

Willow Lawn Public Toilet Block - TP1

Willow Lawn – BH1 (Cable Percussive Borehole)

March 2025 SITE PHOTOGRAPHS 24-12-14

Willow Lawn - TP2

Woody Bay Public Toilets - TP101

March 2025 SITE PHOTOGRAPHS 24-12-14

Woody Bay Public Toilets - TP102

Woody Bay Toilets - BH101

March 2025 SITE PHOTOGRAPHS 24-12-14

APPENDIX B

IN TEGR		info@g	eo-integ geo-integ 816409	rity.co.uk grity.co.uk			Site Willow Lawn and Woody Bay, Ruislip Lido, Ruislip, HA4 7TY	Borehole Number BH1
Machine : C D	able Percussive Cut own		Diamete Omm to 5		Ground	Level (mOD)	Client Hillingdon Council	Job Number 24-12-14
Method : C	able Percussion	Locatio			Datas		Engineer	
		Locatio			Dates 21 22	1/01/2025- 2/01/2025	Lee Ashworth	Sheet 1/1
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend Nate Nate Nate Nate Nate Nate Nate Nate
0.00-1.20	B1					(0.30)	MADE GROUND Soft dark brown silty slightly gravelly CLAY. Gravel is fine to coarse sub-angular concrete and brick.	
1.00-1.45	SPT N=8			1,1/2,2,2,2		(1.20)	MADE GROUND Soft brown silty sandy gravelly cobbly CLAY. Gravel is fine to coarse sub-angular brick, coal, concrete with occassional boulder size concrete.	
1.20-1.65	D1					1.50	LAMPETH OPOUR O (L. C. L.	
2.00-2.45	SPT N=9			1,1/2,2,2,3			LAMBETH GROUP Soft to firm light brown orange grey silty slightly sandy CLAY with bands of orange and grey silt.	
2.00-2.45	D2			1,1/2,2,2,0		(1.50)		
3.00-3.45 3.00-3.50	SPT N=43 D3			5,6/8,10,11,14		3.00	LAMBETH GROUP Very dense orange brown fine to medium SAND	
4.00-4.45	SPT N=44			5,6/8,10,12,14		 		
4.50-5.00	D4							
5.00-5.45 5.00-5.50	SPT N=48 D5			6,6/9,11,12,16		<u>-</u> - - - - - - - - -		
						5.80	Complete at 5.80m	
						<u>-</u> - - -		
						<u>-</u> -		
						<u>-</u>		
						<u>-</u>		
						<u>-</u>		
						<u>-</u> - - -		
						=_ = = = = = = =		
Remarks Water added	I from 3.80m to 5.70r	n.					Scale (approx)	Logged By
							1:50	LA
							Figure N 24-12	o. -14.BH1

G		info@	geo-inte	rity.co.uk grity.co.uk				Site Willow Lawn and Woody Bay, Ruislip Lido, Ruislip, HA4 7TY	Boreh Numb	oer
INTEGR		T	816409		ı					01
D	able Percussive Cut own able Percussion	ouog	Diamete 0mm to 6		Ground	Level (mo	OD)	Client Hillingdon Council	Job Numb 24-12	
		Locatio	n		Dates 01	/01/2025		Engineer Lee Ashworth	Sheet	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickne	n ess)	Description	Legeno	Water
0.00-0.50	D1					(0.4	1	MADE GROUND Soft dark brown silty slightly gravelly organic CLAY. Gravel is fine to coarse sub-angular brick		
0.50-1.00	D2					0.	40	LAMBETH GROUP Soft to firm becoming firm to stiff grey orange silty CLAY. Thin bands of orange silt with roots and rootlets	××	
1.00-1.45	D3								×	1
1.20-1.65	SPT N=7			1,1/1,2,2,2					× = ×	1
1.50-2.00	D4			, , , , ,		E			×	+
						(2.6	60)		××	-
2.00-2.45	SPT N=11			1,1/2,2,3,4					× × × × × × × × × × × × × × × × × × ×	_
2.00-2.30 2.30-3.00	D5 D6					E			××	
									× = ×	
						Ē			×	11
3.00-3.38 3.00-3.50	SPT 50/225			10,10/14,17,19		3.	00	LAMBETH GROUP Very weak grey brown orange MUDSTONE	×	
3.00-3.50	D7					Ē		MODSTONE		
3.50-4.00	D8					Ē				
4.00-4.15 4.00-4.50	SPT 50/0 D9			12,12/21,29		E				
						Ē				
4.50-5.00	D10					(3.4	15)			
						(5	+5)			
5.00-5.15 5.00-5.50	SPT 50/0 D11			12,13/23,27						
5.50-6.00	D12									
6.00-6.15 6.00-6.45	SPT 50/0 D3			12,13/26,24						
						6.	45			∄
						Ē		Complete at 6.45m		
						E				
						Ē				
						Ē				
						E				
Remarks						<u> </u>				Щ
Hemaiks								Scale (approx)	Logge By	∌d
								1:50	LA	
								Figure N 24-12-		11

G F		www.geo info@ge 01280 8	o-integrity.co.uk o-integrity.co.uk 16409			Site Willow Lawn and Woody E	Bay, Ruislip Lido, Ruislip, HA4	1	Trial Pit Numbei TP1	
Machine : H		Dimensio	ne	Ground	Level (mOD)	Client			Job	\dashv
Method : T	_	Dimension	113	Circuita	Level (IIIOD)	Hillingdon Council		1	Number 24-12-1	
		Location		Dates 21	/01/2025	Engineer Lee Ashworth		\$	Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Le	egend	Water
0.20	D					brick and tarmac	dark brown clayey silty sandy coarse subangular flint, conc			
0.50	D				- 0.40 - (0.20)	MADE GROUND - Firm br Gravel is fine to coarse su rebar	own orange silty gravelly CLA bangular brick and concrete v	AY. vith		
					- 0.60 - (0.10)	LAMBETH GROUP - Soft CLAY. Gravel is fine to coa	brown grey silty slightly grave arse subangular flint	lly × °	<u> </u>	
0.70-1.00	D				- 0.70 - (0.30) - 1.00 	Complete at 1.00m	orange brown grey silty grave e and grey silt. Gravel is fine	elly × on the second se		
Plan .				-	'	Remarks				
		•		•	•			•	\ ^~	د
						Scale (approx)	Logged By	Figure N	AG 10.	>
						1:10	HF		14.TP1	

G F		www.ge info@ge 01280 8	eo-integrity.co.uk eo-integrity.co.uk 316409			Site Willow Lawn and Woody	Bay, Ruislip Lido, Ruislip, HA4	Trial Pit Number TP2	
Machine : H		Dimension	ne	Ground	Level (mOD)	Client		Job	\dashv
Method : T		Dimension	ons.	Ground	Level (IIIOD)	Hillingdon Council		Number 24-12-14	
		Location		Dates 21	/01/2025	Engineer Lee Ashworth		Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	С	escription	Legend	Water
0.30	D				- (0.60) 0.60	Complete at 0.60m	dark brown slightly clayey e to coarse subanguler brick,		
Plan .		•		-		Remarks			
				•					
				-					
				-					
				-					
		-						\\AG	S
					5	Scale (approx)		Figure No.	
						1:10	HF	24-12-14.TP2	

G F		www.ge info@ge 01280 8	o-integrity.co.uk eo-integrity.co.uk 816409			Site Willow Lawn and Woody	Bay, Ruislip Lido, Ruislip, HA	, 7TV N	rial Pit lumber 'P101
Machine : H	land Dug	Dimensio	ons	Ground	Level (mOD)	Client Hillingdon Council		N	ob lumber 4-12-14
		Location		Dates 21	/01/2025	Engineer Lee Ashworth		S	heet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	С	escription	Le	gend Mater
0.00-0.50	D				- (0.50) - (0.50) - (0.20) - (0.30) - (0.30) - (0.30)	MADE GROUND - Loose gravelly CLAY. Gravel is fit LAMBETH GROUP - Soft CLAY. with thin horizons of Complete at 1.00m	dark brown slightly clayey sa ne to coarse brick and tarmado to firm orange brown grey silf orange silt	ty × -	
Plan .		•				Remarks			
								# **	
						Scale (approx)	Logged By	Figure No	AGS
						1:10	HF	24-12-14	

G		www.ge info@g 01280 8	eo-integrity.co.u eo-integrity.co.	ık uk			Site Willow Lawn and Woody E	Bay, Ruislip Lido, Ruislip, HA4	7TY Trial Pit Number TP102
INTEGR									
Machine : H		Dimension	ons		Ground	Level (mOD)	Client Hillingdon Council		Job Number 24-12-14
		Location	1		Dates 21	/01/2025	Engineer Lee Ashworth		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Red	cords	Level (mOD)	Depth (m) (Thickness)	D	escription	Nater Nater
0.90-1.00	D					- (0.90) - (0.10) - 1.00	LAMBETH GROUP - Soft silty CLAY Complete at 1.00m	over loose dark brown sandy ck, tarmac and concrete	
Plan .		•			-	- '	Remarks		
		•			-				
						•			
									\ \\AGS
		•			-	.	Scale (approx)	Logged By	igure No.
							1:10		24-12-14.TP102

APPENDIX C

Geotechnical Testing Facility

Slapton Hill Barn, Blakesley Road, Slapton, Towcester, Northants. NN12 8QD

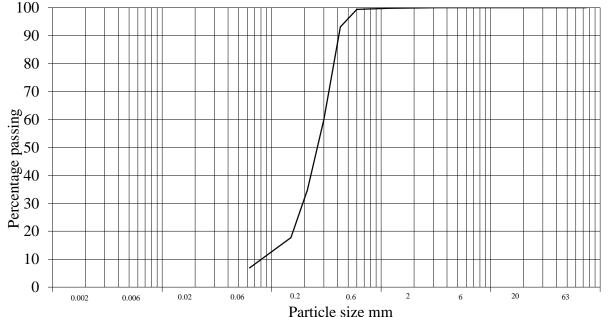
Telephone:- 01327 860947/860060 Email: lab@listersgeotechnics.co.uk

P	ROJECT INFORMATION	SAMPLE INFORMATION						
Site Location:-	Willow Lawn Ruislip Lido	Laboratory Tests Undertaken:- TEST TYPE	TEST METHO	DD TESTE				
	HA4 7TY	Natural Moisture Contents (MC%)	(BS 1377:Part 2:1990 Clau	rse 3.2)				
		Liquid Limits (%)	(BS 1377:Part 2:1990 Clau	<i>'</i>				
		Plastic Limits (%)	(BS 1377:Part 2:1990 Clau	· · · · · · · · · · · · · · · · · · ·				
		Plasticity Index (%)	(BS 1377:Part 2:1990 Clau	use 5.4)				
		Saturated Moisture Content (%)	(BS1377 : Part 2 : 1990, cl	· · · · · · · · · · · · · · · · · · ·				
		PSD - Wet Sieving	(BS 1377:Part 2:1990 Clau	· -				
Client Reference:-	Geo Integrity	Engineering Sample Descriptions	(BS 5930 : Section 6)	, , , , ,				
		Passing 425/63 (μm)	-	√				
		Hydrometer	(BS 1377:Part 2:1990 Clau	ise 9.5)				
Date Samples Recei	ved:- 31 January 2025	Loss on Ignition (%)	-	, <u> </u>				
Date Testing Compl	•	Soil Suctions (kPa)	BRE Digest IP 4/93, 1993					
g		Bulk Density (Mg/m ³)	(BS 1377:Part 2:1990 Clau	ise 7.2)				
		Strength Tests	(BS 1377:Part 7:1990 Clau	· · · · · · · · · · · · · · · · · · ·				
		Soluble Sulphate Content (SO ₄ g/l)	(BS 1377:Part 3:1990 Clau	· · · · · · · · · · · · · · · · · · ·				
		pH value	(BS 1377:Part 3:1990 Clau	ise 9.4)				
		California Bearing Ratios (CBR)	(BS 1377:Part 4:1990 Clau	<i>'</i>				
		Compaction Tests	(BS 1377:Part 4:1990 Clau	ises 3.0-3.6)				
The results relate only to	the samples tested		•	, <u>L</u>				
	be reproduced, except with full and written approval of	Laboratory testing in accord with BS EN						
GROUNDTECH LABO	RATORIES	Quality Management in accord with ISC	9001					
Signed on behalf of G	GroundTech Laboratories:	Technical Sign	natory	Quality Assured to ISO 9001				
Gl	EOTECHNICAL LABORATORY TI	EST RESULTS	Report No:	25.01.029				

Geotechnical Testing Facility

Slapton H	lill Barn,	Blakesley 860947/86	Road, S	_	, Towc	ester, N		nts. NN12 360430	2 8QD		Email: g	groundt	ech@l	istersgeote	chnics.co.	.uk								y Assured O 9001
ſ	SAM]	PLES			CL	ASS	IFIC	ATIC	N TEST	ΓS		CLA	SSI	FICAT	T NOI	TESTS	S	S	STREN	NGTH	TESTS	3	CHEMICAL TESTS	
Test Location	Sample Type	Sample Depth -m	Test Type	WC %	LL %	PL %	PI %	Passing 425 µm %	Modified PI %	Class	Passing 63 µm %	WC/ LL	PL+ 2%	Liquidity Index	Loss on Ignition %	Soil Suction kPa	Bulk Density Mg/m³	Test Type	Cell Pressure kN/m²	Deviator Stress kN/m²	Apparent Cohesion kN/m²	ф	pH Value	Soluble Sulphate Content SO4 g/l
BH 01	D D D	1.20 2.00 3.00 4.50	PI/63 PI/63 PSD PSD	42 26	40 40	23 21	17 19	92 96	16 18	CI CI	79 91	1.05 0.65	25 23	1.12 0.26										
TP 01	D	0.70	PI/63	25	41	21	20	78	16	CI	65	0.61	23	0.20										
Symb	ools:			D B	Disturb Bulk S	turbed Sa bed Sam Sample Sample	_			R 63 H PSD	Remould Passing (Hydrome Wet Siev	63μm eter		F	Plasticity I Filter Pape Continuou	er Suction	Tests	M HP	Triaxial U Multistage Hand Pen- Vane Test	e Triaxial etrometer			100mm speci 38mm speci	
							LA	BORA	ATORY	TEST	RES	ULT	S								Proje	ect R 5.01	eference 029	

Geotechnical Testing Facility


Slapton Hill Barn, Blakesley Road, Slapton, Towcester, Northants. NN12 8QD

 Telephone: 01327 860947/860060
 Fax: 01327 860430
 Email: groundtech@listersgeotechnics.co.uk
 IS

 Test Method: BS 1377 : Part 2 : 1990 : 9.2

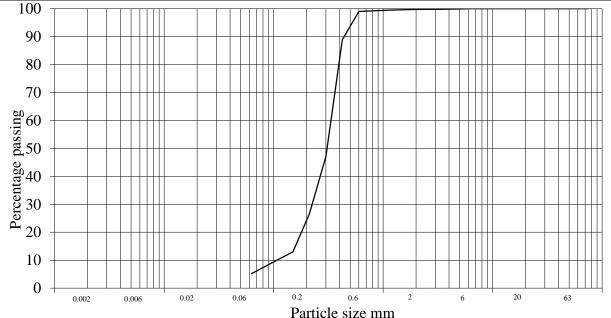
Quality Assured ISO 9001

		1 est IVI	cuiou. Do 15	// . Fait 2 . 1990	1.9.4
		BS test sieve	Cumulative Passing	Hydrometer Particle Diameter	Cumulative Passing
Site: Willow Lawn	, Ruislp Lido, HA4 7TY		- %	Tarticle Diameter	- %
Site. Whow Lawn	, reasip Eldo, III i / I I	75mm	100.00		
		63mm	100.00		
Test Location:	BH 01	50mm	100.00		
Sample Depth:	3.00m -3.45m	37.5mm	100.00		
		26.5mm	100.00		
		20mm	100.00		
		14mm	100.00		
		10mm	100.00		
		6.3mm	100.00		
		5mm	100.00		
Hydrometer No.:		3.5mm	100.00		
SG Gs:		2mm	99.90		
Water Visc. (N):		1.18mm	99.80		
Dry Mass of Soil afte	r pretreatment (g):	600μm	99.40		
•	-	425μm	93.10		
		300μm	60.00		
		212µm	34.80		
		150µm	17.70		
		63µm	6.90		
100		П П ИПП			

CLAY		SILT			SAND				COBBLES	
CLAT	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	CODDLLS
	7%	1			93%			0%		0%

PARTICLE SIZE DISTRIBUTION

Project Reference 25.01.029


Geotechnical Testing Facility

Slapton Hill Barn, Blakesley Road, Slapton, Towcester, Northants. NN12 8QD

Telephone: 01327 860947/860060 Fax: 01327 860430 Email: groundtech@listersgeotechnics.co.uk

Quality Assured ISO 9001

I		Test M	ethod: BS 13	77 : Part 2 : 1990	0:9.2
Site: Willow Lawn	, Ruislp Lido, HA4 7TY	BS test sieve	Cumulative Passing - %	Hydrometer Particle Diameter	Cumulative Passing - %
	,	75mm	100.00		
		63mm	100.00		
Test Location:	BH 01	50mm	100.00		
Sample Depth:	4.50m -5.00m	37.5mm	100.00		
		26.5mm	100.00		
		20mm	100.00		
		14mm	100.00		
		10mm	100.00		
		6.3mm	100.00		
		5mm	99.90		
Hydrometer No.:		3.5mm	99.80		
SG Gs:		2mm	99.70		
Water Visc. (N):		1.18mm	99.50		
Dry Mass of Soil after	r pretreatment (g):	600μm	99.00		
-		425μm	88.90		
		300μm	47.10		
		212μm	26.60		
		150μm	13.00		
		63µm	5.20		
100		·			

CLAY		SILT			SAND			COBBLES		
CLAT	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	COBBLES
	5%	1			95%			0%		0%

PARTICLE SIZE DISTRIBUTION

Project Reference 25.01.029

Geotechnical Testing Facility

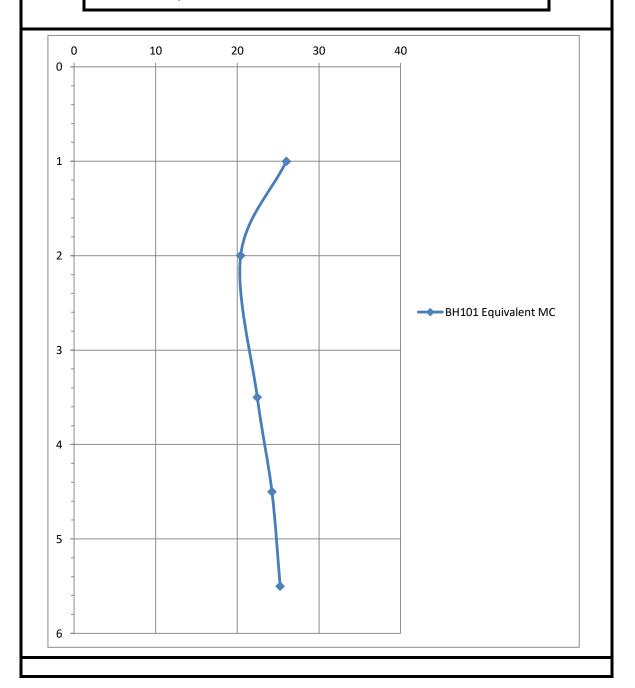
Slapton Hill Barn, Blakesley Road, Slapton, Towcester, Northants. NN12 8QD

Telephone:- 01327 860947/860060 Email: lab@listersgeotechnics.co.uk

P	ROJECT INFORMATION	SAMP	LE INFORMATION	
Site Location:-	Woody Bay, Ruislip Lido	Laboratory Tests Undertaken:- TEST TYPE	TEST METHO	OD TESTE
	HA47TY	Natural Moisture Contents (MC%)	(BS 1377:Part 2:1990 Clau	ise 3.2)
		Liquid Limits (%)	(BS 1377:Part 2:1990 Clau	· · · · · · · · · · · · · · · · · · ·
		Plastic Limits (%)	(BS 1377:Part 2:1990 Clau	· ·
		Plasticity Index (%)	(BS 1377:Part 2:1990 Clau	· · · · · · · · · · · · · · · · · · ·
		Saturated Moisture Content (%)	(BS1377 : Part 2 : 1990, cl	· · · · · · · · · · · · · · · · · · ·
		PSD - Wet Sieving	(BS 1377:Part 2:1990 Clau	· · · · · · · · · · · · · · · · · · ·
Client Reference:-	Geo Integrity	Engineering Sample Descriptions	(BS 5930 : Section 6)	
	2.081	Passing 425/63 (µm)	-	√
		Hydrometer	(BS 1377:Part 2:1990 Clau	ise 9.5)
Date Samples Recei	ved:- 31 January 2025	Loss on Ignition (%)	-	
Date Testing Compl	•	Soil Suctions (kPa)	BRE Digest IP 4/93, 1993	
zwo zosone		Bulk Density (Mg/m ³)	(BS 1377:Part 2:1990 Clau	ise 7.2)
		Strength Tests	(BS 1377:Part 7:1990 Clau	
		Soluble Sulphate Content (SO ₄ g/l)	(BS 1377:Part 3:1990 Clau	
		pH value	(BS 1377:Part 3:1990 Clau	
		California Bearing Ratios (CBR)	(BS 1377:Part 4:1990 Clau	,
		Compaction Tests	(BS 1377:Part 4:1990 Clau	· · · · · · · · · · · · · · · · · · ·
The results relate only to	the samples tested	The Process of the Pr		,
	be reproduced, except with full and written approval of	Laboratory testing in accord with BS EN	N ISO/IEC 17025-2000 and	
GROUNDTECH LABO	RATORIES	Quality Management in accord with ISC	9001	
Signed on behalf of G	GroundTech Laboratories:	Technical Sign	natory	Quality Assured to ISO 9001
Gl	EOTECHNICAL LABORATORY T	EST RESULTS	Report No:	25.01.030

Geotechnical Testing Facility

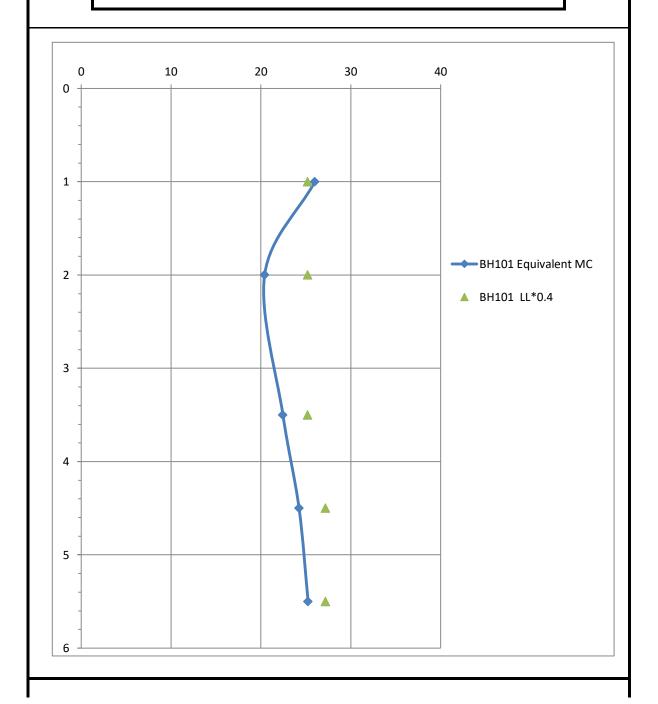
Slapton H	lill Barn,	Blakesley 860947/86	Road, S			ester, N		its. NN12 360430	2 8QD		Email: g	roundt	ech@l	istersgeote	echnics.co	.uk								y Assured O 9001
	SAM	PLES			CL	ASS	IFIC	CATIC	N TEST	ΓS		CLA	SSI	FICAT	ION T	TEST:	S	Š	STREN	NGTH	TESTS	5		MICAL ESTS
Test Location	Sample Type	Sample Depth -m	Test Type	WC %	LL %	PL %	PI %	Passing 425 µm %	Modified PI %	Class	Passing 63 µm %	WC/ LL	PL+ 2%	Liquidity Index	Loss on Ignition %	Soil Suction kPa	Bulk Density Mg/m³	Test Type	Cell Pressure kN/m²	Deviator Stress kN/m²	Apparent Cohesion kN/m²	ф	pH Value	Soluble Sulphate Content SO4 g/l
BH 101	D D D D	1.00 2.00 3.50 4.50 5.50	PI/63 PI/63 PI/63 PI/63 PI/63	20 22 24 25		25 24 24 26 28 urbed Samed Sam	•	100 98 98 99 99	38 38 38 42 40	CH CH CH CH CH	98 96 97 98 97		27 26 26 28 30	0.03 -0.10 -0.05 -0.05 -0.08	Plasticity Filter Pap		Tests	T M	Triaxial U Multistage				100mm spec 38mm speci	imen
				В	Bulk S		_			H PSD	Hydrome Wet Siev	ter		CC	Continuo			HP	Hand Pen Vane Test	etrometer		~		
							LA	BORA	ATORY	TEST	RES	ULT	S								Proje	ect F 5.01	Reference 1.030	


PROJECT NUMBER PROJECT NAME CLIENT

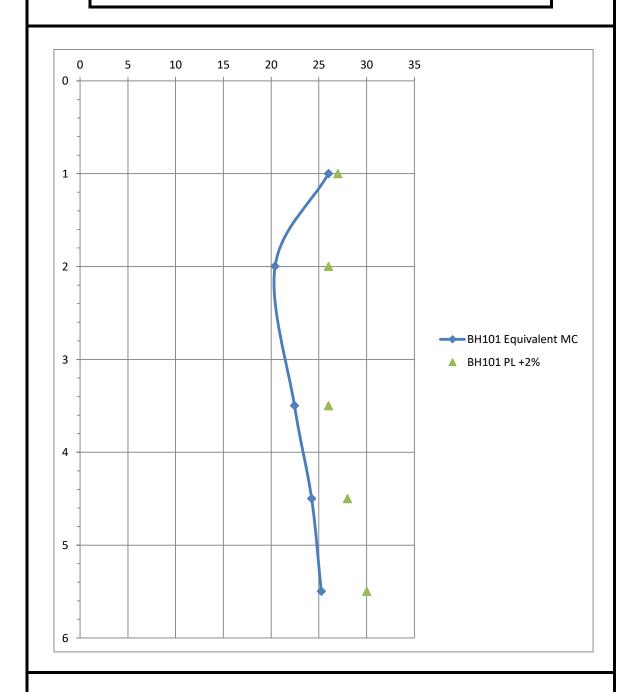
Woody Bay, Ruislip Lido Hillingdon Borough Council 03/03/2025

,24-12-14

BH101 EQUIVALENT MOISTURE CONTENT VS. DEPTH


REPORT DATE

PROJECT NUMBER PROJECT NAME CLIENT REPORT DATE ,24-12-14 Woody Bay, Ruislip Lido Hillingdon Borough Council 03/03/2025


BH101 MC > LIQUID LIMIT*0.4 VS. DEPTH

PROJECT NUMBER PROJECT NAME CLIENT REPORT DATE ,24-12-14 Woody Bay, Ruislip Lido Hillingdon Borough Council 03/03/2025

BH101 MC > PLASTIC LIMIT + 2 VS. DEPTH

Geo-Integrity4 Church Street Buckingham

MK18 1QE

Analytical Test Report: L25/00956/GIN - 25-56430

Your Project Reference: Willow Lawn, Ruislip Lido, HA4 7TY 24-12-14

Your Order Number: Q24-00626/1 Samples Received / Instructed: 30/01/2025 / 30/01/2025

Report Issue Number: 1 Sample Tested: 30/01 to 14/02/2025

Samples Analysed: 4 sample(s) Report issued: 14/02/2025

Signed

James Gane Analytical Services Manager

CTS

Notes:

General

Please refer to Methodologies page for details pertaining to the analytical methods undertaken.

Samples will be retained for 14 days after issue of this report with the exception of the asbestos test portion which is held for 6 months unless otherwise requested.

 $Moisture\ Content\ was\ determined\ in\ accordance\ with\ CTS\ method\ statement\ MS-CL-Sample\ Prep,\ oven\ dried\ at < 30^{\circ}C.$

Moisture Content is reported as a percentage of the dry mass of soil, this calculation is in accordance with BS1377, Part 2, 1990, Clause 3.2

Stone Content was determined in accordance with CTS method statement MS - CL - Sample Prep and refers to the percentage of stones retained on a 10mm BS test sieve.

Where specification limits are included these are for guidance only. Where a measured value has been highlighted this is not implying acceptance or failure and certainty of measurement values have not been taken into account.

Uncertainty of measurement values are available on request.

Samples were supplied by customer, results apply to the samples as received.

Asbestos

Please note: Where futher analaysis is required samples identified as containing asbestos are screened and tested on an as recevied basis. No correction is made for moisture content and other than the asbestos test(s) these results are not covered by our accrediation

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation

Deviating Samples

On receipt samples are compared against our sample holding and handling protocols, where any deviations have been noted these are reported on our deviating sample page (if present)

Accreditation Key

This report shall not be reproduce except in full

UKAS = UKAS Accreditation, MCERTS = MCERTS Accreditation, u = Unaccredited, subUKAS - Subcontracted to a laboratory UKAS accredited for this test, subMCERTS - Subcontracted to a laboratory MCERTS accredited for this test

 $\label{eq:mcert} \mbox{MCERTS Accreditation only covers the SAND, CLAY and LOAM matrices}$

UKAS accreditation on waters only covers the Ground water and Surface water matrices

Date of Issue: 21.01.2025 Issued by: J. Gane Issue No: 4

Rev No: 23

Analytical Test Results - Solid

7 - 11 Harding Street Leicester LE1 4DH

L25/00956/GIN - 25-56430 Project Reference - Willow Lawn, Ruislip Lido, HA4 7TY 24-12-14

Lab Reference			444381	444382
Client Sample ID			-	-
surface to				
Client Comple Leasting			TD1	TDO
Client Sample Location			TP1	TP2
Client Sample Type			-	-
Client Sample Number			-	-
Depth - Top (m)			0.50	0.30
Depth - Bottom (m)			0.50	0.30
Date of Sampling			23/01/2025	23/01/2025
Time of Sampling			-	-
Sample Matrix			Clay	Clay
Determinant	Units	Accreditation	•	-
Arsenic	(mg/kg)	MCERTS	20	14
Cadmium	(mg/kg)	MCERTS	1.3	1.1
Chromium (Total)	(mg/kg)	UKAS	16	14
Copper	(mg/kg)	MCERTS	77	47
Lead	(mg/kg)	MCERTS	560	140
Mercury	(mg/kg)	UKAS	< 2.5	< 2.5
Nickel	(mg/kg)	MCERTS	30	29
Selenium	(mg/kg)	u	< 8.0	< 8.0
Zinc	(mg/kg)	MCERTS	380	170
Chromium (Hexavalent)	(mg/kg)	u	< 1.0	< 1.0
Acenaphthene	(mg/kg)	MCERTS	0.84	11
Acenaphthylene	(mg/kg)	UKAS	3.2	1.3
Anthracene	(mg/kg)	UKAS	5.0	31
Benzo (a) anthracene	(mg/kg)	MCERTS	8.2	40
Benzo (a) pyrene	(mg/kg)	MCERTS	7.3	34
Benzo (b) fluoranthene	(mg/kg)	MCERTS	10	48
Benzo (g, h, i) perylene	(mg/kg)	MCERTS	4.1	21
Benzo (k) fluoranthene	(mg/kg)	MCERTS	3.7	17
Chrysene	(mg/kg)	MCERTS	7.2	37
Dibenzo (a,h) anthracene	(mg/kg)	MCERTS	1.1	6.0
Fluoranthene	(mg/kg)	MCERTS	21	140
Fluorene	(mg/kg)	MCERTS	3.1	9.0
Indeno (1, 2, 3,-cd) pyrene	(mg/kg)	MCERTS	4.4	22
Naphthalene	(mg/kg)	MCERTS	0.79	0.80
Phenanthrene	(mg/kg)	MCERTS	16	130
Pyrene	(mg/kg)	MCERTS	15	110
Total PAH (Sum of USEPA 16)	(mg/kg)	UKAS	110	640
			No asbestos	No asbestos
Asbestos	-	UKAS	detected	detected

7 - 11 Harding Street Leicester

L25/00956/GIN - 25-56430 Project Reference - Willow Lawn, Ruislip Lido, HA4 7TY 24-12-14

Analytical Test Results - Chemical Analysis

Lab Reference			444381	444383	444384
Client Sample ID			-	-	-
Client Sample Location			TP1	BH01	BH01
chefit sumple Education				Biloi	BHOI
Client Sample Type			-	-	-
Client Sample Number			-	-	-
Depth - Top (m)			0.50	2.00	4.00
Depth - Bottom (m)			0.50	2.45	4.45
Date of Sampling			23/01/2025	21/01/2025	22/01/2025
Time of Sampling			-	-	-
Sample Matrix			Clay	Clay	Sand
Determinant	Units	Accreditation			
Water soluble sulphate (as SO ₄)	(mg/l)	u	62	77	83
Acid Soluble Sulphate	(%)	u	0.04	0.02	< 0.01
Total Sulphur	(%)	UKAS	0.04	0.01	< 0.01
pH Value	pH Units	MCERTS	7.7	7.8	7.7

L25/00956/GIN - 25-56430 Project Reference - Willow Lawn, Ruislip Lido, HA4 7TY 24-12-14

Analytical Test Results - VPH / EPH

Lab Reference			444381	444382
Client Sample ID			-	-
Client Sample Location			TP1	TP2
cheric sample Essation			1	2
Client Sample Type			-	-
Client Sample Number			-	-
Depth - Top (m)			0.50	0.30
Depth - Bottom (m)			0.50	0.30
Date of Sampling			23/01/2025	23/01/2025
Time of Sampling			-	-
Sample Matrix			Clay	Clay
Determinant	Units	Accreditation		
Benzene	(mg/kg)	MCERTS	< 0.01	< 0.01
Toluene	(mg/kg)	MCERTS	< 0.01	< 0.01
Ethylbenzene	(mg/kg)	MCERTS	< 0.01	< 0.01
m&p Xylene	(mg/kg)	MCERTS	< 0.02	< 0.02
o-Xylene	(mg/kg)	MCERTS	< 0.01	< 0.01
MTBE	(mg/kg)	MCERTS	< 0.01	< 0.01
Total >C ₅ to C ₄₀ [EH_2D+HS_1D_Total]	(mg/kg)	MCERTS	120	290
Total TPH >C ₅ to C _{6 [HS_MS_1D_TOTAL]}	(mg/kg)	u	< 1.0	< 1.0
Total TPH >C ₆ to C _{7 [HS_MS_1D_TOTAL]}	(mg/kg)	u	< 1.0	< 1.0
Total TPH >C ₇ to C _{8 [HS_MS_1D_TOTAL]}	(mg/kg)	u	< 1.0	< 1.0
Total TPH >C ₈ to C _{10 [EH_2D_TOTAL]}	(mg/kg)	MCERTS	< 5.0	< 50.0
Total TPH >C ₁₀ to C ₁₂ [EH_2D_TOTAL]	(mg/kg)	MCERTS	< 5.0	< 50.0
Total TPH >C ₁₂ to C _{16 [EH_2D_TOTAL]}	(mg/kg)	MCERTS	< 5.0	< 50.0
Total TPH >C ₁₆ to C _{21 [EH_2D_TOTAL]}	(mg/kg)	MCERTS	29	59
Total TPH >C ₂₁ to C ₃₅ [EH_2D_TOTAL]	(mg/kg)	MCERTS	76	180

L25/00956/GIN - 25-56430

Project Reference - Willow Lawn, Ruislip Lido, HA4 7TY 24-12-14

Certificate Of Analysis - WAC Suite

7 - 11 Harding Street Leicester LE1 4DH

Lab Reference		444381					
Client Sample ID		-					
Client Sample Location		TP1					
Client Sample Type		-					
Client Sample Number		-					
Depth - Top (m)		0.5					
Depth - Bottom (m)		0.5					
Date of Sampling		23/01/2025					
Time of Sampling		-					
Sample Description		Made Ground- fragments	dark greyish brown grav	elly s	lightly sandy silty clay v	with occasional concrete	e organic matter brick
Sample Matrix		Clay					
Moisture Content (%)		13					
Stone content (%)		37					
			Determined Result		Inert Waste Landfill	Stable non reactive hazardous waste in a non hazardous landfill	Hazardous Waste Landfill
Solid Analysis							
Total Organic Carbon	%	MCERTS	3.1		3.0	5.0	6.0
Loss on Ignition	%	UKAS	4.6		-	-	10.0
BTEX	mg/kg	MCERTS	< 0.06		6.00	-	-
PCB's (7 Congeners)	mg/kg	MCERTS	< 0.025		1.00	-	-
Mineral Oil (>C10 to C40) [EH_CU_1D_Tota	mg/kg	u	130		500	-	-
РАН	mg/kg	u	110		100	-	-
рН	units	MCERTS	7.7		-	> 6	-
Eluate Analysis							
Arsenic	mg/kg	UKAS	0.05		0.50	2	25
Barium	mg/kg	UKAS	0.17		20	100	300
Cadmium	mg/kg	UKAS	< 0.0025		0.04	1	5
Chromium (total)	mg/kg	UKAS	0.01		0.5	10	70
Copper	mg/kg	UKAS	0.06		2.0	50	100
Mercury	mg/kg	UKAS	< 0.00050		0.01	0.2	2
Molybdenum	mg/kg	UKAS	0.03		0.5	10.0	30
Nickel	mg/kg	UKAS	< 0.075		0.4	10.0	40
Lead	mg/kg	UKAS	0.06		0.5	10.0	50
Antimony	mg/kg	UKAS	< 0.050		0.06	0.7	5
Selenium	mg/kg	UKAS	< 0.0050		0.1	0.5	7
Zinc	mg/kg	u	< 0.25		4	50	200
Chloride	mg/kg	UKAS	7		800	15000	25000
Fluoride	mg/kg	u	7		10	150	500
Sulphate (as SO ₄)	mg/kg	UKAS	< 10		1000	20000	50000
Total Dissolved Solids	mg/kg	u	660		4000	60000	100000
Phenol Index	mg/kg	u	< 1.0		1	-	-
Dissolved Organic Carbon	mg/kg	UKAS	40.0		500	800	1000

L25/00956/GIN - 25-56430

Project Reference - Willow Lawn, Ruislip Lido, HA4 7TY 24-12-14

Sample Descriptions

7 - 11 Harding Street Leicester LE1 4DH

Lab Reference	Client Sample ID	Client Sample Location	Client Sample Type	Client Sample Number	Description	Moisture Content (%)	Stone Content (%)	Passing 2mm test sieve (%)
444381	-	TP1	-	-	Made Ground- dark greyish brown gravelly slightly sandy silty clay with occasional concrete organic matter brick fragments	13	37	89
444382	-	TP2	-	-	Made Ground- dark greyish brown gravelly slightly sandy silty clay with frequent concrete slag brick fragments	12	40	-
444383	-	BH01	-	-	Brown slightly gravelly silty clay with rare organic matter	-	-	100
444384	-	BH01	-	-	Light brown slightly gravelly silty sand with rare organic matter	-	-	100

L25/00956/GIN - 25-56430

Project Reference - Willow Lawn, Ruislip Lido, HA4 7TY 24-12-14

Sample Comments

Lab Reference	Client Sample ID	Client Sample Location	Client Sample Type	Client Sample Number	Comments
444381	-	TP1	-	-	$\label{eq:VPH/BTEX} \textit{VPH/BTEX} - \textit{Sample taken from container with headspace}. \textit{PAHAR 1/10 dilution dark extract}$
444382	=	TP2	=	-	VPH/BTEX - Sample taken from container with headspace. EPH 1/10 Dilution PAHAR 1/10 dilution dark extract
444383	-	BH01	-	-	
444384	-	BH01	-	-	

L25/00956/GIN - 25-56430 Project Reference - Willow Lawn, Ruislip Lido, HA4 7TY 24-12-14 Analysis Methodologies

Test Code	Test Name / Reference	Sample condition for analysis	Sample Preperation	Test Details
ANIONSS	MS - CL - Anions by Aquakem (2:1Extract)	Oven dried	Passing 2mm test sieve	Determination of Anions (inc Sulphate, chloride etc.) in soils by Aquakem. Analysis is based on a 2:1 water to soil extraction ratio
WACMETALS1	MS-CL-Metals in Waters by ICP-MS (WAC)	As received	MS-CL-Soil Leachate Preparation	Determination of dissolved metals in leachates via ICP-MS, expressed as quantity of analyte leached from the original material.
WACDOC	MS - CL - DOC (WAC)	As received	BSEN:12457 Leaching	Determination of dissolved organic carbon in a leachate as part of a WAC test
SKALARHCS	MS - CL - Hexavalent Chromium by Skalar	As received	Passing 10mm test sieve	Determination of hexavalent chromium in soil using Skalar segmented flow analyser
ICPMETS	MS - CL - ICP Metals	Air dried	Passing 10mm test sieve	Determination of metals in soils via ICP
WACPHS	MS - CL - pH in Soils (WAC)	As received	BSEN:12457 Leaching	Determination of pH in soils as part of a WAC test via pH probe
PHS	MS - CL - pH in Soils	As received	Passing 10mm test sieve	Determination of pH in soils using a pH probe (using a 1:3 soil to water extraction)
PCB7S	MS - CL - PCB Soils	As received	Passing 10mm test sieve	Determination of PCB's (7 congeners) in soils via GC-MS
PAHASRDS	MS - CL - PAH (As Received)	As received	Passing 10mm test sieve	Determination of Polyaromatic hydrocarbons in soil via GC-MS
WACANIONS	MS - CL - Anions by Aquakem (WAC)	As received	BSEN:12457 Leaching	Determination of sulphate, chloride and fluoride in a leachate as part of a WAC test using a Aquakem analyser
TDSL	MS-CL-Conductivity in Water(TDS by Calc)	As received	BSEN:12457 Leaching	Determination of total dissolved solids in leachates (by calculation)
ASSO4S	MS - CL - Acid Soluble Sulphate	Oven Dried	Passing 2mm test sieve	Determination of total sulphate in soils by acid extraction followed by ICP analysis
WACTOCS	MS - CL - TOC Eltra (WAC)	Air dried	Passing 10mm test sieve	Determination of Total Organic Carbon in soil as part of a WAC test
TPHSC	MS - CL - TPH (GC-FID) Scrubbed	As received	Passing 10mm test sieve	Determination of Total Petroleum Hydrocarbons in soil using GC-FID. Sample is subjected to a fluorocil cleanup (scrubbing stage) prior to analysis
WACSKALAR	MS - CL - Phenols by Skalar (WAC)	As received	BSEN:12457 Leaching	Determination of Total Phenols within leachate as part of a WAC test using a Skalar Segmented flow analyser
GCXGCS	MS - CL - TPH & EPH by GCXGC	As received	Passing 10mm test sieve	Determination of TPH and EPH in soils via GCxGC-FID
CWGS	Calculation from VPH-S and EPH-S	As received	Passing 10mm test sieve	Determination of TPH CWG (Volatile Petroleum Hydrocarbons and Extractable Petroleum Hydrocarbons) in soils via Headspace-GC-MS and GC-GC-FID respectively
VPHS	MS - CL - VPH	As received	Passing 10mm test sieve	Determination of VPH in soils via Headspace-GC-MS
ASB	MS - AS - Asbestos	-	-	Fibre identification is in accordance with in house documented methods which are based on the procedure documented in the HSE Document HSG 248 "Asbestos: The analysts guide for sampling, analysis and clearance procedures"
SAMPLEPREP	MS - CL - Sample Preparation	-	-	Preparation of samples (including determination of moisture content) to allow for subsequent analysis
LEACH-SS-P	MS-CL-Soil Leachate Preparation (SS)	As Received	All crushed to pass 4mm test sieve	Preparation of single stage soil leachates in accordance with MS-CL-Soil Leachate Preparation
1377LOI	BS1377 LoI	Oven dried	Passing 2mm test sieve	Testing was in accordance with BS 1377: Part 3: 2018 + A1:2021 Clause 6. Determination of the mass loss on ignition. Some information required by BS1377: 2016: Part 1 has not been reported. This information is available on request.
1377TS-ELT	BS1377 Total Sulphur Content by HTC	Oven dried	BS1377 : Part 1 : 2016	Total Sulphur Content testing of Soil in accordance with BS 1377 : Part 3 : 2018 + A1 : 2021 Clause 7.10 (using Eltra CS-800 Analyser)

L25/00956/GIN - 25-56430

Project Reference - Willow Lawn, Ruislip Lido, HA4 7TY 24-12-14

Sample Deviations

Deviations are listed below against each sample and associated test method, where deviation(s) are noted it means data may not be representative of the sample at the time of sampling and it is possible that results provided may be compromised.

Observations on receipt

- A No date of sampling provided
- W No time of sampling provided for water sample
- C Received in inappropriate container
- H Contains headspace
- T Temperature on receipt exceeds storage temperature
- R Sample(s) received with less than 96 hours for testing to commence/complete, any result formally classed as deviating will be marked with an X against the applicable test (i.e. RX)

Observations whilst in laboratory

X - Exceeds sampling to extraction or analysis timescales

Lab Reference	Client Sample ID	Client Sample Location	Client Sample Type	Client Sample Number	Test	Deviations
444381	-	TP1	-	-	MS - CL - pH in Soils	RX
444381	-	TP1	-	-	MS - CL - pH in Soils (WAC)	RX
444381	-	TP1	-	-	MS - CL - TPH & EPH by GCXGC	Х
444381	-	TP1	-	-	MS - CL - VPH	RX
444382	-	TP2	-	-	MS - CL - TPH & EPH by GCXGC	Х
444382	-	TP2	-	-	MS - CL - VPH	RX
444383	-	BH01	-	-	MS - CL - pH in Soils	RX
444384	-	BH01	-	-	MS - CL - pH in Soils	RX

L25/00956/GIN - 25-56430

Project Reference - Willow Lawn, Ruislip Lido, HA4 7TY 24-12-14

HWOL TPH Acronym Index

MS

Mass Spectrometry

Acronym	Description
HS	Headspace Analysis
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent
CU	Clean-up e.g. by florisil, silica gel
1D	GC - Single coil gas chromatography
Total	Aliphatics and Aromatics
AL	Aliphatics Only
AR	Aromatics Only
2D	GC-GC - Double Coil Gas Chromatography
#1	EH_Total but with humics mathmatically subtracted
#2	EH_Total but with fatty acids mathmatically subtracted
_	Operator - underscore to separate acronyms (except for +)
+	Operator to indicate cumlative e.g. EH+HS_Total or EH_CU+HS_Total

Geo-Integrity4 Church Street Buckingham

MK18 1QE

Analytical Test Report: L25/00957/GIN - 25-56432

Your Project Reference: Woody Bay, Ruislip Lido, HA4 7TY 24-12-14

Your Order Number: Q24-00626/1 Samples Received / Instructed: 30/01/2025 / 30/01/2025

Report Issue Number: 1 Sample Tested: 30/01 to 14/02/2025

Samples Analysed: 4 sample(s) Report issued: 14/02/2025

Signed

James Gane Analytical Services Manager

CTS

Notes:

General

Please refer to Methodologies page for details pertaining to the analytical methods undertaken.

Samples will be retained for 14 days after issue of this report with the exception of the asbestos test portion which is held for 6 months unless otherwise requested.

 $Moisture\ Content\ was\ determined\ in\ accordance\ with\ CTS\ method\ statement\ MS-CL-Sample\ Prep,\ oven\ dried\ at < 30^{\circ}C.$

Moisture Content is reported as a percentage of the dry mass of soil, this calculation is in accordance with BS1377, Part 2, 1990, Clause 3.2

Stone Content was determined in accordance with CTS method statement MS - CL - Sample Prep and refers to the percentage of stones retained on a 10mm BS test sieve.

Where specification limits are included these are for guidance only. Where a measured value has been highlighted this is not implying acceptance or failure and certainty of measurement values have not been taken into account.

Uncertainty of measurement values are available on request.

Samples were supplied by customer, results apply to the samples as received.

Asbestos

Please note: Where futher analaysis is required samples identified as containing asbestos are screened and tested on an as recevied basis. No correction is made for moisture content and other than the asbestos test(s) these results are not covered by our accrediation

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation

Deviating Samples

On receipt same compared against our sample holding and handling protocols, where any deviations have been noted these are reported on our deviating sample page (if present)

Accreditation Key

This report shall not be reproduce except in full

UKAS = UKAS Accreditation, MCERTS = MCERTS Accreditation, u = Unaccredited, subUKAS - Subcontracted to a laboratory UKAS accredited for this test, subMCERTS - Subcontracted to a laboratory MCERTS accredited for this test

 $\label{eq:mcert} \mbox{MCERTS Accreditation only covers the SAND, CLAY and LOAM matrices}$

UKAS accreditation on waters only covers the Ground water and Surface water matrices

Date of Issue: 21.01.2025 Issued by: J. Gane

Issue No: 4 Rev No: 23

Analytical Test Results - Solid

7 - 11 Harding Street Leicester LE1 4DH

L25/00957/GIN - 25-56432 Project Reference - Woody Bay, Ruislip Lido, HA4 7TY 24-12-14

Lab Reference			444392	444393
Client Sample ID				
Client Sample ID			-	-
Client Sample Location			TP102	TP101
Client Sample Type			_	_
Client Sample Type Client Sample Number			-	-
Depth - Top (m)			0.00	0.00
Depth - Bottom (m)			0.60	0.50
			23/01/2025	22/01/2025
Date of Sampling Time of Sampling			23/01/2025	22/01/2025
Sample Matrix			Sand	Sand
	11	A	Janu	Janu
Determinant	Units	Accreditation		
Arsenic	(mg/kg)	MCERTS	25	14
Cadmium	(mg/kg)	MCERTS	1.3	0.9
Chromium (Total)	(mg/kg)	UKAS	17	9.1
Copper	(mg/kg)	MCERTS	140	84
Lead	(mg/kg)	MCERTS	460	340
Mercury	(mg/kg)	UKAS	< 2.5	< 2.5
Nickel	(mg/kg)	MCERTS	36	21
Selenium	(mg/kg)	u	< 8.0	< 8.0
Zinc	(mg/kg)	MCERTS	290	150
Chromium (Hexavalent)	(mg/kg)	u	< 1.0	< 1.0
Acenaphthene	(mg/kg)	MCERTS	< 0.20	< 0.02
Acenaphthylene	(mg/kg)	UKAS	< 0.20	0.03
Anthracene	(mg/kg)	UKAS	0.44	0.04
Benzo (a) anthracene	(mg/kg)	MCERTS	1.5	0.14
Benzo (a) pyrene	(mg/kg)	MCERTS	1.5	0.17
Benzo (b) fluoranthene	(mg/kg)	MCERTS	1.9	0.25
Benzo (g, h, i) perylene	(mg/kg)	MCERTS	0.94	0.13
Benzo (k) fluoranthene	(mg/kg)	MCERTS	0.73	0.08
Chrysene	(mg/kg)	MCERTS	1.5	0.17
Dibenzo (a,h) anthracene	(mg/kg)	MCERTS	0.28	0.04
Fluoranthene	(mg/kg)	MCERTS	3.1	0.28
Fluorene	(mg/kg)	MCERTS	< 0.20	< 0.02
Indeno (1, 2, 3,-cd) pyrene	(mg/kg)	MCERTS	0.88	0.11
Naphthalene	(mg/kg)	MCERTS	< 0.20	< 0.02
Phenanthrene	(mg/kg)	MCERTS	1.2	0.12
Pyrene	(mg/kg)	MCERTS	2.7	0.12
•			18	1.9
Total PAH (Sum of USEPA 16)	(mg/kg)	UKAS	No asbestos	No asbestos
Asbestos	-	UKAS	detected	detected

detected

detected

L25/00957/GIN - 25-56432 Project Reference - Woody Bay, Ruislip Lido, HA4 7TY 24-12-14

Analytical Test Results - Chemical Analysis

Lab Reference			444394	444395
Client Sample ID			-	-
Client Sample Location			BH101	BH101
Client Sample Type			-	-
Client Sample Number			-	-
Depth - Top (m)			0.50	1.50
Depth - Bottom (m)			1.00	2.00
Date of Sampling			22/01/2025	23/01/2025
Time of Sampling			-	-
Sample Matrix			Clay	Clay
Determinant	Units	Accreditation		
Water soluble sulphate (as SO ₄)	(mg/l)	u	85	360
Acid Soluble Sulphate	(%)	u	0.05	0.12
Total Sulphur	(%)	UKAS	0.01	0.03
pH Value	pH Units	MCERTS	5.1	6.1

L25/00957/GIN - 25-56432 Project Reference - Woody Bay, Ruislip Lido, HA4 7TY 24-12-14

Analytical Test Results - VPH / EPH

Lab Reference			444392	444393	
Client Sample ID			_	_	
chene sumple to			_	_	
			T0.400	TD404	
Client Sample Location			TP102	TP101	
Client Sample Type			-	-	
Client Sample Number			-	-	
Depth - Top (m)			0.00	0.00	
Depth - Bottom (m)			0.60	0.50	
Date of Sampling			23/01/2025	22/01/2025	
Time of Sampling			-	-	
Sample Matrix			Sand	Sand	
Determinant	Units	Accreditation			
Benzene	(mg/kg)	MCERTS	< 0.01	< 0.01	
Toluene	(mg/kg)	MCERTS	< 0.01	< 0.01	
Ethylbenzene	(mg/kg)	MCERTS	< 0.01	< 0.01	
m&p Xylene	(mg/kg)	MCERTS	< 0.02	< 0.02	
o-Xylene	(mg/kg)	MCERTS	< 0.01	< 0.01	
MTBE	(mg/kg)	MCERTS	< 0.01	< 0.01	
Total >C ₅ to C ₄₀ [EH_2D+HS_1D_Total]	(mg/kg)	MCERTS	110	34	
Total TPH >C ₅ to C _{6 [HS_MS_1D_TOTAL]}	(mg/kg)	u	< 1.0	< 1.0	
Total TPH >C ₆ to C _{7 [HS_MS_1D_TOTAL]}	(mg/kg)	u	< 1.0	< 1.0	
Total TPH >C ₇ to C _{8 [HS_MS_1D_TOTAL]}	(mg/kg)	u	< 1.0	< 1.0	
Total TPH >C ₈ to C _{10 [EH_2D_TOTAL]}	(mg/kg)	MCERTS	< 5.0	< 5.0	
Total TPH >C ₁₀ to C _{12 [EH_2D_TOTAL]}	(mg/kg)	MCERTS	< 5.0	< 5.0	
TOTAL TELL COLO COLO CHE [EH_2D_TOTAL]			< 5.0	< 5.0	
Total TPH $>$ C ₁₀ to C ₁₂ [EH_2D_TOTAL]	(mg/kg)	MCERTS	٧ 5.0		
	(mg/kg) (mg/kg)	MCERTS	22	< 5.0	
Total TPH >C ₁₂ to C _{16 [EH_2D_TOTAL]}				< 5.0 26	

L25/00957/GIN - 25-56432

Project Reference - Woody Bay, Ruislip Lido, HA4 7TY 24-12-14

Certificate Of Analysis - WAC Suite

7 - 11 Harding Street Leicester LE1 4DH

Lab Reference		444392								
Client Sample ID		-								
Client Sample Location		TP102								
Client Sample Type	-									
Client Sample Number	-									
Depth - Top (m)	0									
Depth - Bottom (m)	0.6									
Date of Sampling	23/01/2025									
Time of Sampling	-									
Sample Description	Made Ground- dark greyish brown gravelly clayey silty sand with occasional brick fragments concrete organic									
Sample Matrix	matter Sand									
Moisture Content (%)		17								
Stone content (%)		12								
			Determined Result		Inert Waste Landfill	Stable non reactive hazardous waste in a non hazardous landfill	Hazardous Waste Landfill			
Solid Analysis										
Total Organic Carbon	%	MCERTS	6.7		3.0	5.0	6.0			
Loss on Ignition	%	UKAS	5.6		-	-	10.0			
BTEX	mg/kg	MCERTS	< 0.06		6.00	-	-			
PCB's (7 Congeners)	mg/kg	MCERTS	< 0.025		1.00	-	-			
Mineral Oil (>C10 to C40) [EH_CU_1D_Tota	mg/kg	u	220		500	-	-			
PAH	mg/kg	u	18		100	-	-			
рН	units	MCERTS	7.8		-	> 6	-			
Eluate Analysis										
Arsenic	mg/kg	UKAS	0.08		0.50	2	25			
Barium	mg/kg	UKAS	0.12		20	100	300			
Cadmium	mg/kg	UKAS	< 0.0025		0.04	1	5			
Chromium (total)	mg/kg	UKAS	0.08		0.5	10	70			
Copper	mg/kg	UKAS	0.15		2.0	50	100			
Mercury	mg/kg	UKAS	< 0.00050		0.01	0.2	2			
Molybdenum	mg/kg	UKAS	0.07		0.5	10.0	30			
Nickel	mg/kg	UKAS	< 0.075		0.4	10.0	40			
Lead	mg/kg	UKAS	0.06		0.5	10.0	50			
Antimony	mg/kg	UKAS	< 0.050		0.06	0.7	5			
Selenium	mg/kg	UKAS	< 0.0050		0.1	0.5	7			
Zinc	mg/kg	u	< 0.25		4	50	200			
Chloride	mg/kg	UKAS	5		800	15000	25000			
Fluoride	mg/kg	u	7		10	150	500			
Sulphate (as SO ₄)	mg/kg	UKAS	< 10		1000	20000	50000			
Total Dissolved Solids	mg/kg	u	700		4000	60000	100000			
Phenol Index	mg/kg	u	< 1.0		1	-	-			
Dissolved Organic Carbon	mg/kg	UKAS	48.0		500	800	1000			

L25/00957/GIN - 25-56432

Project Reference - Woody Bay, Ruislip Lido, HA4 7TY 24-12-14

Sample Descriptions

7 - 11 Harding Street Leicester LE1 4DH

Lab Reference	Client Sample ID	Client Sample Location	Client Sample Type	Client Sample Number	Description	Moisture Content (%)	Stone Content (%)	Passing 2mm test sieve (%)
444392	-	TP102	-	-	Made Ground- dark greyish brown gravelly clayey silty sand with occasional brick fragments concrete organic matter	17	12	87
444393	-	TP101	-	-	Dark greyish brown slightly gravelly clayey silty sand with rare organic matter	21	8.9	-
444394	-	BH101	-	-	Greyish light brown slightly gravelly silty clay	-	-	100
444395	-	BH101	-	-	Greyish light brown slightly gravelly silty clay with occasional organic matter	-	-	100

L25/00957/GIN - 25-56432

Project Reference - Woody Bay, Ruislip Lido, HA4 7TY 24-12-14

BH101

Sample Comments

444395

 Lab Reference
 Client Sample ID
 Client Sample Location
 Client Sample Type
 Client Sample Number
 Comments

 444392
 TP102
 VPH/BTEX - Sample taken from container with headspace. PAHAR 1/10 dilution dark extract

 444393
 TP101
 VPH/BTEX - Sample taken from container with headspace.

 444394
 BH101

7 - 11 Harding Street Leicester LE1 4DH

7 - 11 Harding Street Leicester LE1 4DH

L25/00957/GIN - 25-56432 Project Reference - Woody Bay, Ruislip Lido, HA4 7TY 24-12-14

Analysis Methodologies

Test Code	Test Name / Reference	Sample condition for analysis	Sample Preperation	Test Details
ANIONSS	MS - CL - Anions by Aquakem (2:1Extract)	Oven dried	Passing 2mm test sieve	Determination of Anions (inc Sulphate, chloride etc.) in soils by Aquakem. Analysis is based on a 2:1 water to soil extraction ratio
WACMETALS1	MS-CL-Metals in Waters by ICP-MS (WAC)	As received	MS-CL-Soil Leachate Preparation	Determination of dissolved metals in leachates via ICP-MS, expressed as quantity of analyte leached from the original material.
WACDOC	MS - CL - DOC (WAC)	As received	BSEN:12457 Leaching	Determination of dissolved organic carbon in a leachate as part of a WAC test
SKALARHCS	MS - CL - Hexavalent Chromium by Skalar	As received	Passing 10mm test sieve	Determination of hexavalent chromium in soil using Skalar segmented flow analyser
ICPMETS	MS - CL - ICP Metals	Air dried	Passing 10mm test sieve	Determination of metals in soils via ICP
WACPHS	MS - CL - pH in Soils (WAC)	As received	BSEN:12457 Leaching	Determination of pH in soils as part of a WAC test via pH probe
PHS	MS - CL - pH in Soils	As received	Passing 10mm test sieve	Determination of pH in soils using a pH probe (using a 1:3 soil to water extraction)
PCB7S	MS - CL - PCB Soils	As received	Passing 10mm test sieve	Determination of PCB's (7 congeners) in soils via GC-MS
PAHASRDS	MS - CL - PAH (As Received)	As received	Passing 10mm test sieve	Determination of Polyaromatic hydrocarbons in soil via GC-MS
WACANIONS	MS - CL - Anions by Aquakem (WAC)	As received	BSEN:12457 Leaching	Determination of sulphate, chloride and fluoride in a leachate as part of a WAC test using a Aquakem analyser
TDSL	MS-CL-Conductivity in Water(TDS by Calc)	As received	BSEN:12457 Leaching	Determination of total dissolved solids in leachates (by calculation)
ASSO4S	MS - CL - Acid Soluble Sulphate	Oven Dried	Passing 2mm test sieve	Determination of total sulphate in soils by acid extraction followed by ICP analysis
WACTOCS	MS - CL - TOC Eltra (WAC)	Air dried	Passing 10mm test sieve	Determination of Total Organic Carbon in soil as part of a WAC test
TPHSC	MS - CL - TPH (GC-FID) Scrubbed	As received	Passing 10mm test sieve	Determination of Total Petroleum Hydrocarbons in soil using GC-FID. Sample is subjected to a fluorocil cleanup (scrubbing stage) prior to analysis
WACSKALAR	MS - CL - Phenols by Skalar (WAC)	As received	BSEN:12457 Leaching	Determination of Total Phenols within leachate as part of a WAC test using a Skalar Segmented flow analyser
GCXGCS	MS - CL - TPH & EPH by GCXGC	As received	Passing 10mm test sieve	Determination of TPH and EPH in soils via GCxGC-FID
CWGS	Calculation from VPH-S and EPH-S	As received	Passing 10mm test sieve	Determination of TPH CWG (Volatile Petroleum Hydrocarbons and Extractable Petroleum Hydrocarbons) in soils via Headspace-GC-MS and GC-GC-FID respectively
VPHS	MS - CL - VPH	As received	Passing 10mm test sieve	Determination of VPH in soils via Headspace-GC-MS
ASB	MS - AS - Asbestos	-	-	Fibre identification is in accordance with in house documented methods which are based on the procedure documented in the HSE Document HSG 248 "Asbestos: The analysts guide for sampling, analysis and clearance procedures"
SAMPLEPREP	MS - CL - Sample Preparation	-	-	Preparation of samples (including determination of moisture content) to allow for subsequent analysis
LEACH-SS-P	MS-CL-Soil Leachate Preparation (SS)	As Received	All crushed to pass 4mm test sieve	Preparation of single stage soil leachates in accordance with MS-CL-Soil Leachate Preparation
1377LOI	BS1377 LoI	Oven dried	Passing 2mm test sieve	Testing was in accordance with BS 1377: Part 3: 2018 + A1 :2021 Clause 6. Determination of the mass loss on ignition. Some information required by BS1377: 2016: Part 1 has not been reported. This information is available on request.
1377TS-ELT	BS1377 Total Sulphur Content by HTC	Oven dried	BS1377 : Part 1 : 2016	Total Sulphur Content testing of Soil in accordance with BS 1377 : Part 3 : 2018 + A1 : 2021 Clause 7.10 (using Eltra CS-800 Analyser)

7 - 11 Harding Street Leicester LE1 4DH

L25/00957/GIN - 25-56432

Project Reference - Woody Bay, Ruislip Lido, HA4 7TY 24-12-14

Sample Deviations

Deviations are listed below against each sample and associated test method, where deviation(s) are noted it means data may not be representative of the sample at the time of sampling and it is possible that results provided may be compromised.

Observations on receipt

- A No date of sampling provided
- W No time of sampling provided for water sample
- C Received in inappropriate container
- H Contains headspace
- T Temperature on receipt exceeds storage temperature
- R Sample(s) received with less than 96 hours for testing to commence/complete, any result formally classed as deviating will be marked with an X against the applicable test (i.e. RX)

Observations whilst in laboratory

X - Exceeds sampling to extraction or analysis timescales

Lab Reference	Client Sample ID	Client Sample Location	Client Sample Type	Client Sample Number	Test	Deviations
444392	-	TP102	-	-	MS - CL - pH in Soils (WAC)	RX
444392	-	TP102	-	-	MS - CL - TPH & EPH by GCXGC	Х
444392	-	TP102	-	-	MS - CL - VPH	RX
444393	-	TP101	-	-	MS - CL - PAH (As Received)	RX
444393	-	TP101	-	-	MS - CL - TPH & EPH by GCXGC	RX
444393	-	TP101	-	-	MS - CL - VPH	RX
444394	-	BH101	-	-	MS - CL - pH in Soils	RX
444395	-	BH101	-	-	MS - CL - pH in Soils	RX

7 - 11 Harding Street Leicester LE1 4DH

L25/00957/GIN - 25-56432

Project Reference - Woody Bay, Ruislip Lido, HA4 7TY 24-12-14

HWOL TPH Acronym Index

Acronym	Description
HS	Headspace Analysis
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent
CU	Clean-up e.g. by florisil, silica gel
1D	GC - Single coil gas chromatography
Total	Aliphatics and Aromatics
AL	Aliphatics Only
AR	Aromatics Only
2D	GC-GC - Double Coil Gas Chromatography
#1	EH_Total but with humics mathmatically subtracted
#2	EH_Total but with fatty acids mathmatically subtracted
-	Operator - underscore to separate acronyms (except for +)
+	Operator to indicate cumlative e.g. EH+HS_Total or EH_CU+HS_Total
MS	Mass Spectrometry

Waste Classification Report

HazWasteOnline™ classifies waste as either **hazardous** or **non-hazardous** based on its chemical composition, related legislation and the rules and data defined in the current UK or EU technical guidance (Appendix C) (note that HP 9 Infectious is not assessed). It is the responsibility of the classifier named below to:

- a) understand the origin of the waste
- b) select the correct List of Waste code(s)
- c) confirm that the list of determinands, results and sampling plan are fit for purpose
- d) select and justify the chosen metal species (Appendix B)
- e) correctly apply moisture correction and other available corrections
- f) add the meta data for their user-defined substances (Appendix A)
- g) check that the classification engine is suitable with respect to the national destination of the waste (Appendix C)

To aid the reviewer, the laboratory results, assumptions and justifications managed by the classifier are highlighted in pale yellow.

Report is invalid if pages are removed.

Job name

Willow Lawn, Ruislip Lido, HA4 7TY

Description/Comments

Project

24-12-14 Willow Lawn, Ruislip Lido, HA4 7TY

Classified by

Name: Company:

Fiona White **Geo-Integrity Limited**

Geo-Integrity Date:

07 Mar 2025 10:11 GMT Unit 7 Telephone: **Towcester**

01280 816409 **NN12 8TA** HazWasteOnline™ provides a two day, hazardous waste classification course that covers the use of the software and both basic and advanced waste classification techniques. Certification has to be renewed every 3 years.

HazWasteOnline™ Certification:

CERTIFIED

Course

Hazardous Waste Classification

Date 05 Oct 2023

Next 3 year Refresher due by Oct 2026

Purpose of classification

7 - Disposal of Waste

Address of the waste

Willow Lawn, Ruislip Lido, HA4 7TY

Post Code HA4 7TY

SIC for the process giving rise to the waste

41202 Construction of domestic buildings

Description of industry/producer giving rise to the waste

Redevelopment of existing public toilets

Description of the specific process, sub-process and/or activity that created the waste

waste created from excavation for foundations

Description of the waste

Made ground comprising clay silt sand and gravel

MK5RA-UVYE3-87I81 Page 1 of 9 www.hazwasteonline.com

Job summary

#	Sample name	Depth [m]	Classification Result	Hazard properties	Page
1	TP1	0.50	Non Hazardous		3
2	TP2	0.30	Non Hazardous		5

Related documents

#	Name	Description
1	WM3 v1.2 2021 compliant	waste stream template used to create this Job

Report

Created by: Fiona White Created date: 07 Mar 2025 10:11 GMT

Appendices	Page
Appendix A: Classifier defined and non GB MCL determinands	7
Appendix B: Rationale for selection of metal species	8
Appendix C: Version	8

Page 2 of 9 MK5RA-UVYE3-87I81 www.hazwasteonline.com

Classification of sample: TP1

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code:
TP1 Chapter:
Sample Depth:
0.50 m Entry:

from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

17: Construction and Demolition Wastes (including excavated soil

Moisture content:

(wet weight correction)

Hazard properties

None identified

Determinands

Moisture content: 13% Wet Weight Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	æ	arsenic { arsenic tr	<mark>ioxide</mark> } 215-481-4	1327-53-3		20	mg/kg	1.32	22.974	mg/kg	0.0023 %	✓	
2	æ	cadmium { cadmiui 048-009-00-9	<mark>m sulfate</mark> } 233-331-6	10124-36-4		1.3	mg/kg	1.855	2.098	mg/kg	0.00021 %	✓	
3	4	chromium in chrom		ls { • 1308-38-9		16	mg/kg	1.462	20.345	mg/kg	0.00203 %	√	
4	4	copper { copper su		1		77	mg/kg	3.929	263.207	mg/kg	0.0263 %	√	
5	æ	mercury { mercury 080-010-00-X	dichloride }	7487-94-7		<2.5	mg/kg	1.353	<3.384	mg/kg	<0.000338 %		<lod< th=""></lod<>
6	æ	nickel { nickel chroi 028-035-00-7	<mark>mate</mark> } 238-766-5	14721-18-7		30	mg/kg	2.976	77.681	mg/kg	0.00777 %	✓	
7	æ	lead { <mark>lead chroma</mark> 082-004-00-2	te } 231-846-0	7758-97-6	1	560	mg/kg	1.56	759.942	mg/kg	0.0487 %	√	
8	4	selenium { selenium cadmium sulphose elsewhere in this A	lenide and those s			<8	mg/kg	1.405	<11.24	mg/kg	<0.00112 %		<lod< th=""></lod<>
9	4	034-002-00-8 zinc { zinc chromat 024-007-00-3	e } 236-878-9	13530-65-9		380	mg/kg	2.774	917.133	mg/kg	0.0917 %	√	
10	æ	chromium in chromoxide }	nium(VI) compound	ds { chromium(VI)		<1	mg/kg	1.923	<1.923	mg/kg	<0.000192 %		<lod< th=""></lod<>
11	0	TPH (C6 to C40) p		TPH		120	mg/kg		104.4	mg/kg	0.0104 %	√	
12		naphthalene 601-052-00-2	202-049-5	91-20-3		0.79	mg/kg		0.687	mg/kg	0.0000687 %	√	
13	0	acenaphthylene	205-917-1	208-96-8		3.2	mg/kg		2.784	mg/kg	0.000278 %	√	
14	0	acenaphthene	201-469-6	83-32-9		0.84	mg/kg		0.731	mg/kg	0.0000731 %	√	
15	0	fluorene	201-695-5	86-73-7		3.1	mg/kg		2.697	mg/kg	0.00027 %	√	

			Determinand		te			Co			Classification	MC Applied	Cone No.
#					CLP Note	User entere			Conv. Compound conc.		value	Арр	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLF							MC	
16	0	phenanthrene				16	mg/kg		13.92	mg/kg	0.00139 %	1	
Ľ			201-581-5	85-01-8		10			10.02	mg/ng		*	
17	0	anthracene				5	mg/kg		4.35	mg/kg	0.000435 %	1	
··			204-371-1	120-12-7		Ŭ			1.00	mg/ng		*	
18	0	fluoranthene				21	mg/kg		18.27	mg/kg	0.00183 %	1	
L			205-912-4	206-44-0					10.27	mg/ng		'	
19	0	pyrene				15	mg/kg		13.05	mg/kg	0.00131 %	1	
			204-927-3	129-00-0		10	mg/kg		15.05	mg/kg	0.00101 70		
20		benzo[a]anthracen	ie			8.2	mg/kg		7.134	mg/kg	0.000713 %	1	
20		601-033-00-9	200-280-6	56-55-3		0.2	mg/kg		7.104	mg/kg	0.00071070	\ <u>\</u>	
21		chrysene				7.2	mg/kg		6.264	mg/kg	0.000626 %	1	
- 1		601-048-00-0	205-923-4	218-01-9		1.2	mg/kg		0.204	ilig/kg	0.000020 /0	~	
22		benzo[b]fluoranthe	ene			10	mg/kg		8.7	mg/kg	0.00087 %	,	
		601-034-00-4	205-911-9	205-99-2	1	10 Hig/kg			0.7	ilig/kg	0.00001 /0	✓	
23		benzo[k]fluoranthene		Г	3.7	mg/kg		3.219	mg/kg	0.000322 %	√		
23		601-036-00-5	205-916-6	207-08-9		5.7	o.r mg/kg		3.219	ilig/kg	0.000322 /0	\ <u>'</u>	
24		benzo[a]pyrene; be	enzo[def]chrysene			7.3	ma/ka		6.351	ma/ka	0.000635 %	,	
24		601-032-00-3	200-028-5	50-32-8	1	7.3	mg/kg		6.351	mg/kg	0.000635 %	✓	
25	0	indeno[123-cd]pyre	ene			4.4	ma/ka		3.828	ma/ka	0.000383 %	,	
25			205-893-2	193-39-5	1	4.4	mg/kg		3.020	mg/kg	0.000363 %	✓	
26		dibenz[a,h]anthrac	ene			1.1	ma/ka		0.057	ma/ka	0.0000957 %	,	
20		601-041-00-2	200-181-8	53-70-3	1	1.1	mg/kg		0.957 mg/kg	0.0000957 %	✓		
27	0	benzo[ghi]perylene	9			4.1			2.567		0.000357.0/	,	
21			205-883-8	191-24-2	1	4.1	mg/kg		3.567	mg/kg	0.000357 %	✓	
28	0	PAHs (total)		·		110			05.7		0.00057.0/	,	
28					1	110	mg/kg		95.7	mg/kg	0.00957 %	✓	
29	T	benzene	,	•	T	-0.04	m a/le=		-0.04	m m/le=	<0.000001 %		<lod< th=""></lod<>
29		601-020-00-8	200-753-7	71-43-2	1	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
30	İ	toluene		*		-0.04	m = //c=		-0.04	m m/le=	-0.000004.0/		-1.00
30		601-021-00-3	203-625-9	108-88-3	1	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
31	- ethylhenzene			*		-0.04	m = //s ==		-0.04	m m/le=	-0.000004.0/		-1.00
31		601-023-00-4	202-849-4	100-41-4	\dashv	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
	T	xylene			T								
32		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
	_	1	,	*						Total:	0.21 %		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

<LOD Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous Property to non-hazardous for cumulative determinand results below the threshold of: 500 mg/kg (0.05%) because: Non-flammable, long-chain hydrocarbons and no free phase liquids

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group (conc.: 0.0104%)

Page 4 of 9 MK5RA-UVYE3-87I81 www.hazwasteonline.com

Classification of sample: TP2

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code: TP2 Chapter: Sample Depth: 0.30 m

Entry:

from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05

17: Construction and Demolition Wastes (including excavated soil

03)

Moisture content:

12%

(wet weight correction)

Hazard properties

None identified

Determinands

Moisture content: 12% Wet Weight Moisture Correction applied (MC)

#		Determinand EU CLP index	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	æ	arsenic { arsenic trioxide } 033-003-00-0		14 mg/kg	1.32	16.266 mg/kg	0.00163 %	√	
	æ	cadmium { cadmium sulfate }	t			4 = 0 = #	2 22242 24	١.	
2	•	048-009-00-9 233-331-6 10124-36-4		1.1 mg/kg	1.855	1.795 mg/kg	0.00018 %	✓	
3	4	chromium in chromium(III) compounds {		14 mg/kg	1.462	18.006 mg/kg	0.0018 %	✓	
		215-160-9 1308-38-9	1						
4	4	copper {	-	47 mg/kg	3.929	162.506 mg/kg	0.0163 %	✓	
		029-023-00-4 231-847-6 7758-99-8 mercury { mercury dichloride }	╁						
5	4	080-010-00-X 231-299-8 7487-94-7	-	<2.5 mg/kg	1.353	<3.384 mg/kg	<0.000338 %		<lod< td=""></lod<>
	æ	nickel { nickel chromate }	+					١.	
6	~	028-035-00-7 238-766-5 14721-18-7	-	29 mg/kg	2.976	75.954 mg/kg	0.0076 %	✓	
7	æ	lead { lead chromate }	1	140 mg/kg	1.56	192.169 mg/kg	0.0123 %	√	
		082-004-00-2 231-846-0 7758-97-6	ľ	140 mg/kg	1.00	102.100 Hig/kg	0.0120 /0	٧	
8	«	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		<8 mg/kg	1.405	<11.24 mg/kg	<0.00112 %		<lod< th=""></lod<>
		034-002-00-8							
9	ď,	zinc { zinc chromate } 024-007-00-3	-	170 mg/kg	2.774	415.012 mg/kg	0.0415 %	✓	
10	4	chromium in chromium(VI) compounds { chromium(VI) oxide }		<1 mg/kg	1.923	<1.923 mg/kg	<0.000192 %		<lod< td=""></lod<>
_		024-001-00-0 215-607-8 1333-82-0	+						
11	0	TPH (C6 to C40) petroleum group	4	290 mg/kg		255.2 mg/kg	0.0255 %	✓	
		naphthalene	+					\vdash	
12		601-052-00-2 202-049-5 91-20-3	-	0.8 mg/kg		0.704 mg/kg	0.0000704 %	✓	
13	0	acenaphthylene		1.3 mg/kg		1.144 mg/kg	0.000114 %	√	
		205-917-1 208-96-8	1					*	
14	0	acenaphthene 201-469-6 83-32-9	-	11 mg/kg		9.68 mg/kg	0.000968 %	✓	
15	0	fluorene		9 mg/kg		7.92 mg/kg	0.000792 %	√	
		201-695-5 86-73-7	\perp						

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	I conc.	Classification value	MC Applied	Conc. Not Used
16	Θ	phenanthrene	201-581-5	85-01-8	-	130	mg/kg		114.4	mg/kg	0.0114 %	√	
17	0	anthracene				31	mg/kg		27.28	mg/kg	0.00273 %	√	
18	0	fluoranthene	204-371-1	120-12-7		140	mg/kg		123.2	mg/kg	0.0123 %	√	
19	0	pyrene	205-912-4	206-44-0	-	110			96.8		0.00968 %	-	
		benzo[a]anthracen	204-927-3	129-00-0	-		mg/kg			mg/kg		✓	
20		601-033-00-9	200-280-6	56-55-3		40	mg/kg		35.2	mg/kg	0.00352 %	✓	
21		chrysene 601-048-00-0	205-923-4	218-01-9		37	mg/kg		32.56	mg/kg	0.00326 %	✓	
22		benzo[b]fluoranthe 601-034-00-4	ene 205-911-9	205-99-2		48	mg/kg		42.24	mg/kg	0.00422 %	✓	
23		benzo[k]fluoranthe	ne 205-916-6	207-08-9		17	mg/kg		14.96	mg/kg	0.0015 %	√	
24		benzo[a]pyrene; be	enzo[def]chrysene			34	mg/kg		29.92	mg/kg	0.00299 %	√	
25	0	601-032-00-3 indeno[123-cd]pyre	200-028-5 ene	50-32-8	+	22	mg/kg		19.36	mg/kg	0.00194 %	✓	
25			205-893-2	193-39-5		22 mg	ilig/kg	y	15.50 Hig/kg	0.00194 /6			
26		dibenz[a,h]anthrac 601-041-00-2	ene 200-181-8	53-70-3		6	mg/kg		5.28	mg/kg	0.000528 %	✓	
27	0	benzo[ghi]perylene		191-24-2		21	mg/kg		18.48	mg/kg	0.00185 %	√	
28	0	PAHs (total)	203-003-0	131-24-2		640	mg/kg		563.2	mg/kg	0.0563 %	√	
29		benzene				<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
30		601-020-00-8 toluene	200-753-7	71-43-2		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
_		601-021-00-3	203-625-9	108-88-3	1	<0.01 Hig/kg				39			
31	0	ethylbenzene 601-023-00-4	202-849-4	100-41-4		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
32		xylene 601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
			· · · · · · · · · · · · · · · · · · ·							Total:	0.223 %		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

<LOD Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous Property to non-hazardous for cumulative determinand results below the threshold of: 500 mg/kg (0.05%) because: Non-flammable, long-chain hydrocarbons and no free phase liquids

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group (conc.: 0.0255%)

Page 6 of 9 MK5RA-UVYE3-87I81 www.hazwasteonline.com

Appendix A: Classifier defined and non GB MCL determinands

chromium(III) oxide (worst case) (EC Number: 215-160-9, CAS Number: 1308-38-9)

Description/Comments: Data from C&L Inventory Database

Data source: https://echa.europa.eu/information-on-chemicals/cl-inventory-database/-/discli/details/33806

Data source date: 17 Jul 2015

 $Hazard\ Statements:\ Acute\ Tox.\ 4;\ H332\ ,\ Acute\ Tox.\ 4;\ H302\ ,\ Eye\ Irrit.\ 2;\ H319\ ,\ STOT\ SE\ 3;\ H335\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H334\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H334\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H334\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H334\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H334\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H334\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H334\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H334\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H334\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H334\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H334\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H334\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H334\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H334\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H335\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H335\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H335\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H315\ ,\ Resp.\ 1;\ H315\ ,\ H3$

Sens. 1; H317, Repr. 1B; H360FD, Aquatic Acute 1; H400, Aquatic Chronic 1; H410

• TPH (C6 to C40) petroleum group (CAS Number: TPH)

Description/Comments: Hazard statements taken from WM3 1st Edition 2015; Risk phrases: WM2 3rd Edition 2013

Data source: WM3 1st Edition 2015 Data source date: 25 May 2015

Hazard Statements: Flam. Liq. 3; H226 , Asp. Tox. 1; H304 , STOT RE 2; H373 , Muta. 1B; H340 , Carc. 1B; H350 , Repr. 2; H361d , Aquatic Chronic 2;

H411

acenaphthylene (EC Number: 205-917-1, CAS Number: 208-96-8)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Acute Tox. 4; H302, Acute Tox. 1; H330, Acute Tox. 1; H310, Eye Irrit. 2; H319, STOT SE 3; H335, Skin Irrit. 2; H315

acenaphthene (EC Number: 201-469-6, CAS Number: 83-32-9)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410 , Aquatic Chronic 2;

H411

• fluorene (EC Number: 201-695-5, CAS Number: 86-73-7)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015

Hazard Statements: Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

• phenanthrene (EC Number: 201-581-5, CAS Number: 85-01-8)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015

Hazard Statements: Acute Tox. 4; H302, Eye Irrit. 2; H319, STOT SE 3; H335, Carc. 2; H351, Skin Sens. 1; H317, Aquatic Acute 1; H400, Aquatic

Chronic 1; H410, Skin Irrit. 2; H315

anthracene (EC Number: 204-371-1, CAS Number: 120-12-7)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Eye Irrit. 2; H319, STOT SE 3; H335, Skin Irrit. 2; H315, Skin Sens. 1; H317, Aquatic Acute 1; H400, Aquatic Chronic 1; H410

• fluoranthene (EC Number: 205-912-4, CAS Number: 206-44-0)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 21 Aug 2015

Hazard Statements: Acute Tox. 4; H302 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

pyrene (EC Number: 204-927-3, CAS Number: 129-00-0)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 2014

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 21 Aug 2015

Hazard Statements: Skin Irrit. 2; H315, Eye Irrit. 2; H319, STOT SE 3; H335, Aquatic Acute 1; H400, Aquatic Chronic 1; H410

• indeno[123-cd]pyrene (EC Number: 205-893-2, CAS Number: 193-39-5)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015 Hazard Statements: Carc. 2; H351

• benzo[ghi]perylene (EC Number: 205-883-8, CAS Number: 191-24-2)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 28/02/2015 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 23 Jul 2015

Hazard Statements: Aquatic Acute 1; H400, Aquatic Chronic 1; H410

PAHs (total)

Description/Comments: Worst case scenario combining risk phrases and substance specific thresholds from benzo[a]pyrene (CLP# 601-032-00-3) and benzo[a]anthracene (CLP# 601-033-00-9)

Data source: 2008/1272/EC – Table 3.2 of Annex VI of regulation 1272/2008/EC - Classification, labelling and packaging of substances and mixtures and 2009/790/EC Annex IV – Annex IV of regulation 2009/790/EC - 1st Adaptation to Technical Progress for European Regulation 1272/2008

Data source date: 16 Dec 2008

Hazard Statements: Skin Sens. 1; H317 , Carc. 1B; H350 , Carc. 1B; H350 >= 0.01% , Muta. 1B; H340 , Aquatic Acute 1; H400 (M=100) , Aquatic Chronic 1; H410 (M=100) , Repr. 1B; H360FD

ethylbenzene (EC Number: 202-849-4, CAS Number: 100-41-4)

GB MCL index number: 601-023-00-4

Description/Comments:

Additional Hazard Statement(s): Carc. 2; H351 Reason for additional Hazards Statement(s):

20 Nov 2021 - Carc. 2; H351 hazard statement sourced from: IARC Group 2B (77) 2000

Appendix B: Rationale for selection of metal species

arsenic {arsenic trioxide}

Reasonable case CLP species based on hazard statements/molecular weight and most common (stable) oxide of arsenic. Industrial sources include: smelting; main precursor to other arsenic compounds

cadmium {cadmium sulfate}

Worst Case Species Selected

chromium in chromium(III) compounds {chromium(III) oxide (worst case)}

(enter justification for selecting this species)

copper {copper sulphate pentahydrate}

Worst Case Species Selected

mercury {mercury dichloride}

Worst case CLP species based on hazard statements/molecular weigh

nickel {nickel chromate}

Worst case CLP species based on hazard statements/molecular weight

lead {lead chromate}

Worst Case Species Selected

selenium (selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex)

(enter justification for selecting this species)

zinc {zinc chromate}

Worst Case Species Selected

chromium in chromium(VI) compounds {chromium(VI) oxide}

(enter justification for selecting this species)

Appendix C: Version

HazWasteOnline Classification Engine: WM3 1st Edition v1.2.GB - Oct 2021
HazWasteOnline Classification Engine Version: 2025.65.6483.11817 (06 Mar 2025)

HazWasteOnline Database: 2025.65.6483.11817 (06 Mar 2025)

Page 8 of 9 MK5RA-UVYE3-87I81 www.hazwasteonline.com

This classification utilises the following guidance and legislation:

WM3 v1.2.GB - Waste Classification - 1st Edition v1.2.GB - Oct 2021 CLP Regulation - Regulation 1272/2008/EC of 16 December 2008

1st ATP - Regulation 790/2009/EC of 10 August 2009

2nd ATP - Regulation 286/2011/EC of 10 March 2011

3rd ATP - Regulation 618/2012/EU of 10 July 2012

4th ATP - Regulation 487/2013/EU of 8 May 2013

Correction to 1st ATP - Regulation 758/2013/EU of 7 August 2013

5th ATP - Regulation 944/2013/EU of 2 October 2013 6th ATP - Regulation 605/2014/EU of 5 June 2014

WFD Annex III replacement - Regulation 1357/2014/EU of 18 December 2014

Revised List of Waste 2014 - Decision 2014/955/EU of 18 December 2014

7th ATP - Regulation 2015/1221/EU of 24 July 2015

8th ATP - Regulation (EU) 2016/918 of 19 May 2016

9th ATP - Regulation (EU) 2016/1179 of 19 July 2016

10th ATP - Regulation (EU) 2017/776 of 4 May 2017

HP14 amendment - Regulation (EU) 2017/997 of 8 June 2017

13th ATP - Regulation (EU) 2018/1480 of 4 October 2018

14th ATP - Regulation (EU) 2020/217 of 4 October 2019

15th ATP - Regulation (EU) 2020/1182 of 19 May 2020

The Chemicals (Health and Safety) and Genetically Modified Organisms (Contained Use)(Amendment etc.) (EU Exit)

Regulations 2020 - UK: 2020 No. 1567 of 16th December 2020

The Waste and Environmental Permitting etc. (Legislative Functions and Amendment etc.) (EU Exit) Regulations 2020 - UK:

2020 No. 1540 of 16th December 2020

GB MCL List - version 1.1 of 09 June 2021

GB MCL List v2.0 - version 2.0 of 20th October 2023

GB MCL List v3.0 - version 3.0 of 11th January 2024

GB MCL List v4.0 - version 4.0 of 2nd March 2024

GB MCL List v5.0 - version 5.0 of 26th June 2024

Waste Classification Report

HazWasteOnline[™] classifies waste as either **hazardous** or **non-hazardous** based on its chemical composition, related legislation and the rules and data defined in the current UK or EU technical guidance (Appendix C) (note that HP 9 Infectious is not assessed). It is the responsibility of the classifier named below to:

- a) understand the origin of the waste
- b) select the correct List of Waste code(s)
- c) confirm that the list of determinands, results and sampling plan are fit for purpose
- d) select and justify the chosen metal species (Appendix B)
- e) correctly apply moisture correction and other available corrections
- f) add the meta data for their user-defined substances (Appendix A)
- g) check that the classification engine is suitable with respect to the national destination of the waste (Appendix C)

Report is invalid if pages are removed.

Job name

Woody Bay, Ruislip Lido, HA4 7TY

Description/Comments

Project Site

24-12-14 Woody Bay, Ruislip Lido, HA4 7TY

Classified by

Name: Company:

Fiona White Geo-Integrity Limited

Date: Geo-Integrity

HazWasteOnline™ provides a two day, hazardous waste classification course that covers the use of the software and both basic and advanced waste classification techniques. Certification has to be renewed every 3 years.

HazWasteOnline™ Certification:

CERTIFIED

Course

Hazardous Waste Classification

Date 05 Oct 2023

Next 3 year Refresher due by Oct 2026

Purpose of classification

7 - Disposal of Waste

Address of the waste

Woody Bay, Ruislip Lido, HA4 7TY

Post Code HA4 7TY

SIC for the process giving rise to the waste

41202 Construction of domestic buildings

Description of industry/producer giving rise to the waste

Redevelopment of existing public toilets

Description of the specific process, sub-process and/or activity that created the waste

waste created during the excavation of foundations

Description of the waste

made ground comprising clay silt sand and gravel

www.hazwasteonline.com VLZWR-CTS5P-FX7PT Page 1 of 9

Job summary

# Sample name	Depth [m]	Classification Result	Hazard properties	Page
1 TP102	0.60	Non Hazardous		3
2 TP101	0.50	Non Hazardous		5

Related documents

#	Name	Description
1	WM3 v1.2 2021 compliant	waste stream template used to create this Job

Report

Created by: Fiona White Created date: 07 Mar 2025 10:18 GMT

Appendices	Page
Appendix A: Classifier defined and non GB MCL determinands	7
Appendix B: Rationale for selection of metal species	8
Appendix C: Version	8

Page 2 of 9 VLZWR-CTS5P-FX7PT www.hazwasteonline.com

17: Construction and Demolition Wastes (including excavated soil

Classification of sample: TP102

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code: TP102 Chapter: Sample Depth: 0.60 m

Entry:

17 05 04 (Soil and stones other than those mentioned in 17 05

from contaminated sites)

03)

Moisture content: 17%

(wet weight correction)

Hazard properties

None identified

Determinands

Moisture content: 17% Wet Weight Moisture Correction applied (MC)

					_	·						Т	
#		EU CLP index	Determinand EC Number			licar antarad data		Conv. Factor	Compound conc.		Classification value	MC Applied	Conc. Not Used
		number			CLP							Σ	
1	4	arsenic { arsenic tr	rioxide }			25	mg/kg	1.32	27.397	mg/kg	0.00274 %	1	
		033-003-00-0	215-481-4	1327-53-3	1					3 3		ľ	
2	4	cadmium { cadmium sulfate }				1.3	mg/kg	1.855	2.001	mg/kg	0.0002 %	1	
		048-009-00-9	233-331-6	10124-36-4	4								
3	4	chromium in chromium(III) compounds {				17	mg/kg	1.462	20.623	mg/kg	0.00206 %	✓	
			215-160-9	1308-38-9	1								
4	4				140	mg/kg	3.929	456.556	mg/kg	0.0457 %	1		
		029-023-00-4	231-847-6	7758-99-8	1							Į.	
5	4	mercury { mercury	,			<2.5	mg/kg	1.353	<3.384	mg/kg	<0.000338 %		<lod< td=""></lod<>
		080-010-00-X 231-299-8 7487-94-7										╄	
6	4	nickel { nickel chro		44704 40 7	4	36	mg/kg	2.976	88.931	mg/kg	0.00889 %	✓	
		028-035-00-7	238-766-5	14721-18-7	+				+				
7	4	lead { <mark>lead chroma</mark> 082-004-00-2	231-846-0	7758-97-6	_ 1	460	mg/kg	1.56	595.537	mg/kg	0.0382 %	✓	
8	4	selenium { seleniu cadmium sulphose elsewhere in this A	elenide and those			<8	mg/kg	1.405	<11.24	mg/kg	<0.00112 %		<lod< th=""></lod<>
	-	034-002-00-8	4-)		+								
9	4	024-007-00-3	inc { <mark>zinc chromate</mark> } 24-007-00-3			290	mg/kg	2.774	774 667.737	mg/kg	0.0668 %	✓	
10	*	chromium in chronoxide }	1			<1	mg/kg	1.923	<1.923	mg/kg	<0.000192 %		<lod< td=""></lod<>
		024-001-00-0	215-607-8	1333-82-0									
11	0	TPH (C6 to C40) p	etroleum group			110	mg/kg		91.3	mg/kg	0.00913 %	√	
				TPH		110				ilig/kg	0.00913 %	`	
12		naphthalene				<0.2	mg/kg		<0.2	mg/kg	<0.00002 %		<lod< th=""></lod<>
		601-052-00-2	202-049-5	91-20-3	_								
13	0	acenaphthylene	205-917-1	208-96-8		<0.2	mg/kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
14	0	acenaphthene	004 460 6	02.22.0		<0.2	mg/kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
		fluorono	201-469-6	83-32-9	-								
15	0	fluorene	201-695-5	86-73-7	-	<0.2	mg/kg		<0.2	mg/kg	<0.00002 %		<lod< th=""></lod<>
			201-030-0	00 10-1								ш	

			lote	User entered data	Conv.			Classification	MC Applied	Conc. Not			
#		EU CLP index number	EC Number	CAS Number	CLP Note	User entere	eu uata	Factor	Compound	conc.	value		Used
16	0	phenanthrene				1.2	mg/kg		0.996	mg/kg	0.0000996 %	1	
10			201-581-5	85-01-8		1.2	mg/kg		0.990	mg/kg	0.0000330 70	~	
17	0	anthracene				0.44	mg/kg		0.365	mg/kg	0.0000365 %	/	
Ľ			204-371-1	120-12-7		0.44			0.000	mg/kg	0.0000000 70		
18	0	fluoranthene				3.1	mg/kg		2.573	mg/kg	0.000257 %	/	
L			205-912-4	206-44-0		0.1	mg/kg		2.070	mg/kg	0.000201 70	'	
19	0	pyrene	004.007.0	400.00.0		2.7	mg/kg		2.241	mg/kg	0.000224 %	1	
			204-927-3	129-00-0									
20		benzo[a]anthracene		F0 FF 0		1.5	mg/kg		1.245	mg/kg	0.000125 %	✓	
	H	601-033-00-9	200-280-6	56-55-3									
21		chrysene 601-048-00-0	205-923-4	218-01-9	-	1.5	mg/kg		1.245	mg/kg	0.000125 %	✓	
		benzo[b]fluoranthe	J	210-01-9	+								
22		601-034-00-4	205-911-9	205-99-2	-	1.9	mg/kg		1.577	mg/kg	0.000158 %	✓	
		benzo[k]fluoranthene								\vdash			
23			205-916-6	207-08-9	-	0.73	mg/kg		0.606	mg/kg	0.0000606 %	✓	
		benzo[a]pyrene; be			+								
24		601-032-00-3	200-028-5	50-32-8	-	1.5	mg/kg		1.245	mg/kg	0.000125 %	✓	
\vdash	_	indeno[123-cd]pyre		50-52-0	+							\vdash	
25	(1)	,	205-893-2	193-39-5	-	0.88	mg/kg		0.73	mg/kg	0.000073 %	✓	
	H	dibenz[a,h]anthrac		130 03 0	+						,		
26		601-041-00-2	200-181-8	53-70-3	-	0.28	mg/kg		0.232	mg/kg	0.0000232 %	✓	
	0	benzo[ghi]perylene		00.00									
27			205-883-8	191-24-2	\dashv	0.94	mg/kg		0.78	mg/kg	0.000078 %	✓	
28	0	PAHs (total)				18	mg/kg		14.94	mg/kg	0.00149 %	1	
Ľ							99			9		"	
29		benzene 601-020-00-8	200-753-7	71-43-2		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
_	\vdash	toluene	200-133-1	11-43-2	+								
30		601-021-00-3	203-625-9	108-88-3		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
31	0	ethylbenzene				-0.01	ma/k~		-0.01	ma/ka	<0.000001 %		<lod< th=""></lod<>
31		601-023-00-4	202-849-4	100-41-4	1	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lud< td=""></lud<>
		xylene	*	*									
32		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
										Total:	0.178 %		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

<LOD Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous Property to non-hazardous for cumulative determinand results below the threshold of: 500 mg/kg (0.05%) because: Non-flammable, long-chain hydrocarbons, no free phase liquids

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group (conc.: 0.00913%)

Page 4 of 9 VLZWR-CTS5P-FX7PT www.hazwasteonline.com

Classification of sample: TP101

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code: TP101 Chapter: Sample Depth: 0.50 m

Entry:

Moisture content:

21%

(wet weight correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 21% Wet Weight Moisture Correction applied (MC)

#		Determinand EU CLP index number		CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used	
1	ď,	arsenic { arsenic tr 033-003-00-0	<mark>ioxide</mark> } 215-481-4	1327-53-3	-	14	mg/kg	1.32	14.603	mg/kg	0.00146 %	✓	
2	4	cadmium { cadmiu	m sulfate }			0.9	mg/kg	1.855	1.319	mg/kg	0.000132 %	√	
3	4	048-009-00-9 chromium in chrom chromium(III) oxide		10124-36-4 ds {		9.1	mg/kg	1.462	10.507	mg/kg	0.00105 %	√	
4	4	copper { copper su		•		84	mg/kg	3.929	260.732	mg/kg	0.0261 %	√	
5	æ.	029-023-00-4 mercury { mercury	231-847-6 dichloride }	7758-99-8	-	<2.5	mg/kg	1.353	<3.384	mg/kg	<0.000338 %	ľ	<lod< th=""></lod<>
	_	080-010-00-X	231-299-8	7487-94-7	1	<2.5	mg/kg	1.333	<3.364	mg/kg	<0.000336 %		<lud< td=""></lud<>
6	4	nickel { nickel chro 028-035-00-7	mate } 238-766-5	14721-18-7	-	21	mg/kg	2.976	49.376	mg/kg	0.00494 %	✓	
7	æ\$	lead { <mark>lead chroma</mark> 082-004-00-2	te } 231-846-0	7758-97-6	1	340	mg/kg	1.56	418.966	mg/kg	0.0269 %	√	
8	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }				<8	mg/kg	1.405	<11.24	mg/kg	<0.00112 %		<lod< th=""></lod<>
9	æ å	034-002-00-8 zinc { zinc chromat 024-007-00-3	e } 236-878-9	13530-65-9		150	mg/kg	2.774	328.736	mg/kg	0.0329 %	√	
10	4	chromium in chromoxide }	nium(VI) compound	ds { chromium(VI)		<1	mg/kg	1.923	<1.923	mg/kg	<0.000192 %		<lod< th=""></lod<>
11	0	024-001-00-0 TPH (C6 to C40) p	215-607-8 etroleum group	1333-82-0 TPH		34	mg/kg		26.86	mg/kg	0.00269 %	√	
12		naphthalene 601-052-00-2	202-049-5	91-20-3		<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< th=""></lod<>
13	0	acenaphthylene	205-917-1	208-96-8		0.03	mg/kg		0.0237	mg/kg	0.00000237 %	✓	
14	9	acenaphthene	201-469-6	83-32-9		<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< th=""></lod<>
15	0	fluorene	201-695-5	86-73-7	_	<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< th=""></lod<>

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
16	Θ	phenanthrene	201-581-5	85-01-8		0.12 r	ng/kg		0.0948	mg/kg	0.00000948 %	✓	
17	0	anthracene				0.04 r	ng/kg		0.0316	mg/kg	0.00000316 %	√	
18	0	fluoranthene	204-371-1	120-12-7		0.28 r	ng/kg		0.221	mg/kg	0.0000221 %	√	
19	0	pyrene	205-912-4	206-44-0			ng/kg		0.198	mg/kg	0.0000198 %	√	
20		benzo[a]anthracen	204-927-3 e	129-00-0			ng/kg		0.111	mg/kg	0.0000111 %	√	
		601-033-00-9	200-280-6	56-55-3	1	0.14	ng/kg		0.111	ilig/kg	0.0000111 76	V	
21		chrysene 601-048-00-0	205-923-4	218-01-9		0.17 r	mg/kg		0.134	mg/kg	0.0000134 %	✓	
22		benzo[b]fluoranthe 601-034-00-4	ene 205-911-9	205-99-2		0.25 r	ng/kg		0.198	mg/kg	0.0000198 %	✓	
23		benzo[k]fluoranthe		207-08-9		0.08 r	ng/kg		0.0632	mg/kg	0.00000632 %	✓	
24		benzo[a]pyrene; be	enzo[def]chrysene			0.17 r	ng/kg		0.134	mg/kg	0.0000134 %	√	
25	0	601-032-00-3 indeno[123-cd]pyre	200-028-5 ene	50-32-8		0.11 r	ng/kg		0.0869	mg/kg	0.00000869 %	√	
23			205-893-2	193-39-5		0.11	ilg/kg		0.0009	IIIg/kg	0.00000009 /6	'	
26		dibenz[a,h]anthrac 601-041-00-2	ene 200-181-8	53-70-3	-	0.04 r	ng/kg		0.0316	mg/kg	0.00000316 %	✓	
27	0	benzo[ghi]perylene		191-24-2		0.13 r	ng/kg		0.103	mg/kg	0.0000103 %	√	
28	0	PAHs (total)	203-003-0	131-24-2		1.9 r	ng/kg		1.501	mg/kg	0.00015 %	✓	
29		benzene	000 750 7	74.40.0		<0.01 r	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
30		601-020-00-8 toluene	200-753-7	71-43-2		<0.01 r	ng/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
31	Θ	601-021-00-3 ethylbenzene	203-625-9	108-88-3					<0.01		<0.000001 %		<lod< td=""></lod<>
31		601-023-00-4 xylene	202-849-4	100-41-4		QU.U1	mg/kg		20.01	mg/kg	Q.000001 %		LOD
32		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.02 r	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
			•							Total:	0.098 %		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

<LOD Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous Property to non-hazardous for cumulative determinand results below the threshold of: 500 mg/kg (0.05%) because: Non-flammable, long-chain hydrocarbons, no free phase liquids

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group (conc.: 0.00269%)

Page 6 of 9 VLZWR-CTS5P-FX7PT www.hazwasteonline.com

Appendix A: Classifier defined and non GB MCL determinands

chromium(III) oxide (worst case) (EC Number: 215-160-9, CAS Number: 1308-38-9)

Description/Comments: Data from C&L Inventory Database

Data source: https://echa.europa.eu/information-on-chemicals/cl-inventory-database/-/discli/details/33806

Data source date: 17 Jul 2015

 $Hazard\ Statements:\ Acute\ Tox.\ 4;\ H332\ ,\ Acute\ Tox.\ 4;\ H302\ ,\ Eye\ Irrit.\ 2;\ H319\ ,\ STOT\ SE\ 3;\ H335\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H334\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H334\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H334\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H334\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H334\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H334\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H334\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H334\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H334\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H334\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H334\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H334\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H334\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H334\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H335\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H335\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H335\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H335\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H335\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H335\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H315\ ,\ Resp.\ 1;\ H315\ ,\ H31$

Sens. 1; H317, Repr. 1B; H360FD, Aquatic Acute 1; H400, Aquatic Chronic 1; H410

• TPH (C6 to C40) petroleum group (CAS Number: TPH)

Description/Comments: Hazard statements taken from WM3 1st Edition 2015; Risk phrases: WM2 3rd Edition 2013

Data source: WM3 1st Edition 2015 Data source date: 25 May 2015

Hazard Statements: Flam. Liq. 3; H226 , Asp. Tox. 1; H304 , STOT RE 2; H373 , Muta. 1B; H340 , Carc. 1B; H350 , Repr. 2; H361d , Aquatic Chronic 2;

H411

acenaphthylene (EC Number: 205-917-1, CAS Number: 208-96-8)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Acute Tox. 4; H302, Acute Tox. 1; H330, Acute Tox. 1; H310, Eye Irrit. 2; H319, STOT SE 3; H335, Skin Irrit. 2; H315

acenaphthene (EC Number: 201-469-6, CAS Number: 83-32-9)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Eye Irrit. 2; H319, STOT SE 3; H335, Skin Irrit. 2; H315, Aquatic Acute 1; H400, Aquatic Chronic 1; H410, Aquatic Chronic 2;

H411

• fluorene (EC Number: 201-695-5, CAS Number: 86-73-7)

Description/Comments: Data from C&L Inventory Database

 $\textbf{Data source:} \ \textbf{http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database}$

Data source date: 06 Aug 2015

Hazard Statements: Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

• phenanthrene (EC Number: 201-581-5, CAS Number: 85-01-8)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015

 $Hazard\ Statements:\ Acute\ Tox.\ 4;\ H302\ ,\ Eye\ Irrit.\ 2;\ H319\ ,\ STOT\ SE\ 3;\ H335\ ,\ Carc.\ 2;\ H351\ ,\ Skin\ Sens.\ 1;\ H317\ ,\ Aquatic\ Acute\ 1;\ H400\ ,\ Aquatic\ Acute\ 1$

Chronic 1; H410, Skin Irrit. 2; H315

anthracene (EC Number: 204-371-1, CAS Number: 120-12-7)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Eye Irrit. 2; H319, STOT SE 3; H335, Skin Irrit. 2; H315, Skin Sens. 1; H317, Aquatic Acute 1; H400, Aquatic Chronic 1; H410

• fluoranthene (EC Number: 205-912-4, CAS Number: 206-44-0)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 21 Aug 2015

Hazard Statements: Acute Tox. 4; H302 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

pyrene (EC Number: 204-927-3, CAS Number: 129-00-0)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 2014

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 21 Aug 2015

Hazard Statements: Skin Irrit. 2; H315, Eye Irrit. 2; H319, STOT SE 3; H335, Aquatic Acute 1; H400, Aquatic Chronic 1; H410

• indeno[123-cd]pyrene (EC Number: 205-893-2, CAS Number: 193-39-5)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015 Hazard Statements: Carc. 2; H351

• benzo[ghi]perylene (EC Number: 205-883-8, CAS Number: 191-24-2)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 28/02/2015 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 23 Jul 2015

Hazard Statements: Aquatic Acute 1; H400, Aquatic Chronic 1; H410

PAHs (total)

Description/Comments: Worst case scenario combining risk phrases and substance specific thresholds from benzo[a]pyrene (CLP# 601-032-00-3) and benzo[a]anthracene (CLP# 601-033-00-9)

Data source: 2008/1272/EC – Table 3.2 of Annex VI of regulation 1272/2008/EC - Classification, labelling and packaging of substances and mixtures and 2009/790/EC Annex IV – Annex IV of regulation 2009/790/EC - 1st Adaptation to Technical Progress for European Regulation 1272/2008

Data source date: 16 Dec 2008

Hazard Statements: Skin Sens. 1; H317 , Carc. 1B; H350 , Carc. 1B; H350 >= 0.01% , Muta. 1B; H340 , Aquatic Acute 1; H400 (M=100) , Aquatic Chronic 1; H410 (M=100) , Repr. 1B; H360FD

ethylbenzene (EC Number: 202-849-4, CAS Number: 100-41-4)

GB MCL index number: 601-023-00-4

Description/Comments:

Additional Hazard Statement(s): Carc. 2; H351 Reason for additional Hazards Statement(s):

20 Nov 2021 - Carc. 2; H351 hazard statement sourced from: IARC Group 2B (77) 2000

Appendix B: Rationale for selection of metal species

arsenic {arsenic trioxide}

Reasonable case CLP species based on hazard statements/molecular weight and most common (stable) oxide of arsenic. Industrial sources include: smelting; main precursor to other arsenic compounds

cadmium {cadmium sulfate}

Worst Case Species Selected

chromium in chromium(III) compounds {chromium(III) oxide (worst case)}

(enter justification for selecting this species)

copper {copper sulphate pentahydrate}

Worst Case Species Selected

mercury {mercury dichloride}

Worst case CLP species based on hazard statements/molecular weigh

nickel {nickel chromate}

Worst case CLP species based on hazard statements/molecular weight

lead {lead chromate}

Worst Case Species Selected

selenium {selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex}

(enter justification for selecting this species)

zinc {zinc chromate}

Worst Case Species Selected

chromium in chromium(VI) compounds {chromium(VI) oxide}

(enter justification for selecting this species)

Appendix C: Version

HazWasteOnline Classification Engine: WM3 1st Edition v1.2.GB - Oct 2021
HazWasteOnline Classification Engine Version: 2025.65.6483.11817 (06 Mar 2025)

HazWasteOnline Database: 2025.65.6483.11817 (06 Mar 2025)

Page 8 of 9 VLZWR-CTS5P-FX7PT www.hazwasteonline.com

This classification utilises the following guidance and legislation:

WM3 v1.2.GB - Waste Classification - 1st Edition v1.2.GB - Oct 2021 CLP Regulation - Regulation 1272/2008/EC of 16 December 2008

1st ATP - Regulation 790/2009/EC of 10 August 2009

2nd ATP - Regulation 286/2011/EC of 10 March 2011

3rd ATP - Regulation 618/2012/EU of 10 July 2012

4th ATP - Regulation 487/2013/EU of 8 May 2013

Correction to 1st ATP - Regulation 758/2013/EU of 7 August 2013

5th ATP - Regulation 944/2013/EU of 2 October 2013 6th ATP - Regulation 605/2014/EU of 5 June 2014

WFD Annex III replacement - Regulation 1357/2014/EU of 18 December 2014

Revised List of Waste 2014 - Decision 2014/955/EU of 18 December 2014

7th ATP - Regulation 2015/1221/EU of 24 July 2015

8th ATP - Regulation (EU) 2016/918 of 19 May 2016

9th ATP - Regulation (EU) 2016/1179 of 19 July 2016

10th ATP - Regulation (EU) 2017/776 of 4 May 2017

HP14 amendment - Regulation (EU) 2017/997 of 8 June 2017

13th ATP - Regulation (EU) 2018/1480 of 4 October 2018

14th ATP - Regulation (EU) 2020/217 of 4 October 2019

15th ATP - Regulation (EU) 2020/1182 of 19 May 2020

The Chemicals (Health and Safety) and Genetically Modified Organisms (Contained Use)(Amendment etc.) (EU Exit)

Regulations 2020 - UK: 2020 No. 1567 of 16th December 2020

The Waste and Environmental Permitting etc. (Legislative Functions and Amendment etc.) (EU Exit) Regulations 2020 - UK:

2020 No. 1540 of 16th December 2020

GB MCL List - version 1.1 of 09 June 2021

GB MCL List v2.0 - version 2.0 of 20th October 2023

GB MCL List v3.0 - version 3.0 of 11th January 2024

GB MCL List v4.0 - version 4.0 of 2nd March 2024

GB MCL List v5.0 - version 5.0 of 26th June 2024

Appendix 15 – Secretary of State Letter regarding Denham Quarry (dated 18th October 2016)

Karen Smaggasgale Chair of the Trustees Hillingdon Outdoor Activities Centre Dews Lane Harefield UB9 6JN From the Secretary of State
The Rt. Hon. Chris Grayling

Great Minster House 33 Horseferry Road London SW1P 4DR

Tel: 0300 330 3000 E-Mail: chris.grayling@dft.gsi.gov.uk

Web site: www.gov.uk/dft

18 TO Jabe

I M Sansone

Proposed relocation of Hillingdon Outdoor Activity Centre to Denham Quarry

As you know, following the report of the High Speed Rail (London – West Midlands) Select Committee in the Commons we agreed to progress the relocation of the Hillingdon Outdoor Activity Centre (HOAC) to the Denham Quarry site in South Buckinghamshire. Therefore, in June 2016 HS2 Ltd submitted a planning application to amend the Denham Quarry restoration scheme and have negotiated heads of terms on a lease with Buckinghamshire County Council as freeholder of the site.

However, throughout this process we have been clear that while we are committed to the on-going successful operation of HOAC this needs to be compatible with our duty to provide value for public money. I am writing to inform you that despite our best efforts, as negotiations have progressed it has become clear this relocation arrangement is at great risk of not being financially sustainable. The anticipated cost has more than doubled and the deal carries a clear risk that HOAC will face severe operating difficulties further down the line.

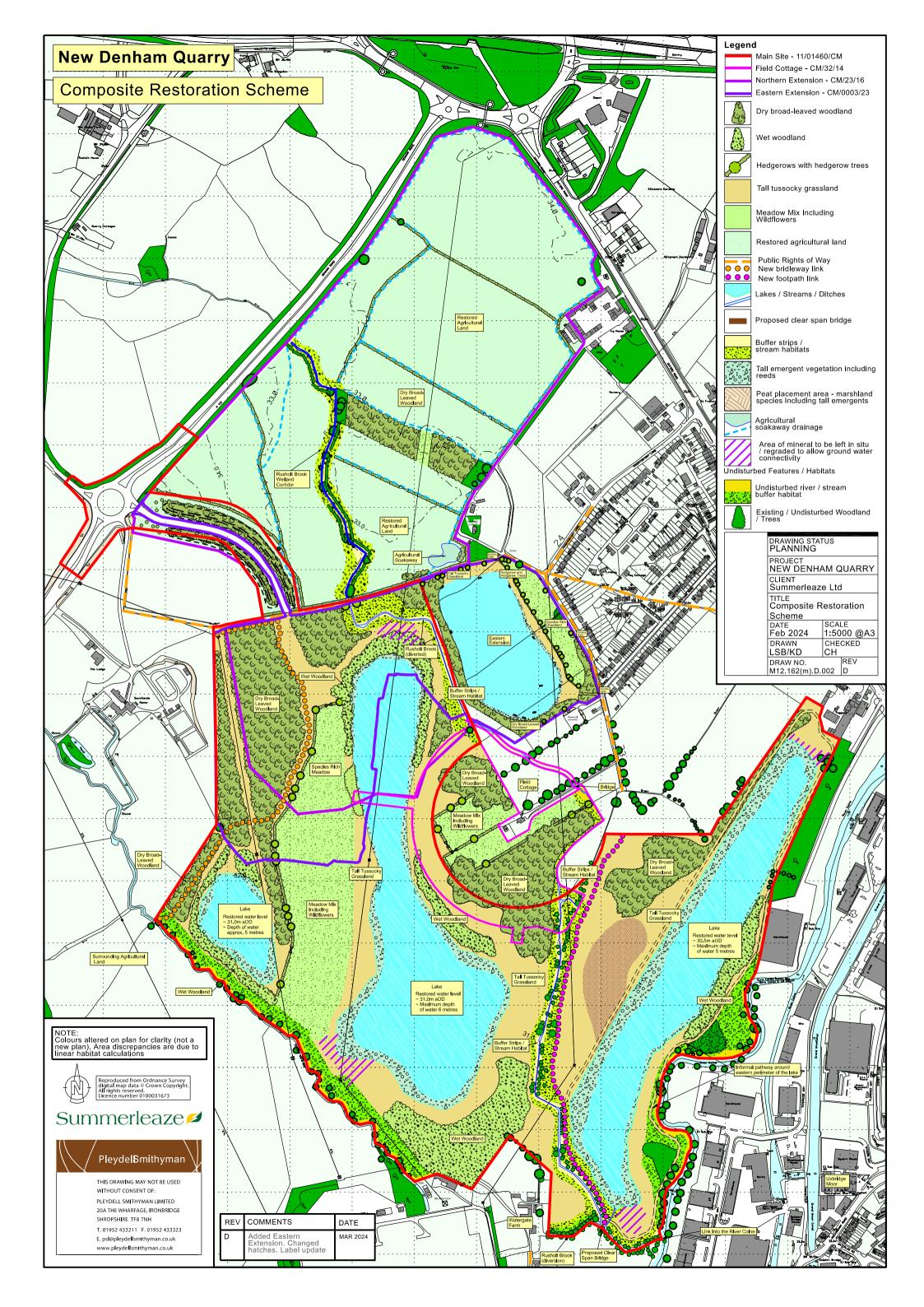
The lease conditions required by Buckinghamshire County Council for the Denham Quarry site are more commercial than those you currently have. This means that, assuming the same turnover, your lease costs will be £20,000 higher. In addition, Hillingdon Council has been clear that the £54,600 per annum grant, which represents 8% of HOAC's current income, will cease if HOAC move out of their administrative boundary. Buckinghamshire County Council and South Buckinghamshire District Council have been clear that they will not replace this funding. In addition, it is not clear whether South Buckinghamshire will require HOAC to pay business rates at Denham Quarry unlike in Hillingdon. This represents a clear threat to the on-going viability of HOAC at the Denham Quarry site. Furthermore, the expected cost of the

Denham Quarry site, including optimism bias, is now £55.1m. This means there is a very real prospect of a significant expenditure of public money on relocation that will result in HOAC facing severe operating difficulties or failing to operate.

My aim, and yours, is the on-going operation of HOAC, but I also have a responsibility to the tax payer. The relocation to Denham Quarry does not appear to meet either of these. In parallel with developing the Denham Quarry scheme HS2 Ltd have also been exploring options for maintaining HOAC on their current site. This work has revealed that not only will it be possible to maintain HAOC on their existing site until 2019, there is also a reconfiguration option that will provide segregated access to the HOAC site and a level of noise mitigation so there are unlikely to be any significant adverse noise effects on its activities. This option would remain within Hillingdon Council's administrative area and be located on land owned by Hillingdon Council, albeit requiring additional land than that which HOAC currently occupy, therefore, the issues of increased rent and reduced grant should not apply. This option also comes at a significantly lower cost to the public purse than the relocation option. In my view the reconfiguration option offers a far better option for HOAC's on-going viability than the relocation to Denham Quarry.

For those reasons I have with regret decided we cannot pursue the Denham Quarry option further and have asked HS2 Ltd to progress the reconfiguration on the existing site. Clearly this will be very disappointing to all those concerned but I wanted to make very clear that our commitment to pursue a relocation was made in good faith. It is only in the past few weeks that the full extent of the problems have come to light.

I am keenly aware of how highly valued HOAC is and I see the reconfiguration on site as the best option to ensure that HOAC can continue. We are absolutely committed to working with you to find a solution that will allow it to continue operating at its current site. I am aware that you did not petition against the HS2 Phase One hybrid Bill in the Lords, possibly on the basis of the Denham Quarry relocation being progressed. However, Hillingdon Council did petition and did include HOAC as part of that petition. We would have no objection to HOAC appearing with Hillingdon Council, if you wish to present your views on this development to the Lords Select Committee.


I am copying this letter to Nick Hurd MP, the Rt Hon Boris Johnson MP, Cllr Martin Tett, Cllr Ray Puddifoot and Neil Maddock.

Rt Hon Chris Grayling MP

Who best who

SECRETARY OF STATE FOR TRANSPORT

Appendix 16 – Proposed Restoration Plans at New Denham Quarry

