %	<lod< th=""></lod<>
26		dibenz[a,h]anthrac 601-041-00-2	ene 200-181-8	53-70-3		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %	<lod< th=""></lod<>
27	0	benzo[ghi]perylene	205-883-8	191-24-2		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %	<lod< th=""></lod<>
28	0	PAHs (total)				<2 mg/kg		<2 mg/kg	<0.0002 %	<lod< th=""></lod<>
29		benzene 601-020-00-8	200-753-7	71-43-2		<1 mg/kg		<1 mg/kg	<0.0001 %	<lod< th=""></lod<>
30		toluene 601-021-00-3	203-625-9	108-88-3		<1 mg/kg		<1 mg/kg	<0.0001 %	<lod< th=""></lod<>
31	0	ethylbenzene 601-023-00-4	202-849-4	100-41-4		<1 mg/kg		<1 mg/kg	<0.0001 %	<lod< th=""></lod<>
32			202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<1 mg/kg		<1 mg/kg	<0.0001 %	<lod< th=""></lod<>
								Total	0.0232 %	

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

₫ <LOD Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Page 8 of 34 TJ6EA-T17ET-I2JWB www.hazwasteonline.com

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code:
TP6 Chapter:
Sample Depth:
0.50 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

_	_				_							_	
#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	æ	arsenic { arsenic tr	i <mark>oxide</mark> }			4.5	mg/kg	1.32	5.941	mg/kg	0.000594 %	,	
'	•	033-003-00-0	215-481-4	1327-53-3	1	4.5	mg/kg	1.32	5.941	mg/kg	0.000594 %	✓	
2	æ.	cadmium { cadmiui	m sulfate }	1		<0.1	mg/kg	1.855	<0.185	mg/kg	<0.0000185 %		<lod< th=""></lod<>
		048-009-00-9	233-331-6	10124-36-4		20.1	mg/kg	1.000	40.100	mg/kg	40.0000100 70		LOD
3	4	chromium in chrom chromium(III) oxide	e (worst case) }			11	mg/kg	1.462	16.077	mg/kg	0.00161 %	√	
	-		215-160-9	1308-38-9	_								
4	4	copper {		· · · · · · · · · · · · · · · · · · ·		4.8	mg/kg	3.929	18.859	mg/kg	0.00189 %	1	
		029-023-00-4	231-847-6	7758-99-8	_							1	
5	ď,	mercury { mercury				<0.05	mg/kg	1.353	<0.0677	mg/kg	<0.00000677 %		<lod< th=""></lod<>
	-		231-299-8	7487-94-7	+					·			
6	æ.	nickel { nickel chro	,	44704 40 7	4	7.8	mg/kg	2.976	23.215	mg/kg	0.00232 %	✓	
	-		238-766-5	14721-18-7	╀								
7	æ.	lead { lead chroma	•	7750 07 0	1	7.6	mg/kg	1.56	11.855	mg/kg	0.00076 %	✓	
	-		231-846-0	7758-97-6	1								
	4	selenium {											
8		elsewhere in this A		poomoa		0.25	mg/kg	1.405	0.351	mg/kg	0.0000351 %	✓	
		034-002-00-8			1								
9	æ	zinc { zinc chromat	<mark>e</mark> }			22	mg/kg	2.774	61.031	mg/kg	0.0061 %	/	
9	Ŭ	024-007-00-3	236-878-9	13530-65-9		22	mg/kg	2.114	01.031	ilig/kg	0.0001 /8	~	
10	4	chromium in chromoxide }				<0.5	mg/kg	1.923	<0.962	mg/kg	<0.0000962 %		<lod< td=""></lod<>
	_		215-607-8	1333-82-0	╄								
11	0	TPH (C6 to C40) p	etroleum group			<10	mg/kg		<10	mg/kg	<0.001 %		<lod< th=""></lod<>
_	_			TPH	\vdash							L	
12		naphthalene	h02 040 5	04.20.2		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>
	-	601-052-00-2	202-049-5	91-20-3	\vdash							Н	
13	0	acenaphthylene	205-917-1	208-96-8	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		acenaphthene											
14			201-469-6	83-32-9	1	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
45	0	fluorene	1	1	T	0.4			0.4		0.00004.0/		1.05
15			201-695-5	86-73-7	1	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
16	0	phenanthrene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>
			201-581-5	85-01-8									

#			Determinand		CLP Note	User entere	d data	Conv.	Compound	conc.	Classification value	MC Applied	Conc. Not
		EU CLP index number	EC Number	CAS Number	CLP			dotor			Value	MC	0300
17	0	anthracene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>
		1	204-371-1	120-12-7	\perp							_	
18	0	fluoranthene	bos 040 4	000 44 0		0.52	mg/kg		0.52	mg/kg	0.000052 %	✓	
		1	205-912-4	206-44-0	+							-	
19	0	pyrene	204-927-3	129-00-0	-	0.65	mg/kg		0.65	mg/kg	0.000065 %	✓	
		benzo[a]anthracen		129-00-0	+								
20			200-280-6	56-55-3	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		chrysene	200 200 0	00 00 0	+								
21		601-048-00-0	205-923-4	218-01-9	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		benzo[b]fluoranthe			+								
22			205-911-9	205-99-2	+	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
23		benzo[k]fluoranther	ne			<0.1	malka		<0.1	ma/ka	<0.00001 %		<lod< td=""></lod<>
23		601-036-00-5	205-916-6	207-08-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
24		benzo[a]pyrene; be	enzo[def]chrysene			<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		601-032-00-3	200-028-5	50-32-8		VO.1			40.1		Q0.00001 70		LOD
25	0	indeno[123-cd]pyre	ene			<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			205-893-2	193-39-5		30.1					10.00001 70		1202
26		dibenz[a,h]anthrac	ene			<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		601-041-00-2	200-181-8	53-70-3									
27	0	benzo[ghi]perylene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		}	205-883-8	191-24-2	-								
28	0	PAHs (total)	Γ	1		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
		honzono			-								
29		benzene 601-020-00-8	200-753-7	71-43-2	-	<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
		toluene	200-755-7	7 1-43-2	+								
30			203-625-9	108-88-3	-	<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
	0	ethylbenzene	200 020 0	100 00 0	+								
31		601-023-00-4	202-849-4	100-41-4	-	<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
32		xylene 601-022-00-9 202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 108-38-3 [3] 215-535-7 [4] 1330-20-7 [4]		106-42-3 [2] 108-38-3 [3]		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< th=""></lod<>
		1								Total:	0.0153 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

₫ <LOD Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Page 10 of 34 TJ6EA-T17ET-I2JWB www.hazwasteonline.com

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code:
TP9 Chapter:
Sample Depth:
1.40 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

#			Determinand		CLP Note	User entere	ed data	Conv.	Compound	conc.	Classification value	Applied	Conc. Not
		EU CLP index number	EC Number	CAS Number	CLP			actor			value	MC,	Osed
1	4	arsenic { arsenic tr	<u> </u>	1,007.50.0		13	mg/kg	1.32	17.164	mg/kg	0.00172 %	√	
-	4	033-003-00-0 cadmium {	215-481-4	1327-53-3	\vdash				,			+	
2	4	048-009-00-9	233-331-6	10124-36-4	-	0.21	mg/kg	1.855	0.389	mg/kg	0.0000389 %	✓	
3	*	chromium in chrom	nium(III) compound e (worst case) }			25	mg/kg	1.462	36.539	mg/kg	0.00365 %	√	
			215-160-9	1308-38-9	1								
4	4	copper { copper su 029-023-00-4	Ilphate pentahydra 231-847-6	te } 7758-99-8	-	20	mg/kg	3.929	78.581	mg/kg	0.00786 %	✓	
	æ	mercury { mercury	1		t							t	
5	•	080-010-00-X	231-299-8	7487-94-7		0.35	mg/kg	1.353	0.474	mg/kg	0.0000474 %	✓	
6	4	nickel { nickel chro 028-035-00-7	mate }	14721-18-7		21	mg/kg	2.976	62.502	mg/kg	0.00625 %	√	
	æ	lead { lead chroma		14721 107	\vdash								
7 6	•	082-004-00-2	231-846-0	7758-97-6	1	120	mg/kg	1.56	187.178	mg/kg	0.012 %	✓	
8	*	selenium { selenium cadmium sulphose elsewhere in this A	elenide and those s			1.1	mg/kg	1.405	1.546	mg/kg	0.000155 %	√	
		034-002-00-8											
9	4	zinc { <mark>zinc chromat</mark> 024-007-00-3	te } 236-878-9	13530-65-9		95	mg/kg	2.774	263.544	mg/kg	0.0264 %	✓	
10	*	chromium in chromoxide }	nium(VI) compoun	ds { chromium(VI)		<0.5	mg/kg	1.923	<0.962	mg/kg	<0.0000962 %		<lod< td=""></lod<>
+	-	024-001-00-0	215-607-8	1333-82-0	╄								}
11	0	TPH (C6 to C40) p	etroleum group	TPH	-	70	mg/kg		70	mg/kg	0.007 %	✓	
		naphthalene		11111	\vdash					_			
12		601-052-00-2	202-049-5	91-20-3		1.1	mg/kg		1.1	mg/kg	0.00011 %	✓	
13	0	acenaphthylene	,			0.31	mg/kg		0.31	mg/kg	0.000031 %	√	
	0	acenaphthene	205-917-1	208-96-8	-	2.12			6.15	,,	0.000012.31		
14			201-469-6	83-32-9	1	0.19	mg/kg		0.19	mg/kg	0.000019 %	√	
15	0	fluorene	201-695-5	86-73-7		0.16	mg/kg		0.16	mg/kg	0.000016 %	✓	
16	0	phenanthrene				0.79	mg/kg		0.79	mg/kg	0.000079 %	√	
16	9	F	201-581-5	85-01-8		0.79	mg/kg		0.79	mg/kg	0.000079 %	√	_

#			Determinand		CLP Note	User entered data	Conv.	Compound conc	Classification value	MC Applied	Conc. Not
		EU CLP index number	EC Number	CAS Number	CLP		T actor		value	MC,	Osed
17	•	anthracene				0.27 mg/kg		0.27 mg/	kg 0.000027 %	/	
			204-371-1	120-12-7	-	0 0			•	ļ.	
18	0	fluoranthene	205-912-4	206-44-0	-	1.5 mg/kg		1.5 mg/	kg 0.00015 %	✓	
19	0	pyrene			T	1.6 mg/kg		1.6 mg/	kg 0.00016 %	✓	
			204-927-3	129-00-0		3 3			3	Ţ	
20		benzo[a]anthracen				0.86 mg/kg		0.86 mg/	kg 0.000086 %	1	
		601-033-00-9	200-280-6	56-55-3		3 3		3	3	Ţ	
21		chrysene				2.7 mg/kg		2.7 mg/	kg 0.00027 %	1	
		601-048-00-0	205-923-4	218-01-9		0 0			0	Ţ	
22		benzo[b]fluoranthe		bos 00 0		1.2 mg/kg		1.2 mg/	kg 0.00012 %	√	
_		601-034-00-4 benzo[k]fluoranthe	205-911-9 ne	205-99-2				0.50			
23			205-916-6	207-08-9	+	0.59 mg/kg		0.59 mg/	kg 0.000059 %	✓	
24		benzo[a]pyrene; be			T	0.84 mg/kg		0.84 mg/	ka 0.000084 %	✓	
		601-032-00-3	200-028-5	50-32-8		0.04 mg/kg		0.04 mg/	0.000004 70	~	
25	0	indeno[123-cd]pyre	ene			0.67 mg/kg		0.67 mg/	kg 0.000067 %	/	
			205-893-2	193-39-5		ore:g/ng		0.0g/	g 0.00000. 70	ľ	
26		dibenz[a,h]anthrac	ene			0.16 mg/kg		0.16 mg/	kg 0.000016 %	1	
		601-041-00-2	200-181-8	53-70-3	1	gg			ang control of	ľ	
27	•	benzo[ghi]perylene		1404.04.0		1.3 mg/kg		1.3 mg/	kg 0.00013 %	√	
_		DALL (L. L. D.	205-883-8	191-24-2	+					+	
28	0	PAHs (total)			-	14 mg/kg		14 mg/	kg 0.0014 %	✓	
29		benzene		1		<1 mg/kg		<1 mg/	ka <0.0001 %		<lod< td=""></lod<>
		601-020-00-8	200-753-7	71-43-2					g		
30		toluene	000 005 0	400.00.0		<1 mg/kg		<1 mg/	kg <0.0001 %		<lod< th=""></lod<>
_		601-021-00-3 ethylbenzene	203-625-9	108-88-3	+						
31	-	601-023-00-4	·		+	<1 mg/kg		<1 mg/	kg <0.0001 %		<lod< td=""></lod<>
32		xylene 601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<1 mg/kg		<1 mg/	kg <0.0001 %		<lod< th=""></lod<>
								To	tal: 0.0684 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

₫ <LOD Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because Long Chain Hydrocarbons - no free phase - non flammable

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.007%)

Page 12 of 34 TJ6EA-T17ET-I2JWB www.hazwasteonline.com

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code:
TP13 Chapter:
Sample Depth:
1.30 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

#		EU CLP index	Determinand EC Number	CAS Number	CLP Note	User enter	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		number			O							Σ	
1	4	arsenic { arsenic tr	,	4007.50.0		14	mg/kg	1.32	18.485	mg/kg	0.00185 %	✓	
_	_	033-003-00-0 cadmium { cadmiu	215-481-4	1327-53-3	╁					-			
2	≪*		233-331-6	10124-36-4	-	0.1	mg/kg	1.855	0.185	mg/kg	0.0000185 %	✓	
3	4	chromium in chrom	nium(III) compound			20	mg/kg	1.462	29.231	mg/kg	0.00292 %	√	
			215-160-9	1308-38-9					.,				
4	4	copper { copper su		te }		4.7	mg/kg	3.929	18.467	mg/kg	0.00185 %	1	
		029-023-00-4	231-847-6	7758-99-8								Ľ	
5	4	mercury { mercury				<0.05	mg/kg	1.353	<0.0677	mg/kg	<0.00000677 %		<lod< td=""></lod<>
_	_	080-010-00-X nickel { nickel chro	231-299-8	7487-94-7	\vdash				<u> </u>				
6	4	,	238-766-5	14721-18-7	-	11	mg/kg	2.976	32.739	mg/kg	0.00327 %	✓	
_	æ	lead { lead chroma		14721-10-7	H								
7	•	,	-004-00-2 231-846-0 7758-97-6 enium { selenium compounds with the exception	7758-97-6	1	9.8	mg/kg	1.56	15.286	mg/kg	0.00098 %	✓	
8	4	selenium { selenium cadmium sulphose elsewhere in this A	lenide and those s			0.43	mg/kg	1.405	0.604	mg/kg	0.0000604 %	√	
		034-002-00-8											
9	4	zinc { zinc chromat	•			13	mg/kg	2.774	36.064	mg/kg	0.00361 %	1	
			236-878-9	13530-65-9								Ť	
10	₫,	chromium in chromoxide }		, , ,		<0.5	mg/kg	1.923	<0.962	mg/kg	<0.0000962 %		<lod< td=""></lod<>
			215-607-8	1333-82-0	-								
11	Θ	TPH (C6 to C40) p	etroleum group	TPH	-	<10	mg/kg		<10	mg/kg	<0.001 %		<lod< td=""></lod<>
_		naphthalene		IPH	╁								
12		601-052-00-2	202-049-5	91-20-3	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
40	0	acenaphthylene	F02 040 0	p. 200		0.4			0.4	//	0.00004.0/		1.00
13			205-917-1	208-96-8	1	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
14	0	acenaphthene	201-469-6	83-32-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
15	0	fluorene	201-695-5	86-73-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
16	0	phenanthrene	201-595-5	85-01-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>

#			Determinand		CLP Note	User entere	d data	Conv.	Compound	conc.	Classification value	MC Applied	Conc. Not
		EU CLP index number	EC Number	CAS Number	CLP			T dotor			Value	MC	0000
17	•	anthracene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>
		1	204-371-1	120-12-7	╀							_	
18	0	fluoranthene	005 040 4	206-44-0		0.12	mg/kg		0.12	mg/kg	0.000012 %	✓	
	-	pyrene	205-912-4	206-44-0	+							+	
19	0	pyrene	204-927-3	129-00-0	+	0.29	mg/kg		0.29	mg/kg	0.000029 %	✓	
		benzo[a]anthracen		123 00 0	+								
20			200-280-6	56-55-3	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		chrysene	l .		T	0.4			0.4		0.00004.0/		1.00
21		601-048-00-0	205-923-4	218-01-9	1	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
22		benzo[b]fluoranthe	ne			<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		601-034-00-4	205-911-9	205-99-2		VO.1	mg/kg		ζ0.1	mg/kg	20.00001 /8		\LOD
23		benzo[k]fluoranther	ne			<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		601-036-00-5	205-916-6	207-08-9		40					10.00001.70		1202
24		benzo[a]pyrene; be				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	L	1	200-028-5	50-32-8	_								
25	0	indeno[123-cd]pyre				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	L	1	205-893-2	193-39-5	+								
26		dibenz[a,h]anthrace		50.70.0	_	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
_		1	200-181-8	53-70-3	+								
27	0	benzo[ghi]perylene	205-883-8	191-24-2	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		PAHs (total)	203-003-0	191-24-2	+								
28	0	rai is (total)			-	<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
29		benzene		·		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
ر کے		601-020-00-8	200-753-7	71-43-2		``	ilig/ikg		71	ing/kg	30.0001 70		\LOD
30		toluene	000 005 0	400.00.0		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
-	-	1	203-625-9	108-88-3	+								
31	•	ethylbenzene	000 040 4	100 11 1	-	<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
_	H		01-023-00-4 202-849-4 100-41-4 vlene										
32		xylene 601-022-00-9 202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 108-38-3 [3] 215-535-7 [4] 1330-20-7 [4]				<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
										Total:	0.0164 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

₫ <LOD Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Page 14 of 34 TJ6EA-T17ET-I2JWB www.hazwasteonline.com

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code:
TP14 Chapter:
Sample Depth:
0.60 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

	_		Determinand Pindey FC Number CAS										
#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	æ	arsenic { arsenic tri		4007.50.0		15	mg/kg	1.32	19.805	mg/kg	0.00198 %	√	
	-		215-481-4	1327-53-3	⊬								
2	€4	cadmium { cadmiur		10101001		0.44	mg/kg	1.855	0.816	mg/kg	0.0000816 %	✓	
	-	048-009-00-9	233-331-6	10124-36-4	-								
3	4	chromium in chrom		ds {		30	mg/kg	1.462	43.847	mg/kg	0.00438 %	✓	
			215-160-9	1308-38-9									
4	æ 🌡	copper { copper su	Iphate pentahydra	te }		27	mg/kg	3.929	106.084	mg/kg	0.0106 %	1	
			231-847-6	7758-99-8						3 3		Ť	
5	æ\$	mercury { mercury				0.08	mg/kg	1.353	0.108	mg/kg	0.0000108 %	√	
		080-010-00-X	231-299-8	7487-94-7	1					3 3		ľ	
6	æ\$	nickel { nickel chror	,			21	mg/kg	2.976	62.502	mg/kg	0.00625 %	1	
	_		{ lead chromate } 004-00-2 231-846-0 7758-97-6	14721-18-7	-								
7	æ 🎖	•	{ <mark>lead chromate</mark> }		1	57	mg/kg	1.56	88.909	mg/kg	0.0057 %	1	
	_		1	1									
8	4		lenide and those s			0.76	mg/kg	1.405	1.068	mg/kg	0.000107 %	✓	
		034-002-00-8											
9	æ	zinc { zinc chromat	<mark>e</mark> }			91	mg/kg	2.774	252.447	mg/kg	0.0252 %	1	
	Ŭ	024-007-00-3	236-878-9	13530-65-9		31	mg/kg	2.774	252.447	mg/kg	0.0232 /0	~	
10	4	chromium in chromoxide }				<0.5	mg/kg	1.923	<0.962	mg/kg	<0.0000962 %		<lod< th=""></lod<>
			215-607-8	1333-82-0	_								
11	0	TPH (C6 to C40) p	etroleum group			<10	mg/kg		<10	mg/kg	<0.001 %		<lod< th=""></lod<>
	_			TPH	_								
12		naphthalene	baa a 40 =	h		0.65	mg/kg		0.65	mg/kg	0.000065 %	✓	
_	-		202-049-5	91-20-3	-							-	
13	0	acenaphthylene	205-917-1	208-96-8	-	0.45	mg/kg		0.45	mg/kg	0.000045 %	✓	
14	0	acenaphthene				0.24	mg/kg		0.24	mg/kg	0.000024 %	√	
Ĺ			201-469-6	83-32-9			39			J		ľ	
15	0	fluorene	201-695-5	86-73-7	-	0.4	mg/kg		0.4	mg/kg	0.00004 %	✓	
16	0	phenanthrene	201-581-5	85-01-8		0.78	mg/kg		0.78	mg/kg	0.000078 %	√	
	_		201-001-0	00-01-0									

#			Determinand		Note	User entered da	ta	Conv.	Compound	Lone	Classification	MC Applied	Conc. Not
"		EU CLP index number	EC Number	CAS Number	CLP Note	Osci cincica da	ıu	Factor	Compound		value	MC A	Used
17	0	anthracene				0.44 mg	/ka		0.44	mg/kg	0.000044 %	√	
			204-371-1	120-12-7		0.44 mg	, itg		0.44	mg/kg	0.000044 70	*	
18	0	fluoranthene	205-912-4	206-44-0	-	1.5 mg	/kg		1.5	mg/kg	0.00015 %	✓	
19	0	pyrene				2 mg	/kg		2	mg/kg	0.0002 %	√	
			204-927-3	129-00-0	-								
20		benzo[a]anthracen			4	1.2 mg	/kg		1.2	mg/kg	0.00012 %	✓	
_	_		200-280-6	56-55-3	-								
21		chrysene		h		1.5 mg	/kg		1.5	mg/kg	0.00015 %	✓	
		601-048-00-0	205-923-4	218-01-9	-								
22		benzo[b]fluoranthe 601-034-00-4	ne 205-911-9	205-99-2	-	1.7 mg	/kg		1.7	mg/kg	0.00017 %	✓	
23		benzo[k]fluoranthe				0.62 mg	/ka		0.62	mg/kg	0.000062 %	✓	
_		601-036-00-5	205-916-6	207-08-9		9						•	
24		benzo[a]pyrene; be	enzo[def]chrysene			1.5 mg	/ka		1.5	mg/kg	0.00015 %	1	
		601-032-00-3	200-028-5	50-32-8		- 3						*	
25	0	indeno[123-cd]pyre				1.1 mg	/ka		1.1	mg/kg	0.00011 %	1	
			205-893-2	193-39-5		9						*	
26		dibenz[a,h]anthrac	ene			0.25 mg	/ka		0.25	mg/kg	0.000025 %	1	
		601-041-00-2	200-181-8	53-70-3		9						*	
27	0	benzo[ghi]perylene	205-883-8	191-24-2		1.6 mg	/kg		1.6	mg/kg	0.00016 %	✓	
		PAHs (total)	200-000-0	191-24-2	+								
28	0	rai is (total)			-	16 mg	/kg		16	mg/kg	0.0016 %	✓	
29		benzene				<1 mg	/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
_			200-753-7	71-43-2	-	_							
30		toluene 601-021-00-3	203-625-9	108-88-3	-	<1 mg	/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
31	9	ethylbenzene				<1 mg	/ka		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
Ľ		601-023-00-4	*			ing	, ng		7	mg/kg	30.0001 /0		,EOD
32		xylene 601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<1 mg	/kg		<1	mg/kg	<0.0001 %		<lod< th=""></lod<>
										Total:	0.0591 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

₫ <LOD Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Page 16 of 34 TJ6EA-T17ET-I2JWB www.hazwasteonline.com

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code:
TP5 Chapter:
Sample Depth:
0.50 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

_	_				_							_	
#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	4	arsenic { arsenic tr	•			14	mg/kg	1.32	18.485	mg/kg	0.00185 %	√	
		033-003-00-0	215-481-4	1327-53-3									
2	4	cadmium { cadmiui				0.38	mg/kg	1.855	0.705	mg/kg	0.0000705 %	√	
		048-009-00-9	233-331-6	10124-36-4	╙					J J		ľ	
3	4	chromium in chrom chromium(III) oxide	e (worst case) }			28	mg/kg	1.462	40.924	mg/kg	0.00409 %	✓	
			215-160-9	1308-38-9									
4	4	copper { copper su	Iphate pentahydra	te }		23	mg/kg	3.929	90.368	mg/kg	0.00904 %	1	
		029-023-00-4	231-847-6	7758-99-8						3 3		ľ	
5	4	mercury { mercury	dichloride }			0.08	mg/kg	1.353	0.108	mg/kg	0.0000108 %	1	
Ĺ		080-010-00-X	231-299-8	7487-94-7								Ť	
6	4	,	{ <mark>lead chromate</mark> }			21	mg/kg	2.976	62.502	mg/kg	0.00625 %	√	
		028-035-00-7	{ <mark>lead chromate</mark> } 004-00-2 231-846-0 7758-97-6	14721-18-7								ľ	
7	4	lead { lead chroma	{ lead chromate } 004-00-2		1	58	mg/kg	1.56	90.469	mg/kg	0.0058 %	√	
		082-004-00-2		7758-97-6								*	
8	4		lenide and those s			0.77	mg/kg	1.405	1.082	mg/kg	0.000108 %	✓	
		034-002-00-8			\perp								
9	4	zinc { zinc chromat	e}			85	mg/kg	2.774	235.802	mg/kg	0.0236 %	1	
Ľ		024-007-00-3	236-878-9	13530-65-9			9/9			99		ľ	
10	4	chromium in chromoxide }		, , ,		<0.5	mg/kg	1.923	<0.962	mg/kg	<0.0000962 %		<lod< th=""></lod<>
			215-607-8	1333-82-0	⊬								
11	•	TPH (C6 to C40) p	etroleum group			180	mg/kg		180	mg/kg	0.018 %	✓	
				TPH	-								
12		naphthalene	laaa a 4a =	lo 1 00 0		0.62	mg/kg		0.62	mg/kg	0.000062 %	✓	
	H	601-052-00-2	202-049-5	91-20-3	+							-	
13	0	acenaphthylene	205-917-1	208-96-8		0.41	mg/kg		0.41	mg/kg	0.000041 %	✓	
14	0	acenaphthene		1		0.21	ma/ka		0.21	ma/ka	0.000021 %	,	
14			201-469-6	83-32-9	1	0.21	mg/kg		U.Z I	mg/kg	U.UUUUZ I 70	✓	l
15	0	fluorene	-			0.18	mg/kg		0.18	mg/kg	0.000018 %	√	
			201-695-5	86-73-7		0.10	mg/kg		0.10	mg/kg	3.000010 /0	v	
16	0	phenanthrene	ho4 504 5	05.04.0		0.68	mg/kg		0.68	mg/kg	0.000068 %	√	
			201-581-5	85-01-8									

#			Determinand		CLP Note	User entered data	Con		Compound	conc.	Classification value	MC Applied	Conc. Not
		EU CLP index number	EC Number	CAS Number	CLP		Faci	IOI			value	MC/	Osed
17	0	anthracene				0.75 mg/kg			0.75	mg/kg	0.000075 %	/	
			204-371-1	120-12-7	-							ļ.	
18	0	fluoranthene	205-912-4	206-44-0	-	1.2 mg/kg	•		1.2	mg/kg	0.00012 %	✓	
19	0	pyrene			T	1.7 mg/kg			1.7	mg/kg	0.00017 %	✓	
			204-927-3	129-00-0		9					0.00017 /0	ľ	
20		benzo[a]anthracen	е			0.93 mg/kg			0.93	mg/kg	0.000093 %	1	
		601-033-00-9	200-280-6	56-55-3		0.00g/					0.000000 /0	ľ	
21		chrysene				1.1 mg/kg			1.1	mg/kg	0.00011 %	1	
		601-048-00-0	205-923-4	218-01-9		3 ,						ľ	
22		benzo[b]fluoranthe				1.2 mg/kg	1		1.2	mg/kg	0.00012 %	1	
	-	601-034-00-4 benzo[k]fluoranthe	205-911-9 ne	205-99-2	+								
23			205-916-6	207-08-9	-	0.58 mg/kg	1		0.58	mg/kg	0.000058 %	✓	
24		benzo[a]pyrene; be			T	0.98 mg/kg			0.98	ma/ka	0.000098 %	,	
24		601-032-00-3	200-028-5	50-32-8	1	0.98 mg/kg	'		0.96	mg/kg	0.000098 %	✓	
25	0	indeno[123-cd]pyre	ene			1.1 mg/kg			1.1	mg/kg	0.00011 %	✓	
			205-893-2	193-39-5		1.1 1119/10	'		1.1	ilig/kg	0.00011 /8	~	
26		dibenz[a,h]anthrac	ene			0.44 mg/kg			0.44	mg/kg	0.000044 %	√	
		601-041-00-2	200-181-8	53-70-3		O.TT Hight					0.00001170	*	
27	0	benzo[ghi]perylene				1.2 mg/kg	1		1.2	mg/kg	0.00012 %	1	
	L		205-883-8	191-24-2	-								
28	0	PAHs (total)			-	13 mg/kg	1		13	mg/kg	0.0013 %	✓	
29		benzene			\dagger	<1 mg/kg			<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
29		601-020-00-8	200-753-7	71-43-2		ζ1 IIIg/kį			<u> </u>	ilig/kg	20.0001 //		\LOD
30		toluene	baa aas a	400.00.0		<1 mg/kg	ı		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
_	1	601-021-00-3	203-625-9	108-88-3	+								
31	0	ethylbenzene	202 840 4	100 41 4	-	<1 mg/kg	ı		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
		601-023-00-4 202-849-4 100-41-4 xylene											
32		xylene 601-022-00-9 202-422-2 [1] 95-47-6 [1] 203-396-5 [2] 106-42-3 [2] 203-576-3 [3] 108-38-3 [3] 215-535-7 [4] 1330-20-7 [4]		106-42-3 [2] 108-38-3 [3]		<1 mg/kį	1		<1	mg/kg	<0.0001 %		<lod< th=""></lod<>
										Total:	0.0719 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

₫ <LOD Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because Long Chain Hydrocarbons - no free phase - non flammable

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.018%)

Page 18 of 34 TJ6EA-T17ET-I2JWB www.hazwasteonline.com

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code:
TP3 Chapter:
Sample Depth:
1.20 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

#		EHOLD: /	Determinand		CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	Applied	Conc. Not
		EU CLP index number	EC Number	CAS Number	S							MC	
1	æ \$	arsenic { arsenic tr 033-003-00-0	ioxide } 215-481-4	1327-53-3	-	12	mg/kg	1.32	15.844	mg/kg	0.00158 %	✓	
2	œ\$	cadmium { cadmiu		1321-33-3	t	0.24	mg/kg	1.855	0.445	mg/kg	0.0000445 %	✓	
		048-009-00-9	233-331-6	10124-36-4		0.24	mg/kg	1.000	0.440	mg/kg	0.0000440 /0	~	
3	4	chromium in chrom		ds {		24	mg/kg	1.462	35.077	mg/kg	0.00351 %	✓	
			215-160-9	1308-38-9									
4	æ	copper { copper su	Ilphate pentahydra	<mark>te</mark> }		27	mg/kg	3.929	106.084	mg/kg	0.0106 %	1	
Ŀ		029-023-00-4	231-847-6	7758-99-8				0.020					
5	4	mercury { mercury	dichloride }			0.09	mg/kg	1.353	0.122	mg/kg	0.0000122 %	√	
Ľ		080-010-00-X	231-299-8	7487-94-7		0.00				99		*	
6	æ 🎉	nickel { nickel chro	-			20	mg/kg	2.976	59.525	mg/kg	0.00595 %	√	
		028-035-00-7	238-766-5	14721-18-7						J J		ľ	
7	ď,	lead { lead chroma	-		_ 1	51	mg/kg	1.56	79.551	mg/kg	0.0051 %	√	
		082-004-00-2	231-846-0	7758-97-6						3 3		1	
8	4		lenide and those s			0.7	mg/kg	1.405	0.983	mg/kg	0.0000983 %	√	
-			mium sulphoselenide and those specified where in this Annex }									1	
		034-002-00-8			+							-	
9	æ	zinc { zinc chromat	•	40500 05 0	_	67	mg/kg	2.774	185.868	mg/kg	0.0186 %	✓	
	_	024-007-00-3	236-878-9	13530-65-9	+								
10	4	chromium in chromoxide }		, , ,		<0.5	mg/kg	1.923	<0.962	mg/kg	<0.0000962 %		<lod< td=""></lod<>
		024-001-00-0	215-607-8	1333-82-0									
11	0	TPH (C6 to C40) p	etroleum group	To.	_	65	mg/kg		65	mg/kg	0.0065 %	✓	
_		1.0		TPH	+								
12		naphthalene 601-052-00-2	202-049-5	91-20-3	-	0.72	mg/kg		0.72	mg/kg	0.000072 %	✓	
	0	acenaphthylene	K07-042-0	Ø1-20-3	+							+	
13		accriapriniyiene	205-917-1	208-96-8	-	0.2	mg/kg		0.2	mg/kg	0.00002 %	✓	
	0	acenaphthene			+					_		+	
14			201-469-6	83-32-9	-	0.31	mg/kg		0.31	mg/kg	0.000031 %	✓	
1.5	0	fluorene	1	1		0.00			0.00		0.000000.01		
15			201-695-5	86-73-7	1	0.23	mg/kg		0.23	mg/kg	0.000023 %	✓	
16	0	phenanthrene				1.2	mg/kg		1.2	mg/kg	0.00012 %	√	
			201-581-5	85-01-8						•			

#			Determinand		lote	User entered data	Conv.	Compound	conc	Classification	MC Applied	Conc. Not
#		EU CLP index number	EC Number	CAS Number	CLP Note	Oser entered data	Factor	Compound	CONC.	value	MC A	Used
17		anthracene				0.39 mg/kg		0.39	mg/kg	0.000039 %	√	
			204-371-1	120-12-7		0.00 mg/kg		0.00		0.000003 70	'	
18	0	fluoranthene	205-912-4	206-44-0		1.2 mg/kg		1.2	mg/kg	0.00012 %	✓	
	0	pyrene	200 012 1	200 11 0	+							
19	Ū	P)*****	204-927-3	129-00-0	+	1.5 mg/kg		1.5	mg/kg	0.00015 %	✓	
		benzo[a]anthracen				0.74		0.74		0.000074.0/	١.	
20		601-033-00-9	200-280-6	56-55-3	1	0.74 mg/kg		0.74	mg/kg	0.000074 %	✓	
21		chrysene				0.92 mg/kg		0.92		0.000092 %	,	
2		601-048-00-0	205-923-4	218-01-9	1	0.92 mg/kg		0.92	mg/kg	0.000092 %	√	
22		benzo[b]fluoranthe	ne			0.87 mg/kg		0.87	mg/kg	0.000087 %	,	
		601-034-00-4	205-911-9	205-99-2	1	0.67 Hig/kg		0.87	mg/kg	0.000087 /8	✓	
23		benzo[k]fluoranthe				0.63 mg/kg		0.63	mg/kg	0.000063 %	√	
	_	1	205-916-6	207-08-9	+						-	
24		benzo[a]pyrene; be				0.67 mg/kg		0.67	mg/kg	0.000067 %	✓	
-	-	1	200-028-5	50-32-8	+						+	
25	•	indeno[123-cd]pyre		400.00.5	4	0.53 mg/kg		0.53	mg/kg	0.000053 %	✓	
_		1	205-893-2	193-39-5	+							
26		dibenz[a,h]anthrace		E0 70 0	4	<0.1 mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		1	200-181-8	53-70-3	-						+	
27	0	benzo[ghi]perylene	205-883-8	191-24-2	4	0.86 mg/kg		0.86	mg/kg	0.000086 %	✓	
_		PAHs (total)	200-003-0	191-24-2	+						╁	
28	0	PARS (total)			-	11 mg/kg		11	mg/kg	0.0011 %	✓	
29		benzene		•		<1 mg/kg		<1	mg/kg	<0.0001 %		<lod< th=""></lod<>
29		601-020-00-8	200-753-7	71-43-2		- Tilg/kg		<u> </u>	ilig/kg	C0.0001 /6		\LOD
30		toluene				<1 mg/kg		<1	mg/kg	<0.0001 %		<lod< th=""></lod<>
	_	1	203-625-9	108-88-3	+							
31	•	ethylbenzene	hoo 040 <i>i</i>	400 44 1	-	<1 mg/kg		<1	mg/kg	<0.0001 %		<lod< th=""></lod<>
	_		01-023-00-4 202-849-4 100-41-4									
32		xylene 501-022-00-9 202-422-2 [1] 95-47-6 [1] 203-396-5 [2] 106-42-3 [2] 203-576-3 [3] 108-38-3 [3] 215-535-7 [4] 1330-20-7 [4]				<1 mg/kg		<1	mg/kg	<0.0001 %		<lod< th=""></lod<>
									Total:	0.0547 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

₫ <LOD Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because Long Chain Hydrocarbons - no free phase - non flammable

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.0065%)

Page 20 of 34 TJ6EA-T17ET-I2JWB www.hazwasteonline.com

A Hazardous Waste Classified as 17 05 03 *

in the List of Waste

Sample details

LoW Code: Sample name:

TP4 Chapter: Sample Depth:

17 05 03 * (Soil and stones containing hazardous substances) 0.75 m Entry:

from contaminated sites)

17: Construction and Demolition Wastes (including excavated soil

Hazard properties

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to hazardous because Long Chain Hydrocarbons - no free phase - non flammable

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 1.5%)

HP 7: Carcinogenic "waste which induces cancer or increases its incidence"

Hazard Statements hit:

Carc. 1B; H350 "May cause cancer [state route of exposure if it is conclusively proven that no other routes of exposure cause the hazard]."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 1.5%)

HP 11: Mutagenic "waste which may cause a mutation, that is a permanent change in the amount or structure of the genetic material in a cell"

Hazard Statements hit:

Muta. 1B: H340 "May cause genetic defects [state route of exposure if it is conclusively proven that no other routes of exposure cause the hazard]."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 1.5%)

Determinands

#		EU CLP index	Determinand EC Number	CAS Number	CLP Note	User entered	data	Conv. Factor	Compound	conc.	Classification value	C Applied	Conc. Not Used
		number			O							MC	
1	æ	arsenic { arsenic tr	ioxide }			4.3 r	mg/kg	1.32	5.677	mg/kg	0.000568 %	/	
Ľ		033-003-00-0	215-481-4	1327-53-3		7.0	iig/itg	1.02	5.011	mg/kg	0.000000 70	~	
2	4	cadmium { cadmiu	<mark>m sulfate</mark> }		0.1 mg/kg	1.855	0.185	mg/kg	0.0000185 %	1			
Ĺ		048-009-00-9	233-331-6	10124-36-4		0.1	ng/ng	1.000	0.100	mg/kg	0.0000100 70	`	
	4	chromium in chrom	nium(III) compound	ds {									
3		chromium(III) oxide	e (worst case) }	•		11 r	mg/kg	1.462	16.077	mg/kg	0.00161 %	✓	
			215-160-9	1308-38-9									
4	4	copper { copper su	Iphate pentahydra	te }		6.1 r	mg/kg	3.929	23.967	mg/kg	0.0024 %	/	
Ľ.		029-023-00-4	231-847-6	7758-99-8		0.1	ng/ng	0.020	20.007	mg/kg	0.002170	`	
5	*	mercury { mercury	dichloride }			<0.05 r	mg/kg	1.353	<0.0677	mg/kg	<0.0000677 %		<lod< th=""></lod<>
"	"	080-010-00-X	231-299-8	7487-94-7		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ng/kg	1.555	20.0077	mg/kg	20.00000011 /8		LOD

#			Determinand		CLP Note	User entere	ed data	Conv.	Compound	conc.	Classification value	Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLP			actor			Value	MC	0300
6	æ	nickel { nickel chror	nate }			0.2	nn a /l. a	2.976	24.702		0.00047.0/		
L	_	028-035-00-7	238-766-5	14721-18-7		8.3	mg/kg	2.976	24.703	mg/kg	0.00247 %	√	
7	æ g	lead { lead chromat			1	13	mg/kg	1.56	20.278	mg/kg	0.0013 %	1	
	_		231-846-0	7758-97-6								Ι.	
8	4	selenium { seleniur cadmium sulphose elsewhere in this A	lenide and those sp			0.31	mg/kg	1.405	0.436	mg/kg	0.0000436 %	✓	
		034-002-00-8			-								
9	æ\$	zinc { zinc chromat 024-007-00-3	<mark>e</mark> } 236-878-9	13530-65-9		22	mg/kg	2.774	61.031	mg/kg	0.0061 %	✓	
	æ	chromium in chrom											
10		oxide }	(7 .) 55			<0.5	mg/kg	1.923	<0.962	mg/kg	<0.0000962 %		<lod< td=""></lod<>
		024-001-00-0	215-607-8	1333-82-0									
11	•	TPH (C6 to C40) p	etroleum group			15000	mg/kg		15000	mg/kg	1.5 %	✓	
		n an hth al an a		TPH	\vdash								
12		naphthalene 601-052-00-2	202-049-5	91-20-3		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		acenaphthylene	202 043 3	01200	H								
13	Ĭ	. ,	205-917-1	208-96-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
14	0	acenaphthene		,		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			201-469-6	83-32-9		VO.1	ilig/kg		V 0.1		<0.00001 78		LOD
15	0	fluorene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			201-695-5	86-73-7	-								
16	0	phenanthrene	201-581-5	85-01-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
17	0	anthracene		J.		<0.1	ma/ka		<0.1	ma/ka	<0.00001 %		<lod< td=""></lod<>
Ľ			204-371-1	120-12-7		ζ0.1	mg/kg		V 0.1	mg/kg 	<0.00001 /8		\LOD
18	•	fluoranthene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			205-912-4	206-44-0									_
19	•	pyrene	004 007 0	400.00.0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		benzo[a]anthracen	204-927-3	129-00-0	H								
20		. ,		56-55-3		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
21		chrysene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		601-048-00-0	205-923-4	218-01-9		VO.1	ilig/kg		VO.1		<0.00001 78		\LOD
22		benzo[b]fluoranthe				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
				205-99-2									
23		benzo[k]fluoranther	ne 205-916-6	207-08-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		benzo[a]pyrene; be		207-08-9									
24				50-32-8	1	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
25	0	indeno[123-cd]pyre				-0.1	ma/ka		<0.1	ma/ka	<0.00001 %		<lod< td=""></lod<>
25			205-893-2	193-39-5		<0.1	mg/kg		<0.1	mg/kg	V0.00001 %		\LUD
26		dibenz[a,h]anthrace				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
L				53-70-3	-		J J						
27	•	benzo[ghi]perylene		101 24 2	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	_	PAHs (total)	205-883-8	191-24-2	\vdash								
28		((3(4))			-	<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
29		benzene				<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
			200-753-7	71-43-2	1	,,					13.0001 /0		
30		toluene	002 625 0	400 00 2		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
		601-021-00-3 ethylbenzene	203-625-9	108-88-3									
31	0		202-849-4	100-41-4	-	<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
32		xylene 601-022-00-9		95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>

#		Determinand		Note	User entered data	Conv.	Compound conc.	Classification value	Applied	Conc. Not Used
	EU CLP index number	EC Number	CAS Number	CLP		racioi		value	MC/	Oseu
							Total:	1.515 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Hazardous result

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

A Hazardous Waste

Classified as 17 05 03 * in the List of Waste

Sample details

Sample name: LoW Code:

TP4[2] Chapter: 17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

2.00 m Entry: 17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 03 * (Soil and stones containing hazardous substances)

Hazard properties

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to hazardous because Long Chain Hydrocarbons - no free phase - non flammable

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.7%)

HP 7: Carcinogenic "waste which induces cancer or increases its incidence"

Hazard Statements hit:

Carc. 1B; H350 "May cause cancer [state route of exposure if it is conclusively proven that no other routes of exposure cause the hazard]."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.7%)

HP 11: Mutagenic "waste which may cause a mutation, that is a permanent change in the amount or structure of the genetic material in a cell"

Hazard Statements hit:

Muta. 1B; H340 "May cause genetic defects [state route of exposure if it is conclusively proven that no other routes of exposure cause the hazard]."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.7%)

Determinands

Moisture content: 0% Wet Weight Moisture Correction applied (MC)

#		511.01.01	Determinand		Note	User entered data	Conv. Factor	Compound c	onc.	Classification value	MC Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLP							
1	4	arsenic { arsenic tr	<mark>ioxide</mark> }			6.8 mg/kg	1.32	8.978	mg/kg	0.000898 %	1	
Ŀ		033-003-00-0	215-481-4	1327-53-3		0.0 mg/kg	1.02	0.070		0.000000 70	•	
2		cadmium { cadmium sulfate }				0.14 mg/kg	1.855	0.26	mg/kg	0.000026 %	✓	
		048-009-00-9	233-331-6	10124-36-4				0.20	55		•	
3	4	chromium in chrom		ls {		16 mg/kg	1.462	23.385	mg/kg	0.00234 %	✓	
			215-160-9	1308-38-9	1							
4	4	copper { copper su	Iphate pentahydra	te }		16 mg/kg	3.929	62.865	mg/kg	0.00629 %	1	
		029-023-00-4	231-847-6	7758-99-8		no mg/kg	0.020	02.000	mg/ng	0.00020 70	\ \	
5	*	mercury { mercury	dichloride }			0.28 mg/kg	1.353	0.379	mg/kg	0.0000379 %	√	
		080-010-00-X	231-299-8	7487-94-7	1	5.25 mg/kg	1.353	5 0.379 mg		0.0000070	*	

Page 24 of 34 TJ6EA-T17ET-I2JWB www.hazwasteonline.com

			Dotorminand		<u></u>							pə	
#		EU CLP index	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		number		O/10 IVallibel	ರ							Ĭ	
6	e 4	nickel { nickel chror 028-035-00-7	nate } 238-766-5	14721-18-7	-	12	mg/kg	2.976	35.715	mg/kg	0.00357 %	✓	
7	œ.	lead { lead chromat		11721 107	1	60	malka	1 56	93.589	malka	0.006 %	,	
	_			7758-97-6	Ľ	60	mg/kg 	1.56	93.369	mg/kg	0.006 %	✓	
8	4	selenium { selenium cadmium sulphosel elsewhere in this A	lenide and those sp			0.48	mg/kg	1.405	0.674	mg/kg	0.0000674 %	✓	
		034-002-00-8			1							Ш	
9	e Ç	zinc { zinc chromate 024-007-00-3		13530-65-9	ł	48	mg/kg	2.774	133.159	mg/kg	0.0133 %	✓	
	æ	chromium in chrom										Н	
10	Ĭ	oxide }	. , .			<0.5	mg/kg	1.923	<0.962	mg/kg	<0.0000962 %		<lod< td=""></lod<>
		-	215-607-8	1333-82-0						_		Н	
11	0	TPH (C6 to C40) pe	• .	TPH	-	7000	mg/kg		7000	mg/kg	0.7 %	√	
40		naphthalene	<u> </u>	1		0.4			0.4		0.00004.0/		1.00
12		601-052-00-2	202-049-5	91-20-3		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
13	0	acenaphthylene	205-917-1	208-96-8	_	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
14	0	acenaphthene	201-469-6	83-32-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
15	0	fluorene	201-695-5	86-73-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
16	0	phenanthrene	201-581-5	85-01-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
17	9	anthracene	204-371-1	120-12-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
10	0	fluoranthene	2010711	120 12 7		4.2			4.2		0.00042.0/		
18	8	pyrene	205-912-4	206-44-0		4.3	mg/kg		4.3	mg/kg	0.00043 %	✓	
19		· ·	204-927-3	129-00-0	-	5.9	mg/kg		5.9	mg/kg	0.00059 %	✓	
20			200-280-6	56-55-3		2.4	mg/kg		2.4	mg/kg	0.00024 %	✓	
21		601-048-00-0	205-923-4	218-01-9		4	mg/kg		4	mg/kg	0.0004 %	✓	
22		benzo[b]fluoranther 601-034-00-4		205-99-2		1.7	mg/kg		1.7	mg/kg	0.00017 %	✓	
23		benzo[k]fluoranther				0.58	mg/kg		0.58	mg/kg	0.000058 %	/	
24		601-036-00-5 benzo[a]pyrene; be	205-916-6 enzo[def]chrysene	207-08-9		1.5	mg/kg		1.5	mg/kg	0.00015 %	√	
	0	601-032-00-3 indeno[123-cd]pyre		50-32-8	_								
25			205-893-2	193-39-5		1.1	mg/kg		1.1	mg/kg	0.00011 %	✓	
26		dibenz[a,h]anthrace 601-041-00-2		53-70-3		0.73	mg/kg		0.73	mg/kg	0.000073 %	✓	
27	0	benzo[ghi]perylene	205-883-8	191-24-2		1.8	mg/kg		1.8	mg/kg	0.00018 %	✓	
28	0	PAHs (total)				24	mg/kg		24	mg/kg	0.0024 %	✓	
29		benzene 601-020-00-8	200-753-7	71-43-2		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
30		toluene		108-88-3		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
31	8	ethylbenzene				<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
\vdash		601-023-00-4 202-849-4 100-41-4 xylene			-							Н	
32		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>

#	Determinand				Z User entered data	Conv.	Compound conc.	Classification value	Applied	Conc. Not Used
	EU CLP index number	EC Number	CAS Number	CLP		actor			MC,	Oseu
							Total:	0.738 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Hazardous result

Determinand defined or amended by HazWasteOnline (see Appendix A)

₫ <LOD Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Page 26 of 34 TJ6EA-T17ET-I2JWB www.hazwasteonline.com

A Hazardous Waste

Classified as 17 05 03 * in the List of Waste

Sample details

Sample name: LoW Code:

CBR5 Chapter: Sample Depth:

17 05 03 * (Soil and stones containing hazardous substances)

from contaminated sites)

17: Construction and Demolition Wastes (including excavated soil

0.75 m Entry:

Hazard properties

<u>HP 3(i)</u>: <u>Flammable</u> "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to hazardous because Long Chain Hydrocarbons - no free phase - non flammable

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.28%)

HP 7: Carcinogenic "waste which induces cancer or increases its incidence"

Hazard Statements hit:

Carc. 1B; H350 "May cause cancer [state route of exposure if it is conclusively proven that no other routes of exposure cause the hazard]."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.28%)

HP 11: Mutagenic "waste which may cause a mutation, that is a permanent change in the amount or structure of the genetic material in a cell"

Hazard Statements hit:

Muta. 1B; H340 "May cause genetic defects [state route of exposure if it is conclusively proven that no other routes of exposure cause the hazard]."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.28%)

Determinands

#		EU CLP index	Determinand EC Number	CAS Number	CLP Note	User entered o	lata	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	4	arsenic { arsenic tr	ioxide } 215-481-4	1327-53-3		13 n	ng/kg	1.32	17.164	mg/kg	0.00172 %	✓	
2	4	cadmium { cadmiu 048-009-00-9	m sulfate }	10124-36-4		0.33 n	ng/kg	1.855	0.612	mg/kg	0.0000612 %	✓	
3	4	chromium in chron		ds { •		33 n	ng/kg	1.462	48.231	mg/kg	0.00482 %	√	
4	4	copper {	ulphate pentahydra 231-847-6	te }		32 n	ng/kg	3.929	125.73	mg/kg	0.0126 %	✓	
5	4	mercury { mercury 080-010-00-X	dichloride }	7487-94-7		0.09 n	ng/kg	1.353	0.122	mg/kg	0.0000122 %	✓	

#		EU CLP index	Determinand	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		number	EC Number	CAS Number	C							MC	
6	4	nickel { nickel chro 028-035-00-7	mate } 238-766-5	14721-18-7		17	mg/kg	2.976	50.597	mg/kg	0.00506 %	✓	
7	4	lead { lead chroma	ite }		1	120	mg/kg	1.56	187.178	mg/kg	0.012 %	/	
Ľ	Ĭ	082-004-00-2	231-846-0	7758-97-6	Ľ	120	g/kg	1.50	107.170		0.012 /0	"	_
8	4	cadmium sulphose elsewhere in this A	elenide and those s			0.68	mg/kg	1.405	0.955	mg/kg	0.0000955 %	✓	
9	æ	034-002-00-8 zinc { zinc chroma	te }			120	malka	2.774	332.898	ma/ka	0.0333 %	√	
	Ĭ	024-007-00-3	236-878-9	13530-65-9		120	mg/kg	2.114	332.090	mg/kg	0.0333 /6	'	
10	4	chromium in chron oxide }	nium(VI) compound	ds { chromium(VI)		<0.5	mg/kg	1.923	<0.962	mg/kg	<0.0000962 %		<lod< td=""></lod<>
		024-001-00-0	215-607-8	1333-82-0									
11	0	TPH (C6 to C40) p	etroleum group			2800	mg/kg		2800	mg/kg	0.28 %	✓	
L				TPH			J9			J		ľ	
12		naphthalene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		601-052-00-2	202-049-5	91-20-3									
13	0	acenaphthylene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			205-917-1	208-96-8									
14	0	acenaphthene	201-469-6	83-32-9	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
15	0	fluorene	201-695-5	86-73-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	8	phenanthrene	201-093-3	00-73-7									
16		prioriariariorio	201-581-5	85-01-8	+	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
l	8	anthracene											
17			204-371-1	120-12-7	1	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
1.0	0	fluoranthene											
18			205-912-4	206-44-0	+	7.3	mg/kg		7.3	mg/kg	0.00073 %	✓	
19	9	pyrene				12	mg/kg		12	mg/kg	0.0012 %	√	
		benzo[a]anthracen	204-927-3	129-00-0	+							Н	
20		601-033-00-9	200-280-6	56-55-3	1	4.7	mg/kg		4.7	mg/kg	0.00047 %	✓	
		chrysene				0.5							
21		601-048-00-0	205-923-4	218-01-9	+	6.5	mg/kg		6.5	mg/kg	0.00065 %	✓	
00		benzo[b]fluoranthe	ne			0.4			0.4	,,	0.00004.0/		
22		601-034-00-4	205-911-9	205-99-2	1	6.1	mg/kg		6.1	mg/kg	0.00061 %	✓	
00		benzo[k]fluoranthe	ne			0.0			2.0		0.00000.0/	,	
23		601-036-00-5	205-916-6	207-08-9	1	2.9	mg/kg		2.9	mg/kg	0.00029 %	√	
24		benzo[a]pyrene; be		*		4.7	ma/ka		47	ma/l-~	0.00047.0/	,	
24		601-032-00-3	200-028-5	50-32-8		4.7	mg/kg		4.7	mg/kg	0.00047 %	✓	
25	0	indeno[123-cd]pyre	ene			3.8	mg/kg		3.8	mg/kg	0.00038 %	1	
			205-893-2	193-39-5		3.0	mg/kg		J.0	my/ky	0.00000 /6	'	
26		dibenz[a,h]anthrac	ene			1.2	mg/kg		1.2	mg/kg	0.00012 %	✓	
	L	601-041-00-2	200-181-8	53-70-3	L	1.2	mg/kg		1.4	my/ky	0.00012 /0	V	
27	0	benzo[ghi]perylene		404.04.0		4.5	mg/kg		4.5	mg/kg	0.00045 %	√	
\vdash		DA Hs (total)	205-883-8	191-24-2	+							\vdash	
28	0	PAHs (total)				54	mg/kg		54	mg/kg	0.0054 %	✓	
29		benzene 601-020-00-8	200-753-7	71-43-2	$\mid \mid$	<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
		toluene		r · · · · · · ·	T							\vdash	
30		601-021-00-3	203-625-9	108-88-3	+	<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
	0	ethylbenzene			\top							Н	
31		601-023-00-4 202-849-4 100-41-4		+	<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>	
	xylene 202-049-4 100-41-4			T							Н		
32		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3]		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
			215-535-7 [4]	1330-20-7 [4]									

#	#	Determinand				User entered data	Conv.	Compound conc.	Classification value	Conc.	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLP		racioi		value	MC/	Used
								Total:	0.361 %		

Kev

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Hazardous result

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code: TP2 Chapter: Sample Depth:

0.50 m

Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 0% Wet Weight Moisture Correction applied (MC)

#		Determinand EU CLP index	CAS Number	OLF NOIE	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	4	1			7.2 mg/kg	1.32	9.506 mg/kg	0.000951 %	√	
			7-53-3						_	
2	e c	^	24-36-4		0.13 mg/kg	1.855	0.241 mg/kg	0.0000241 %	✓	
3	æ	chromium in chromium(III) compounds { chromium(III) oxide (worst case) }			17 mg/kg	1.462	24.846 mg/kg	0.00248 %	√	
	_		0-30-9						╁	
4	e ct	, , , , , , , , , , , , , , , , , , , ,	8-99-8		15 mg/kg	3.929	58.936 mg/kg	0.00589 %	✓	
_	_		0-99-0	+					╁	
5	æ		7-94-7		0.28 mg/kg	1.353	0.379 mg/kg	0.0000379 %	✓	
6	a C		21-18-7		12 mg/kg	2.976	35.715 mg/kg	0.00357 %	√	
	_		21-10-7	+					+	
7	e 🥰		8-97-6	1	67 mg/kg	1.56	104.508 mg/kg	0.0067 %	✓	
8	æ	cadmium sulphoselenide and those speci elsewhere in this Annex }			0.46 mg/kg	1.405	0.646 mg/kg	0.0000646 %	✓	
	_	034-002-00-8							╁	
9	e 4	• • • • • • • • • • • • • • • • • • •	00.05.0		51 mg/kg	2.774	141.481 mg/kg	0.0141 %	✓	
10	ď		30-65-9 chromium(VI)		<0.5 mg/kg	1.923	<0.962 mg/kg	<0.0000962 %		<lod< td=""></lod<>
		·	3-82-0		3. 3		3 3			
11	Θ	TPH (C6 to C40) petroleum group			93 mg/kg		93 mg/kg	0.0093 %	1	
-	\vdash	TPI	1	+					\vdash	
12		naphthalene 601-052-00-2 202-049-5 91-3	20.2		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
_			20-3	-						
13	0	acenaphthylene 205-917-1 208	-96-8		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
14	0	acenaphthene			<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
		201-469-6 83-	32-9		59		5.19			
15	0	fluorene 201-695-5 86-	73-7		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
16	0	phenanthrene	01-8		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>

Page 30 of 34 TJ6EA-T17ET-I2JWB www.hazwasteonline.com

	_												
#	,	EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User enter	ed data	Conv. Factor	Compoun	d conc.	Classification value	MC Applied	Conc. Not Used
17	Θ	anthracene	204-371-1	120-12-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
18	0	fluoranthene	205-912-4	206-44-0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
19	0	pyrene	204-927-3	129-00-0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
20		benzo[a]anthracen	1	56-55-3		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
21		chrysene 601-048-00-0	205-923-4	218-01-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
22		benzo[b]fluoranthe	205-911-9	205-99-2		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
23	l	benzo[k]fluoranthe	ne 205-916-6	207-08-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
24	l	benzo[a]pyrene; be	1			<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
25	\rightarrow	indeno[123-cd]pyre	1	193-39-5		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
26		dibenz[a,h]anthrac		53-70-3		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
27	\dashv	benzo[ghi]perylene	1	191-24-2		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
28	0	PAHs (total)	1	1		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
29		benzene 601-020-00-8	200-753-7	71-43-2		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
30		toluene 601-021-00-3	203-625-9	108-88-3		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
31	9	ethylbenzene 601-023-00-4	202-849-4	100-41-4		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
32		xylene 601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
										Total:	0.044 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

₫ <LOD Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because Long Chain Hydrocarbons - no free phase - non flammable

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.0093%)

Appendix A: Classifier defined and non GB MCL determinands

chromium(III) oxide (worst case) (EC Number: 215-160-9, CAS Number: 1308-38-9)

Description/Comments: Data from C&L Inventory Database

Data source: https://echa.europa.eu/information-on-chemicals/cl-inventory-database/-/discli/details/33806

Data source date: 17 Jul 2015

Hazard Statements: Acute Tox. 4; H332, Acute Tox. 4; H302, Eye Irrit. 2; H319, STOT SE 3; H335, Skin Irrit. 2; H315, Resp. Sens. 1; H334, Skin

Sens. 1; H317, Repr. 1B; H360FD, Aquatic Acute 1; H400, Aquatic Chronic 1; H410

• TPH (C6 to C40) petroleum group (CAS Number: TPH)

Description/Comments: Hazard statements taken from WM3 1st Edition 2015; Risk phrases: WM2 3rd Edition 2013

Data source: WM3 1st Edition 2015 Data source date: 25 May 2015

Hazard Statements: Flam. Liq. 3; H226 , Asp. Tox. 1; H304 , STOT RE 2; H373 , Muta. 1B; H340 , Carc. 1B; H350 , Repr. 2; H361d , Aquatic Chronic 2;

H41

acenaphthylene (EC Number: 205-917-1, CAS Number: 208-96-8)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Acute Tox. 4; H302, Acute Tox. 1; H330, Acute Tox. 1; H310, Eye Irrit. 2; H319, STOT SE 3; H335, Skin Irrit. 2; H315

acenaphthene (EC Number: 201-469-6, CAS Number: 83-32-9)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

 $Hazard\ Statements:\ Eye\ Irrit.\ 2;\ H319\ ,\ STOT\ SE\ 3;\ H335\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Aquatic\ Acute\ 1;\ H400\ ,\ Aquatic\ Chronic\ 1;\ H410\ ,\ Aquatic\ Chronic\ 2;$

H411

• fluorene (EC Number: 201-695-5, CAS Number: 86-73-7)

Description/Comments: Data from C&L Inventory Database

 $\label{lem:decomposition} \textbf{Data source:} \ \textbf{http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database}$

Data source date: 06 Aug 2015

Hazard Statements: Aquatic Acute 1; H400, Aquatic Chronic 1; H410

phenanthrene (EC Number: 201-581-5, CAS Number: 85-01-8)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015

 $Hazard\ Statements:\ Acute\ Tox.\ 4;\ H302\ ,\ Eye\ Irrit.\ 2;\ H319\ ,\ STOT\ SE\ 3;\ H335\ ,\ Carc.\ 2;\ H351\ ,\ Skin\ Sens.\ 1;\ H317\ ,\ Aquatic\ Acute\ 1;\ H400\ ,\ Aquatic\ Acute\ 1$

Chronic 1; H410, Skin Irrit. 2; H315

anthracene (EC Number: 204-371-1, CAS Number: 120-12-7)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Eye Irrit. 2; H319, STOT SE 3; H335, Skin Irrit. 2; H315, Skin Sens. 1; H317, Aquatic Acute 1; H400, Aquatic Chronic 1; H410

• fluoranthene (EC Number: 205-912-4, CAS Number: 206-44-0)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 21 Aug 2015

Hazard Statements: Acute Tox. 4; H302 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

pyrene (EC Number: 204-927-3, CAS Number: 129-00-0)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 2014

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 21 Aug 2015

Hazard Statements: Skin Irrit. 2; H315, Eye Irrit. 2; H319, STOT SE 3; H335, Aquatic Acute 1; H400, Aquatic Chronic 1; H410

• indeno[123-cd]pyrene (EC Number: 205-893-2, CAS Number: 193-39-5)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015 Hazard Statements: Carc. 2; H351

Page 32 of 34 TJ6EA-T17ET-I2JWB www.hazwasteonline.com

• benzo[ghi]perylene (EC Number: 205-883-8, CAS Number: 191-24-2)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 28/02/2015 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 23 Jul 2015

Hazard Statements: Aquatic Acute 1; H400, Aquatic Chronic 1; H410

PAHs (total)

Description/Comments: Worst case scenario combining risk phrases and substance specific thresholds from benzo[a]pyrene (CLP# 601-032-00-3) and benzo[a]anthracene (CLP# 601-033-00-9)

Data Source: 2008/1272/EC – Table 3.2 of Annex VI of regulation 1272/2008/EC - Classification, labelling and packaging of substances and mixtures and 2009/790/EC Annex IV – Annex IV of regulation 2009/790/EC - 1st Adaptation to Technical Progress for European Regulation 1272/2008

Data source date: 16 Dec 2008

Hazard Statements: Skin Sens. 1; H317 , Carc. 1B; H350 , Carc. 1B; H350 >= 0.01 % , Muta. 1B; H340 , Aquatic Acute 1; H400 (M=100) , Aquatic Chronic 1; H410 (M=100) , Repr. 1B; H360FD

• ethylbenzene (EC Number: 202-849-4, CAS Number: 100-41-4)

GB MCL index number: 601-023-00-4

Description/Comments:

Additional Hazard Statement(s): Carc. 2; H351 Reason for additional Hazards Statement(s):

20 Nov 2021 - Carc. 2; H351 hazard statement sourced from: IARC Group 2B (77) 2000

Appendix B: Rationale for selection of metal species

arsenic {arsenic trioxide}

Reasonable case CLP species based on hazard statements/molecular weight and most common (stable) oxide of arsenic. Industrial sources include: smelting; main precursor to other arsenic compounds

cadmium {cadmium sulfate}

Worst Case Species Selected

chromium in chromium(III) compounds {chromium(III) oxide (worst case)}

(enter justification for selecting this species)

copper {copper sulphate pentahydrate}

Worst Case Species Selected

mercury {mercury dichloride}

Worst case CLP species based on hazard statements/molecular weigh

nickel {nickel chromate}

Worst case CLP species based on hazard statements/molecular weight

lead {lead chromate}

Worst Case Species Selected

selenium (selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex)

(enter justification for selecting this species)

zinc {zinc chromate}

Worst Case Species Selected

chromium in chromium(VI) compounds {chromium(VI) oxide}

(enter justification for selecting this species)

Appendix C: Version

HazWasteOnline Classification Engine: WM3 1st Edition v1.2.GB - Oct 2021
HazWasteOnline Classification Engine Version: 2023.73.5544.10256 (14 Mar 2023)

HazWasteOnline Database: 2023.73.5544.10256 (14 Mar 2023)

This classification utilises the following guidance and legislation:

WM3 v1.2.GB - Waste Classification - 1st Edition v1.2.GB - Oct 2021

CLP Regulation - Regulation 1272/2008/EC of 16 December 2008

1st ATP - Regulation 790/2009/EC of 10 August 2009

2nd ATP - Regulation 286/2011/EC of 10 March 2011

3rd ATP - Regulation 618/2012/EU of 10 July 2012

4th ATP - Regulation 487/2013/EU of 8 May 2013

Correction to 1st ATP - Regulation 758/2013/EU of 7 August 2013

5th ATP - Regulation 944/2013/EU of 2 October 2013 **6th ATP** - Regulation 605/2014/EU of 5 June 2014

WFD Annex III replacement - Regulation 1357/2014/EU of 18 December 2014

Revised List of Waste 2014 - Decision 2014/955/EU of 18 December 2014

7th ATP - Regulation 2015/1221/EU of 24 July 2015

8th ATP - Regulation (EU) 2016/918 of 19 May 2016

9th ATP - Regulation (EU) 2016/1179 of 19 July 2016

10th ATP - Regulation (EU) 2017/776 of 4 May 2017

HP14 amendment - Regulation (EU) 2017/997 of 8 June 2017

13th ATP - Regulation (EU) 2018/1480 of 4 October 2018

14th ATP - Regulation (EU) 2020/217 of 4 October 2019

15th ATP - Regulation (EU) 2020/1182 of 19 May 2020

The Chemicals (Health and Safety) and Genetically Modified Organisms (Contained Use)(Amendment etc.) (EU Exit)

Regulations 2020 - UK: 2020 No. 1567 of 16th December 2020

The Waste and Environmental Permitting etc. (Legislative Functions and Amendment etc.) (EU Exit) Regulations 2020 - UK:

2020 No. 1540 of 16th December 2020

GB MCL List - version 1.1 of 09 June 2021

Page 34 of 34 TJ6EA-T17ET-I2JWB www.hazwasteonline.com