
62 Broadwood
Avenue

Flood Risk Assessment
and Drainage Strategy

December 2024
241822/FRA/LB/KBL/01

LANMOR Consulting Ltd,
Thorogood House, 34 Tolworth Close
Surbiton, Surrey, KT6 7EW

Tel: 0208 339 7899 Fax: 0208 339 7898
E-mail: info@lanmor.co.uk
Internet: www.lanmor.co.uk

DOCUMENT STATUS

Project: 62 Broadwood Avenue

Title: Flood Risk Assessment and Drainage Strategy

Client:

Reference: 241822/FRA/LB/KBL/01

Produced by: LB Date: 2/12/24

Checked by: KBL Date: 2/12/24

Approved by: KBL Date: 2/12/24

<u>Issue/revision</u>	<u>Date</u>	<u>Status</u>	<u>Issued by</u>
First	02/12/2024	For Approval	KBL

CONTENTS

1	INTRODUCTION	1
1.1	Scope	1
2	SITE CONDITIONS	2
2.1	Site Location	2
2.2	Site Proposal	3
2.3	Site Geology	3
3	SOURCES OF FLOODING	4
3.1	Fluvial/Tidal Flooding	4
3.2	Surface Water Flooding	5
3.3	Groundwater Flooding	6
3.4	Sewer Flooding	7
3.5	Reservoir Flooding	7
4	MODELLLED FLOOD EVENTS AND CLIMATE CHANGE	8
4.1	Flood Probability	8
4.2	Impact on Flow of Flood Waters	10
4.3	Flood Impact on Development	11
4.4	Safe Access & Egress	11
5	DRAINAGE STRATEGY	12
5.1	Existing Drainage	12
5.2	Proposed Drainage Strategy	12
5.3	Surface Water/SuDS Maintenance and Treatment	12
6	SUMMARY AND CONCLUSION	18

TABLES

TABLE 4.1 – FLOOD LEVEL DATA.....	9
TABLE 5.1 – MANHOLE / PIPE MAINTENANCE SCHEDULE	13
TABLE 5.2 – PERMEABLE PAVING MAINTENANCE SCHEDULE	14
TABLE 5.3 – ATTENUATION TANK MAINTENANCE	15
TABLE 5.4 – CIRIA SUDS MANUAL C753 (LAND USE CLASSIFICATIONS).....	16
TABLE 5.5 – CIRIA SUDS MANUAL C753 (MITIGATION INDICES TO SURFACE WATER).....	17

FIGURES

FIGURE 2.1 – SITE LOCATION.....	2
FIGURE 3.1 – FLOOD ZONE MAPPING	5
FIGURE 3.2 – SURFACE WATER FLOODING MAP.....	6
FIGURE 4.1 – FLOOD NODES.....	9
FIGURE 4.2 – 1 IN 100 YEAR FLOOD EXTENT	9
FIGURE 4.3 – 1 IN 1000 YEAR FLOOD EXTENT	9
FIGURE 4.4 – 1 IN 100 YEAR +CC FLOOD EXTENT	9
FIGURE 4.5 – PROPOSED DWELLING OVERLAY	10

APPENDICES

APPENDIX A

- Drawing 240816-02 – Approved Site Layout
- Drawing 241008-01 – Proposed Site Layout

1 INTRODUCTION

1.1 Scope

1.1.1 Lanmor Consulting has been appointed to prepare a Flood Risk Assessment and Drainage Strategy for the proposed development at 6, Broadwood Avenue, Ruislip, HA4 7XR.

1.1.2 This report describes the existing site conditions, development proposals and implications of flooding on the site as described in the governments guidance document; National Planning Policy Framework (NPPF) and its technical guidance. This report will consider the following:

- Development Proposals
- Sources of flooding and flood defences
- Flooding extents, depth and climate change predictions
- Impact of flooding on the development
- Dangers presented by flooding

1.1.3 This report has been prepared in accordance with the requirements of the governments National Planning Policy Framework (NPPF) and its planning practice guidance and will demonstrate that the proposed development will be safe and will not increase the risk of flooding in the surrounding area.

2 SITE CONDITIONS

2.1 Site Location

2.1.1 The site is located in the north of Ruislip, in the London Borough of Hillingdon. The site is located within a predominantly residential area. To the north of the site is Park Wood SSSI. The site is surrounded to the south, east and west with residential houses. The nearest source of fluvial flooding is the River Pinn, which at its closest point lies 0.28km south of the site.

2.1.2 Figure 2.1 below shows the location of the application site.

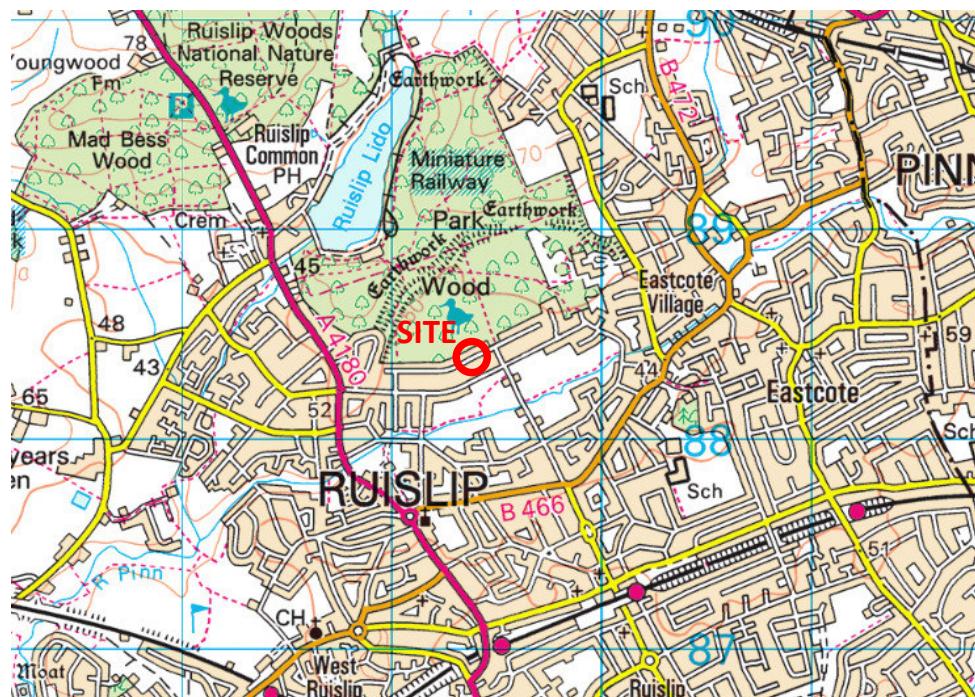


Figure 2.1 – Site Location

2.1.3 The site is currently occupied by a single dwelling. Planning permission was granted in September 2024 for 2 no. rear single storey extensions. A copy of the approved layout for the rear extensions is included in Appendix A as drawing 240816-02.

2.2 Site Proposal

2.2.1 A new application now seeks approval for the demolition of the existing property at 62 Broadwood Avenue and construction of a replacement dwelling. The site layout and floor plans for the site have been included as drawing 241008-01 in Appendix A.

2.3 Site Geology

2.3.1 The British Geological Survey (BGS), mapping indicates the underlying bedrock at the application site to be Lambeth Group – Clay, silt and sand. This is a sedimentary bedrock formed between 59.2 and 47.8 million years ago during the Palaeogene period.

2.3.2 There is no information available for the superficial geology of the site.

3 SOURCES OF FLOODING

3.1 Fluvial/Tidal Flooding

3.1.1 Flood mapping has been provided by the Environment Agency (EA) for the site and surrounding area. The mapping indicates the site to be within Flood Zone 3 meaning it has a high probability of flooding from rivers and/or the sea.

3.1.2 The NPPF and PPG define the Flood Zones as follows:

- Zone 1: 'Low Probability' – This zone comprises land assessed as having a less than a 1 in 1000 annual probability of river or sea flooding (<0.1%) in any year.
- Zone 2: 'Medium Probability' – This zone comprises land assessed as having between a 1 in 100 and 1 in 1000 annual probability of river flooding (1% - 0.1%) or between a 1 in 200 and 1 in 1000 annual probability of sea flooding (0.5% - 0.1%) in any year.
- Zone 3a: 'High Probability' – This zone comprises land assessed as having a 1 in 100 or greater annual probability of river flooding (>1%) or a 1 in 200 or greater annual probability of flooding from the sea (>0.5%).
- Zone 3b: 'The Functional Floodplain' – This zone comprises land where water must flow or be stored in times of flood. SFRAs should identify this Flood Zone (land which would flood with an annual probability of 1 in 20 (5%) or greater in any year or is designed to flood in an extreme (0.1%) flood, or at another probability to be agreed between the LPA and the Environment Agency, including water conveyance routes.)

3.1.3 The EA mapping shows the site to be mainly within Flood Zone 3. For Zone 3, there is a probability of >1% from river flooding. Figure 3.1 below shows the site's position in relation to the fluvial flood zones.

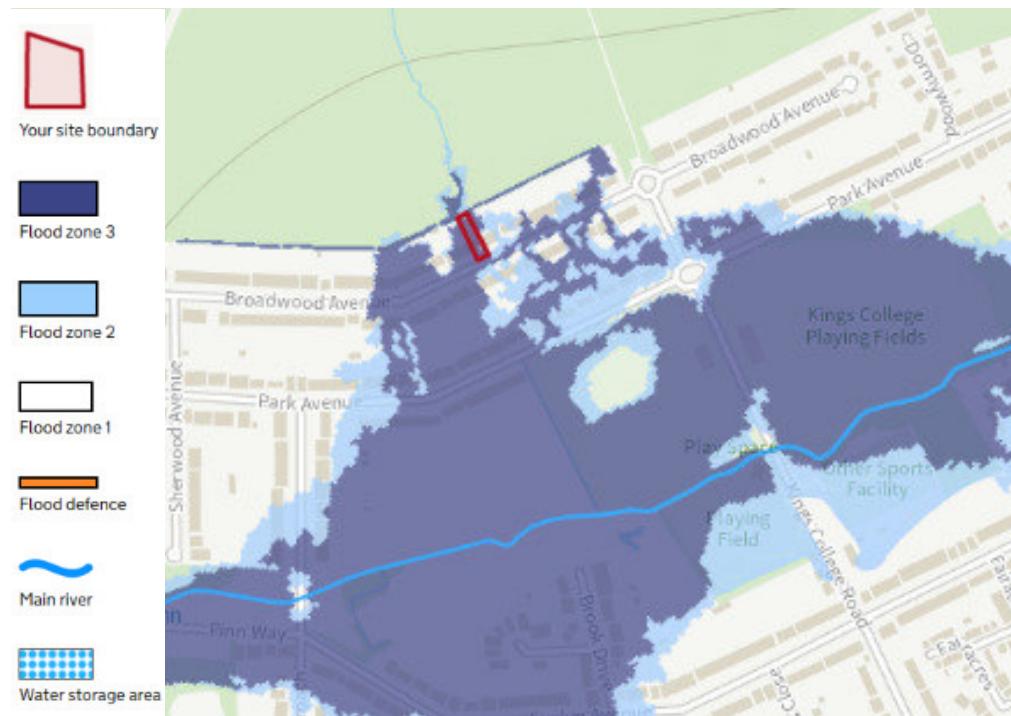


Figure 3.1 – Flood Zone Mapping

3.1.4 The dark blue shaded area on the above map shows land in Flood Zone 3 that might be subject to flooding with a probability of 1.0% or greater, the light blue areas show the probability of flooding between 1.0% and 0.1%. The unshaded areas indicate a flood probability of less than 0.1%.

3.1.5 As the site is within Flood Zone 3, the site could be subject to fluvial flooding with a probability of 1.0% or greater.

3.2 Surface Water Flooding

3.2.1 The surface water flood mapping provided by the EA is considered to be the best available source of national information of surface water flooding. It is a starting point for understanding patterns and probability of surface water flooding. The EA accept that mapping has limitations and state that *“these maps cannot definitely show that an area of land or property is, or is not, at risk of flooding, and the maps are not suitable for use at an individual property level.”*

3.2.2 The surface water flood risk map on the government website shows the estimated extents and depths of flooding for different return periods. Figure 3.2 below shows the extent and depths of surface water flooding from an event with a probability of 1.0%.

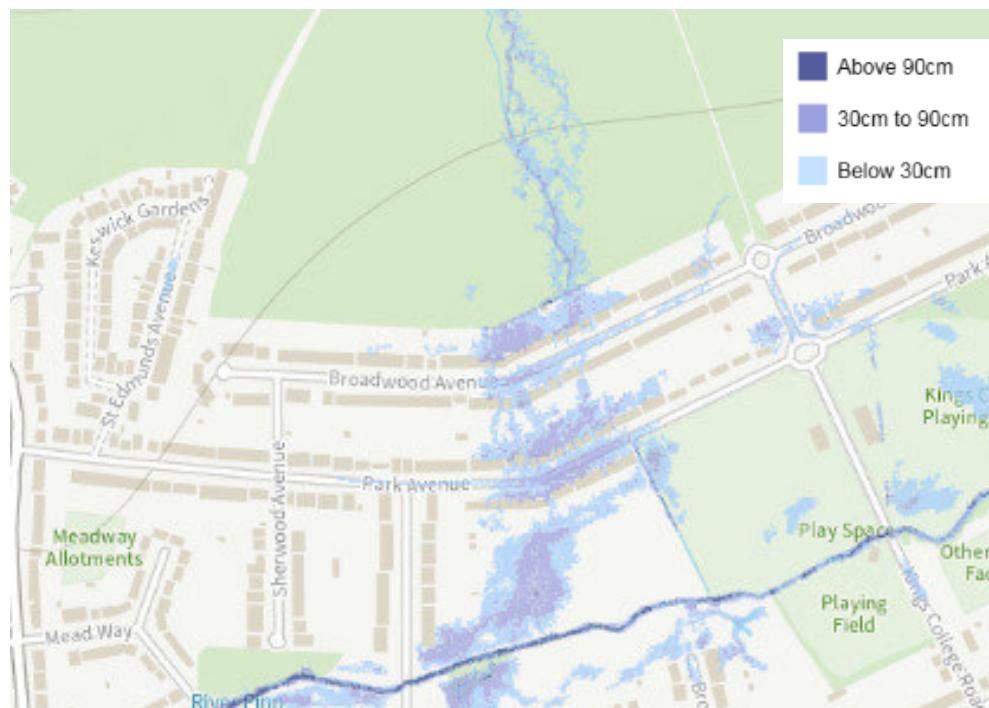


Figure 3.2 – Surface Water Flooding Map

3.2.3 The mapping shows the site could be subject to surface water flooding with a probability of 1.0%. However, the flood outlines seem to follow the fluvial flood outlines, which are likely to be more severe than the surface water flood risk.

3.3 Groundwater Flooding

3.3.1 The joint SFRA prepared for Hillingdon shows the potential risks of groundwater flooding on the interactive mapping. The level of detail is coarse but gives an indication of risk for the areas across the borough. It shows the site is located in an area that could be subject to groundwater flooding with a probability of 25-50%, but is surrounded by areas of low or no flood risk so the risk to the development is considered low.

3.4 Sewer Flooding

3.4.1 The SFRA mapping also shows the risk of flooding from sewers. The mapping shows there is no risk to the site from sewer flooding.

3.5 Reservoir Flooding

3.5.1 The flood maps prepared by the EA for reservoir flooding indicates that only if there a fluvial flooding event on the River Pinn would the site be at potential risk of flooding from a reservoir failure. Given the very safe record of reservoir in the UK the risk is considered to be low.

4 MODELLED FLOOD EVENTS AND CLIMATE CHANGE

4.1 Flood Probability

4.1.1 The principal source of flooding to the site comes from the River Pinn located to the south of the site and its tributaries. Detailed flood modelling was requested from the EA, and they have provided information by way of Products 5, 6 and 7. Flood level data for the scenarios was extracted from the model data and compared to the ground levels across the site.

4.1.2 Figure 4.1 shows the location of the site and flood node points 1 and 2 extracted from the EA flood model. The flood extents for an event with a probability of 1.0% (1 in 100) and 0.1% (1 in 1000) are shown in Figures 4.2 & 4.3 below.

4.1.3 Figure 4.4 shows the extent of a flooding from an event with a probability of 1.0% plus allowance for climate change. The Environment Agency have published climate change allowances to be used in the preparation of Flood Risk Assessments. The allowance to be implemented for fluvial flooding is based on the management catchment area, flood zone and site vulnerability. The site is located within the Wey and tributaries Management Catchment, as identified on the Department for Environment Food & Rural Affairs (DEFRA) climate change allowances website.

4.1.4 The site lies within Flood Zone 3, under Annex 3 of the NPPF the proposed development would be classed as: "Buildings used for residential uses" to be a "More Vulnerable" use.

4.1.5 The Flood Risk Assessments: Climate Change Allowances guidance, recommends that the Central Allowance for More Vulnerable uses in Flood Zones 2 and 3 should be used. The DEFRA website provides the Central Allowance to be applied to peak river flows for developments with a 100-year lifetime. The site is located in the Colne Management Area so the allowance to be incorporated should be 21%. The flood modelling provided by the EA didn't include this scenario but a 25% increase in river flows was modelled. This has therefore been used to assess the climate change risk, which is considered to give a robust case for assessment.

Figure 4.1 – Flood Nodes

Figure 4.2 – 1 in 100 year Flood Extent

Figure 4.3 – 1 in 1000 year Flood Extent

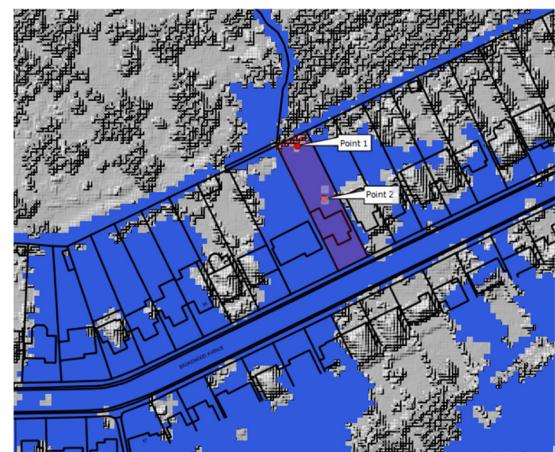


Figure 4.4 – 1 in 100 year +CC Flood Extent

4.1.6 Flood level data for the scenarios was extracted from the model data and are tabulated below in Table 4.1. There are no flood defences along the watercourses in the area.

Model	Ruislip – Park Wood and Pinn Meadows FAS (Jacobs, 2021)			
Node	Ground Level	1 in 100	1 in 100 +CC	1 in 1000
1	42.539	42.580	42.594	42.634
2	42.447	42.573	42.585	42.619

Table 4.1 – Flood Level Data

4.2 Impact on Flow of Flood Waters

4.2.1 The proposals are for the replacement of a single dwelling house. The existing approved dwelling has a gross floor area of 130 m² and the proposed building will also have a floor area of 130 m². Figure 4.5 below shows the new dwelling superimposed on the outline of the consented house.

Figure 4.5 – Proposed Dwelling Overlay

4.2.2 The proposed dwelling as demonstrated above will be slight narrower than the existing property and the length of the dwelling will be no greater than the approved house. The proposed building will have the same footprint so the proposals will not reduce the area on site available for flood waters.

4.2.3 Therefore, it will not result in the loss of flood storage volumes across the site, or restrict the free flow of flood waters from an event with a probability of 1.0% +CC allowance.

4.3 Flood Impact on Development

- 4.3.1 The estimated flood level at the property boundary is 42.585m AOD. The current floor level is 42.597m AOD, 150mm above the existing ground level. The proposed floor level of the new building will be set 300mm above the flood level of 42.585m at 42.885m AOD.
- 4.3.2 The 300mm freeboard will ensure the property will be free from flooding and protected from any wave action caused by passing traffic.
- 4.3.3 The proposed measures will ensure the property is safe from flooding with a probability of 1.0% plus a 25% allowance for climate change.

4.4 Safe Access & Egress

- 4.4.1 The proposed dwelling is a replacement of an existing house on the site, so the access and egress to the site will be the same as per the current scenario. The proposals will not increase the population at risk of flooding on the site so the access will provide the same level of security as the current situation.

5 DRAINAGE STRATEGY

5.1 Existing Drainage

5.1.1 The site is currently occupied by a single dwelling. The property is currently severed by both foul and surface water connections. Initial investigations on site did not identify any drainage pipework to the rear of the property in the garden area.

5.2 Proposed Drainage Strategy

5.2.1 The foul drainage from the development will be collected via a new network of pipes and discharged to the existing outfall. For the drainage of the surface water runoff from the roofs and hardstanding's the Sustainable Drainage Systems (SuDS) hierarchy will be employed.

5.2.2 Green / blue roofs are unlikely to be viable as the property has a pitched roof. The use of rainwater harvesting could be employed to reuse collected runoff. The geology of the site is part of the Lamberth formation consisting of clay, silt and sand, infiltration is likely to be possible at the site but is likely to be limited given the clay.

5.2.3 Therefore, the use of soakaways could form part of the strategy subject to testing. Permeable paving of the hardstanding areas will form part of the strategy. The SuDS features will be designed to accommodate a 1 in 100 year storm event plus an allowance for climate change. The SuDS features will provide the attenuation needed but any additional requirements will be provided in underground attenuation tanks with a restricted discharge.

5.3 Surface Water/SuDS Maintenance and Treatment

5.3.1 Regularly inspecting the surface water drainage network for blockages and clearing unwanted debris / silt from the system should improve the performance of the surface water network and decrease the need for future repairs.

5.3.2 The level and frequency of maintenance required on site is dependent on the type of facility. The type of maintenance will fall into one of three categories "regular maintenance", "occasional maintenance" and "remedial maintenance".

5.3.3 Regular maintenance of the drainage and SuDS features will include, inspections, removal of litter / debris and sweeping of the surfaces. Occasional maintenance will include removal of sediment etc. and remedial maintenance may include structural repairs if required.

5.3.4 The type of maintenance required will depend on the type of SuDS used and examples of required maintenance are set out below.

Pipes and Manholes

5.3.5 For drainage pipes and manhole, the following maintenance is recommended.

Manhole / Pipe Maintenance Schedule		
	Required Action	Typical Frequency
Regular maintenance	Inspect for evidence of poor operation via water level in chambers. If required, take remedial action.	3-monthly, 48 hours after large storms.
	Check and remove large vegetation growth near pipe runs.	Monthly or as required
	Remove sediment from structures.	Annually or as required
Remedial Actions	Rod through poorly performing runs as initial remediation.	As required
	If continued poor performance jet and CCTV survey poorly performing runs.	As required
Monitoring	Inspect/check all inlets, outlets, to ensure that they are in good condition and operating as designed.	Annually
	Survey inside of pipe manholes for sediment build-up and remove if necessary	Every 5 years or as required

Table 5.1 – Manhole / Pipe Maintenance Schedule

Permeable Paving

5.3.6 For permeable paving areas, the following maintenance is recommended.

Permeable Paving Maintenance Schedule		
	Required Action	Typical Frequency
Regular maintenance	Remove debris and leaves etc.	Once a year, after autumn leaf fall, or reduced frequency as required, based on site-specific observations of clogging or manufacturer's recommendations – pay particular attention to areas where water runs onto pervious surfaces from adjacent impermeable areas as this area is most likely to collect the most sediment.
Occasional maintenance	Stabilise and mow contributing and adjacent areas	As required
	Removal of weeds	As required- once per year on less frequently used pavements
Remedial Actions	Remediate any landscaping which, through vegetation maintenance or soil slip, has been raised to within 50 mm of the level of the paving	As required
	Remedial work to any depressions, rutting etc	As required
	Rehabilitation of surface and upper substructure	Every 10 to 15 years or as required (if infiltration performance is reduced due to significant clogging)
Monitoring	Inspect for evidence of poor operation and/or weed growth – if required, take remedial action.	Three-monthly, 48 hours after large storms in the first six months
	Inspect silt accumulation rates and establish appropriate frequencies for rehabilitation	Annually
	Monitor inspection chambers	Annually

Table 5.2 – Permeable Paving Maintenance Schedule

Attenuation Tanks

5.3.7 For the attenuation tanks, the following maintenance will be required.

Attenuation Tank Maintenance Schedule		
	Required Action	Typical Frequency
Regular maintenance	Inspect and identify any areas that are not operating correctly. If required, take remedial action	Annually
	Remove debris from the catchment surface (where it may cause risk to performance).	Monthly
	For systems where rainfall infiltrates in the tank from above, check surface of filter for blockage by sediment, algae or other matter, remove and replace surface infiltration medium as necessary	Annually
	Remove sediment from pre-treatment structures.	Annually or as required
Remedial Actions	Repair/rehabilitate inlets/outlets, overflows and vents.	As required
Monitoring	Inspect/check all inlets, outlets, vents and overflows to ensure that they are in good condition and operating as designed.	Annually
	Survey inside of tanks for sediment build-up and remove if necessary	Every 5 years or as required

Table 5.3 – Attenuation Tank Maintenance

5.3.8 As part of the CIRIA SuDS Manual C753, Section 26 provides guidance regarding methods for managing pollution risks from surface water runoff. Part of the assessment is to determine which land use classification the development falls under, Table 26.1 of the CIRIA Report C753 sets the approaches to water quality risk management. For this site the Simple Index Approach will be used.

5.3.9 Table 26.2 in C753 reproduced as Table 5.4, shows the potential hazard associated with different land uses the hazard indices. The development will consist of residential properties, it is concluded that the site should be classed within the sections shown in Table 5.4 below.

5.3.10 The roofs of the dwellings are considered to have a “very low” pollution hazard, generating 0.2 total suspended solids, 0.2 metals and 0.05 hydrocarbons. The access and parking areas are considered to have a “low” pollution hazard, generating 0.5 total suspended solids, 0.4 metals and 0.4 hydrocarbons.

TABLE 26.2 Pollution hazard indices for different land use classifications				
Land use	Pollution hazard level	Total suspended solids (TSS)	Metals	Hydro-carbons
Residential roofs	Very low	0.2	0.2	0.05
Other roofs (typically commercial/industrial roofs)	Low	0.3	0.2 (up to 0.8 where there is potential for metals to leach from the roof)	0.05
Individual property driveways, residential car parks, low traffic roads (eg cul de sacs, homezones and general access roads) and non-residential car parking with infrequent change (eg schools, offices) ie < 300 traffic movements/day	Low	0.5	0.4	0.4
Commercial yard and delivery areas, non-residential car parking with frequent change (eg hospitals, retail), all roads except low traffic roads and trunk roads/motorways ¹	Medium	0.7	0.6	0.7
Sites with heavy pollution (eg haulage yards, lorry parks, highly frequented lorry approaches to industrial estates, waste sites), sites where chemicals and fuels (other than domestic fuel oil) are to be delivered, handled, stored, used or manufactured; industrial sites; trunk roads and motorways ¹	High	0.8 ²	0.8 ²	0.9 ²

Table 5.4 – CIRIA SuDS Manual C753 (Land use classifications)

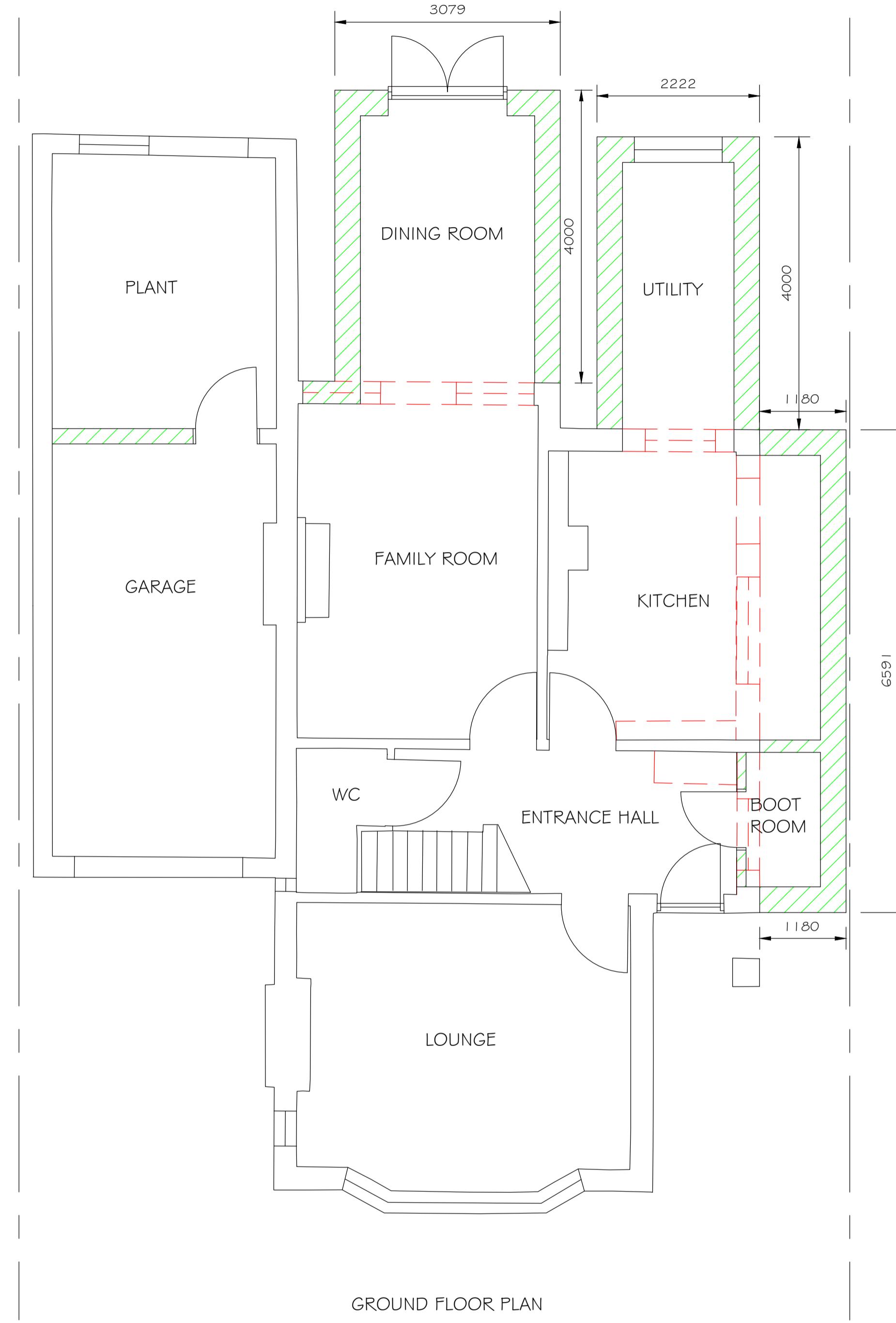
5.3.11 The proposed development will incorporate SuDS features for disposal of runoff from the site. Suitable treatment measures offered by SuDS features are set out in CIRA report. Table 26.3 of C753 reproduced below as Table 5.5 sets out the mitigation indices provided by SuDS features for discharge to surface waters.

TABLE 26.3 Indicative SuDS mitigation indices for discharges to surface waters			
Type of SuDS component	Mitigation indices ¹		
	TSS	Metals	Hydrocarbons
Filter strip	0.4	0.4	0.5
Filter drain	0.4 ²	0.4	0.4
Swale	0.5	0.6	0.6
Bioretention system	0.8	0.8	0.8
Permeable pavement	0.7	0.6	0.7
Detention basin	0.5	0.5	0.6
Pond ⁴	0.7 ³	0.7	0.5
Wetland	0.8 ³	0.8	0.8
Proprietary treatment systems ^{5,6}	These must demonstrate that they can address each of the contaminant types to acceptable levels for frequent events up to approximately the 1 in 1 year return period event, for inflow concentrations relevant to the contributing drainage area.		

Table 5.5 – CIRIA SuDS Manual C753 (Mitigation Indices to Surface Water)

5.3.12 With the appropriate use of SuDS, the necessary mitigation can be provided to meet the indices set out in Table 5.4.

6 SUMMARY AND CONCLUSION


- 6.1.1 The site is located at 62 Broadwood Avenue. The surrounding area contains open fields to the north and residential properties to the south.
- 6.1.2 The proposed development consists of the replacement of the current dwelling with a new detached house. The site is located in Flood Zone 3 but the proposed building is no bigger than the current approved property so the proposals will not restrict the flow of flood waters or result in the loss of flood storage on site. The proposed dwelling will be set above the estimate flood level for a 1.0% probability event with allowance for climate change.
- 6.1.3 A suitable drainage strategy for both foul and surface water can be provided without increasing the risk of flooding in the area. SuDS will be provided for the collection and disposal of runoff from the roof and hard standing.
- 6.1.4 This FRA has demonstrated that the proposals will not have any impact on the current flooding in the area and that a suitable drainage strategy can be provided without increasing the risk of flooding, and we therefore see no reason why these proposals should be refused on the grounds of flooding or drainage.

APPENDIX A

Drawing 240816-02 – Approved Site Layout

~ NOTES ~

ALL WORK TO BE TO CLIENT & LOCAL AUTHORITY APPROVAL.
ALL RELEVANT BS's & CP's TO BE COMPLIED WITH.
ANY DISTURBANCE TO BE MADE GOOD TO MATCH EXISTING.
ARCHITRAVES, CORNICES, DOORS & SKIRTINGS TO MATCH.
SERVICES TO BE ALTERED & EXTENDED AS NECESSARY.

0 1 2 3 4 5m
SCALE BAR ~ 1:50

Drawing 241008-01 – Proposed Site Layout

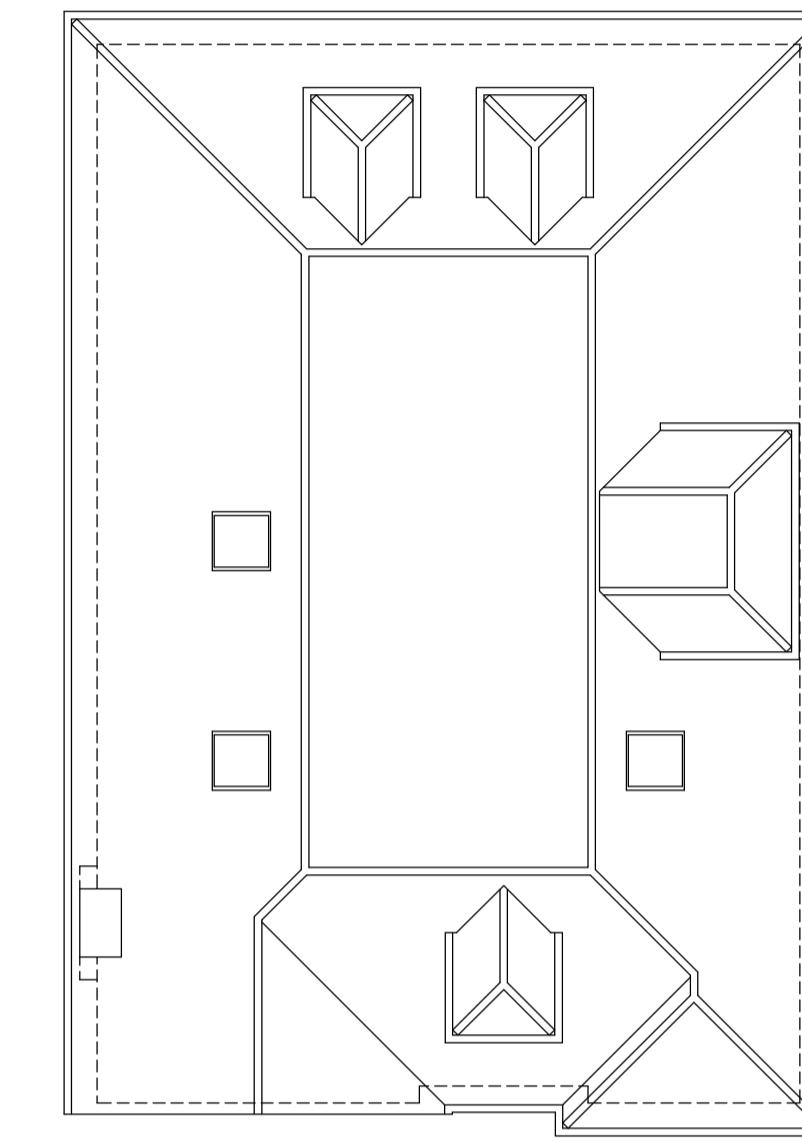
~ NOTES ~

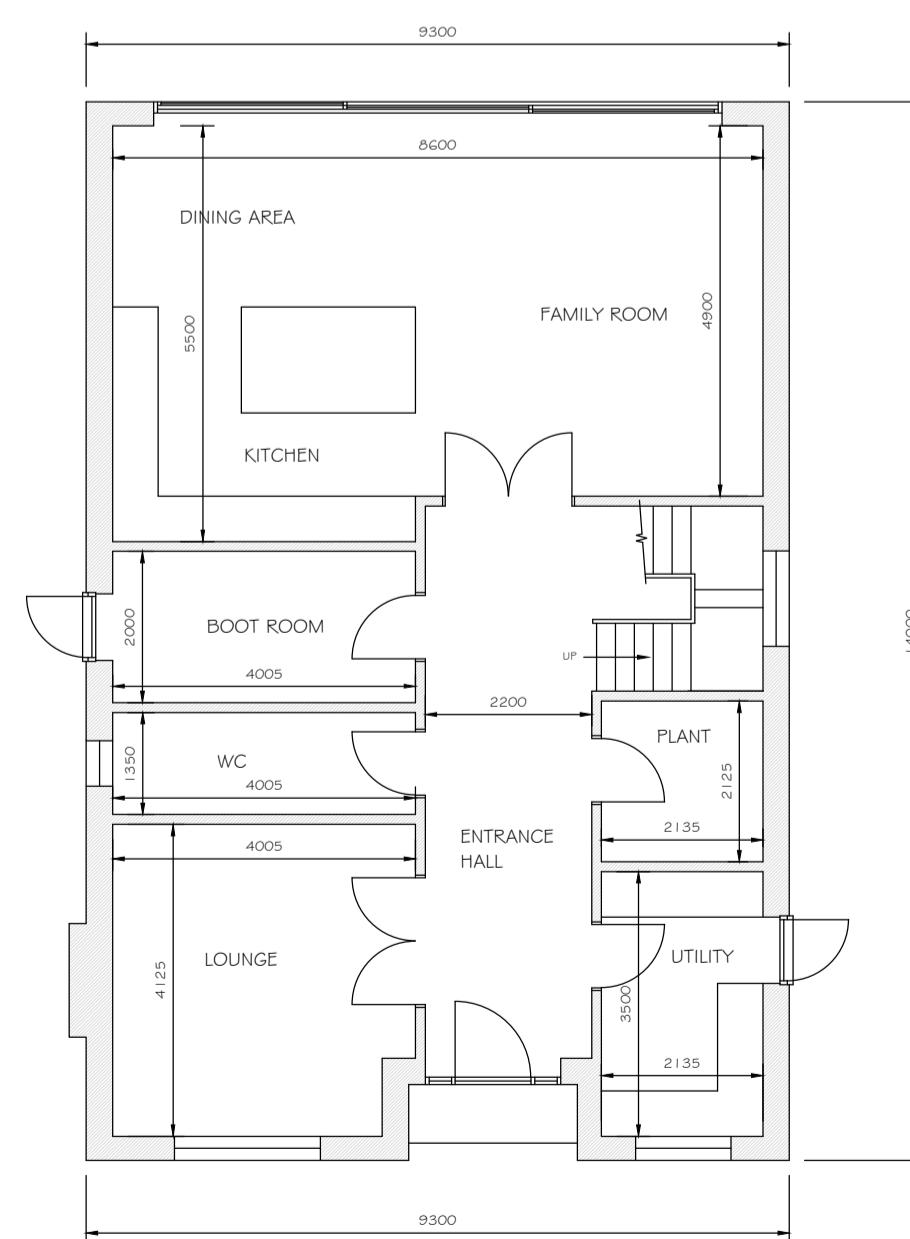
ALL WORK TO BE TO CLIENT & LOCAL AUTHORITY APPROVAL.
ALL RELEVANT BS's & CP's TO BE COMPLIED WITH.
ANY DISTURBANCE TO BE MADE GOOD TO MATCH EXISTING.
ARCHITRAVES, CORNICES, DOORS & SKIRTINGS TO MATCH.
SERVICES TO BE ALTERED & EXTENDED AS NECESSARY.

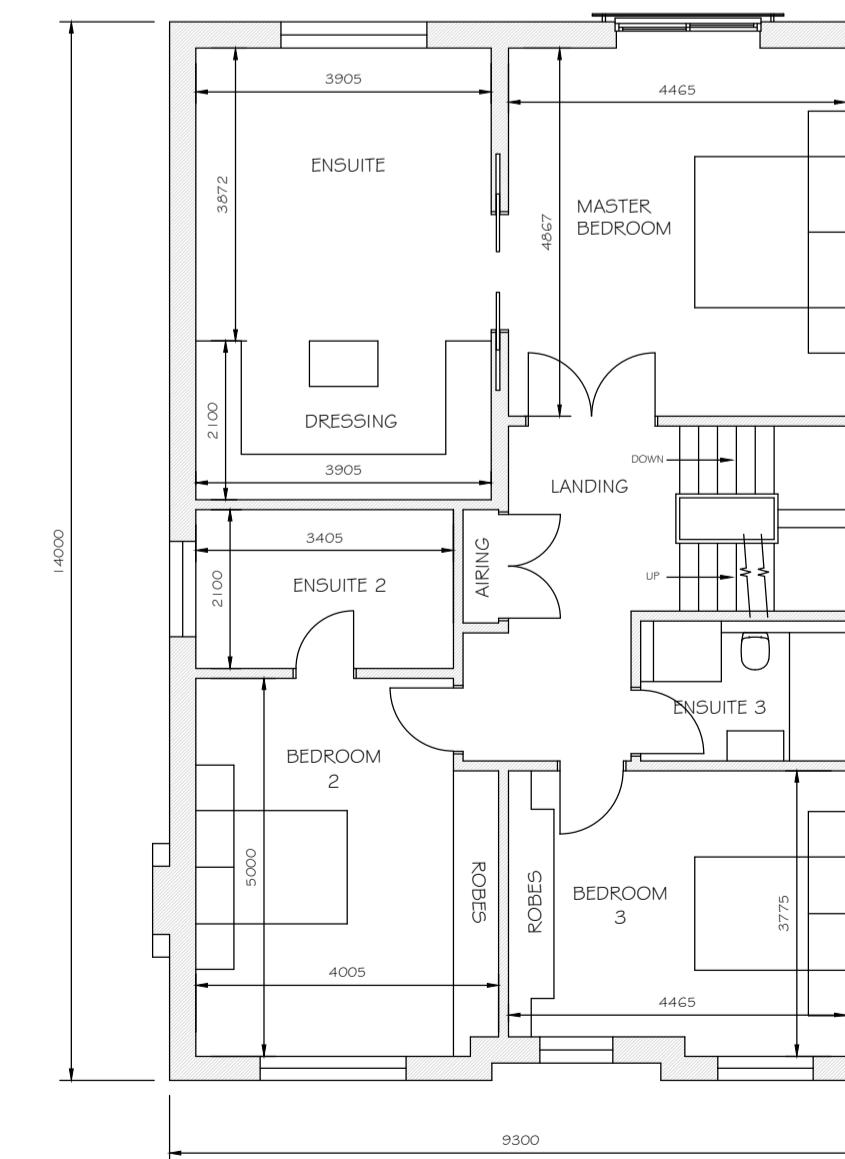
TOTAL INTERNAL FLOOR AREA - 282 SQ.M / 3030 SQ.FT

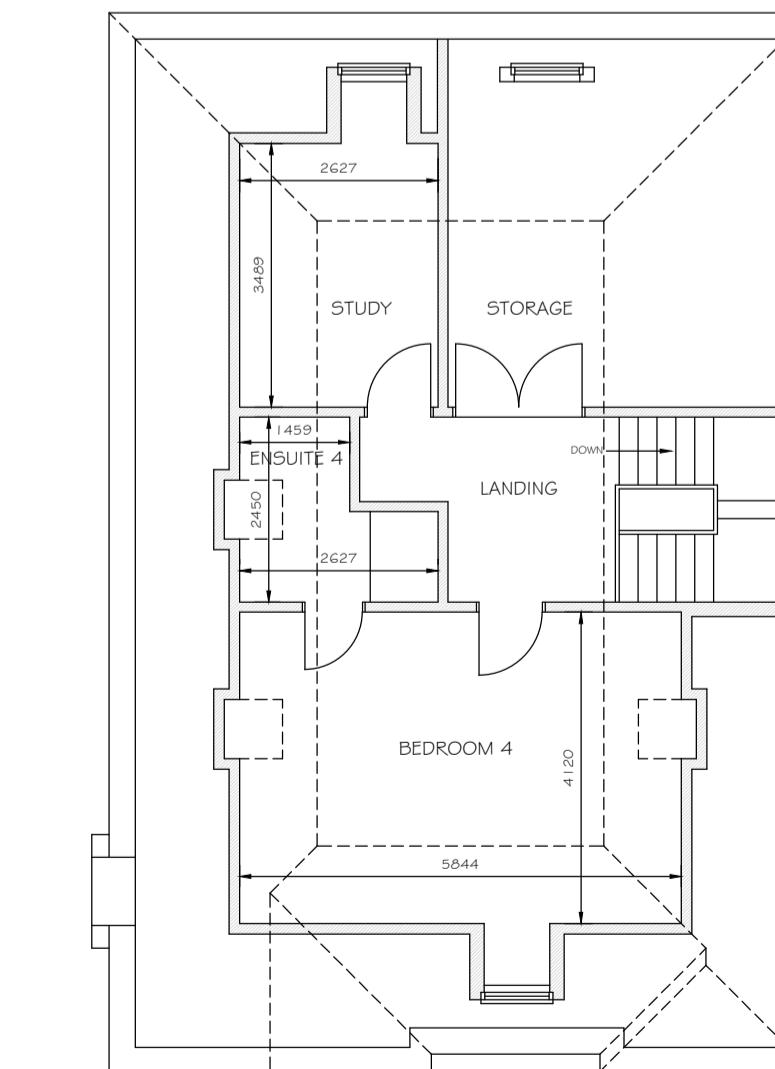
FRONT ELEVATION (SOUTH EAST)

SIDE ELEVATION (SOUTH WEST)


REAR ELEVATION (NORTH WEST)


SIDE ELEVATION (NORTH EAST)


SCALE BAR ~ 1:100


ROOF PLAN

GROUND FLOOR PLAN ~ 114 SQ.M / 1227 SQ.FT

FIRST FLOOR PLAN ~ 114 SQ.M / 1227 SQ.FT

SECOND FLOOR PLAN ~ 54 SQ.M / 576 SQ.FT

REVISIONS
MINOLI DESIGN E: declan@minoli.design
 77 HOWARDS THICKET GERRARDS CROSS BUCKS SL9 7NU
 O: 01753 882010 M: 07973 548828

Proposed Plan

ADDRESS
 62 Broadwood Avenue
 Ruislip HA4 7XR

CLIENT

SCALE 1:100 DATE October 2024
 @ A1 DRAWING No. 241008-01 REV.