

Appendix 9.2

GEO-INEGRITY PHASE I GEO-ENVIRONMENTAL ASSESSMENT AND SITE WALKOVER SEPTEMBER 2023

FINAL

London Borough of Hillingdon

Phase I Environmental Desk Study Report

Hillingdon Water Sports Facility and Activity Centre (HWSFAC)

Broadwater Lake,

Moorhall Road,

Harefield,

UB9 6PE

Report No: 23-09-03A

September 2023

Geo-Integrity, 4 Church Street, Maids Moreton, Bucks. MK18 1QE

Landline: (01280) 816409 Mob.: 07858 367 125 Email: info@Geo-Integrity.co.uk

DOCUMENT RECORD

Report Title Phase I Desk Study Report

Project Address Hillingdon Water Sports Facility and Activity Centre

(HWSFAC), Broadwater Lake, Moorhall Road, Harefield UB9

6PE

Project Number 23-09-03A

Client Company Name London Borough of Hillingdon

Issue No Date	Status	Prepared by	Checked by
1	Final	Murray Bateman M.Sc. DIC C.Geol Pg. Cert. Director	Fiona White B.Sc. M.Sc. Graduate Engineering Geologist
September 2023	Report	Munay Patomas	SIGNATURE

© This Report is the copyright of Geo-Integrity Ltd. Any unauthorised reproduction or usage by any person other than the addressee is strictly prohibited.

Landline: (01280) 816409 Mob.: 07858 367 125 Email: info@Geo-Integrity.co.uk

CONTENTS

1	INI	RODUCTION	4
	1.1	SCOPE AND OBJECTIVES	4
	1.2	PROPOSALS	4
	1.3	Sources of Information	5
	1.4	Walkover Survey	5
2	GE	OLOGY	-
	2.1		
	2.1.		
	2.1.		
	2.1.		
_		Previous Work	
3		TORY OF THE SITE	
	3.1	ORDNANCE SURVEY	
	3.2	UNEXPLODED ORDNANCE AND BOMB SITES	
4		SK STUDY INFORMATION	
	4.1	HYDROLOGY	
	4.2	HYDROGEOLOGY	
	4.3	WASTE	
	4.3. 4.3.		
	_		
	4.4 <i>4.4.</i>	LOCAL INDUSTRY AND ENVIRONMENTAL PERMITTING	
	4.4. 4.4.		
	4.5	<u> </u>	
	4.6	GROUND GASES	
	4.6.		
	4.6.		
	4.7	POTENTIAL GEOTECHNICAL HAZARDS	
	4.8	FORMER SITE USAGE AND POTENTIAL CONTAMINANTS	
5	SUI	MMARY OF GEOTECHNICAL RISK	
6		FIAL CONCEPTUAL SITE MODEL	
7		NCLUSIONS AND RECOMMENDATIONS FOR FURTHER WORK	
D	FFFRI	ENCES	20

Geo-Integrity Mob.: 07858 367 125 Email: info@geo-integrity.co.uk

APPENDICES

APPENDIX A - PLANS AND PHOTOGRAPHS

- Site Location Plan
- ♥ Development Proposal Plan
- Potential Contamination Sources
- ♥ Historical Site Photographs
- Site Photographs

APPENDIX B - DESK STUDY INFORMATION

- Natural Cavities Risk Assessment
- Historical Borehole Logs
- ♥ Historic Ordnance Survey Maps
- Groundsure Datasheet

PHASE I DESK STUDY REPORT

1 INTRODUCTION

1.1 SCOPE AND OBJECTIVES

Geo-Integrity Ltd were commissioned by Mace Group via Purchase Order (No. MLIMPD0028877) on the 5th of September to update the existing Phase I Desk Study (Ref.22-10-12) for the proposed Hillingdon Water Sports Facility and Activity Centre (HWSFAC), Broadwater Lake, Moorhall Road, Harefield, UB9 6PE in order to inform the design and construction of the proposed development. This updated report has been given a new reference number 23-03-09B.

The updates in the report relate to changes within the development proposal and further assessment of the risk of UXO at the site. This updated report (ref.23-09-03A) supersedes the previous version (Ref.22-10-12).

The land is centred at OS Reference TQ 04373 89581.

This report is likely to be submitted as part of a planning application to redevelop the site. Once the development is completed, and as a minimum, land must not be capable of being determined as 'contaminated land' under the terms of Part IIA of the Environmental Protection Act 1990. However, it also states that "Where a site is affected by contamination or land stability issues, responsibility for securing a safe development rests with the developer and/or landowner." As such this desk study report is the first stage in investigating whether the site is likely to be considered "contaminated", in accordance with clause 184 of the NPPF.

The objectives of this Phase I geo-environmental desk study report are:-

- To undertake a site walkover and identify any potential pollution sources on the site.
- To gather historical, geological and environmental information.
- To complete a preliminary site conceptual model so that potential pollutant linkages can be established and investigated further.

1.2 PROPOSALS

The proposed development involves the redevelopment of the site to create the Hillingdon Watersports Facility and Activity Centre including demolition of existing Broadwater Lake Sailing Club (BSC) clubhouse at the north of the lake and erection of a building to be occupied by HOAC

and BSC including changing facilities, meeting rooms, storage, workshop and seasonal worker accommodation (sui generis), seven activity shelters; three pontoons; two concrete slipways; one boat shed; two equipment storage huts (north of lake and at entrance); boat parking and racking areas; camping area; outdoor activity areas; ecological enhancement throughout the site; new pedestrian routes through the peninsula; landscaping including new woodland, dense vegetation screens and boundary treatment; new access and access road; localised dredging and land reclamation; relocation of existing sailing area and creation of floating and fixed islands within the lake; coach drop off and turning area; vehicle parking; cycle parking; and associated works.

1.3 SOURCES OF INFORMATION

The following sources of information have been used to compile this report:-

- Extracts of available historical Ordnance Survey (OS) maps covering the period from 1865 to 2022, which are presented in the Appendices.
- Groundsure Report Ref GS-9151609 included in the Appendices.
- The British Geological Survey (BGS) and Environment Agency (EA) websites.
- A site reconnaissance visit undertaken on 27th October 2022.
- Information from various internet sites on site history and environmental setting.

It should be noted that the information provided in the desk study is obtained from independent third-party sources. It is provided in good faith, but no guarantee can be provided as to its accuracy. The desk study information is not necessarily exhaustive and further information relevant to the site may be available from other sources.

1.4 WALKOVER SURVEY

A site walkover survey was undertaken on the 27th October 2022. Site location and layout plans are included in the Appendices, along with a selection of photographs taken during the survey.

The site is located to the west of Greater London, approximately 4km northeast of Junction 16 of the M25. It is in a predominantly rural setting, with the Grand Union Canal running down the east boundary of the main site and the River Colne marking the northern and western boundary of the main site. The southern boundary of the main site is marked by a flooded former sand and gravel extraction pit, called Harefield Pit, along with a group of residential properties and an aggregates business. There were also two outlier site marked on the site plan, Site 1 was located to south of

Harefield Pit adjacent to Moorhall Road, and Site 2 was located to the east of the site, on the opposite side of the Canal adjacent to St Mary's Road and Broadwater Farm. A viaduct destined to carry HS2 was being constructed to the immediate southwest of the site, across the route of the River Colne, and there was a construction compound to the south of the main site and to the west of Site 1, along Moorhall Road.

The main site was approximately 1.2km north to south and 600m east to west, being about 79.95 hectares in area. The majority of the site consists of the Broadwater Lake with associated island and a small area of land to the north that houses the Broadwater Sailing Club and car parking and the access track to this area, between the canal and the lake. Marker posts for a HP gas main were seen crossing the sailing club car park and land at this end of the site.

The main area of land is in the southeast corner of the lake where access is gained via the trackway from Moorhall Road to the south. This area is entered from the southeast corner where there is a small bungalow and associated gardens, the trackway extends westward from there, past an old weighbridge, then turning northward up towards the end of the land promontory. Along the trackway on either side old concrete constructions can be seen, including pits and large raised gantries. There was also a small sub-station to the east of the trackway, about halfway up. There are many small pathways off the trackway that all lead to individual or multiple fishing locations. One of these pathways leads along the southern boundary of the site and the lake, towards the River Colne. To the south of this pathway were remnants of the Harefield Pit that were overgrown with young willow sapling and marked as dangerous because of quicksand.

Site 1 was a small rectangular field with maximum dimension of 130m north to south and 60m east to west. It was located to the immediate east of the HS2 compound with Moorhall Road to the south and Harefield Pit to the north. It was covered with rough grass and weeds.

Site 2 was a small triangular site with maximum dimension of 130m from north to south and 90m across the base from east to west. Its area was approximately 0.7 hectares. Access to the site was not possible, as the route in was blocked by a transport yard and domestic housing, however, looking at the site from the opposite side of the Canal, it appeared to be complete overgrown with shrubs and trees.

There were no significant pollution sources located on the site during the walkover. However, on the main land area of the main lake there were a number of historical industrial remnants (such as

weighbridge, hoppers and conveyor gantries, electricity sub-station). These will obviously provide a point source of historical contamination, such as oil spillage.

2 GEOLOGY

2.1 PUBLISHED GEOLOGY

Reference to the British Geological Survey website and Sheet 255; Beaconsfield 2005, indicates that the site is underlain by Worked Out Ground, Alluvium, Shepperton Gravel and Newhaven Chalk.

Alluvium is ground associated with the nearby River Colne and would consist of interbedded clays, silts, sands and gravels, with localised peat, associated with flooding events and the meandering of the river across the valley floor.

Shepperton Gravel Member is of Devensian age from the last Ice Age. It is designated as a River Terrace Gravels, which means it is formed as one of a series of level surfaces in a river valley, produced as the dissected remnants of earlier abandoned floodplains. It generally consists of sand and gravel, locally with lenses of silt, clay or peat, although this is what would have been removed across the majority of the site area.

The Newhaven Chalk formerly the Upper Chalk, is generally described by the British Geological Survey as a smooth white chalk with numerous marl seams and flint bands. The thickness of this unit in the site area is typically between 90m and 130m.

2.1.1 Historical Borehole Data

The British Geological Survey holds records of exploratory holes, historically put down across the United Kingdom during historical investigation. There are two historical boreholes located on the site, that were put down by Affinity Water in 2013. Both found Alluvium and Shepperton Gravel to depths ranging from 3.50m bgl to 6.0m bgl with Chalk beneath that to a maximum depth of 76.50m below ground level. Groundwater depth in both boreholes was encountered at between 1.20 and 1.80m bgl

2.1.2 Solution Features

Chalk, as a calcium-carbonate rich rock, is highly susceptible to dissolution by water containing carbon dioxide. This dissolution can create three common types of features within the chalk, grouped together under the generic term 'dissolution features'. These features include:

- Sinkholes: Depressions at the ground surface caused by the collapse of overlying chalk or superficial deposits into underground voids created by dissolution. Shape and size dependent on underlying void feature
- Solution pipes: A feature in the surface of the Chalk caused by increased dissolution in an
 area of closely spaced discontinuities. These features may, or may not, have a ground
 surface expression. Up to 20 metres diameter though commonly much smaller
- Swallow Holes: A void within the surface of the Chalk where a stream is 'swallowed' by the
 Chalk to flow underground. Often occur at the junction of impermeable strata and Chalk.
 Infilled ancient swallow holes do exist where streams used to flow and may not have any
 surface expression. Up to 14m in diameter, though commonly a few metres.

2.1.3 Natural Cavities Risk Assessment

A natural cavities risk assessment has been undertaken following the paper written by Clive Edmonds in 2001, 'Predicting natural cavities in chalk'. This gives a score to various factors including; type of chalk, topography, groundwater level, strata overlying the chalk, periglacial and glacial history. The score for this site was 28, which means there is predicted to be No Anticipated Subsidence Hazard risk of natural cavities beneath this site (0% occurrence).

2.2 PREVIOUS WORK

To our knowledge there has been no previous investigation on the site.

3 HISTORY OF THE SITE

The history of the site has been established by the review of old Ordnance Survey maps going back to 1865 and internet searches. The maps and any other relevant information are included in the Appendices and indicated the following.

3.1 ORDNANCE SURVEY

The historical maps start in 1865 and it can be seen at this time that the site area is mainly open agricultural land with a network of ditches across it. It was named Harefield Moor, presumably due to the damp nature of the ground. The Grand Union Canal has been constructed along the eastern boundary at this time and the River Colne marked the northern boundary. There are no significant buildings on the site at this time, only a few farm building to the north of the site. Off-site there is a chalk pit and kilns marked to the immediate east of the canal, about halfway up the main site. In addition, there is a large industrial complex of mills 750m north of the site and a small Flour Mill to the immediate north of the site, "Jacks Mill". Site 1 and 2 are open agricultural fields at this time.

The main site and Sites 1 and 2 remain the same, but in 1897 it can be seen that the Lime Kilns to the east of the site have expanded by that time, with a larger borrow pit having been dug also. In addition, the mill building 750m to the north of the site are marked as Asbestos Mills. This was the United Asbestos Mill which was open in this location from 1890 to 1920; these had previously been copper and paper mills.

The sites again remain undeveloped, but by the 1930s, residential development can be seen to the southeast of the main site, along Uxbridge Road; and the Brick and Cement Works to the east has expanded greatly with tramway and several disused chalk pits.

No significant change occurs until the plan of 1960, when although the site remains the same, it can be seen that gravel extraction has begun to the north and south of the site, with Harefield Pit and Troy Mill Gravel Pit both having been extracted and shown as lakes.

The plan of 1968 shows that the Cement and Brick Works had been reused as a refuse tip by that date, and it shows that gravel extraction from the main site area had start by that date with the central and southwest areas having been extracted. It is not until the plan of 2001 that the site boundaries as seen during the walkover are the same, and this involves a large amount of refilling to the west of the land promontory on the main site (therefore this is not original land). The plan shows this refilling occurring around the middle of the 1990's. Little change occurs to Sites 1 and 2.

3.2 UNEXPLODED ORDNANCE AND BOMB SITES

Reference to an online UXO risk map produced by Zetica indicates that the site is located in an area where there is a low risk of unexploded ordnance. Low risk regions are those with a bombing density of less than 15 bombs per 1000 acres or less.

A preliminary UXO risk assessment was undertaken by Impartial Assessments Ltd. dated 11th of September 2023 ref. PRA.10144.23 and identified there is a potentially elevated likelihood of EO (Explosive Ordnance) encountered during the proposed development including potential siteworks. The salient points from the report are provided below:

- ▼ The German air force earmarked an airfield just 700m away for attack. In the event, there was an elevated local bombing density (at least 10 bombs landed within 200m of the site, including one actually on site). And there is a higher risk of UXBs falling unwitnessed on isolated farmland during WW2.
- Post-war sand / gravel extraction may not have extended down to the max bomb penetration depth and did not affect the entire site area anyway. So UXBs could conceivably remain buried on site.
- The canal was a WW2 fortified defence line. This indicates various army activities (potentially involving live ammunition) along the eastern edge of the site.

Therefore, a stage 2 detailed risk assessment has been recommended to elucidate the potential risk.

Geo-Integrity Mob.: 07858 367 125 Email: info@geo-integrity.co.uk

4 DESK STUDY INFORMATION

4.1 HYDROLOGY

The nearest surface water course is obviously on the site, Broadwater Lake. However, the nearest surface water abstraction licenses is 1156m south of the site at the Buckinghamshire Golf Co for top up and make up water for irrigation.

4.2 HYDROGEOLOGY

Reference to the Groundsure report indicates that the site is located on a Secondary A Superficial Aquifer, and is located on a Principal Bedrock Aquifer.

The aquifer designation data is based on geological mapping provided by the British Geological Survey. The maps are divided into two different types of aquifer designation:

Superficial (Drift) - permeable unconsolidated (loose) deposits. For example, sands and gravels.

Bedrock - solid permeable formations e.g. sandstone, chalk and limestone.

For each type there are four designations:- Principal, Secondary A, Secondary B and Unproductive Strata, ranked by importance.

The nearest active groundwater abstraction licenses are within 100m south of the site. They are run by Affinity Water at Northmoor Pumping Station.

The site is located in a Source Protection Zone 1 (SPZ1 – inner catchment). A Source Protection Zone (SPZ) is a designated area around a well or abstraction borehole. The inner catchment is the zone 50 day travel time of pollutant to source with a 50 metres default minimum radius. It is the most sensitive and means that the Environment Agency would require a developer to prove their proposals do not have the potential to pollute or harm groundwater.

4.3 WASTE

4.3.1 Landfills

Reference to records from the BGS, the Environment Agency and the Local Authority indicates that there is one historic landfill on the site. This is located to the southeast of the main site on the eastern side of the land promontory. It was run between 1993 and 2004 and was run by LaFarge Aggregates and was used to dispose of Non-Biodegradable Waste.

In addition to this there are three further landfills within 500m of the site. The closest is the old Brick and Cement Works to the east. This was used as a Refuse Tip between 1954 and 1974 run by WW Drinkwater and used for Commercial and Household waste.

The second was 189m southeast of the site at Harefield Marina from 1947 for household and industrial waste and the third was 387m to the northwest at Pynesfield Inert Landfill, Tilehouse Lane between 2018 and 2021 run by Ingrebourne Valley

4.3.2 Other Waste Treatment Sites

There are six waste exemption records within 250m of the site. These include Screening and blending of waste, treatment of waste wood, use of waste in construction, burning waste and spreading of plant matter to confer benefit. These are to do with the various industrial land uses around the site, including the Aggregates Company to the south, the pumping station on the opposite side of Moorhall Road and the HS2 construction site.

4.4 LOCAL INDUSTRY AND ENVIRONMENTAL PERMITTING

4.4.1 Local Industry

Reference to the Groundsure Datasheet indicates that there are eleven existing industrial processes within 200m of the site. These include the aggregates company, the pumping station, a haulage company to the south of Site 2, sub-stations, and lifting and handling company, a business park, electrical components company and caravan sales yard.

4.4.2 Environmental Permitting and Incidents

Reference to the Groundsure Datasheet indicates that there are no historic IPC authorisations within 500m of the site. There are no records of any Part A(1) licensed industrial activities within

500m, and one historical record of Part A(2)/B licensed pollutant release, use of bulk cement 27m south of the site. There has been one licensed discharges to controlled waters on site into the Harefield Lake in 1985 of sewage discharges. The second was for cooling water into the Greenbourne Stream

4.5 ENVIRONMENTAL DESIGNATIONS

The whole of the main site is designated as an SSSI, which are Sites providing statutory protection for the best examples of UK flora, fauna, or geological or physiographical features. Originally notified under the National Parks and Access to the Countryside Act 1949, SSSIs were renotified under the Wildlife and Countryside Act 1981. Improved provisions for the protection and management of SSSIs were introduced by the Countryside and Rights of Way Act 2000 (in England and Wales) and (in Scotland) by the Nature Conservation (Scotland) Act 2004 and the Wildlife and Natural Environment (Scotland) Act 2010.

4.6 GROUND GASES

4.6.1 Radon

Information from the British Geological Survey and the National Geoscience Information Service indicated that the site lies within an area where less than 1% of homes exceed the action level of 200Bq/m² for radon gas. Therefore, no radon protection measures are necessary in the construction of new dwellings or extensions on this site.

4.6.2 Landfill Gasses

In accordance with BS8576:2013 the site has been provisionally assessed for the risk of ground gases. This has been done with reference to "A pragmatic approach to ground gas risk assessment for the 21st Century" Card and Wilson, 2011.

- There are a number of possible source-pathway-receptor linkages for landfill gas migration.
- The site is located near to a historic landfill.
- The Made Ground is expected to be 5m deep or an average of 3m in thickness.
- The site is located on carbonate rich rock that can produce low levels of carbon dioxide.
- Radon protection measures are not required for this site.
- The site does lie on a potential naturally organic soil or humic or degradable Made Ground soil.

As such it is considered that the risk of ground gas is high and ground gas monitoring is therefore recommended at this site.

4.7 POTENTIAL GEOTECHNICAL HAZARDS

The desk study information identified that the site does not lie within an area likely to be affected by significant natural cavities, coal mining or non-coal mining activities.

The risk of naturally occurring geotechnical hazards at the site is recorded in the Groundsure report to be as follows:

Ground Stability Hazard	Maximum Hazard Potential Rating
Collapsible deposits	Very Low
Compressible deposits	Moderate
Ground dissolution of soluble rocks	Very Low
Shrinking and swelling clays	Very Low
Landslides	Very Low
Running sand	Low

During the walkover survey a large area of land to the south of the main site was marked as dangerous from quicksand, this will have been from the infilling of a sand and gravel pit by silt wastes. In addition, the land areas on the site have been highly reworked and used as a landfill site in the past. As such, deep thicknesses of Made Ground should be anticipated across the whole site. Groundwater will also be within a metre or two of existing ground level

4.8 FORMER SITE USAGE AND POTENTIAL CONTAMINANTS

Historically the site has been drained marsh land adjacent to the River Colne until the 1960's when it started to be exploited for its underlying sand and gravel deposits. Processing of this material occurred towards the southeast of the site, accessed from a trackway leading down to Moorhall Road to the site. Extraction continued until the end of the 1990's. Currently the site area is a Nature Reserve and the lake is used by fishing clubs and the Broadwater Sailing Club, there is also one residential house to the very southeast corner of the main site.

September 2023 15 Report No.:- 23-09-03A

As such, the main risk of potential contaminant sources comes from its industrial history as a gravel pit between the 1960's and 1990's, and the landfilling that occurred on the site between 1993 and 2004. The following contaminants should be expected and these will be concentrated around the structures on the land promontory and in the area of the landfill, as shown on the attached site plan:-

- Metals and Inorganic Substances
- Speciated Polyaromatic Hydrocarbons (PAH)
- Benzene, Toluene, Ethylbenzene and Xylene (BTEX)
- ▼ Total Petroleum Hydrocarbons (TPH)
- Asbestos Identification and Quantification
- Semi Volatile and Volatile Organic Substances
- Polychlorinated biphenyls around the electricity sub-station (PCB's)

5 SUMMARY OF GEOTECHNICAL RISK

The site where the majority of development is expected is the land promontory to the southeast of the main site. This has been used for processing aggregate and as such it is anticipated the underlying soil profile will consists of thick Made Ground with some concrete obstructions, Shepperton Gravel with Chalk strata at approximately 6m below ground level. Groundwater is likely to be between 1m to 2m below ground level.

Therefore, it is anticipated that piled foundations will be required for any structure with specific settlement criteria; road pavements will require a flexible reinforcement and building are likely to require protection from ground gas

Site 2 is likely to be underlain by Newhaven Chalk strata, which should provide a relatively good building platform, but Site 1 will be underlain by Alluvium overlying Shepperton Gravel. The Alluvium is likely to be made up of peat and water saturated sandy clays.

Therefore it is recommended that an intrusive investigation is undertaken at an early stage to identify the soil type beneath the site, and depth to groundwater, to minimise delays during the design stage.

6 INITIAL CONCEPTUAL SITE MODEL

In accord with the Environment Agency LCRM "Land Contamination Risk Management" 2020, this desk study and site reconnaissance report constitutes a preliminary risk assessment in order to establish the potential presence of pollutant linkages.

Reference to the desk study and walkover survey indicates that the site has been in agricultural usage from at least 1881 until the 1960's when it started to be exploited for its underlying sand and gravel deposits. Processing of this material occurred towards the southeast of the site, accessed from a trackway leading down to Moorhall Road to the site. Extraction continued until the end of the 1990's. Currently the site area is a Nature Reserve and the lake is used by fishing clubs and the Broadwater Sailing Club, there is also one residential house to the very southeast corner of the main site.

Given the proposed development of the site as a commercial end usage, it is considered that there is a low to moderate risk to end users. However, the risk of encountered localised pockets of contamination is considered to be moderate to high. There is also a perceived moderate risk of encountered a contamination sources that may be affecting the Principal groundwater Aquifer beneath the site and as the site is in a Source Protection Zone, this would need to be dealt with as part of the development.

The surrounding uses of the site generally poses no risk of contamination, however, there is a large old landfill site to the east of the site that is undoubtedly a large source of landfill gases.

The majority of the rest of the land use on the site is a nature reserve and as such no potentially contaminative land uses have been identified.

Geo-Integrity Mob.: 07858 367 125 Email: info@geo-integrity.co.uk

Therefore, the following potential source/pathway/receptors may be present at and around the site;

Potential Source	Potential Pathway	Potential Receptor	Considered Risk
Historic hydrocarbons within the ground from	Volatile vapours possible	End Users	Low to moderate
human history in the area of aggregate processing	Leaching through the ground	Controlled Waters	Locally high
Historic asbestos within any made ground from human	Ingestion, inhalation or absorption from direct contact with soil.	End Users	Low to moderate
history in the area of aggregate processing	Possible contact during work phase	Construction Workers	Moderate to high
Historic metals and PAH's within any made ground from	Ingestion, inhalation or absorption from direct contact with soil.	End Users	Low to moderate
human history in the area of aggregate processing	Possible contact during work phase	Construction Workers	Moderate to high
Ground gas from nearby landfill sites	Lateral migration through River Terrace Deposits (very unlikely)	End Users	Low to moderate
PCB from electricity sub-station	Ingestion, inhalation or absorption from direct contact with soil.	End Users and Construction Workers	Low to moderate

7 CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER WORK

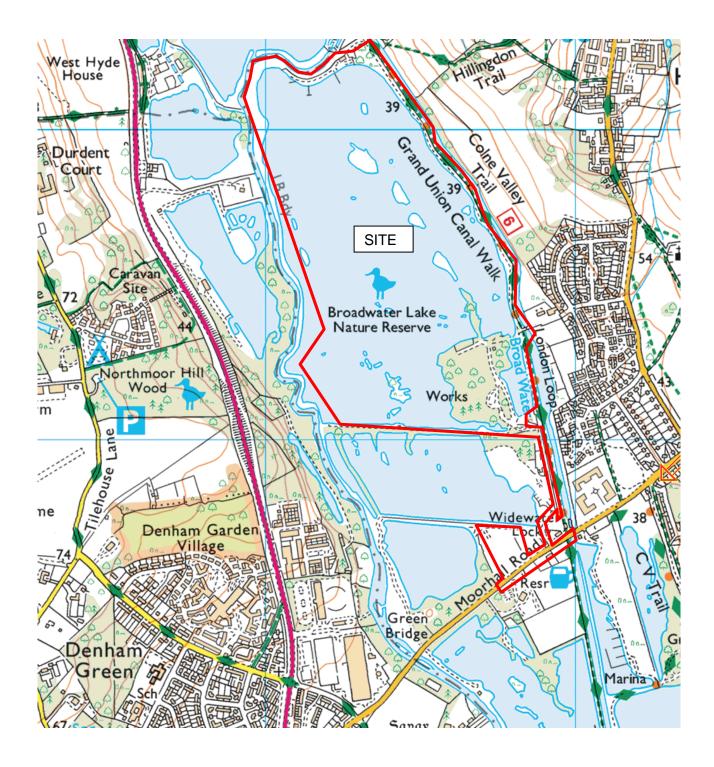
From the information gathered as part of this investigation are a number of potential contaminative sources on site. The site has been a Nature reserve for several years and has not been used for industrial processes; as such a certain amount of natural attenuation is likely to have occurred to any area of contamination. As such, it is considered that the site is likely not to be determined as 'contaminated land' under the terms of Part IIA of the Environmental Protection Act 1990. As such this would pass that test set out in clause 183 of the NPPF. However, it is considered that the site could be classified as being "affected by contamination" and as such the site may not pass the test set out in clause 184 of the NPPF, and some remediation may be required.

Therefore, we recommended that further intrusive site investigation works are undertaken to establish contamination levels, mainly in the promontory land on the main site area to quantify any risks. In addition, in order to establish construction methods for the proposed development the ground profile and soil parameters will be required.

Geo-Integrity Mob.: 07858 367 125 Email: info@geo-integrity.co.uk

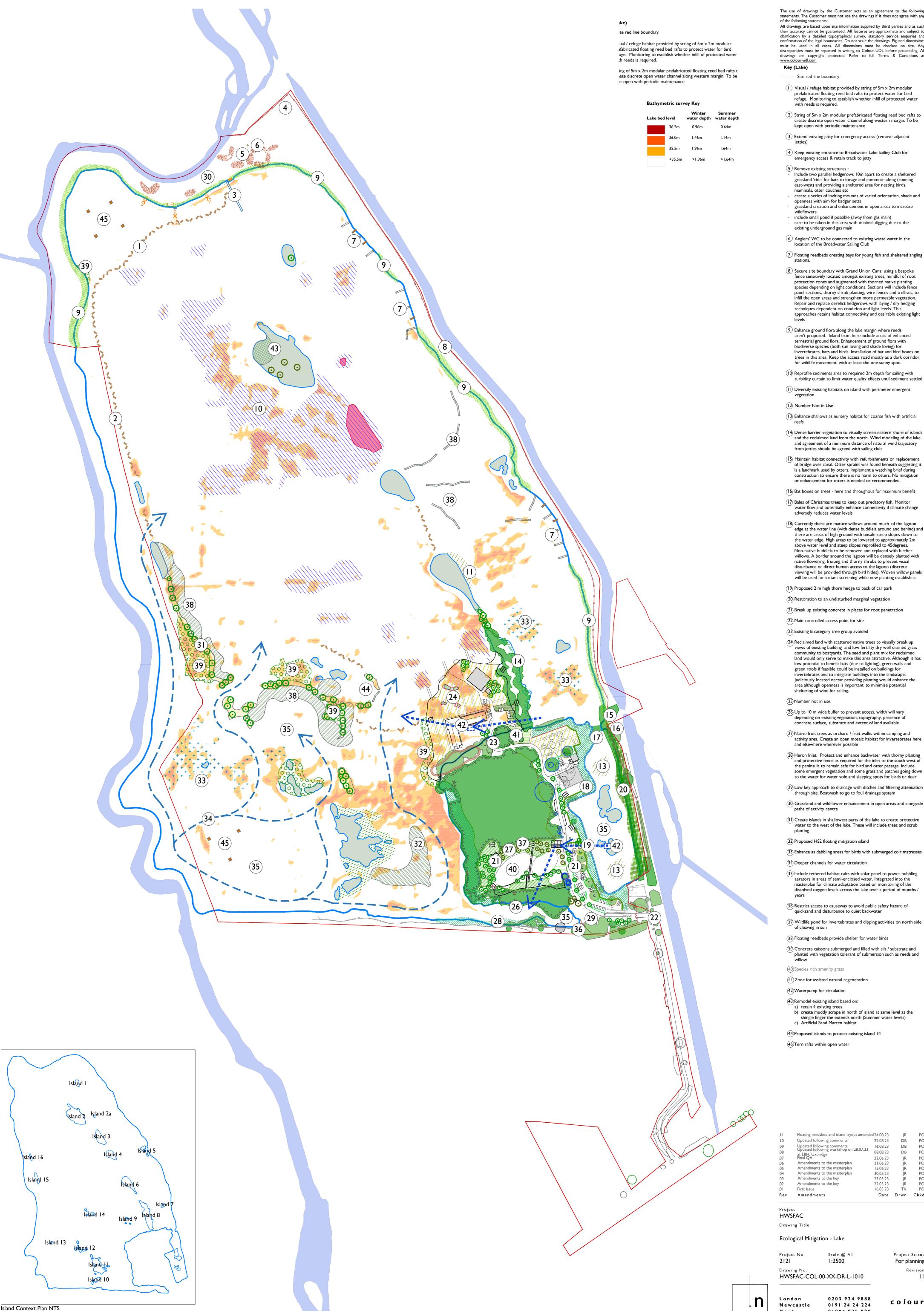
REFERENCES

- BGS Geology of Britain Viewer: 2016. www.bgs.ac.uk. British Geological Survey.
- BS 8576:2013 Guidance on Investigations for Ground Gas Permanent Gases and Volatile Organic Compounds (VOCs)
- BS10175:2011 Investigation of Potentially Contaminated Sites, Code of Practice
- BS5930:1999+A2 2010 Site Investigations, Code of Practice
- Building Research Establishment (BRE) BR 211, Radon: guidance on protective measures for new buildings. 2007.
- Environment Agency, 'Human Health Toxicological Assessment of Contaminants in Soil', August 2008
- Environment Agency, 'Land Contamination Risk Management', LCRM, 2020.
- G Card and S Wilson, An Alternative Approach for Ground Gas Risk Assessment, 2011.
- Geology Map of Sheet 155; Coalville, 2010, British Geological Society.
- ► Health and Safety Executive (HSE), "Protection of Workers and the General Public during Development of Contaminated Land" HS(G) 66. HMSO London 1991.
- National House Building Council (NHBC) Standards, Chapter 4.1 Land Quality Managing Ground Conditions. 2011.
- National House Building Council (NHBC) Standards, Chapter 4.2 Building Near Trees. 2011.



APPENDIX A

Site Plan



September 2023

SITE LOCATION PLAN

Report No:- 23-09-03A

The use of drawings by the Customer acts as an agreement to the following statements. The Customer must not use the drawings if it does not agree with any of the following statements: All drawings are based upon site information supplied by third parties and as such

their accuracy cannot be guaranteed. All features are approximate and subject to clarification by a detailed topographical survey, statutory service enquiries and confirmation of the legal boundaries. Do not scale the drawings. Figured dimensions must be used in all cases. All dimensions must be checked on site. Any discrepancies must be reported in writing to Colour-UDL before proceeding. All drawings are copyright protected. Refer to full Terms & Conditions at www.colour-udl.com

() Visual / refuge habitat provided by string of 5m x 2m modular prefabricated floating reed bed rafts to protect water for bird refuge. Monitoring to establish whether infill of protected water with reeds is required.

2 String of 5m x 2m modular prefabricated floating reed bed rafts to create discrete open water channel along western margin. To be kept open with periodic maintenance

3 Extend existing jetty for emergency access (remove adjacent

4 Keep existing entrance to Broadwater Lake Sailing Club for emergency access & retain track to jetty

(5) Remove existing structures : - Include two parallel hedgerows 10m apart to create a sheltered grassland 'ride' for bats to forage and commute along (running east-west) and providing a sheltered area for nesting birds, mammals, otter couches etc

- create a series of inviting mounds of varied orientation, shade and openness with aim for badger setts - grassland creation and enhancement in open areas to increase

- include small pond if possible (away from gas main) - care to be taken in this area with minimal digging due to the existing underground gas main

6 Anglers' WC to be connected to existing waste water in the location of the Broadwater Sailing Club

7 Floating reedbeds creating bays for young fish and sheltered angling

8 Secure site boundary with Grand Union Canal using a bespoke

fence sensitively located amongst existing trees, mindful of root protection zones and augmented with thorned native planting species depending on light conditions. Sections will include fence panel sections, thorny shrub planting, wire fences and trellises, to infill the open areas and strengthen more permeable vegetation. Repair and replace derelict hedgerows with laying / dry hedging techniques dependent on condition and light levels. This approaches retains habitat connectivity and desirable existing light

9 Enhance ground flora along the lake margin where reeds aren't proposed. Inland from here include areas of enhanced terrestrial ground flora. Enhancement of ground flora with biodiverse species (both sun loving and shade loving) for invertebrates, bats and birds. Installation of bat and bird boxes on trees in this area. Keep the access road mostly as a dark corridor for wildlife movement, with at least the one sunny spot.

(10) Reprofile sediments area to required 2m depth for sailing with turbidity curtain to limit water quality effects until sediment settled

(I) Diversify existing habitats on island with perimeter emergent

(12) Number Not in Use

(13) Enhance shallows as nursery habitat for coarse fish with artificial

and the reclaimed land from the north. Wind modeling of the lake and agreement of a minimum distance of natural wind trajectory from jetties should be agreed with sailing club (15) Maintain habitat connectivity with refurbishments or replacement

of bridge over canal. Otter spraint was found beneath suggesting it is a landmark used by otters. Implement a watching brief during construction to ensure there is no harm to otters. No mitigation or enhancement for otters is needed or recommended.

(16) Bat boxes on trees - here and throughout for maximum benefit

(17) Bales of Christmas trees to keep out predatory fish. Monitor water flow and potentially enhance connectivity if climate change adversely reduces water levels.

(18) Currently there are mature willows around much of the lagoon edge at the water line (with dense buddleia around and behind) and there are areas of high ground with unsafe steep slopes down to the water edge. High areas to be lowered to approximately 2m above water level and steep slopes reprofiled to 45degrees. Non-native buddleia to be removed and replaced with further willows. A border around the lagoon will be densely planted with native flowering, fruiting and thorny shrubs to prevent visual disturbance or direct human access to the lagoon (discrete viewing will be provided through bird hides). Woven willow panels will be used for instant screening while new planting establishes.

(19) Proposed 2 m high thorn hedge to back of car park

(20) Restoration to an undisturbed marginal vegetation

 $\widehat{(21)}$ Break up existing concrete in places for root penetration (22) Main controlled access point for site

(23) Existing B category tree group avoided

(24) Reclaimed land with scattered native trees to visually break up views of existing building and low fertility dry well drained grass community to boatyards. The seed and plant mix for reclaimed land would only serve to make this area attractive. Although it has low potential to benefit bats (due to lighting), green walls and green roofs if feasible could be installed on buildings for invertebrates and to integrate buildings into the landscape. Judiciously located nectar providing planting would enhance the area although openness is important to minimise potential sheltering of wind for sailing.

25 Number not in use.

 $\ensuremath{\cancel{26}}\xspace$ Up to 10 m wide buffer to prevent access, width will vary depending on existing vegetation, topography, presence of concrete surface, substrate and extent of land available

 $(\overline{27})$ Native fruit trees as orchard / fruit walks within camping and activity area. Create an open mosaic habitat for invertebrates here

and elsewhere wherever possible (28) Heron Inlet. Protect and enhance backwater with thorny planting and protective fence as required for the inlet to the south west of the peninsula to remain safe for bird and otter passage. Include

some emergent vegetation and some grassland patches going down to the water for water vole and sleeping spots for birds or deer (29) Low key approach to drainage with ditches and filtering attenuation

through site. Boatwash to go to foul drainage system $(\overline{\mathbf{30}})$ Grassland and wildflower enhancement in open areas and alongside

paths of activity centre (31) Create islands in shallowest parts of the lake to create protective

water to the west of the lake. These will include trees and scrub

(32) Proposed HS2 floating mitigation island

(33) Enhance as dabbling areas for birds with submerged coir matresses

(34) Deeper channels for water circulation (35) Include tethered habitat rafts with solar panel to power bubbling

masterplan for climate adaptation based on monitoring of the dissolved oxygen levels across the lake over a period of months / (36) Restrict access to causeway to avoid public safety hazard of

quicksand and disturbance to quiet backwater (37) Wildlife pond for invertebrates and dipping activities on north side

(38) Floating reedbeds provide shelter for water birds

planted with vegetation tolerant of submersion such as reeds and

40 Species rich amenity grass (41) Zone for assisted natural regeneration

(42) Waterpump for circulation

(43) Remodel existing island based on:

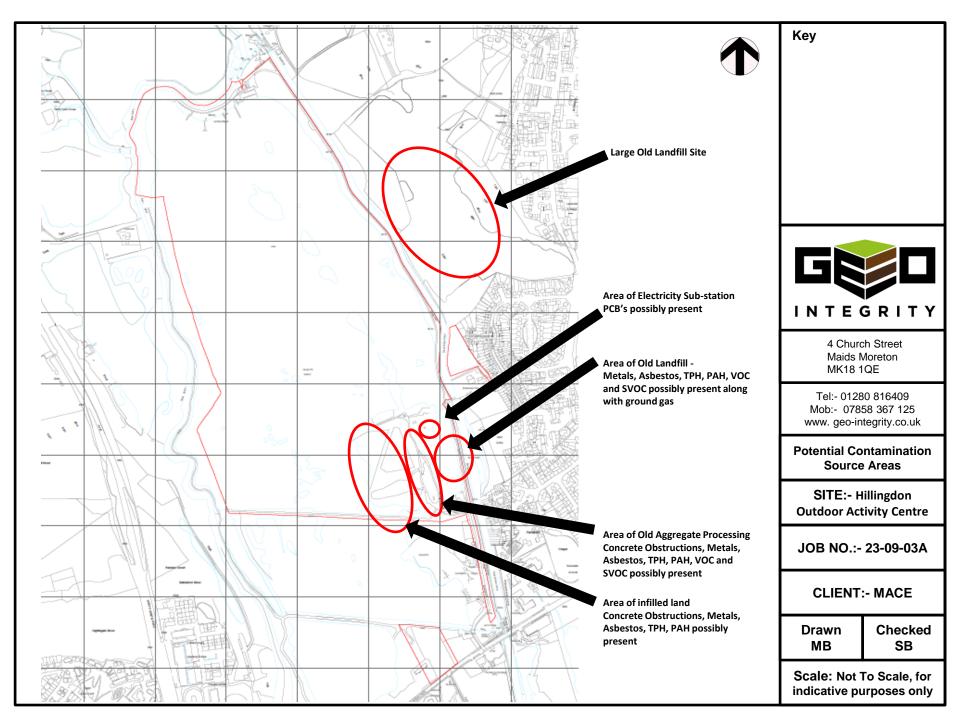
a) retain 4 existing trees b) create muddy scrape in north of island at same level as the shingle finger the extends north (Summer water levels)

c) Artificial Sand Marten habitat

(44) Proposed islands to protect existing island 14 (45)Tern rafts within open water

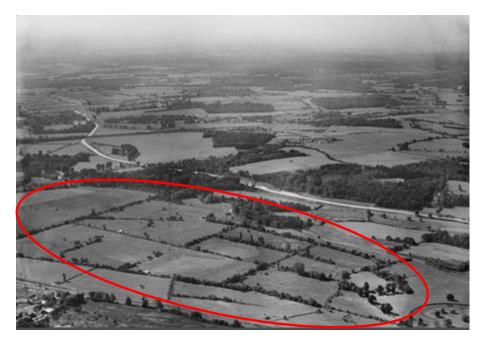
.11	Floating reedsbed and island layout amende	ed 24.08.23	JR	PO
.10	Updated following comments	22.08.23	DB	PO
.09	Updated following comments Updated following workshop on 28.07.23	16.08.23	DB	PO
.08	at LBH, Uxbridge	08.08.23	DB	PO
.07	Final QA	22.06.23	JR	PO
.06	Amendments to the masterplan	21.06.23	JR	PO
.05	Amendments to the masterplan	15.06.23	JR	PO
.04	Amendments to the masterplan	30.05.23	JR	PO
.03	Amendments to the key	23.03.23	JR	PO
02	Amendments to the key	22.03.23	JR	PO
.01	First Issue	16.03.23	TK	PO
Rev	Amendments	Date	Drwn	Chkd

HWSFAC

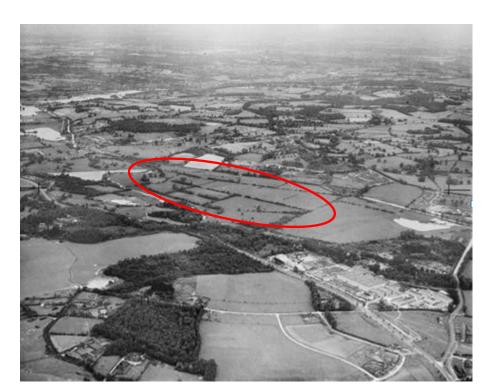

Drawing Title

Ecological Mitigation - Lake

Project No. Scale @ Al Project Status 1:2500 For planning Drawing No. HWSFAC-COL-00-XX-DR-L-1010


0203 924 9888 0191 24 24 224 Newcastle 01904 925 888 York colour-udl.com

colour



1933

1946

Residential House at site entrance

Weighbridge at site entrance

Quicksand to the immediate south of the site area

Path along southern boundary of main site

Main Lake from the south

Remnants of conveyor structure on main site

Electricity Sub-station on main site

Track leading up the east of the site towards the sailing club

Gas main at top of site

Sailing club at north of site

Looking across the Grand Union Canal towards Site 2

Site 1 from Moorhall Road – HS2 compound to the left of the photo

APPENDIX B

Natural Cavities Risk Assessment

Project Name: Broadwater Lake

Project No: 23-09-03A

Client: Hillingdon BC and MACE

This site has a No Anticipated Subsidence Hazard Category

Subsidence Hazard Components	Value
G1 - Chalk lithostratigraphic Factor	20
G2 - Post Cretaceous Cover Deposit Factor	7
H1 - Water Table Level Factor	1
H2 - Topographic Relief and Surface Drainage/Subsurface Infiltration Fa	ctor 1
GM1 - Former Surface Water Drainage Path Factor	0
GM2 - Glaciation Factor	0
$SHR_{N} = (G1+G2+H1+GM1+GM2)*H2$ $SHR_{N} V$	/alue 28
SHR _N Subsidence Hazard Category	

<55	No Anticipated Subsidence Hazard
55 to 89	Very Low Subsidence Hazard
90 to 136	Low Subsidence Hazard
137 to 200	Moderately Low Subsidence Hazard
201 to 300	Moderate Subsidence Hazard
301 to 400	Moderately High Subsidence Hazard
401 to 600	High Subsidence Hazard
>600	Very High Subsidence Hazard

Regional Abbreviations used on Sheets 2 and 3

CH	Chiltern Hills
DPD	Dorset and Purbeck Downs
EA	East Anglia
END	East North Downs
L	Lincolnshire
WND	West North Downs

Y Yorkshire

Notes:
Based on Edmonds C N : 2001 :
Project Broadwater Lake

Predicting natural cavities in chalk
Geological Society, London, Engineering Special
Publications, Vol 18, pp 29-38

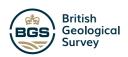
Table

Project No. 23-09-03A
Carried out for Hillingdon BC and MACE

Hillingdon BC and MACE

(Sheet 1 of 3)

Natural Cavities Risk Assessment


G2 - Post C Gc ☐	t lithostratigraphic Factor Upper Chalk Middle Chalk Lower Chalk Cretaceous Cover Deposit Factor		20 2 1 G1 T	у	20
G2 - Post (Gc T	Middle Chalk Lower Chalk		2 1	У	20
G2 - Post (Gc	Lower Chalk		1		
G2 - Post (Gc T			1 G1 T		
Gc 7	Cretaceous Cover Deposit Factor		G1 T		
Gc T	Cretaceous Cover Deposit Factor			otal	20
(
(Tertiary cover deposit present with or without	superficial Quaternary cover	14		l
١	· · ·	superiiciai Quaterriary cover			_
	Quaternary cover deposit only present		6	У	6
	No cover and <200m from a Tertiary or Quate		2		
r	No cover and >200m from a Tertiary or Quate	rnary cover deposit margin	1		
			G2-Gc	Total	6
Gr 1	Tertiary cover deposit present:				
	Reading Beds or Woolwich Beds (all regions)		20		
	Thanet Beds (WND, END regions)		20 15		
(Crag (EA region)		8		
	Thicker Tertiary sequences involving Thanet E and Blackheath Beds and disturbed Blackhea		4		
	Thicker Tertiary sequences involving Reading London Clay and Bagshot Beds (DPD region)	Beds overlain and overstepped by	2		
(Quaternary cover deposit present:				
F	Proto-Thames and Proto-Solent terrace grave	ls (CH and DPD regions)	20		
C	Alluvial deposits (all regions) (only applicable to Chalk (Category 2) of topographic relief and suffactor (H_2))		13		
	Alluvial deposits (all regions) (any topographic infiltration conditions except above)	relief and surface drainage/subsurface	1	у	1
(Glacial deposits (CH, EA, L, Y regions)		12		
	Low level fluvial terrace gravels or valley grave	el (all regions)	6		
	High level fluvial terrace gravels or plateau gra		6		
	Clay with flints (all regions)	aver (all regions)	3		
			ى 1		
	Brickearth (all regions)		1		
	Solifluction deposits (all regions)		1		
1	No cover (topsoil only) (all regions)		0		
			G2-Gr	Total	1
Gf F	Reading Beds feathering margin		3		
_	Thanet Beds feathering margin		4		
	Crag feathering margin		2		
	Cray reamening margin Tertiary margins where thick Tertiary sequenc	os occur (WND, DPD rocions)	1		
	, ,	es occur (WND, DFD regions)			
	Quaternary deposits feathering margin		2		
C	Exception to above for alluvial deposits where Chalk (Category 2) of topographic relief and so factor (H ₂)		0	у	0
	No cover deposit (topsoil only)		0		
יו	No feathering margins		0 G2-Gf	Total	0
			G2 T		7
tes:	DO N. 2004	Productor Lako		Table	
Based on Edmonds Predicting natural of		Broadwater Lake 13-09-03A			1
-	v, London, Engineering Special Carried out for	Hillingdon BC and MACE		/6:	et 2 of 3)

Natural Cavities Risk Assessment

				Score
	er Table Level Factor	40		
a b	No cover deposit present, water table below Chalk surface level	10		
b	No cover deposit present, water table close to or at Chalk surface level	1		
C	Cover deposit present, water table below Chalk/cover deposit interface	10		
d	Cover deposit present, seasonal water table level fluctuation causes water table to rise above Chalk/cover deposit interface in wet season	2		
е	Cover deposit present, water table normally at or above Chalk/cover interface	1	У	1
f	As above, but if artificial groundwater lowering to take place	3		
g	Artesian groundwater conditions present in cover deposit overlying Chalk	0		
		H1 T	otal	1
Cat	ographic Relief and Surface Drainage/Subsurface Infiltration Factor egory 1 - Seasonal/permanent surface drainage and subsurface ltration directed onto/into Chalk			
	Terrain Unit 1 - Hillside or valley side slope	6		
	Terrain Unit 2 - Minor channel to major valley floor	10		
	Terrain Unit 3 - Hilltop or flatter relief areas	4		
	egory 2 - Seasonal surface drainage and subsurface infiltration ected towards/onto cover deposit from Chalk			
une	Terrain Unit 1 - Hillside or valley side slope	1		
	Terrain Unit 2 - Minor channel to major valley floor	2		
	Terrain Unit 3 - Hilltop or flatter relief areas	1	.,	1
Cat	egory 3 - Seasonal/permanent surface drainage and subsurface	ı	У	1
	Itration directed across Chalk (may be covered by topsoil and/or			
	fluction deposits or alluvium in floors of seasonal/permanent			
stre	eams			
	Terrain Unit 1 - Hillside or valley side slope	1		
	Terrain Unit 2 - Minor channel to major valley floor	3		
	Terrain Unit 3 - Hilltop or flatter relief areas	1		
		H2 T	otal	1
M1 - F	ormer Surface Water Drainage Path Factor			
	Proto-Solent (DPD region)	10		
	Proto-Thames corridor (CH region) but not applicable to following:	10		
	where glacial deposits directly overlie Chalk	0		
	where surface drainage/subsurface infiltration is directed off the Chalk towards/onto Tertiary cover	0		
	Outside the above proto-river corridors	0	У	0
		GM1	,	Ö
		O.III.	· Otal	J
M2 - G	laciation Factor			
	Glacial deposits directly overlie Chalk (CH, EA, L, Y regions)	5		
	Glacial deposits overlie Crag upon Chalk (EA region)	3		
	Glacial deposits overlie Reading Beds and/or proto-Thames terrace gravels upon Chalk (CH region)	0		
	Glacial deposits absent (CH, EA, L, Y regions)	0	у	0
	Extra-glacial areas	0	,	_
	<u> </u>	-		
		GM2	Γotal	0

Notes:			Table	
Based on Edmonds C N: 2001:	Project	Broadwater Lake		1
Predicting natural cavities in chalk'	Project No.	23-09-03A	1	l
Geological Society, London, Engineering Special	Carried out for	Hillingdon BC and MACE		ı
Publications, Vol 18, pp 29-38			(Sheet 3 of 3)	ı

Version 2.0.6.6

BGS ID: 19289652 : BGS Reference: TQ08NW640 British National Grid (27700) : 504100,189300

Report an issue with this borehole

<<	< Prev	Page 1 of 1 ∨	Next >	>:

7908/130

Drill	or I	Hark	nia .	
Driii	eri	Herr	ne	

British Geological Surve

Aritish Geological Survey

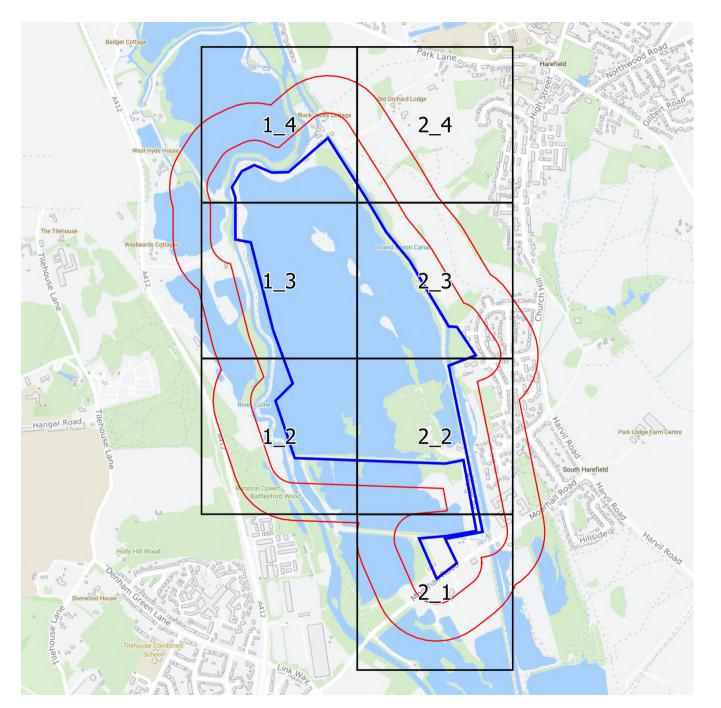
British Contanted Summ

SMITH & WEBB (DRILLING) LTD BORING RECORD

SiteDenham	B.H. No3
Client Affinity Water Ltd	
Site Address Broadwater NGR	TQ 041 893
Boring Started 25th January 2013 Boring Completed	4 th February 2013 Level
Dia. of Bore 250mm Cased to 10.50m b.s with 250mm	
Water struck at: (1) 1.20m b.s. (2) Geological Survey	b.s. (3) b.s. (4) (a) Survey b.s.
Standing W.L. in bore at 1.20m	onb.s.
Remarks 22m of 150mm diameter steel lining tu	be installed. Shingle installed with bentonite seal

		DEPTH		THICKNESS	SS SAMPLE		DETAILS	
		FROM	TO		NO.	TYPE	DEPTH	
1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	Topsoil Sand & gravel Geological Survey Gravel & chalk Chalk & flints	G.L. 1.20 Geological Survey 6.00 6.30	1.20 6.00 6.30 57.00	1.20 4.80 0.30 <u>50.70</u> <u>57.00</u>	British Geolog	cal Survey		
Half-II	sh Geological Survey Britis	h Geological Survey			British Geolog	ical Survey		

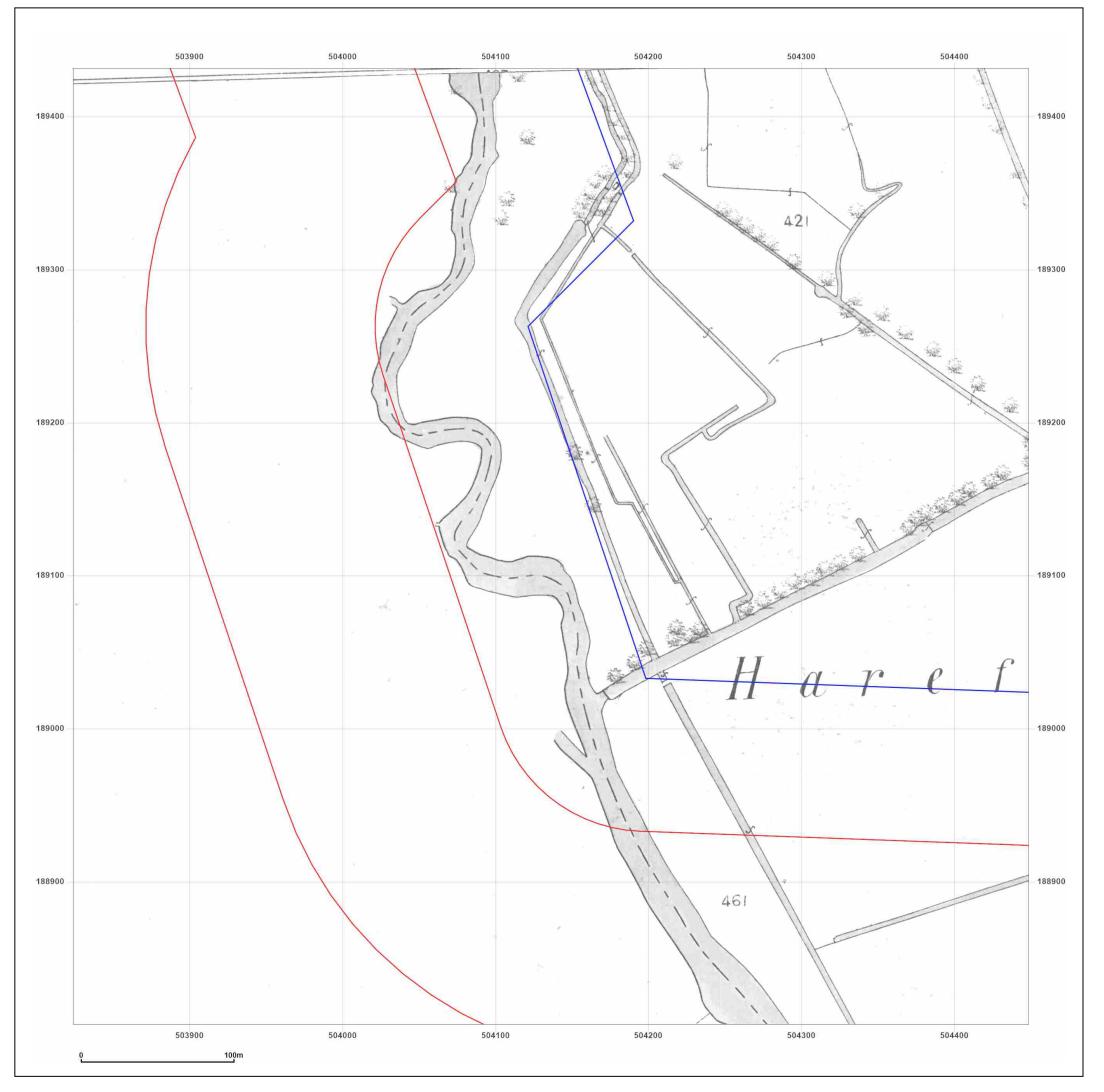
/Q	æ	/1	3	ĺ

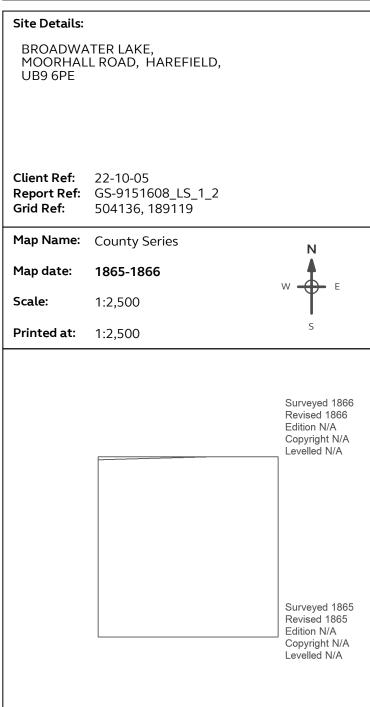

•	•••	í '	TT		•			
	1707	er	н	or.	n	Δ		
L		VI	ш		vi	C	 	 •

British Geological Survey

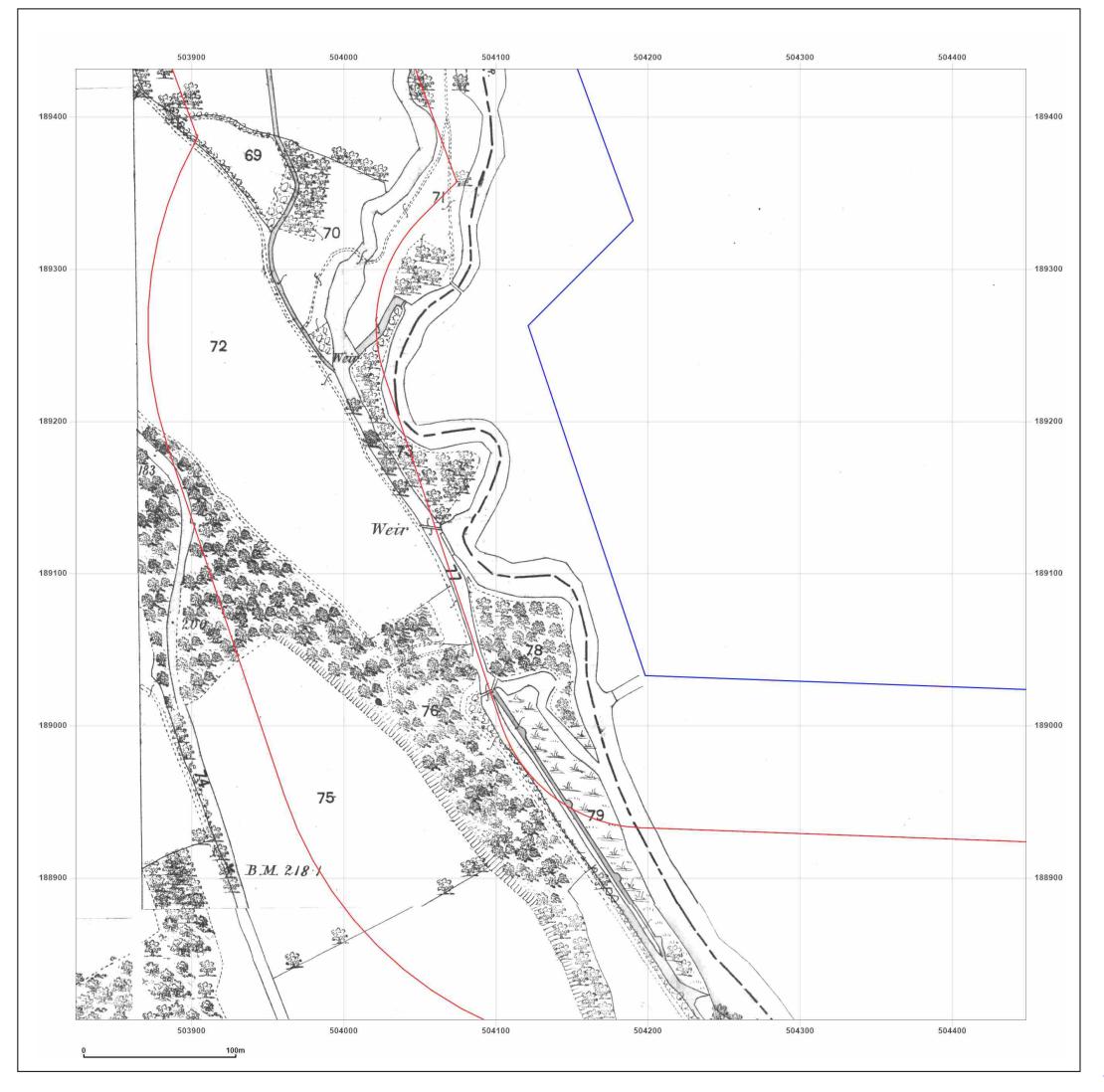
SMITH & WEBB (DRILLING) LTD BORING RECORD

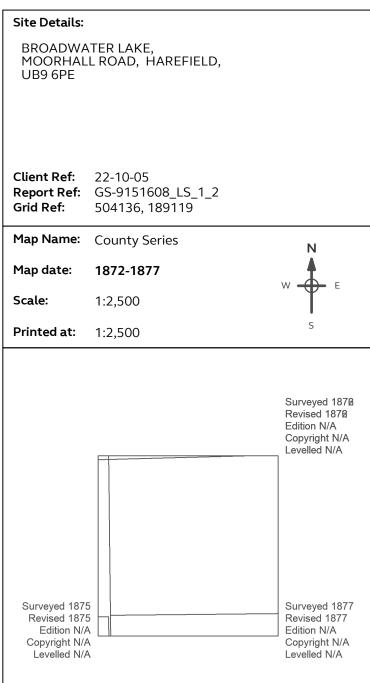
SiteDenham	B.H. No 5
Client Affinity Water Ltd	
Site Address Broadwater NG	R TQ 047 896
Boring Started 12 th February 2013 Boring Completed 150mm & Dia. of Bore 250mm Cased to 10m b.s with 250mm dia. ca	•
British Geological Survey Water struck at: (1) 1.80m b.s. (2) b	Deliah Paalasiasi Pusas
Standing W.L. in bore at 1.10m	onb.s
Remarks 34.5m of 150mm diameter steel lining tube installe	ed. Shingle installed with bentonite seal


			DEPTH		THICKNESS	SAMPLE DETAILS		
			FROM	то		NO.	TYPE	DEPTH
Topsoil riish Geological		Driis	G.L. Geological Survey	0.30	l	British Geologic	il Survey	
Silty cla	у		0.30	0.50	0.20			
Blue cla	y		0.50	1.00	0.50			
Peaty so	il		1.00	1.80	0.80			
Sand &	gravel		1.80	3.50	1.70			
Chalk &	flints		3.50	80.00	76.50 80.00			
riish Geological		CCC3	Geological Survey			British Geologici	il Survey	



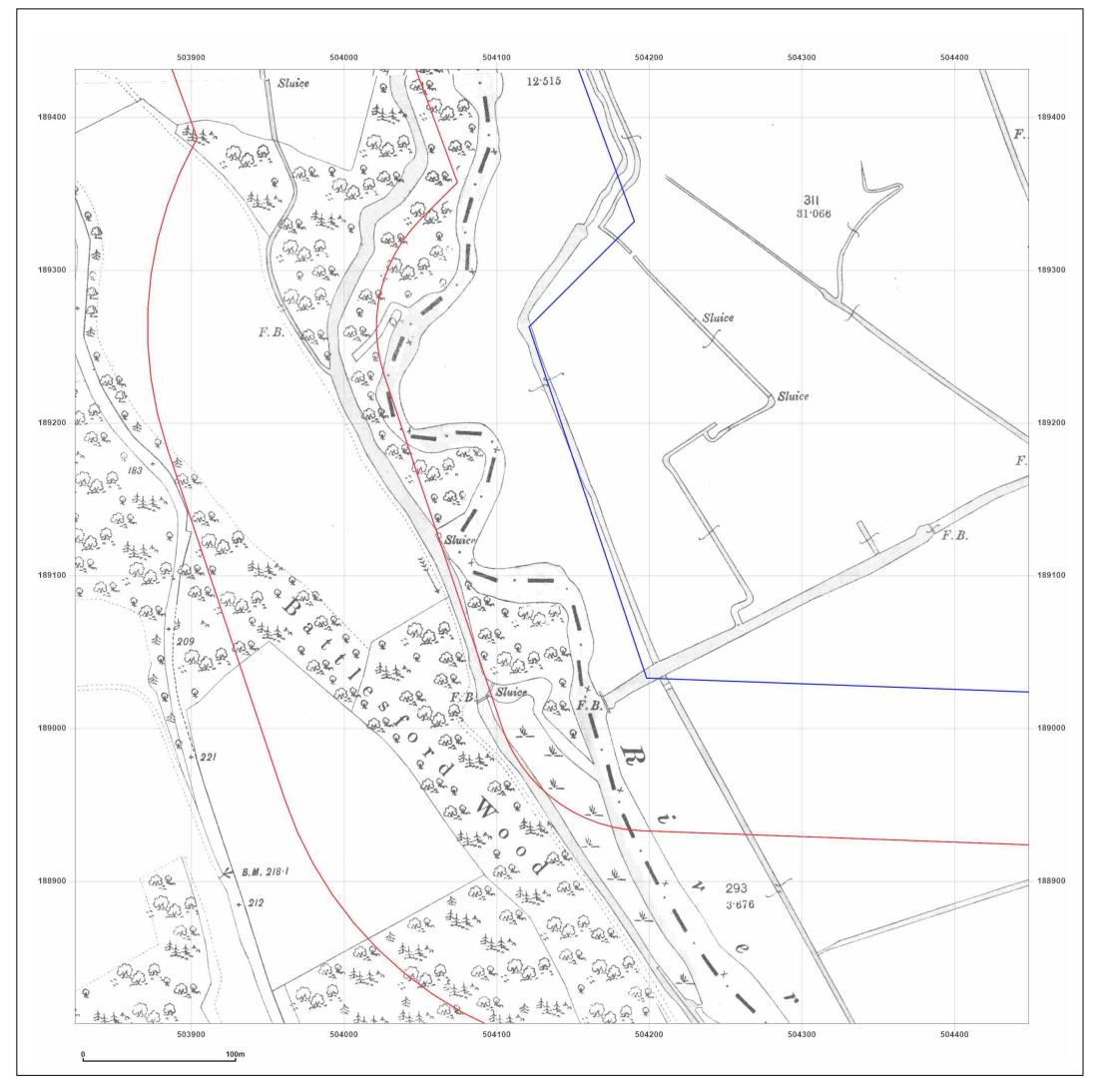
1:2,500 Scale Grid Index

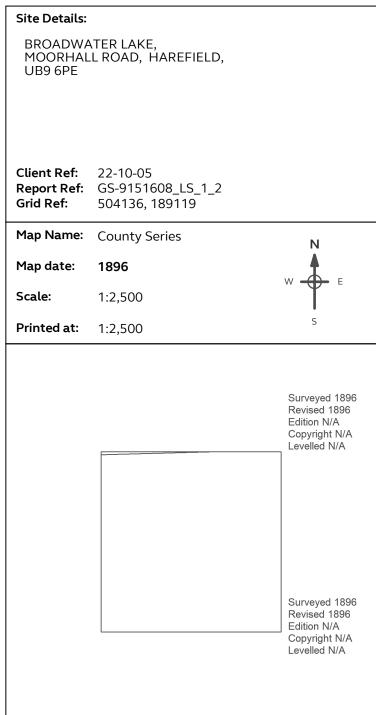



© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 25 October 2022

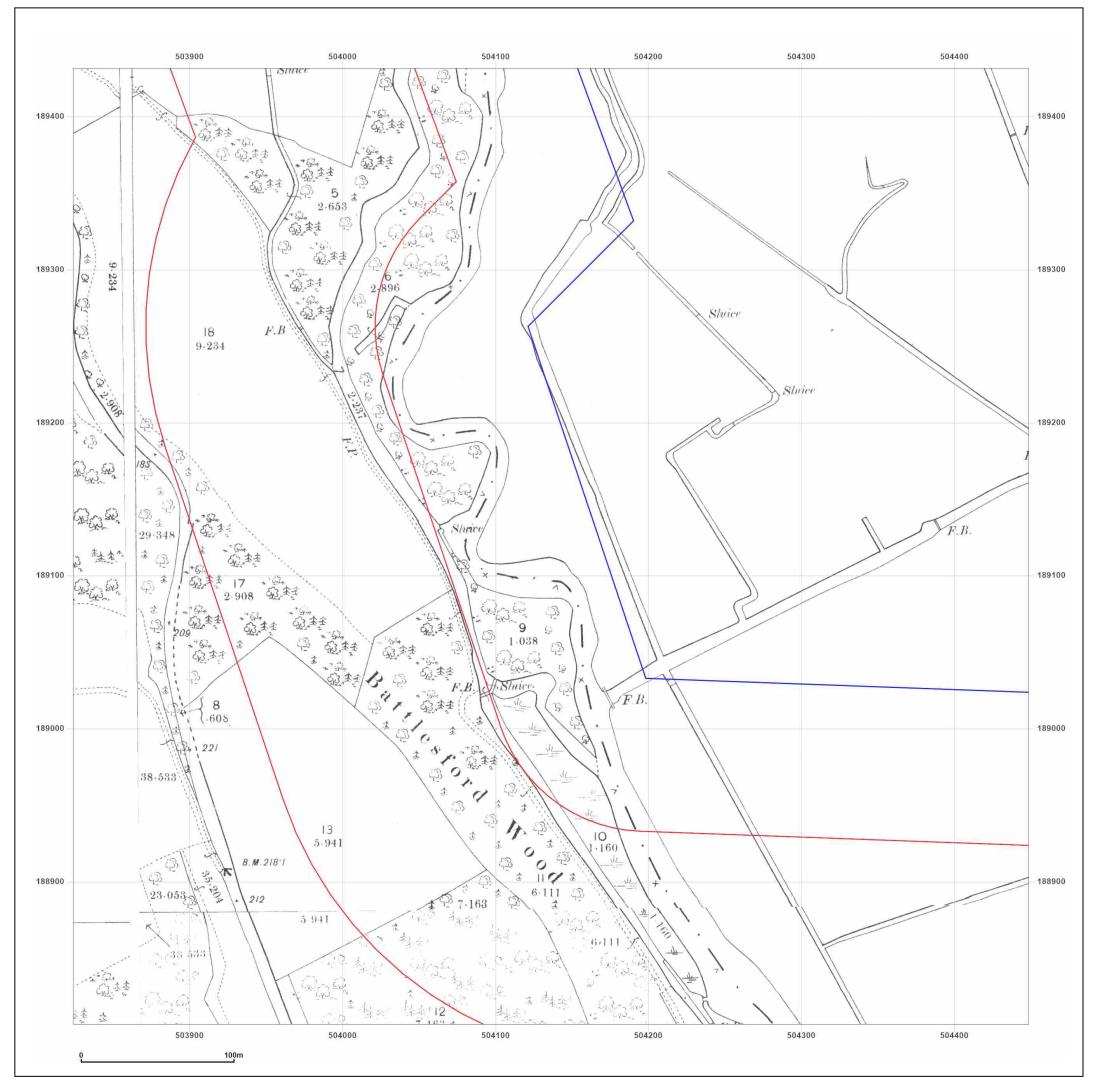
Map legend available at:

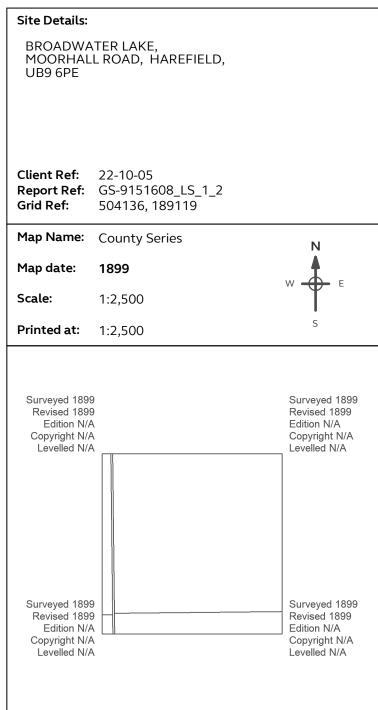



© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 25 October 2022

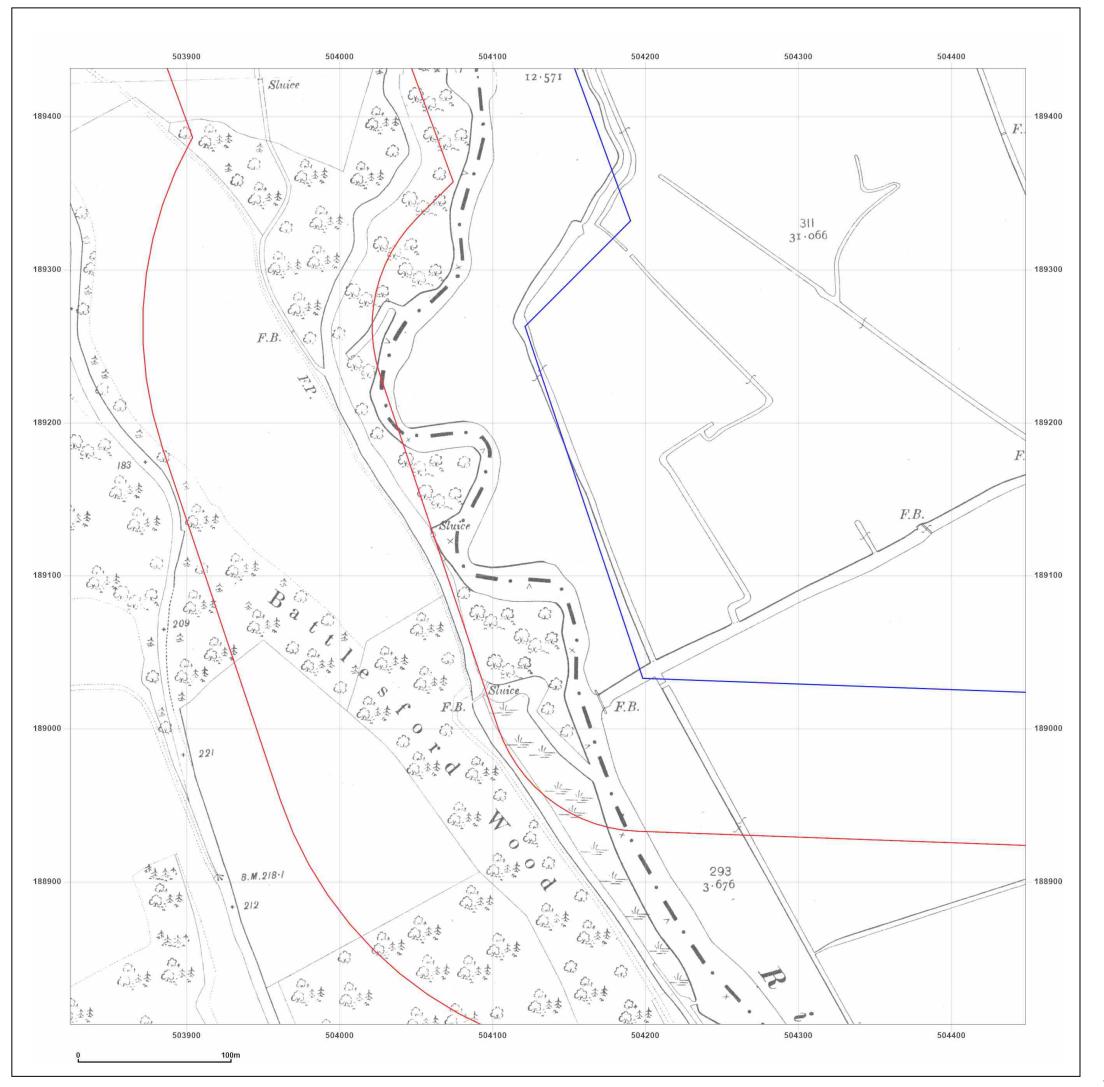
Map legend available at:

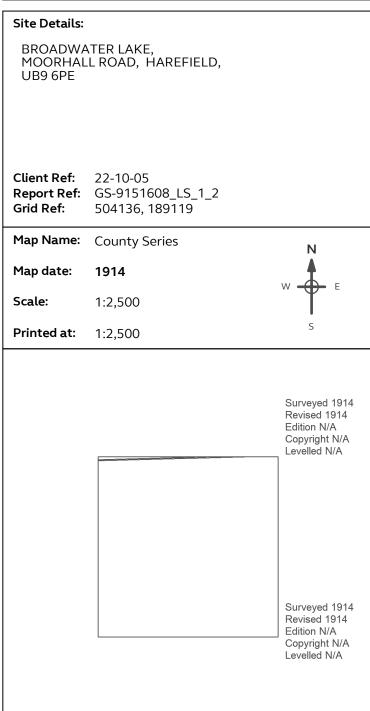



© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 25 October 2022

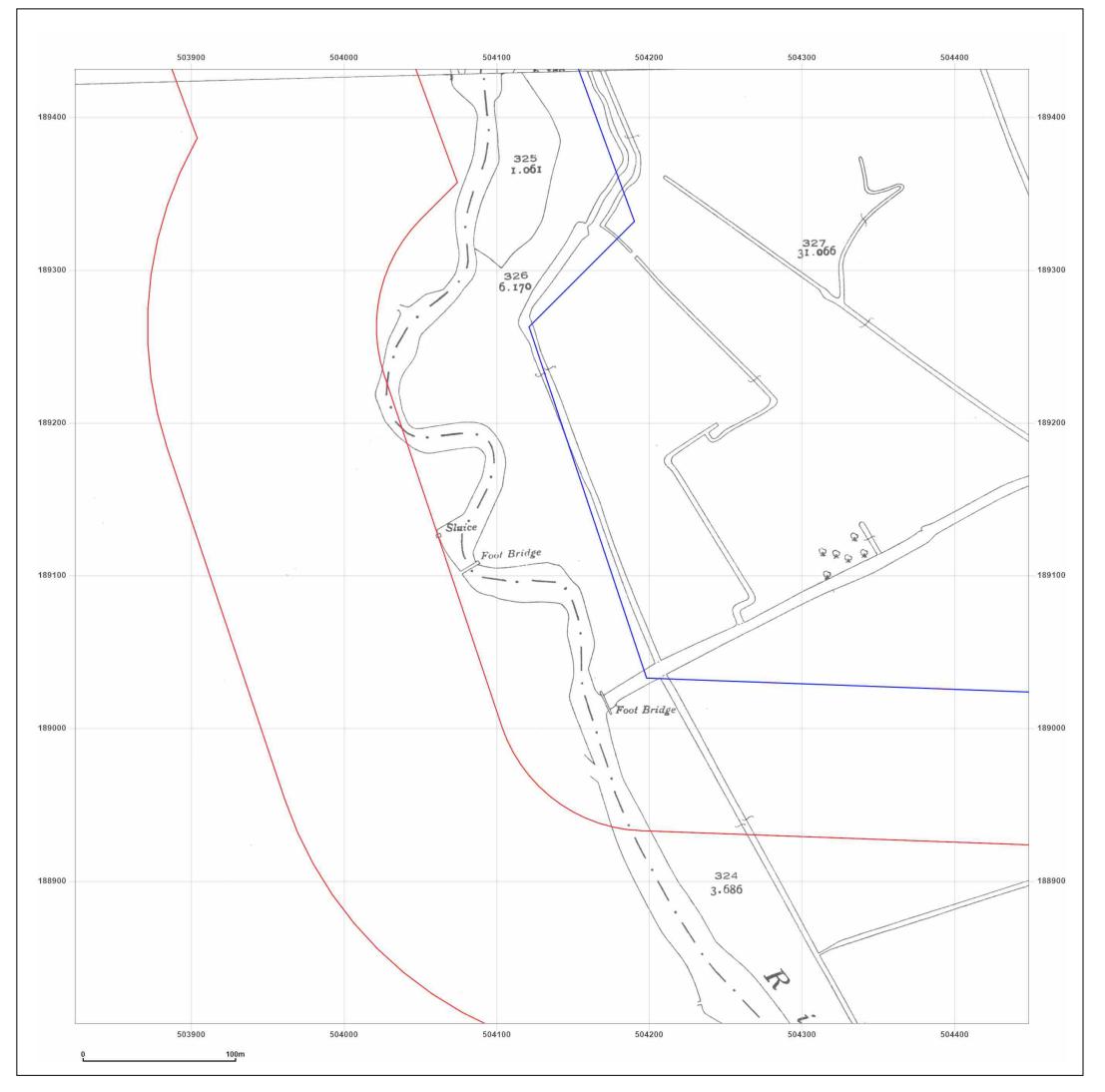
Map legend available at:

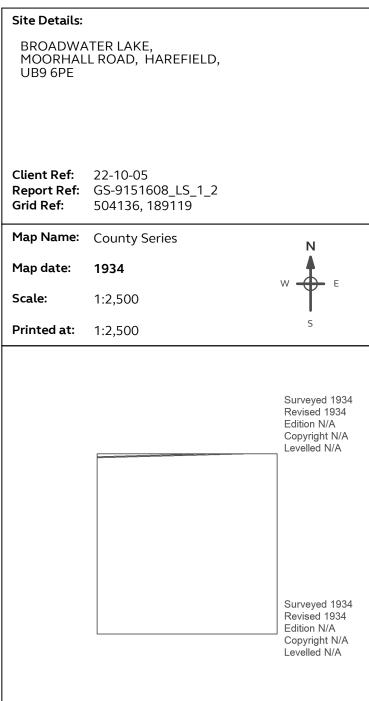



© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 25 October 2022

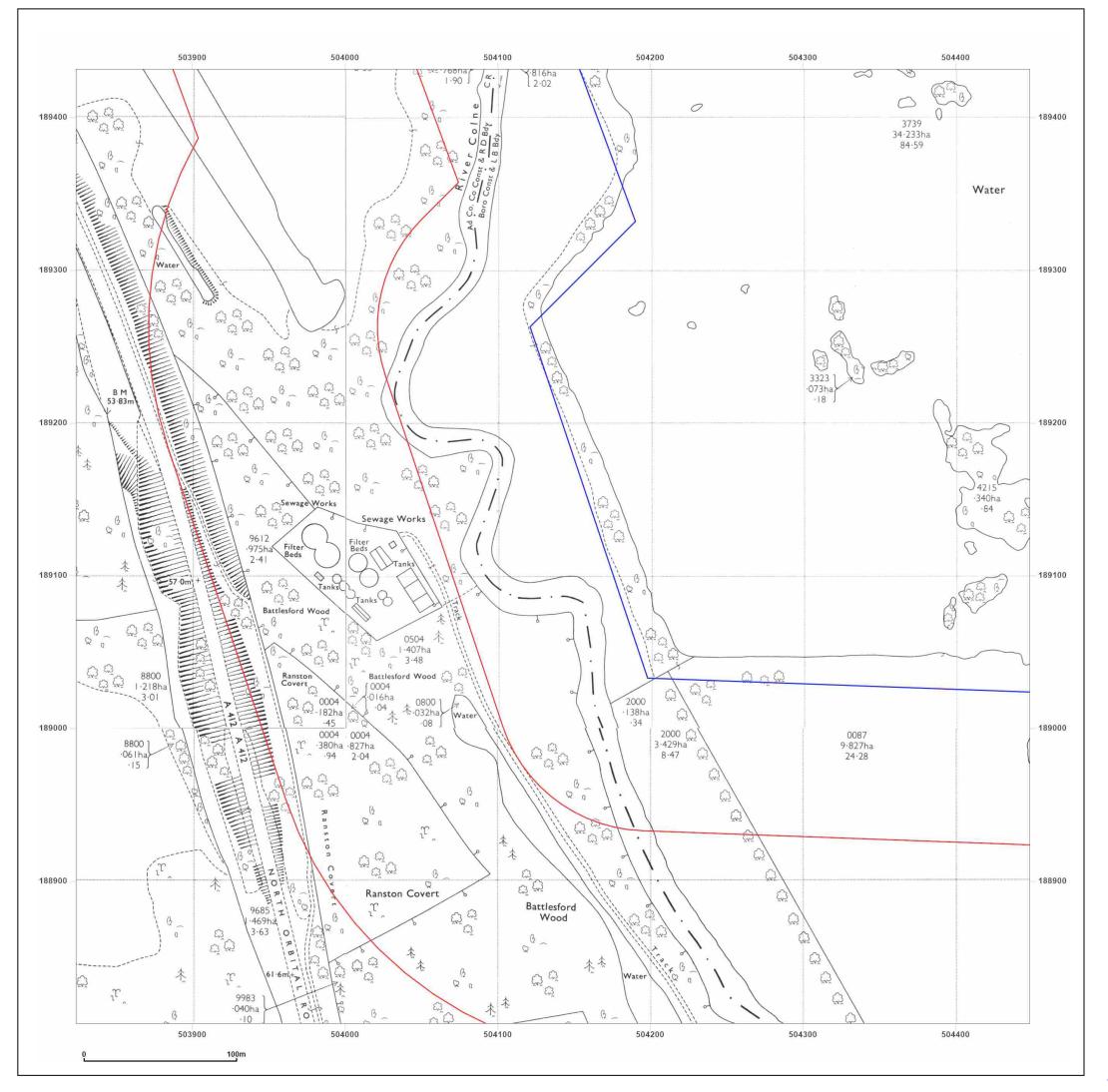
Map legend available at:




© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 25 October 2022

Map legend available at:

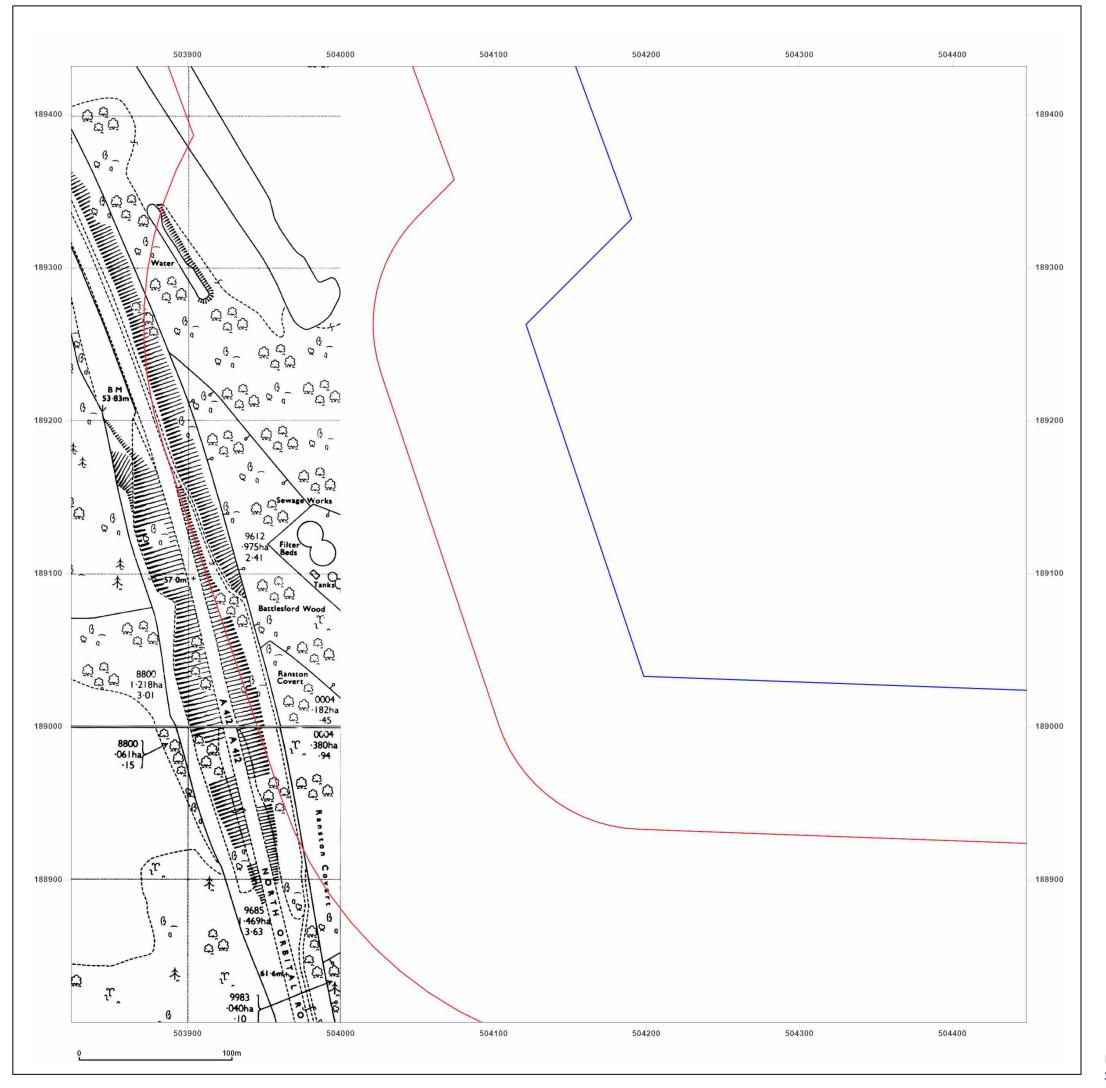


© Crown copyright and database rights 2018 Ordnance Survey 100035207

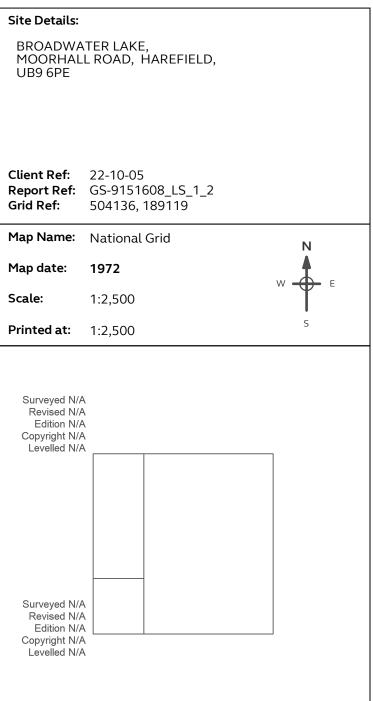
Production date: 25 October 2022

Map legend available at:

Site Details: BROADWATER LAKE, MOORHALL ROAD, HAREFIELD, UB9 6PE **Client Ref:** 22-10-05 **Report Ref:** GS-9151608_LS_1_2 504136, 189119 **Grid Ref:** Map Name: National Grid 1972 Map date: 1:2,500 Scale: **Printed at:** 1:2,500 Surveyed 1971 Surveyed 1971 Revised 1971 Revised 1971 Edition N/A Edition N/A Copyright 1972 Copyright 1972 Levelled 1960 Levelled 1957 Surveyed 1971 Surveyed 1971 Revised 1971 Revised 1971 Edition N/A Edition N/A Copyright 1972 Copyright 1972 Levelled 1957 Levelled 1957

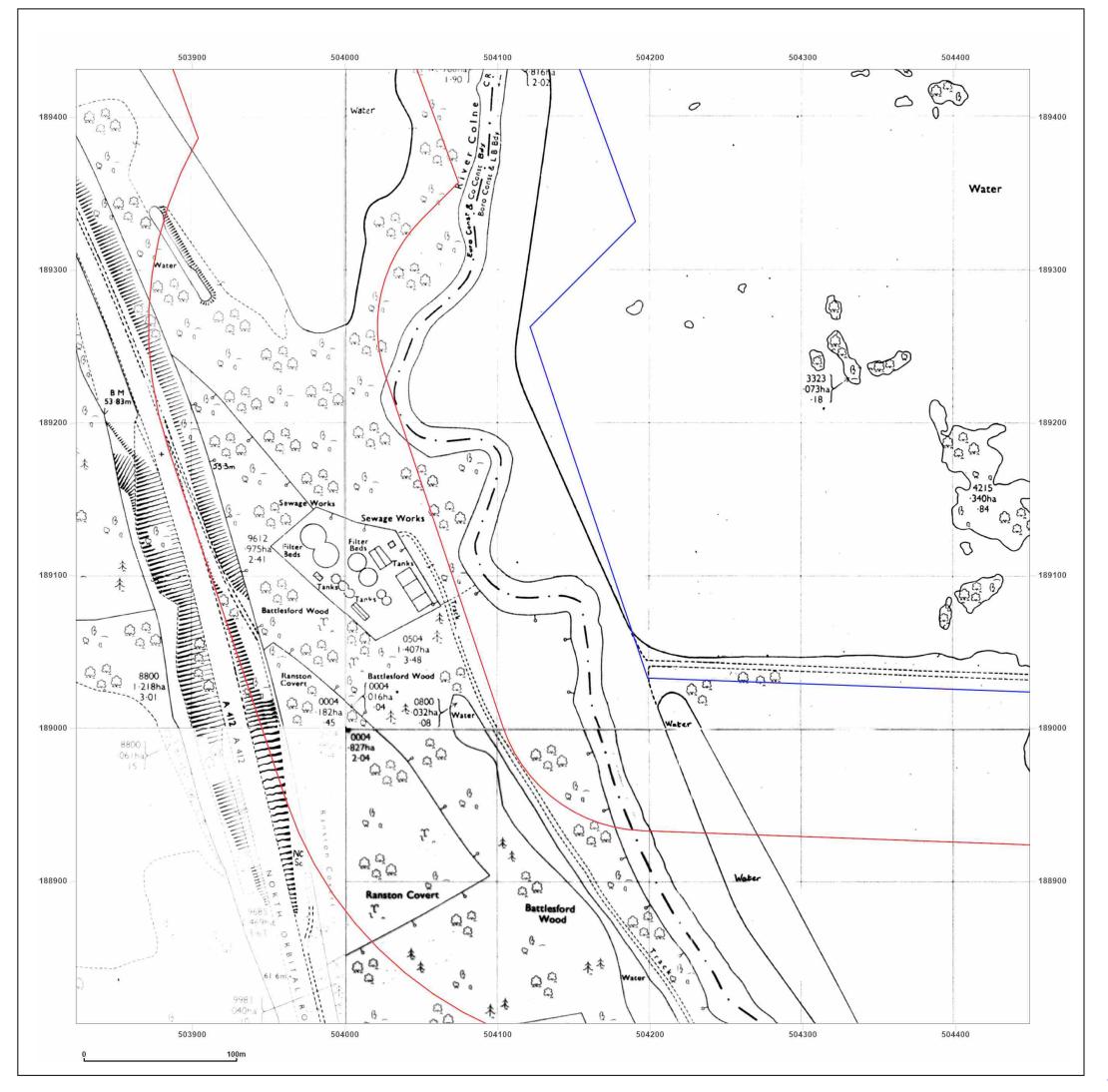


Produced by
Groundsure Insights
T: 08444 159000
E: info@groundsure.com
W: www.groundsure.com


© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 25 October 2022

Map legend available at:

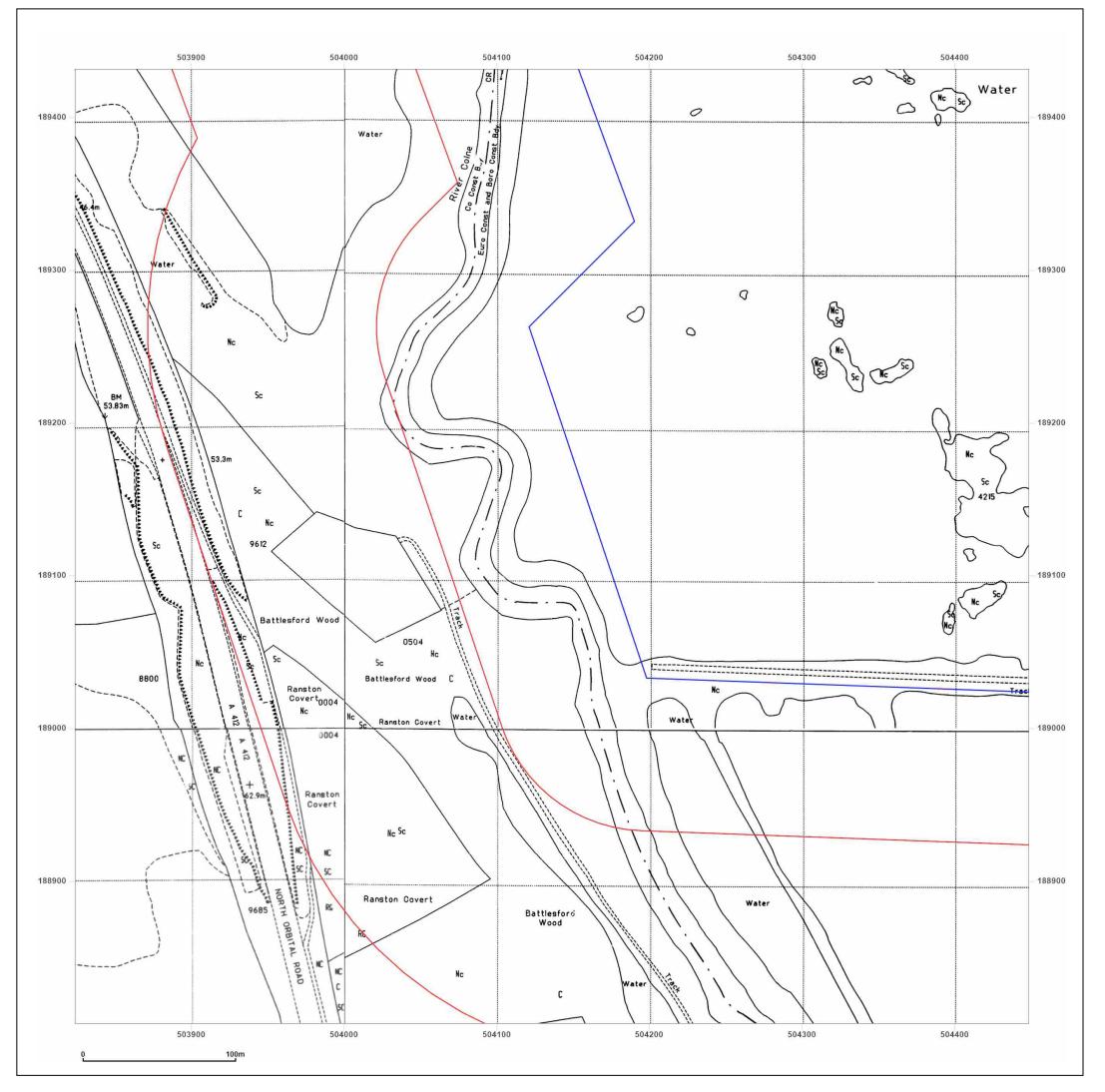


© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 25 October 2022

Map legend available at:

Site Details: BROADWATER LAKE, MOORHALL ROAD, HAREFIELD, UB9 6PE **Client Ref:** 22-10-05 **Report Ref:** GS-9151608_LS_1_2 504136, 189119 **Grid Ref:** Map Name: National Grid Map date: 1987-1989 1:2,500 Scale: **Printed at:** 1:2,500 Surveyed 1960 Surveyed 1957 Revised 1989 Revised 1987 Edition N/A Edition N/A Copyright 1989 Copyright 1987 Levelled 1960 Levelled 1957 Surveyed 1957 Surveyed 1976 Revised 1987 Revised 1989 Edition N/A Edition N/A Copyright 1987 Copyright 1989 Levelled 1957 Levelled 1976

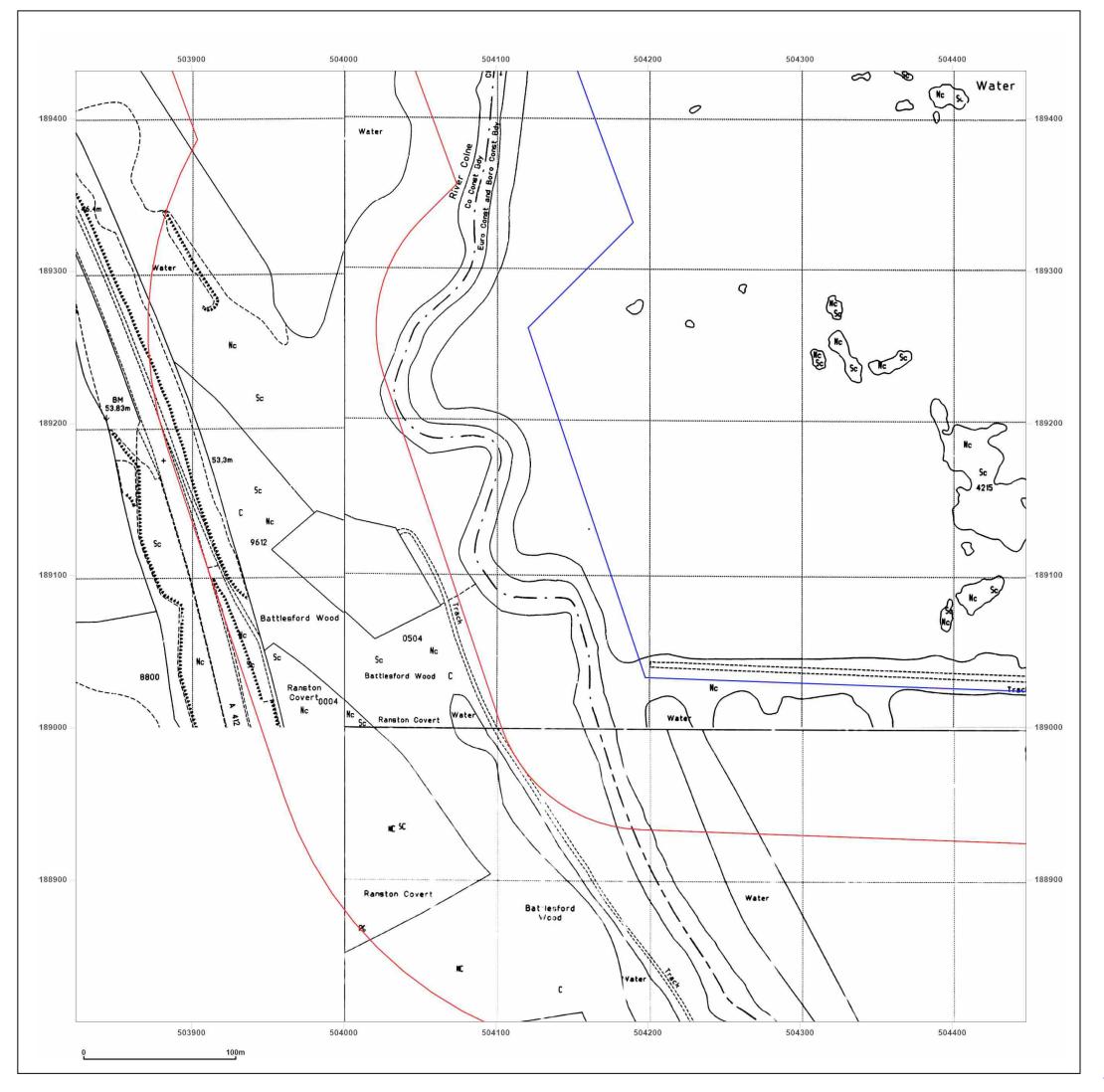


Produced by
Groundsure Insights
T: 08444 159000
E: info@groundsure.com
W: www.groundsure.com

© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 25 October 2022

Map legend available at:

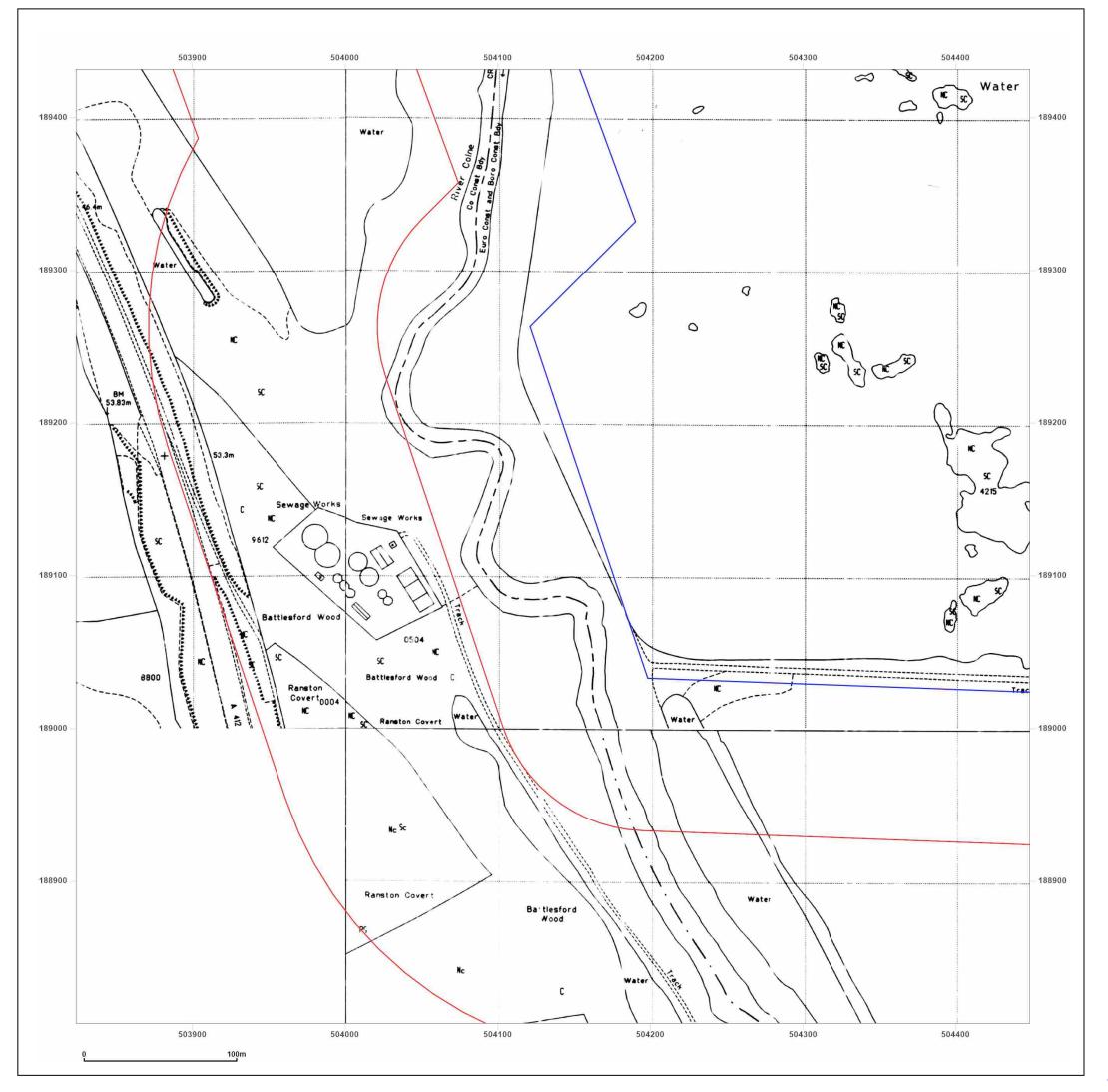

Site Details: BROADWA MOORHAL UB9 6PE	ATER LAKE, L ROAD, HAREFIELD,	
Client Ref: Report Ref: Grid Ref:	22-10-05 GS-9151608_LS_1_2 504136, 189119	
Map Name:	National Grid	N
Map date:	1992	w \$ 5
Scale:	1:2,500	W E
Printed at:	1:2,500	S
Surveyed N/A Revised N/A Edition N/A Copyright 1992 Levelled N/A	A A 2	Surveyed 1992 Revised 1992 Edition N/A Copyright 1992 Levelled N/A
Surveyed N/A Revised N/A Edition N/A Copyright N/A Levelled N/A	A	Surveyed 1992 Revised 1992 Edition N/A Copyright 1992 Levelled N/A

© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 25 October 2022

Map legend available at:

Site Details: BROADWATER LAKE, MOORHALL ROAD, HAREFIELD, UB9 6PE **Client Ref:** 22-10-05 **Report Ref:** GS-9151608_LS_1_2 504136, 189119 **Grid Ref:** Map Name: National Grid Map date: 1992 1:2,500 Scale: **Printed at:** 1:2,500 Surveyed 1992 Surveyed N/A Revised 1992 Revised N/A Edition N/A Copyright 1992 Edition N/A Copyright 1992 Levelled N/A Levelled N/A Surveyed N/A Revised N/A Edition N/A Copyright 1992 Levelled N/A



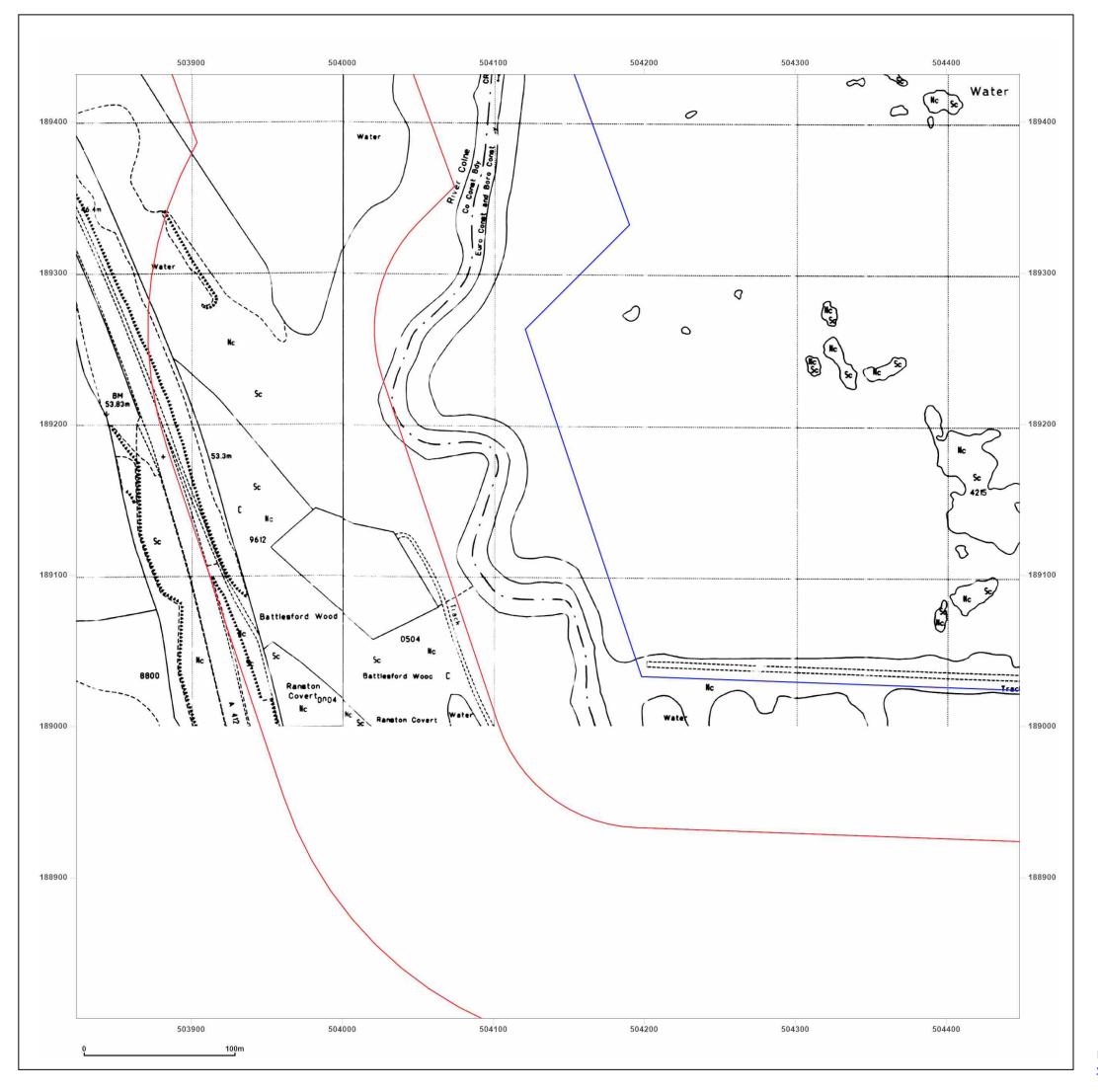
Produced by
Groundsure Insights
T: 08444 159000
E: info@groundsure.com
W: www.groundsure.com

© Crown copyright and database rights 2018 Ordnance Survey 100035207

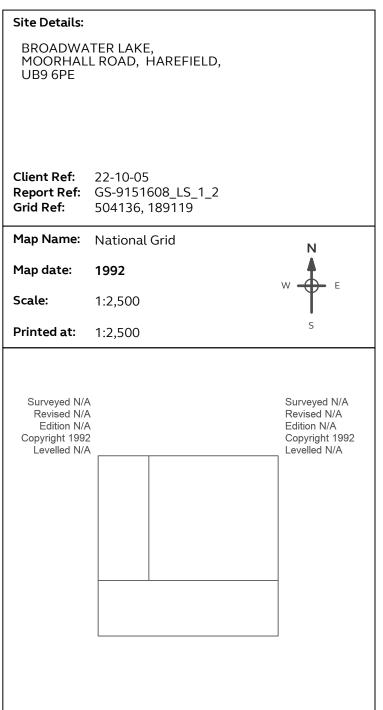
Production date: 25 October 2022

Map legend available at:

Site Details: BROADWATER LAKE, MOORHALL ROAD, HAREFIELD, UB9 6PE **Client Ref:** 22-10-05 **Report Ref:** GS-9151608_LS_1_2 504136, 189119 **Grid Ref:** Map Name: National Grid Map date: 1992 1:2,500 Scale: **Printed at:** 1:2,500 Surveyed N/A Surveyed N/A Revised N/A Revised N/A Edition N/A Copyright 1992 Edition N/A Copyright 1992 Levelled N/A Levelled N/A Surveyed N/A Revised N/A Edition N/A Copyright 1992 Levelled N/A

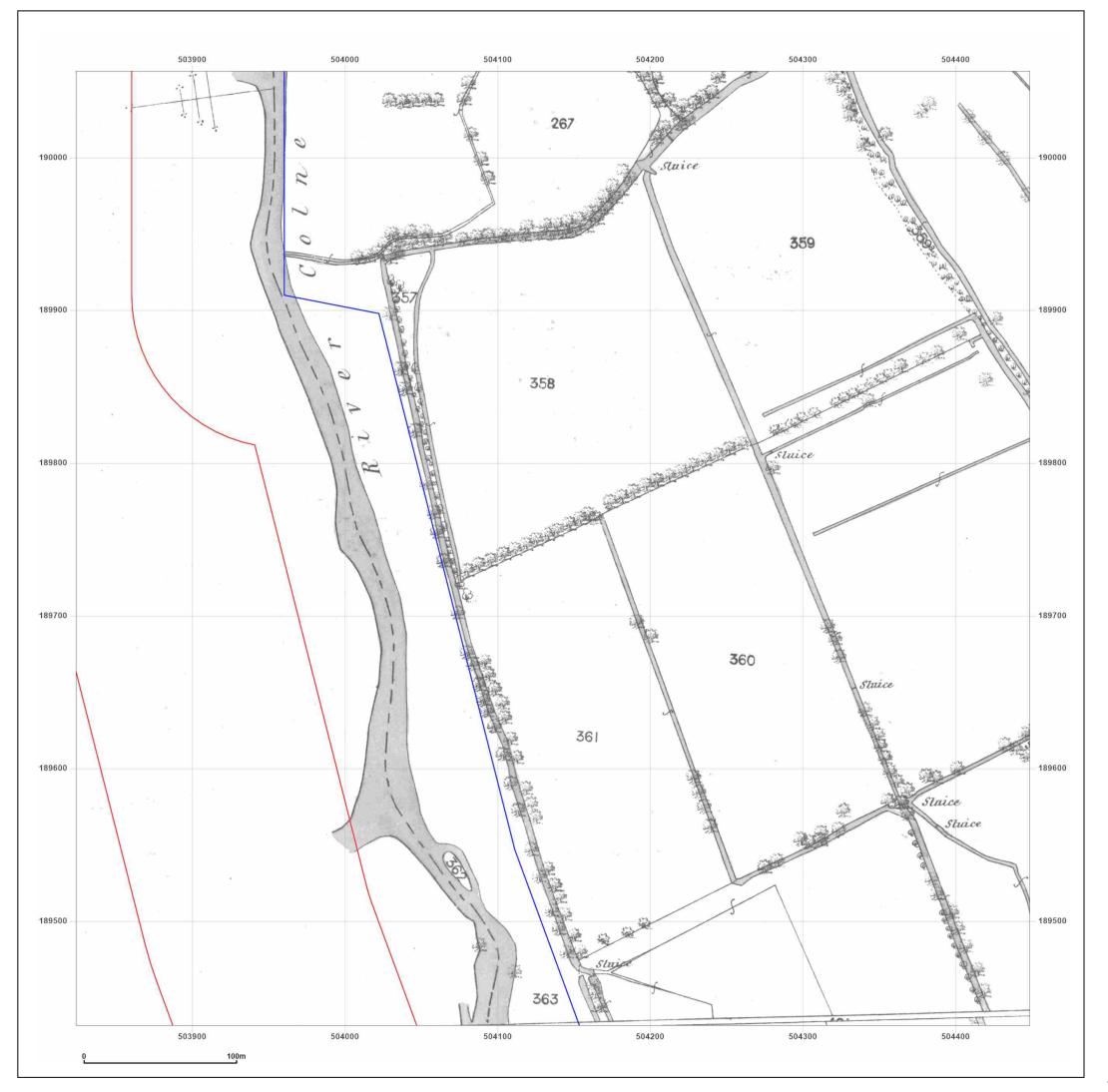


Produced by
Groundsure Insights
T: 08444 159000
E: info@groundsure.com
W: www.groundsure.com


© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 25 October 2022

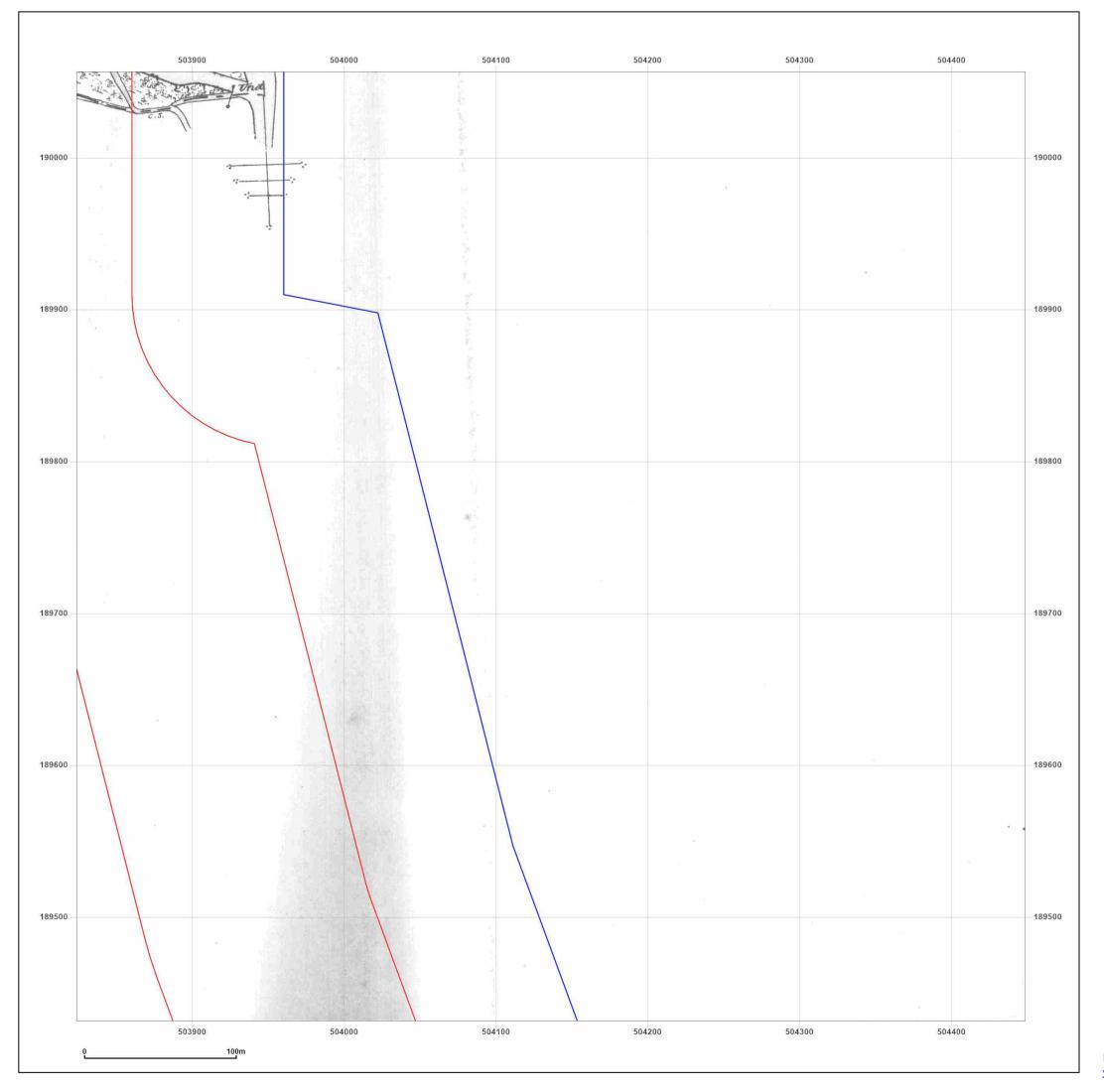
Map legend available at:




© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 25 October 2022

Map legend available at:



© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 25 October 2022

Map legend available at:

Site Details:					
BROADWA MOORHAL UB9 6PE	TER LAKE, L ROAD, HAREFIELD,				
Client Ref: Report Ref: Grid Ref:	22-10-05 GS-9151608_LS_1_3 504136, 189744				
Map Name:	County Series	N			
Map date:	1872	1			
Scale:	1:2,500	W F			
Printed at:	1:2,500	S			
		Surveyed 1872 Revised 1872 Edition N/A Copyright N/A Levelled N/A			

© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 25 October 2022

Map legend available at: