

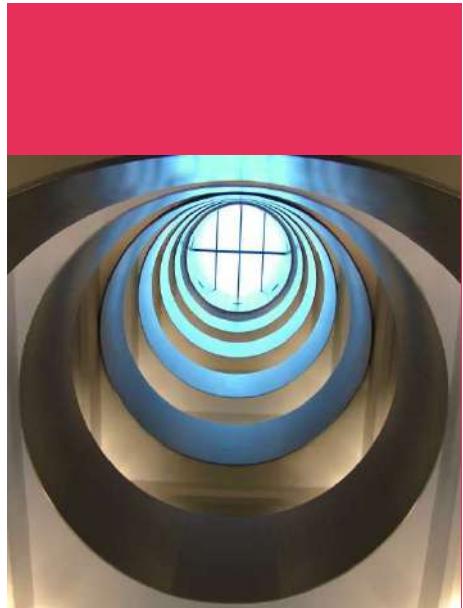
Pinn River School

Flood Risk Assessment & Drainage Strategy

Curtins Ref: 080522-CUR-XX-XX-T-C-92000

Revision: P02

Issue Date: 11 November 2022


Client Name: Kier

Client Address: 2 Langston Road, Loughton, Essex IG10 3SD

Site Address: Pinn River School, Fore Street, Pinner, London, HA5 2JQ

Curtins Consulting Limited
40 Compton Street
London
EC1V 0BD
Tel: 020 7324 2240
Email: london@curtins.com
www.curtins.com

CIVILS & STRUCTURES • TRANSPORT PLANNING • ENVIRONMENTAL • INFRASTRUCTURE • GEOTECHNICAL • CONSERVATION & HERITAGE • PRINCIPAL DESIGNER
Birmingham • Bristol • Cambridge • Cardiff • Douglas • Dublin • Edinburgh • Glasgow • Kendal • Leeds • Liverpool • London • Manchester • Nottingham

 curtins

Rev	Description	Issued by	Checked	Date
P01	Preliminary Issue	BPC	MS	28/10/2022
P02	EIA Comments Update	BPC	MS	11/11/2022

This report has been prepared for the sole benefit, use, and information for the client. The liability of Curtins Consulting Limited with respect to the information contained in the report will not extend to any third party.

Author	Signature	Date
Ben Cotterill MEng(Hons) Civil Engineer		11/11/2022

Reviewed	Signature	Date
Michael Smith MEng(Hons) CEng MICE Principal Civil Engineer		11/11/2022

Table of Contents

1.0	Introduction	1
1.1	Project Overview	1
1.2	Site Location.....	2
1.3	Site Description	3
1.4	Nearby Watercourse	3
1.5	Existing Geology	3
1.6	Project Proposals	4
2.0	Planning and Policy Considerations.....	5
2.1	National Planning Policy Requirements	5
2.1.1	National Planning Policy Framework (NPPF) and Planning Practice Guidance (PPG)	5
2.1.2	DEFRA – Sustainable Drainage Systems.....	5
2.1.3	Planning Practice Guidance	5
2.2	Local Planning Policy Requirements	6
2.2.1	The London Plan (2021)	6
2.2.2	West London Strategic Flood Risk Assessment.....	6
2.2.3	London Borough of Hillingdon.....	6
2.2.4	Flood Risk management Strategy	8
2.2.5	Surface Water Management Plan	8
3.0	Flood Risk Summary	9
3.1	Fluvial Flood Risk	9
3.1.1	Pluvial Flooding and Overland Flow.....	10
3.1.2	Ground Water Flooding.....	11
3.1.3	Historic Sewer Flooding Records.....	12
3.1.4	Source Protection Zone	12
3.1.5	Flooding From Artificial Sources	13
	Existing Drainage	14
4.0	14	
4.1	Public Sewerage	14

4.1.1 Foul Water.....	14
4.1.2 Surface Water	15
4.2 Private Drainage.....	15
4.2.1 Foul Water.....	15
4.2.2 Surface Water	15
Land Drainage	16
4.3 16	
5.0 Proposed Drainage Strategy	17
5.1 General.....	17
5.2 Surface Water	18
5.2.1 Proposed Site Discharge	19
5.2.2 Attenuation	20
5.2.3 Sustainable Drainage Systems	20
5.2.1 Water Quality.....	22
5.2.2 Car Parking Drainage Strategy	23
5.3 Foul Water.....	23
6.0 General Maintenance	24
7.0 Conclusions and Recommendations.....	25
8.0 Appendices	26
8.1 Appendix A – Proposed Architect’s Plan	1
8.2 Appendix B – Topographical Survey.....	2
8.3 Appendix C – Proposed Landscape Architect’s Plans.....	3
8.4 Appendix D – Proposed Below Ground Drainage General Arrangement.....	4
8.5 Appendix E – Thames Water Sewer Record	5
8.6 Appendix F – CCTV and Utilities Survey	6
8.7 Appendix G – Thames Water Pre-Development Enquiry	7
8.8 Appendix H – Causeway Flow Calculations	8
8.9 Appendix I – O&M Manual	9

1.0 Introduction

1.1 Project Overview

Curtins has been appointed by Kier Construction to produce a Drainage Strategy and Flood Risk Assessment in support of a full planning application for the SEND School, Pinn River School, previously known as Grangewood Primary School. The proposal is for a 180 student all through SEND school. This meets an established and growing need for SEND places within the Borough and will deliver high quality and purpose-built teaching accommodation, that address the unique needs of the students. The proposed architectural plans can be seen in **Appendix A**.

Proposals contained or forming part of this report represent the design intent and may be subject to alteration or adjustment in completing the detailed design for this project. Where such adjustments are undertaken as part of the detailed design and are deemed a material derivation from the intent contained in this document, prior approval shall be obtained from the relevant authority in advance of commencing such works.

1.2 Site Location

The site is located in Pinner, a suburb within the London borough of Hillingdon in the northwest of Greater London. The site occupies the northern portion of the former Grangewood school site.

The east of the site is bounded by suburban housing and Fore Street. The south-east of the site is bounded by the existing, and to be retained, Coteford Junior School. The remainder of the site is bounded by the London Green Belt. The nearest underground tube station is Northwood Hills, located approximately 1 mile north-east of the site.

The site address is Pinn River School, Fore Street, Pinner, HA5 2JQ. The site is centred on national grid reference TQ 09922 88829

The site location is shown in Figure 1-1:

Figure 1-1: Site Location

1.3 Site Description

The site is a brownfield site with a total area of 2.88ha. The site was previously used as a SEND school and the proposed use of the site will be a SEND school. The site is relatively flat with a maximum elevation of 56.95mOAD located in the north of the site and has a low point of 56.00mOAD located in the east of the site. The Topographical Survey for the site is contained within **Appendix B**.

1.4 Nearby Watercourse

The nearest major watercourse to the site is the River Pinn, located approximately 500m south of the site. Discharging directly into the watercourse has been considered unfeasible due to the distance and third-party land involved. A minor unnamed watercourse has also been identified nearby to the site, located within the London green belt. Discharging into this minor watercourse has been considered unfeasible due to the requirement to construct within the London green belt. The nearest watercourse to the site can be seen in figure 1-2.

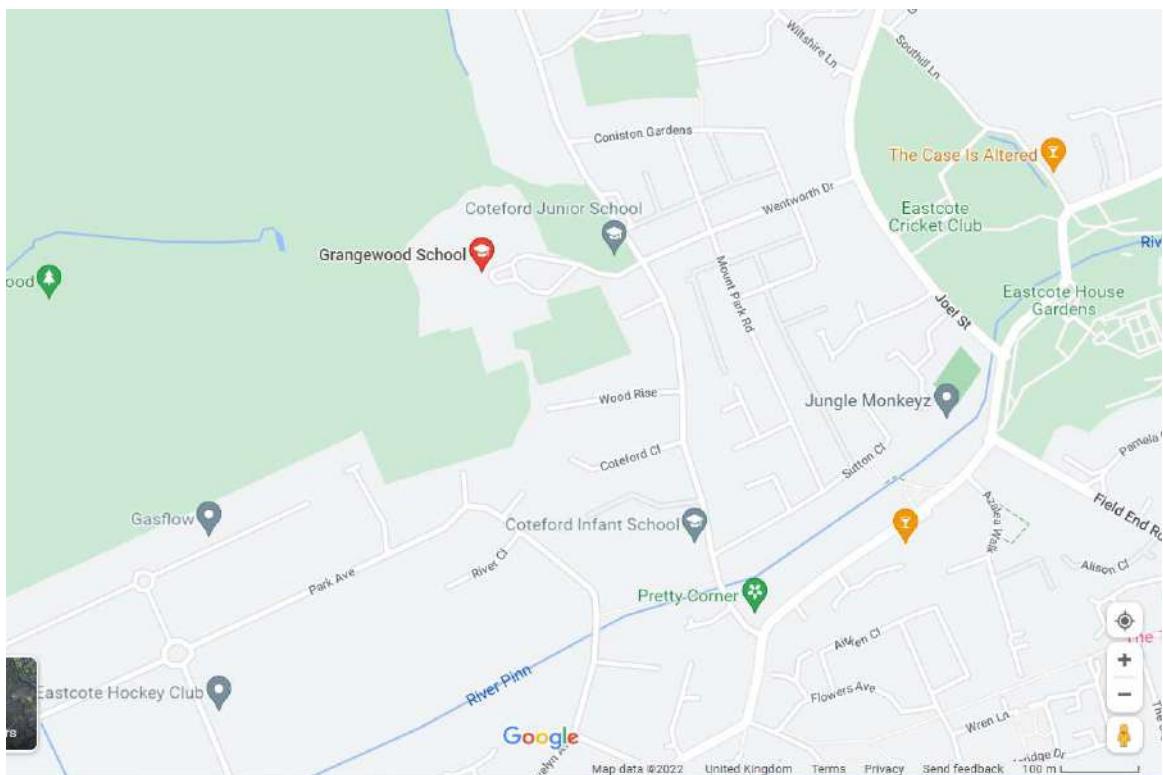


Figure 1-2: Watercourse mapping

1.5 Existing Geology

A site investigation (SI) report has been supplied to Curtins as part of the pre-planning information pack and provided geological information for the site. Several window sample boreholes were taken across the site reaching depths of 5m. It was found that the site is primarily underlain with clay, with sand and silt being evidenced.

1.6 Project Proposals

As discussed in Section 1.1, the project aims to deliver a SEND School for 180 pupils, offering high quality care and education. Curtins have designed a surface water drainage network which will manage flood risk for events up to and including the 1 in 100 year + 40% CC return period through the use of attenuation crates, and limit discharge to greenfield rates. A separate gravity foul water network will also serve the school, connecting to the existing foul water network serving the adjacent junior school.

The proposed site has an impermeable area of 1.36ha. However, of this, only 1.17ha is proposed to be redeveloped. The proposed drained area for the site consists of 0.76ha and has been designed so not to increase the area draining unrestricted to the existing sewerage network. Areas of the proposed car park redevelopment have been permitted to freely drain to the existing network, this has been mitigated by redesigning the area of existing drainage serving existing hardstanding to the north of the car park to now drain to the proposed restricted network. This has resulted in a net decrease in hardstanding draining unrestricted from site.

The proposed architectural plans are contained in **Appendix A**.

The proposed landscape drawings are contained in **Appendix C**.

The proposed Drainage Strategy is contained in **Appendix D**.

2.0 Planning and Policy Considerations

2.1 National Planning Policy Requirements

2.1.1 National Planning Policy Framework (NPPF) and Planning Practice Guidance (PPG)

In recent years, the Government and local Councils have placed increased priority on the need for developers to take full account for the risks of their development at all stages of the planning process. The National Planning Policy Framework (NPPF) and Planning Practice Guidance (PPG) identifies how the issue of flooding is dealt with through the planning process and with the creation of a site-specific Flood Risk Assessment (FRA) for sites over 1ha in area or in Flood Zones 2 & 3.

2.1.2 DEFRA – Sustainable Drainage Systems

The Department for Environment, Food and Rural Affairs (DEFRA) national standards for sustainable drainage systems provides technical guidance on the design, construction, and maintenance of Sustainable Drainage Systems (SuDS).

2.1.3 Planning Practice Guidance

The Government's Planning Practice Guidance (PPG) provides additional information to be read alongside the NPPF. The online guidance sets out the definitions for the flood zones and defines the permitted uses of development that can be proposed in them.

Table 2-1 - PPG Tables 1 & 2 Summary

Flood Zone	Appropriate Users
Flood Zone 1 - Low Probability This zone comprises land having less than 1 in 1000 annual probability of river or sea flooding (<0.1%)	All uses of land are appropriate in this zone
Flood Zone 2 - Medium Probability This zone comprises land assessed as having between 1 in 100 and 1 in 1000 annual probability of river flooding (1%-0.1%) or between 1 in 200 and 1 in 1000 annual probability of sea flooding (0.5%- 0.1%) in any year	The water-compatible, less vulnerable and more vulnerable uses of land and essential infrastructure in Table D.2 are appropriate in this Zone Subject to the Sequential Test being applied, the highly vulnerable uses in Table D.2 are only appropriate in this zone if the Exception Test is passed
Flood Zone 3a - High Probability This zone comprises land assessed as having a 1 in 100 or greater annual probability of river flooding (>1%) or a 1 in 200 or greater annual probability of flooding from the sea (>0.5%) in any year	The water-compatible and less vulnerable uses of land in Table D.2 of the PPG-TG are appropriate in this zone. The highly vulnerable uses in Table D.2 should not be permitted in this zone. The more vulnerable and essential infrastructure uses in Table D.2 should only be permitted in this zone if the Exception Test is passed. Essential infrastructure permitted in this should be designed and constructed to remain operational and safe for users in time of flood.
Flood Zone 3b - Functional Floodplain This zone comprises land where water has to flow or be stored in times of flood. SFRAs should identify this Flood Zone (land which would flood with an annual	Only the water-compatible uses and the essential infrastructure listed in Table D.2 that has to be there should be permitted in this zone. It should be designed and constructed to:

probability of 1 in 20 (5%) or greater in any year or is designed to flood in an extreme (0.1%) flood, or at another probability to be agreed between the LPA and the Environment Agency, including water conveyance routes	Remain operational and safe for users in times of flood; Result in no net loss of floodplain storage; Not impede water flows; and Not increase flood risk elsewhere. Essential infrastructure in this zone should pass the Exception Test.
---	--

2.2 Local Planning Policy Requirements

2.2.1 The London Plan (2021)

The London Plan (2021) is a Strategic Development Strategy for London, published by the Greater London Authority. The London Plan provides the framework for the development of London, including policies and accompanying information for implementation.

As per the London Plan Policy SI 13 (Sustainable Drainage), discharge of surface water should be via one of the following methods in descending priority.

The policy provides the following drainage hierarchy:

- 1) Rainwater use as a resource (for example rainwater harvesting, blue roofs for irrigation)
- 2) Rainwater infiltration to ground at or close to source
- 3) Rainwater attenuation in green infrastructure features for gradual release (for example green roofs, rain gardens)
- 4) Rainwater discharge direct to a watercourse (unless not appropriate)
- 5) Controlled rainwater discharge to a surface water sewer or drain
- 6) Controlled rainwater discharge to a combined sewer.

2.2.2 West London Strategic Flood Risk Assessment

The London Borough of Hillingdon, in collaboration with five of the six other Boroughs, make up the West London Alliance (Brent, Barnet, Ealing, Harrow, Hillingdon and Hounslow) and published the West London Strategic Flood Risk Assessment (SFRA) report in 2017. The document provides a comprehensive study on the opportunities and policies to reduce flood risk. It includes information about recent flood risk management activities including hydraulic modelling, improvements to the flood extent mapping and the construction of flood alleviation schemes. The document provides a comprehensive set of maps presenting flood risk from all sources. The SFRA also provides a set of comprehensive requirements for site-specific FRA and drainage strategies in line with the NPPF and London Plan.

2.2.3 London Borough of Hillingdon

The Hillingdon local plan sets out the long-term vision and objectives for the borough, what is going to happen within the borough, where, and how this will be achieved. The Hillingdon Local plan is consistent with the Sustainable Community Strategy, which focuses on three key components: People, Place and Prosperity. The Hillingdon Local Plan is separated into two parts; part 1 covers the strategic policies

whereas part 2 covers the development management policies. Part 1 was adopted in 2012 whilst part 2 was adopted in January 2020. Part 2 provides detailed policies that will form the basis of the Council's decisions on individual planning applications and covers the following topics:

- The Economy
- Town Centres
- New Homes
- Historic and the Built Environment
- Environmental Protection and Enhancement
- Community Infrastructure
- Transport and Aviation

Policy BE1: Built Environment states:

"The Council will require all new development to improve and maintain the quality of the built environment in order to create successful and sustainable neighbourhoods, where people enjoy living and working and that serve the long-term needs of all residents."

Policy BE1 goes on to state under bullet point 10:

"Maximise the opportunities for all new homes to contribute to tackling and adapting to climate change and reducing emissions of local air quality pollutants. The Council will require all new development to achieve reductions in carbon dioxide emission in line with the London Plan targets through energy efficient design and effective use of low and zero carbon technologies. Where the required reduction from on-site renewable energy is not feasible within major developments, contributions off-site will be sought. The Council will seek to merge a suite of sustainable design goals, such as the use of SUDS, water efficiency, lifetime homes, and energy efficiency into a requirement measured against the Code for Sustainable Homes and BREEAM. These will be set out within the Hillingdon Local Plan: Part 2- Development Management Policies Local Development Document (LDD). All developments should be designed to make the most efficient use of natural resources whilst safeguarding historic assets, their settings and local amenity and include sustainable design and construction techniques to increase the re-use and recycling of construction, demolition and excavation waste and reduce the amount disposed to landfill"

Policy EM6: Flood Risk Management states:

"The Council will require new development to be directed away from Flood Zones 2 and 3 in accordance with the principles of the National Planning Policy Framework (NPPF). The subsequent Hillingdon Local Plan: Part 2 -Site Specific Allocations LDD will be subjected to the Sequential Test in accordance with the NPPF. Sites will only be allocated within Flood Zones 2 or 3 where there are overriding issues that outweigh flood risk. In these instances, policy criteria will be set requiring future applicants of these sites to demonstrate that flood risk can be suitably mitigated. The Council will require all development across the borough to use sustainable urban drainage systems (SUDS) unless demonstrated that it is not viable. The Council will encourage

SUDS to be linked to water efficiency methods. The Council may require developer contributions to guarantee the long term maintenance and performance of SUDS is to an appropriate standard.”

2.2.4 Flood Risk management Strategy

The Hillingdon Local Flood Risk Management Strategy 2015 adheres to the legislation set out by the Flood and Water Management Act 2010 and assigns Hillingdon Borough Council as the Lead Local Flood Authority (LLFA).

Hillingdon is required to develop, maintain, apply, and monitor a local strategy for local flood risk management in its area.

Local flood risk is defined as flooding caused by the following sources: surface water, groundwater and ordinary watercourses.

The Local Flood Risk Management Strategy provides an overview of the assessment of flood risks already undertaken in other documents and sets out a framework for the management of local flood risk in the London Borough of Hillingdon by the Council and other relevant bodies.

This strategy is supported by the already published Flood Risk Management Portfolio of documentation which contains other critical legal documents such as the Preliminary Flood Risk Assessment, Strategic Flood Risk Assessment and Surface Water Management Plan, Parts 1 and 2. These provide the evidence base for this strategy.

2.2.5 Surface Water Management Plan

The Surface Water Management Plan (SWMP) was produced by completing flood modelling at the borough-wide scale and identified areas of significant modelled flood risk. The SWMP modelling was refined by the EA and published on their website in 2013. It has since been expanded upon, allowing local flood authorities to contribute to the model.

3.0 Flood Risk Summary

As the site is larger than 1 ha, a Flood Risk Assessment has been undertaken for the development site below. The site is located in Flood Zone 1 and is at low risk of all forms of flooding, therefore no mitigation measures are required.

3.1 Fluvial Flood Risk

With reference to the EA's indicative flood maps, it can be seen that the site lies within flood zone 1. Therefore, the risk of flooding from river and tidal influences can be deemed as very low, with a less than 1 in 1000 (<0.1%) annual probability of flooding from river and tidal sources. See figure 3-1 below for further flood zone extent information.

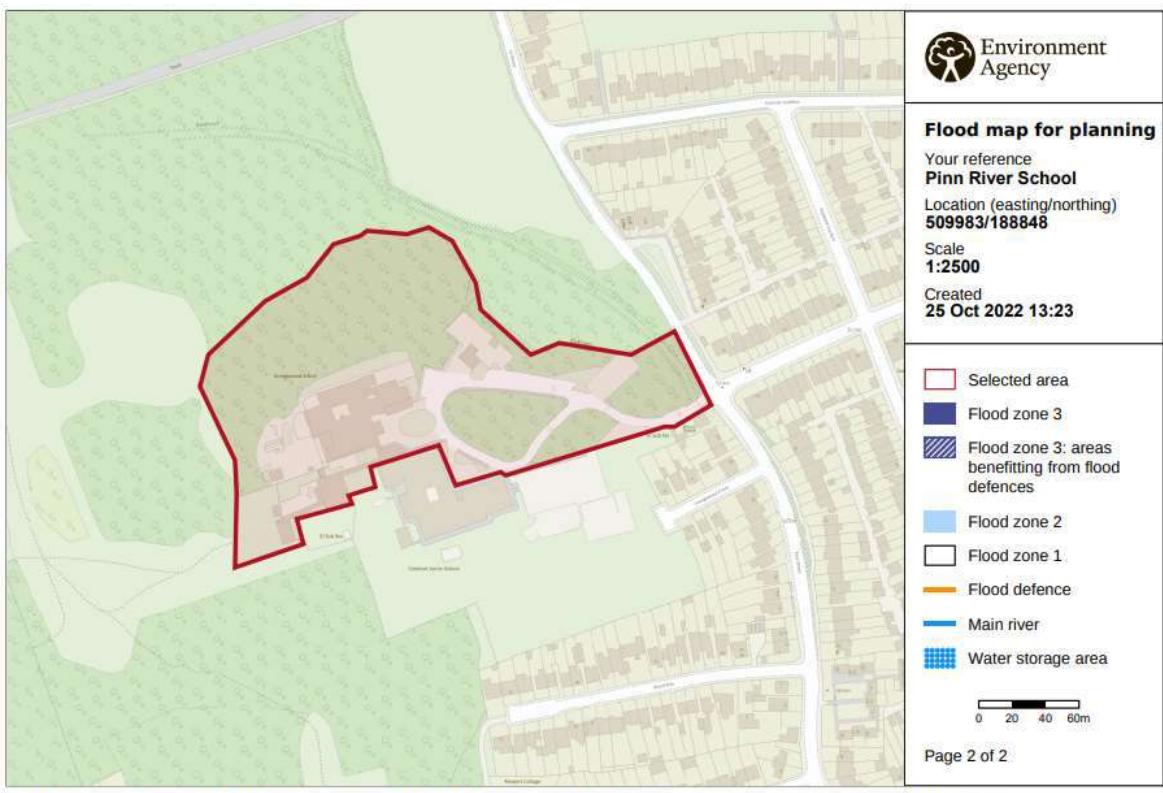


Figure 3-1: Fluvial Flood Risk Map

3.1.1 Pluvial Flooding and Overland Flow

With reference to the EA's online mapping, data related to the risk of potential surface water inundation or flooding is also provided. The online mapping tool identifies that the site is at very low risk of surface water flooding. See figure 3-2 below for further surface water extent information.

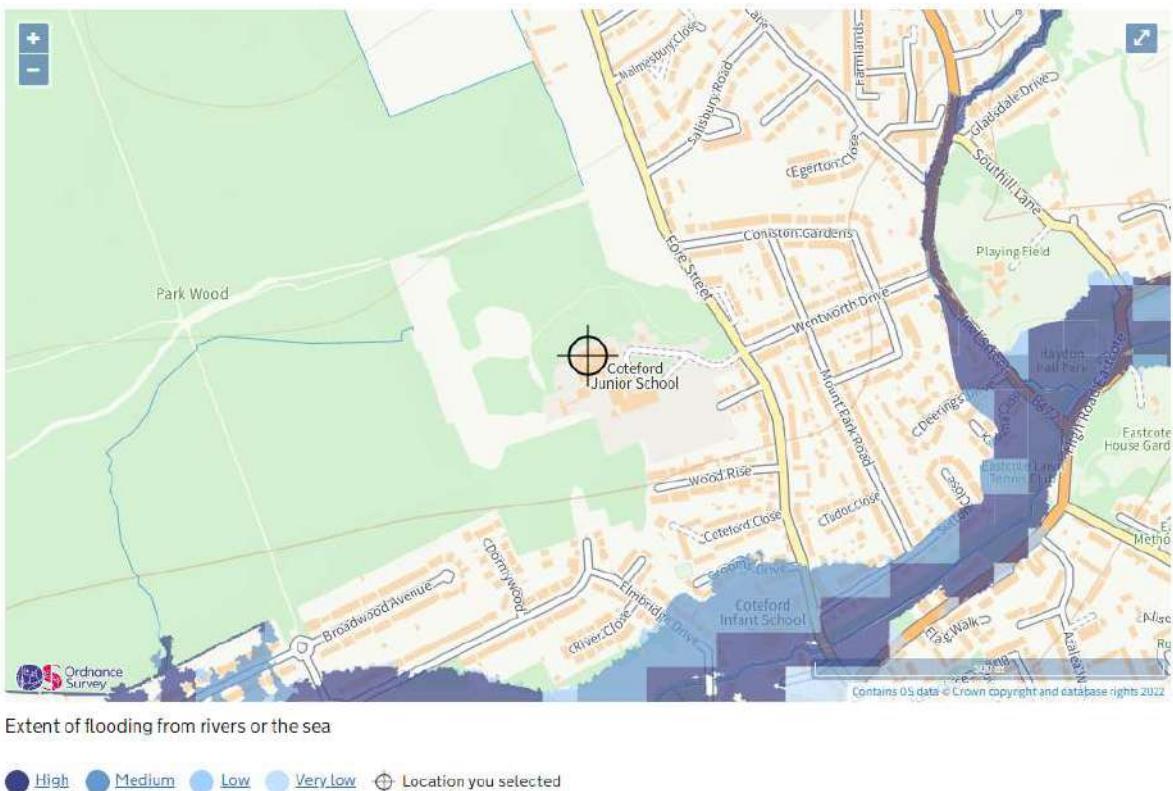


Figure 3-2: Surface Water Flood Risk Map

3.1.2 Ground Water Flooding

The SFRA groundwater mapping tool identifies that the site is in a region that is considered to be at moderate risk of groundwater flooding (The EA have indicated that there is between a 25-50% chance of groundwater flooding). It should be noted that the surrounding areas to the site are considered to be at low risk of groundwater flooding (less than 25% chance of groundwater flooding occurring). This will be considered in the proposed drainage strategy for the site. See Figure 3-3 for the West London SFRA Groundwater flood risk mapping.

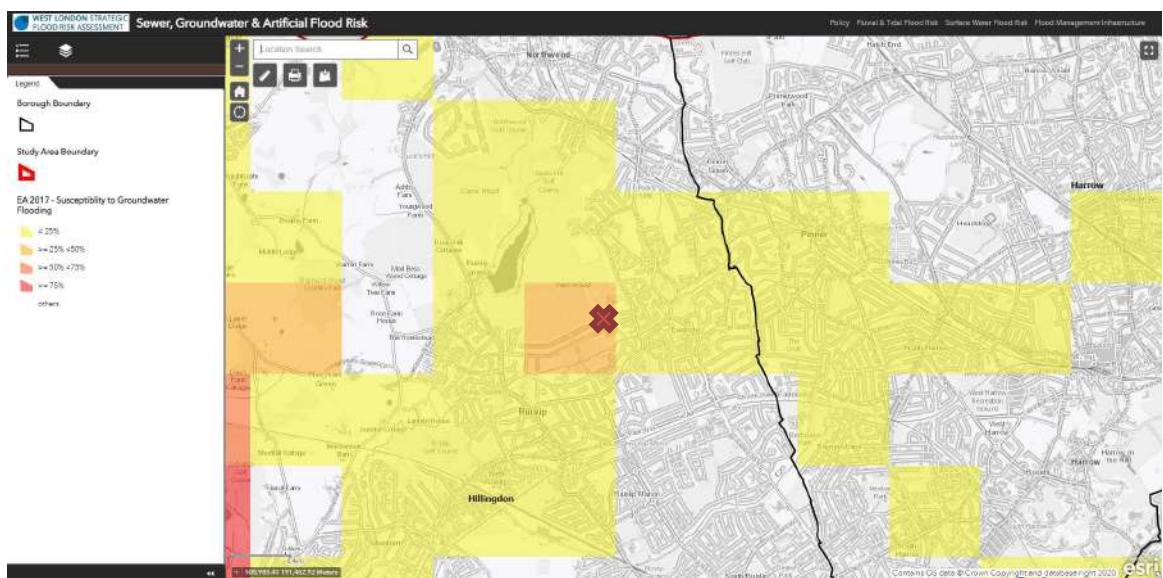


Figure 3-3: Groundwater Flood Risk Map.

However, site investigations have been undertaken on the site and these identified that the presence of ground water was not present on site. It should be noted that the window samples taken on site only reached depths of 5m. Ground water levels should be confirmed on site prior to construction works taking place. It has been calculated that provided the water levels remain below 55.4mAOD, there should be no adverse effects of groundwater on the proposed drainage plan. Mitigation controls for controlling potential groundwater flooding will be considered at the next design stage in the event that groundwater levels are higher than 55.4mAOD. To limit the risk of groundwater flooding, ground levels will fall away from the building. Where this is not possible, surface water channel drains and gullies will be used to divert surface water runoff away from the building.

3.1.3 Historic Sewer Flooding Records

There is evidence of historic sewer flooding occurring nearby to the site, as indicated by the SFRA sewer flooding records map. Information relating to the previous sewer flood events is not available at the time of writing this report. Between 1 and 20 historic sewer flooding events have occurred nearby to the site. The location of these is not known but it is understood they did not affect the site. The risk of flooding from sewerage is considered to be low.

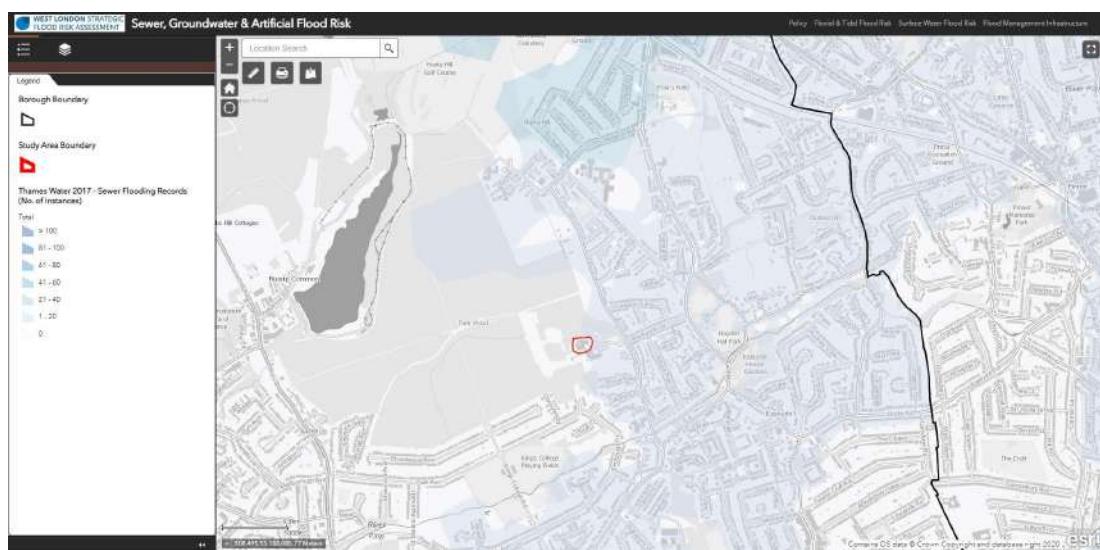


Figure 3-4: Historic Sewer Flooding Map

3.1.4 Source Protection Zone

The proposed site is indicated to lie within zone 3 (Total Catchment) of a source protection zone. The effects of ground water infiltration and other waste will need to be considered in order to prevent contamination within the protection zone.

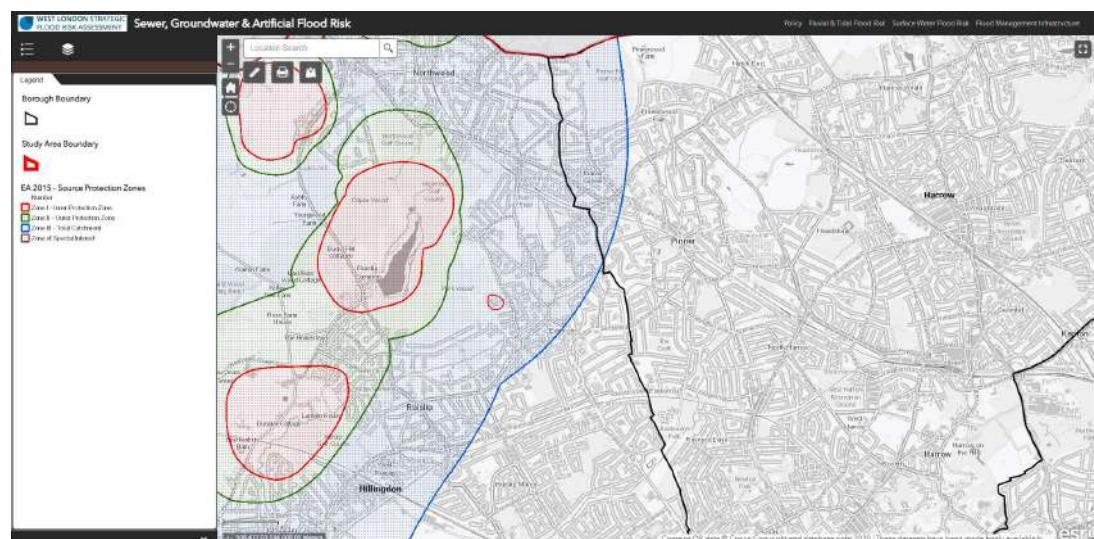


Figure 3-5: Source Protection Zone

3.1.5 Flooding From Artificial Sources

The site is not considered to be at risk of flooding from artificial sources, including when there is additional flooding from rivers. Refer to figure 3-6 below for the flood risk map from artificial sources, provided by the EA for the Pinn River School site.

Figure 3-6: Risk of flooding from artificial sources

4.0 Existing Drainage

4.1 Public Sewerage

4.1.1 Foul Water

There are no public foul water sewers located on site. The nearest foul water sewer is located within the playing field for Coteford School, south of the proposed development site. The public Thames Water foul sewers are sized to DN675 and flows southeast, as shown in figure 4-1. It has been recorded that the nearest public foul water sewer has a depth of approximately 10m. The full records are available in **Appendix E**.

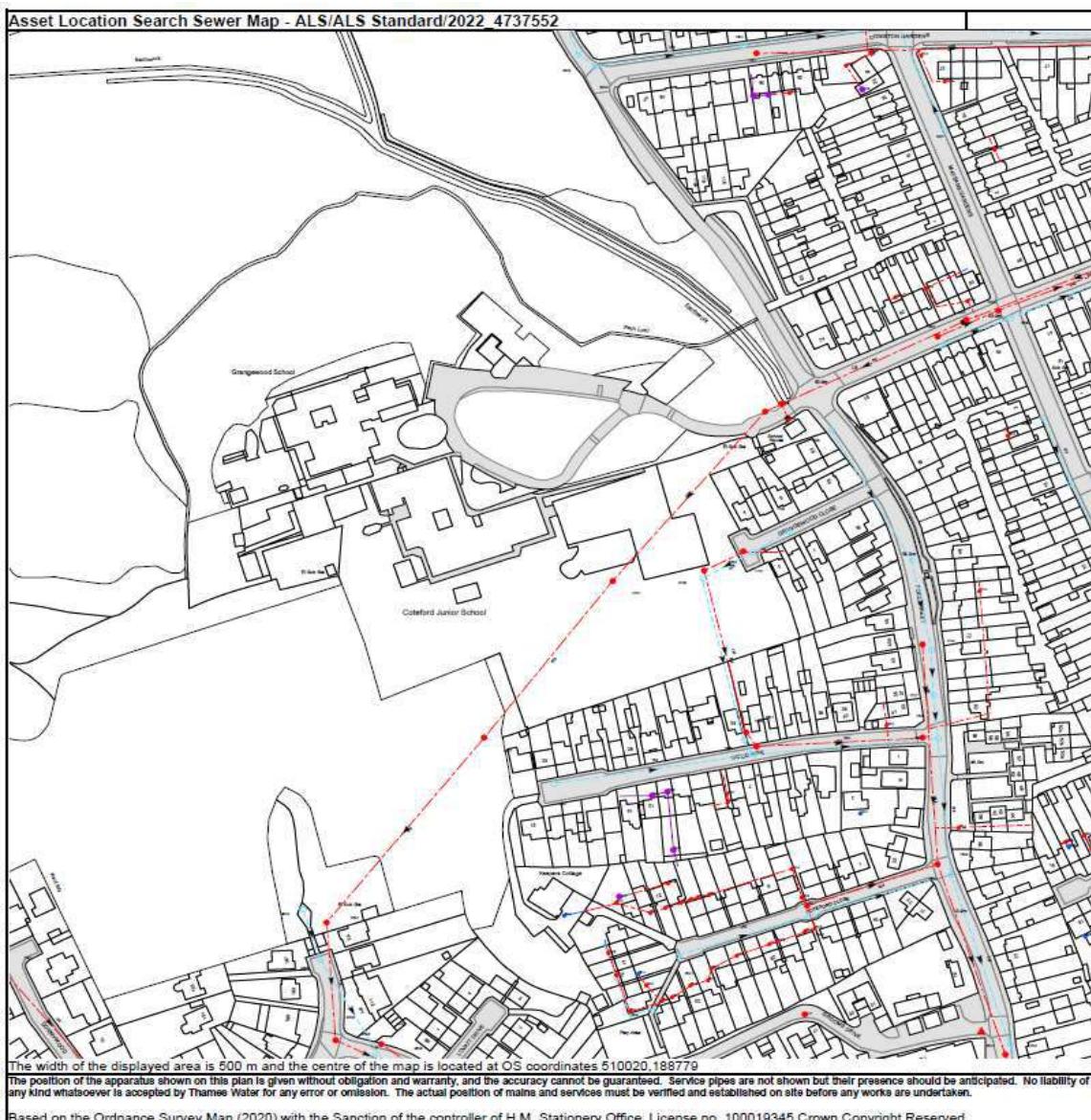


Figure 4-1: Thames Water Asset Location Search

4.1.2 Surface Water

There are no public surface water sewers located on site. The nearest surface water sewer is located within the playing field for Coteford School, south of the proposed development site. The public Thames Water surface water sewers are sized to DN225 and flow southwards as shown in figure 4-1. It has been recorded that the nearest public surface water manhole to the site has an approximate depth of 3.4m. The full records are available in **Appendix E**.

4.2 Private Drainage

4.2.1 Foul Water

A GPR survey was undertaken for the Pinn River school site which identified several private sewers within the site boundary. The existing drainage is currently servicing the existing Grangewood School. Within the site boundary, several DN100 foul sewers connect into an existing manhole proposed to be removed. This length increases into a DN150 sewer and connects into the proposed foul discharge manhole “MH.F2” which is centred on 509918.979, 188788.479. The foul sewer then proceeds to cross the Coteford School playing field and is then anticipated to connect into the public Thames Water foul sewer, although a CCTV survey is required to confirm the connection into the public foul sewer.

It is proposed that all on site foul drainage will be abandoned and tied back to the site boundary, or the existing manhole proposed for retainment, “MH.F2”. A CCTV survey is required to confirm that no upstream properties are served by the identified private drainage prior to sewer abandonment. Refer to **Appendix F** for site plans of the existing foul drainage.

4.2.2 Surface Water

Several surface water sewers have been identified within the site boundary. The existing drainage is currently servicing the existing Grangewood School. All on site surface water sewers are sized to DN100, with exception given to the discharge surface water sewer which is sized to DN150. The discharge manhole is centred on 509909.337, 188783.855. The surface water sewer then proceeds to cross the Coteford School playing field and is then anticipated to connect into the public Thames Water sewer, although a CCTV survey is required to confirm the connection into the public surface water sewer.

It is proposed that all on site surface water drainage will be abandoned and tied back to the site boundary. A manhole is proposed to be installed on the identified DN150 discharge sewer as shown within **Appendix D**. A CCTV survey is required to confirm that no upstream properties are served by the identified private drainage prior to sewer abandonment. Refer to **Appendix F** for site plans of the existing surface water drainage.

4.3 Land Drainage

No existing land drainage has been identified on the Pinn River School site.

5.0 Proposed Drainage Strategy

5.1 General

It is proposed that the drainage strategy for the site utilises separate surface water and foul water drainage systems. The proposed Drainage General Arrangement drawing is shown in **Appendix D**.

The proposed surface water network will utilise rainwater pipes, gullies, channels, and pipes to collect and convey storm water. A larger attenuation tank will be utilised prior to the outfall from site to attenuate excess surface water during high intensity rainfall events. A permeable pavement utilised beneath the MUGA will also offer further storage whilst draining the MUGA pitch.

Surface water discharge from site will be limited to 2.9l/s using a vortex flow control installed in the final proposed chamber.

The proposed surface water network drains an area of 0.76ha. The design of the network was intended to ensure that the pre-development area draining unrestricted to the school network was either equal to or less than the post-development undrained area. Due to the existing site levels and fragmented increases of impermeable areas to the car park, the drainage strategy has proposed to re-design an area of existing hardstanding so that it drains to the proposed network and allow some new hardstanding additions to drain freely to the existing network. The proposed drainage strategy results in a marginal net decrease in the area of the site draining unrestricted to the existing network.

The foul water will discharge via an existing manhole (FW23) via gravity.

All drainage will be designed and constructed in accordance with the Building Regulations Part H, the Sewerage Sector Guidance (SSG), the Design and Construction Guidance (DCG) and any other relevant legislation, guidance or standards as deemed appropriate.

A capacity check has been submitted and accepted by Thames Water for both the surface water and foul water connections.

5.2 Surface Water

In line with the 2021 London Plan Drainage Hierarchy (Policy SI 13), surface water run-off from a site should endeavour to be controlled as close to the source as possible. Discharge from site should be via one of the methods detailed in **Table 5-1**, in descending priority.

Table 5-1: Discharge Opportunities

London Sustainable Drainage Hierarchy	Site Specific Application
Store rainwater for later use	Due to the spatial constraints and nature of the development, rainwater harvesting measures have not been proposed on this development.
Use infiltration techniques, such as porous surfaces in non-clay areas	Geological data obtained from site investigations indicates that the site is underlain by London Clay. The geology is therefore expected to have a low permeability rate. Due to the location of the site, there are very few locations within the site boundary that are 5m or more away from a structure, as required by Building Regulations Part H. it is deemed inappropriate to utilise ground infiltration. The site is located within source protection zone 3. As the site is a brownfield site, it is deemed inappropriate to utilise ground infiltration.
Attenuate rainwater in ponds or open water features for gradual release	There is limited open space available on site. Utilising an open water feature would be unviable due to this space restriction. Furthermore, the utilisation of above ground features would reduce the available land for play space, which is deemed a necessary amenity of the site.
Attenuate rainwater by storing in tanks or sealed water features for gradual release	A below ground geo-cellular attenuation tank is proposed on the site. Currently, this will provide the attenuation required on site. Attenuation storage to be optimised further at the next design stage. The proposed attenuation tank will provide approximately 487.9m ³ of storage for the site.
Discharge rainwater direct to a water course	The nearest watercourse is the River Pinn located approximately 500m away to the south of the site. Discharging to the watercourse under gravity is not considered feasible due to the distance and third-party land involved.

London Sustainable Drainage Hierarchy	Site Specific Application
	A minor unnamed watercourse has also been identified nearby to the site, located within the London green belt. Discharging into this minor watercourse has been considered unfeasible due to the requirement to construct within the London green belt and the density of established trees on the route.
Discharge rainwater to a surface water sewer/drain	<p>There are public surface water sewers that serve the immediate area, including the previous Grangewood school. It is proposed that the site discharges to the surface water sewer located adjacent to the site boundary. Surface water will be discharged at a maximum rate of 2.9 l/s.</p> <p>Channel drains along the eastern edge of the proposed building will be required in order to protect the building from surface water runoff. This will discharge into the existing drainage located south of the site.</p>
Discharge rainwater to a combined sewer	There are no public combined sewer networks that serve the immediate area. It is therefore not feasible to discharge to a public combined sewer network.

5.2.1 Proposed Site Discharge

The proposed surface water drainage network shall be designed so that the surface water runoff generated up to the 1 in 100 year + 40% climate change rainfall event shall be contained within areas on site, so not to cause damage to buildings, essential services or adjoining developments and services. It is possible to discharge surface water by gravity by managing the above ground drainage design in such a way as to achieve optimal connectivity into the below ground drainage network.

A Causeway Flow pre-development discharge calculation was carried out to determine the greenfield run off rate of the site. The greenfield run off rates for the entire site area are presented in **Table 5-2**.

Table 5-2: Greenfield Runoff Rates

Rainfall Event	Greenfield Runoff Rate
1 in 1 Year	2.9
QBAR	3.4
1 in 30 Year	8.1
1 in 100 Year	10.8

A pre-development enquiry was previously submitted to Thames Water and is contained in **Appendix G**. The enquiry was sent following a prior revision of the scheme where the site catchment was reduced. Since then, the discharge rate has been increased from 2.5l/s to 2.9l/s – a revised pre-development enquiry has been submitted but at the time of writing no response has yet been received.

A vortex flow control will be used to reduce and control the flow rate. This will ensure that the proposed discharge rates are achieved and reduce the impact on the receiving public sewer network, reducing the risk of the sewer overflowing and causing flooding. This discharge rate has been used for all Causeway Flow calculations; see **Appendix H** for this information.

5.2.2 Attenuation

As highlighted previously, excess surface water will be attenuated through the use of a below ground attenuation tank, although this is likely to be expanded upon at the next design stage. The attenuation storage tank is placed at the end of the proposed surface water system, only prior to the discharge and flow control manhole SW33. The design of the attenuation tank will provide storage for rainfalls up to and including the 1 in 100 year + 40% CC storm event. A hydraulic model has been developed for the site, the results of which are contained within **Appendix H**.

Attenuation tank specifications:

- Tank to be placed underneath the permeable MUGA pitch
- Area – 456.5m²
- Depth – 1.125m
- Porosity – 95%
- Approximate Storage Volume – 487.9m³
- Cover Level – 56.10 mOAD – *(to be confirmed following receipt of the levels plan)*
- Invert Level – 54.14 mOAD

5.2.3 Sustainable Drainage Systems

Developments should utilise sustainable drainage systems (SuDS) unless there are practical reasons for not doing so. As mentioned previously, the design should aim to reduce run-off rates and ensure

that run-off is managed as close to its source as possible as per the drainage hierarchy (see **Table 5-1**).

The SuDS Hierarchy sets out the preferred method of discharging and managing water from a development site and aims to highlight why each item has been utilised or discounted.

Table 5-3 analyses the SuDS hierarchy and the appropriate techniques with specific focus on this project.

Table 5-3: SuDS Opportunities

SuDS Technique	Site Specific Analysis
Rainwater Harvesting	As discussed in Table 5-1, a rainwater harvesting system has not been proposed on this site due to the nature of the development and spatial requirements.
Living Roofs/Areas	As discussed in Table 5-1, living roofs have not been included on this scheme due to the implication of increased loading on the proposed structure.
Basins and Ponds	Due to the spatial requirements of ponds and basins, they have not been incorporated into this scheme.
Filter Strips and Swales	Green SuDS features such as filter strips and Raingardens could be implemented on site at a later design stage. However, these are not currently proposed for use.
Infiltration Devices	Infiltration, as discussed previously, is not appropriate for this scheme
Permeable Surfaces	Permeable paving is proposed for use across the site. Currently, this is proposed exclusively over the MUGA pitch in the south of the site.
Tanked Systems	A below ground attenuation tank is proposed to manage flood risk on site.

5.2.1 Water Quality

The Site has been assessed in line with the 'Pollution hazard indices for different land use classifications' table as presented in the CIRIA SuDS Manual C753. See figure 5-1 for further details.

TABLE 26.2 Pollution hazard indices for different land use classifications

Land use	Pollution hazard level	Total suspended solids (TSS)	Metals	Hydro-carbons
Residential roofs	Very low	0.2	0.2	0.05
Other roofs (typically commercial/ industrial roofs)	Low	0.3	0.2 (up to 0.8 where there is potential for metals to leach from the roof)	0.05
Individual property driveways, residential car parks, low traffic roads (eg cul de sacs, homezones and general access roads) and non-residential car parking with infrequent change (eg schools, offices) ie < 300 traffic movements/day	Low	0.5	0.4	0.4
Commercial yard and delivery areas, non-residential car parking with frequent change (eg hospitals, retail), all roads except low traffic roads and trunk roads/motorways ¹	Medium	0.7	0.6	0.7
Sites with heavy pollution (eg haulage yards, lorry parks, highly frequented lorry approaches to industrial estates, waste sites), sites where chemicals and fuels (other than domestic fuel oil) are to be delivered, handled, stored, used or manufactured; industrial sites; trunk roads and motorways ¹	High	0.8 ²	0.8 ²	0.9 ²

Figure 5-1: Extract of CIRIA SuDS Manual C753. Pollution Hazard Indices for Land Use Classification

The site has been assessed as having a 'low' pollution hazard level. At roof level, the land use has been classified as 'Other roofs' due to the roof being used for a school rather than a residential development. At ground level, land use has been identified as being equivalent to 'individual property driveways' as there is no vehicle access to the majority of the site and the site meets the example use of being a school.

The only area within the proposed drained area at heightened pollution risk is the area of proposed parking to the north and additional parking incorporated into the scheme. It is proposed to mitigate pollution from this area using a bypass separator.

5.2.2 Car Parking Drainage Strategy

As previously discussed, the existing car park is being upgraded to accommodate the proposed scheme. The strategy is to largely retain the majority of this car park, however there are some areas where additional parking and hardstanding is to be required. As the addition of hardstanding is not concentrated to one place but fragmented over the whole proposed car park, areas of existing parking have been drained into the proposed network to compensate for the addition in area.

It has been calculated that the increase in impermeable area from the additional car parking is 0.107ha. It is proposed that some of the new areas of hardstanding will discharge unrestricted into the existing drainage system (0.07ha). In order to compensate for the increase in hardstanding area entering unrestricted into the existing drainage network, the car parking area in the north of the site has been included within the proposed drainage network's catchment area (0.12ha). This has been deemed acceptable as the car parking area in the north has a marginally larger surface water catchment area than the increase in hardstanding area across the remaining car park, i.e., the area draining unrestricted is marginally less than in the pre-development case. The total increase in the impermeable network (in addition to the school) as a result of the car parking is 0.107ha – therefore there is a net decrease in unrestricted discharge to the existing network. Refer to **Appendix D** for the proposed drainage general arrangement.

5.3 Foul Water

The foul water drainage strategy includes the proposed location of external below ground drainage. Due to the existing levels being relatively flat, in addition to Curtins not yet receiving the proposed levels strategy, the foul drainage strategy aims to minimise the fall across the site in order to adequately provide foul drainage. The foul drainage design is subject to change following coordination with the M&E Engineers and the proposed levels plan. Thames Water have confirmed that the public foul water network has sufficient capacity to service the proposed site, as can be seen in **Appendix G**.

The foul water drainage is currently proposed to discharge via a direct gravity connection into the existing foul manhole FW23 as can be seen in **Appendix D**.

6.0 General Maintenance

It is assumed that all drainage within the site will be maintained as a private network. A suitable maintenance strategy will be included within handover documentation by the contractor once final details and suppliers have been chosen for the individual drainage elements. This strategy should be adopted to ensure the drainage network is cleaned regularly and the routine maintenance and cleansing regime should be documented.

An Operation and Maintenance Manual has been written by Curtins and should be referenced for general maintenance, 080522-CUR-XX-XX-T-C-92001, this can be found in **Appendix I**.

7.0 Conclusions and Recommendations

This report is intended to provide further details on the design of the drainage systems for the proposed redevelopment of Pinn River School and to act as additional information in support of the planning application. The project proposes the demolition of an existing building, Grangewood School, and the construction of a new school providing capacity for 180 students and staff members. The conclusions to be drawn from this report are as follows:

- The site has not been identified to be at risk of flooding from fluvial or surface water sources.
- The site has been identified to be at moderate risk of ground water flooding.
- The site is not located within a critical drainage area and is located in Flood Zone 1.
- The proposed scheme will limit discharge to the 1 in 1-year greenfield return period by using a vortex flow control device, limiting the discharge rate from site to 2.9 l/s.
- Excess surface water will be managed using a below ground attenuation tank.
- The surface and foul water will discharge to separate surface and foul water Thames Water sewers.
- The site is seen to be a low risk of surface water pollution.
- Additional information is still required in order to fully develop the proposed drainage strategy.

8.0 Appendices

Appendix A – Proposed Architect's Plans

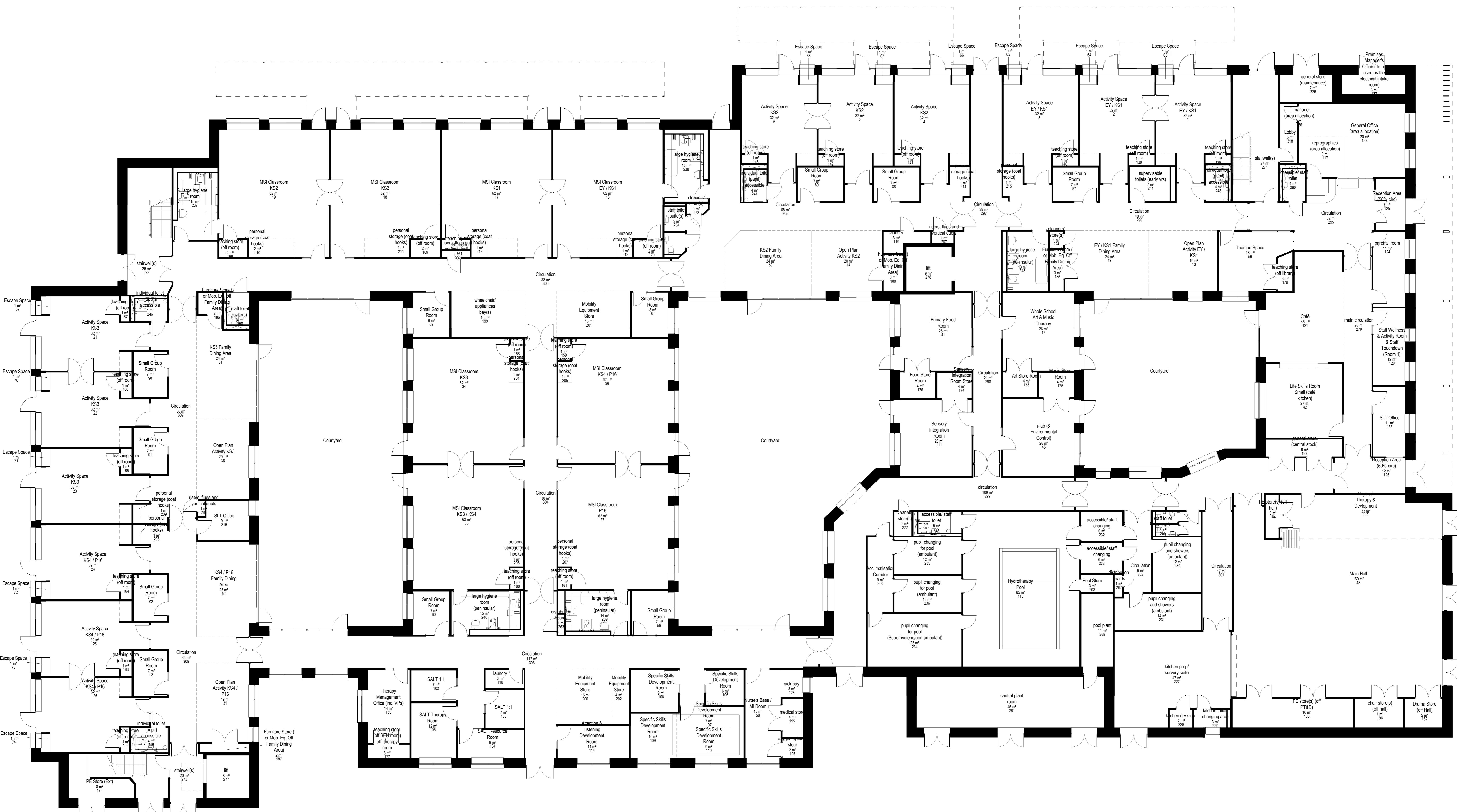
Appendix B – Topographical Survey

Appendix C – Proposed Landscape Architect's Plans

Appendix D – Proposed Below Ground Drainage General Arrangement

Appendix E – Thames Water Sewer Record

Appendix F – CCTV & Utilities Survey


Appendix G – Thames Water Pre-Development Enquiry

Appendix H – Causeway Flow Calculations

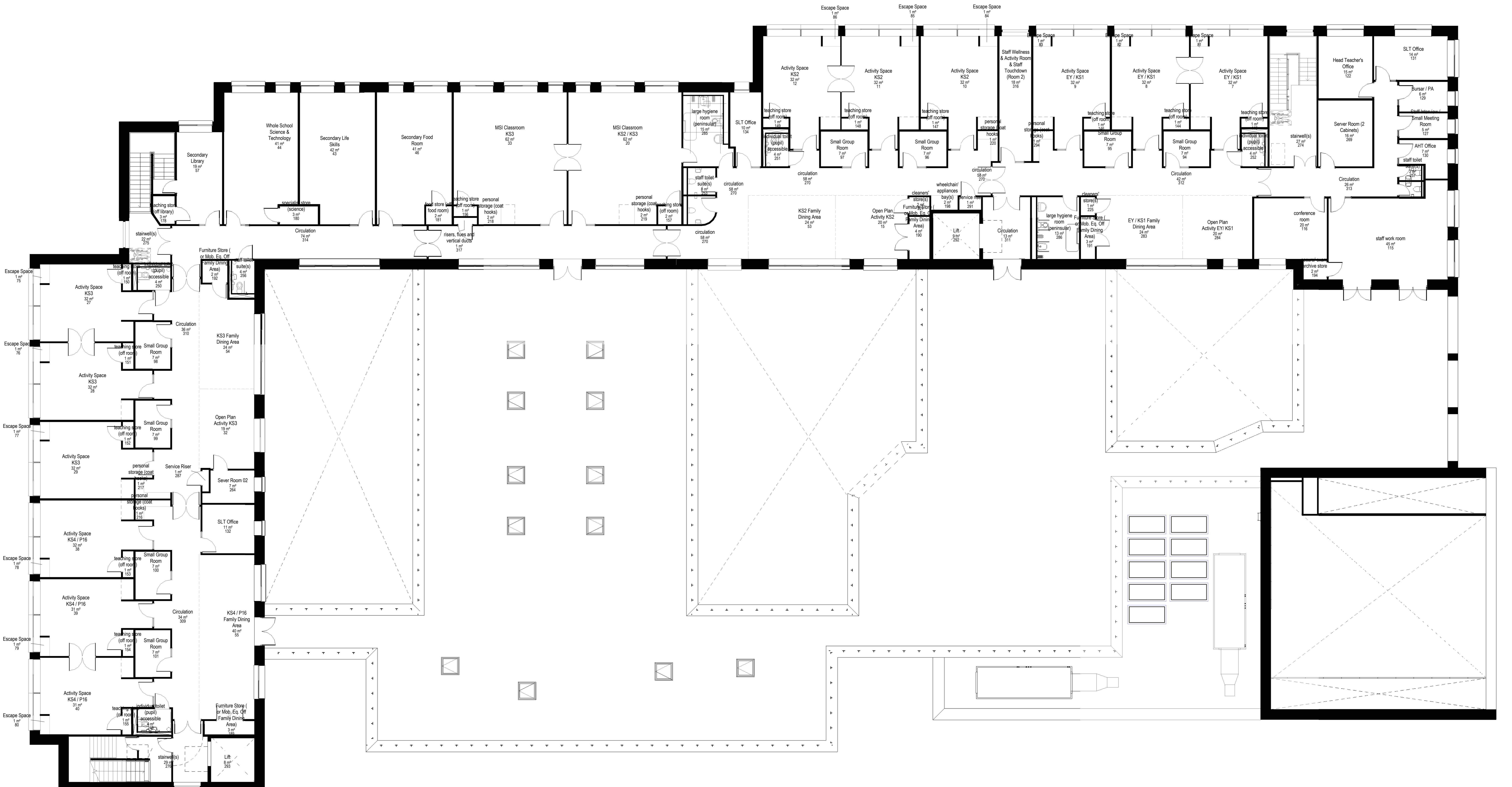
Appendix I – O&M Manual

8.1 Appendix A – Proposed Architect’s Plan

**NOVIUN
ARCHITECTS**

Con Exchange
Baffins Lane
Chichester
PO2 9EE
10243 588750
www.novun.com

Project Name: Pinn River SEND School LB Hillingdon
Drawing Ref: Ground Floor Plan


Drawn: MR Checked: MG
Scale: 1:100 @ A0 Project Issue Date: September 2022

Project: Pinn River SEND School LB Hillingdon
S2: INFORMATION
S1: PLANNING

Revision: P0.1 Revision Description: Novun Job No: Z0575

Notes: S1: Site Specific Information
S2: General Information
S3: Site Specific Information
S4: General Information

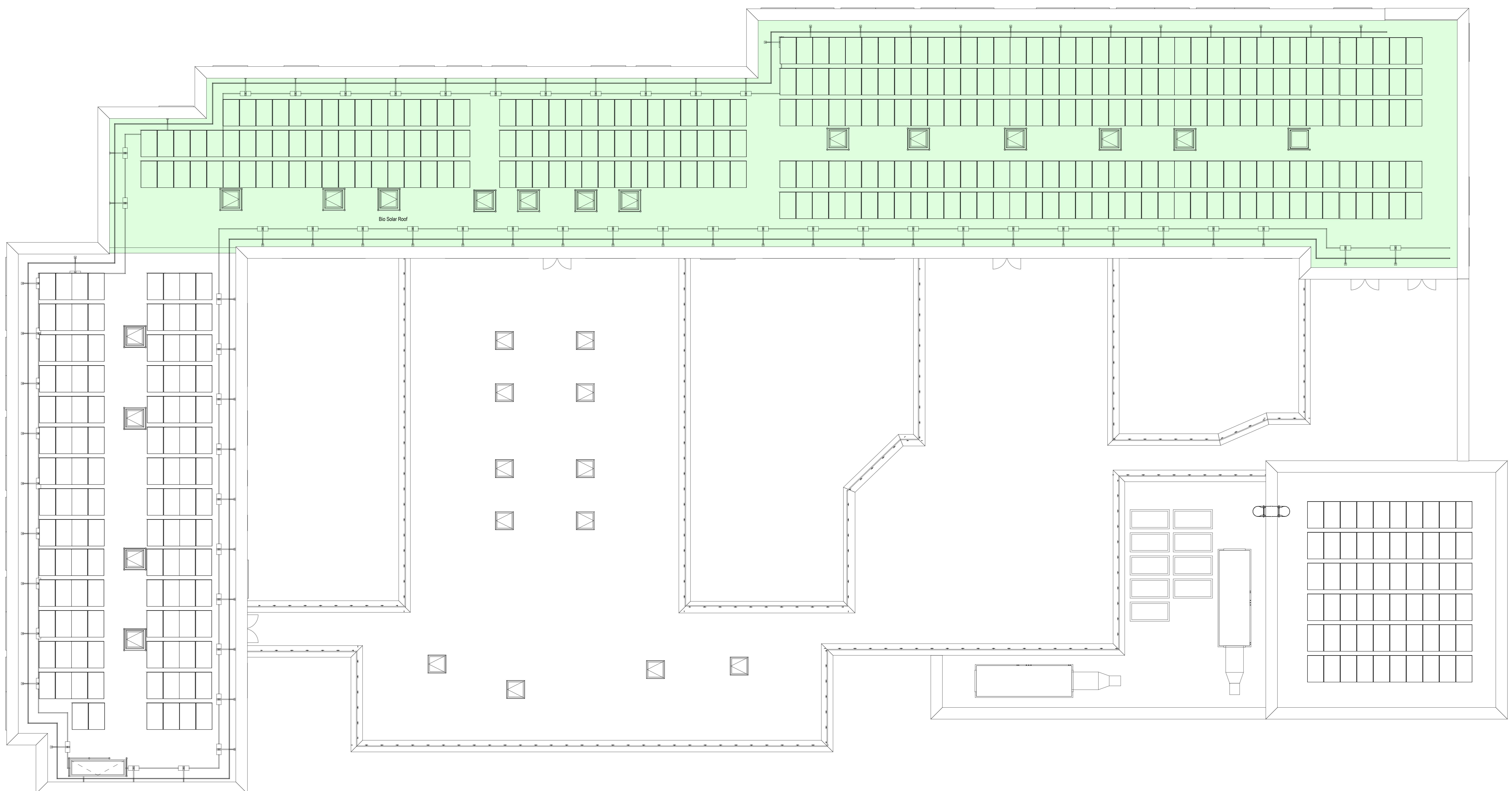
Revision: P0.1 Revision Description: Novun Job No: Z0575

NOVIUN ARCHITECT

Project Name:
Thames River SEND School LB Hillingdon

Wing Reference:

First Floor Plan


Project:	Originator:	Volume:	Level:	Type:	Role:	Number
Project 1	Originator A	Volume 1	Level 1	Type 1	Role 1	Number 1

status: **Suitability Description:** **INFORMATION** Orig Paper S

Revision: **0 1** Revision Description: **PLANNING** Novium Job: **Z05**

—

Scale 1 to 100 1 0 1 2 5 Metres

Amendments

1 Issued for planning 2022/11/07 MR

No. Description Date by

Use figures dimensions only. All levels and dimensions to be checked on site. This drawing is to be read in conjunction with all other relevant drawings and specifications.

©Novium Limited. All rights reserved

Novium Architects

Con Exchange
Baffins Lane
Chichester
PO21 9EE
01243 588750
www.novium.com

Project Name:
Pinn River SEND School LB Hillingdon

Dwg Reference:
Roof Plan

Drawn: MR Checked: MG
Scale: 1:100 @ A0 Project Issue Date: September 2022

Project: FS0728 - NOV - V1 - 02 - DR - A - PL07 Originator: Volume: Level: Type: Role: Number:

Sheet: S2 Revision: S2 Revision Description: INFORMATION

Revision: P0.1 Revision Description: Novium Job No:

Z0575 Novium Job No:

North Elevation

South Elevation

East Elevation

4 **West Elevation**
1 : 100

PPC aluminium coping.

Buff brick. Exact brick TBC at planning stage.

Hit & miss buff brick screen. Exact brick TBC at planning stage.

Aluminium coloured panel. Exact colour TBC at planning stage.

Aluminium window with aluminium louvre and / or opening lights - Grey or similar. Exact colour TBC at planning stage.

Aluminium door with with glazed infill panels with fixed / opening light above - Grey or similar. Exact colour TBC at planning stage.

Aluminium door with with glazed infill panels with fixed / opening light above aluminium opening light and glazed side screen - Grey or similar. Exact colour TBC at planning stage.

Aluminium louvre doors - Grey or similar. Exact colour TBC at planning stage.

Aluminium curtain wall - grey or similar. Exact colour TBC at planning stage.

Glazed spandrel panel. Colour TBC at planning stage.

Timber column. Exact colour TBC at planning stage.

Proposed signage. Exact material TBC at planning stage.

Entrance canopy - Grey. Exact colour TBC at planning stage.

Glass balustrade panels.

External canopy. Exact material colour TBC at planning stage.

Metal guard rail. Exact colour TBC at planning stage.

Photovoltaic array.

Metal step-over ladder. Exact colour TBC at planning

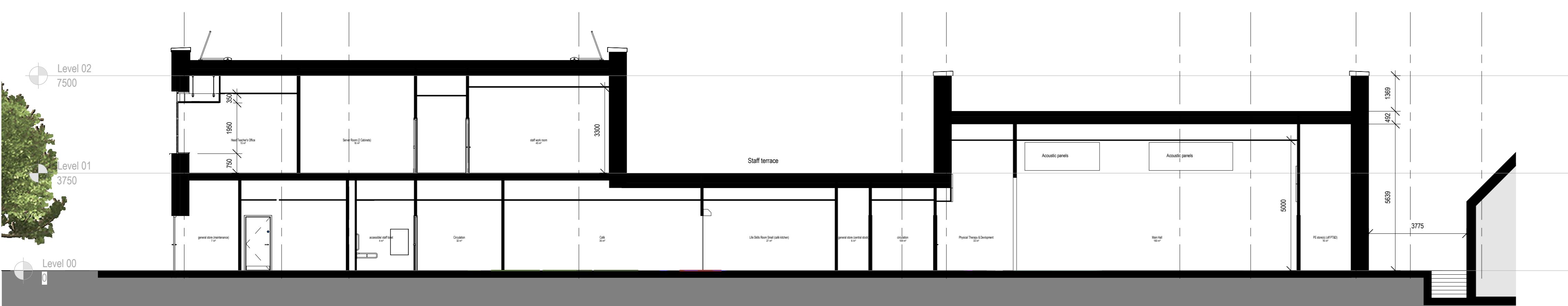
ents			
ed for planning	2022 11 07	MR	
scription	Date	Is	

Limited All rights reserved

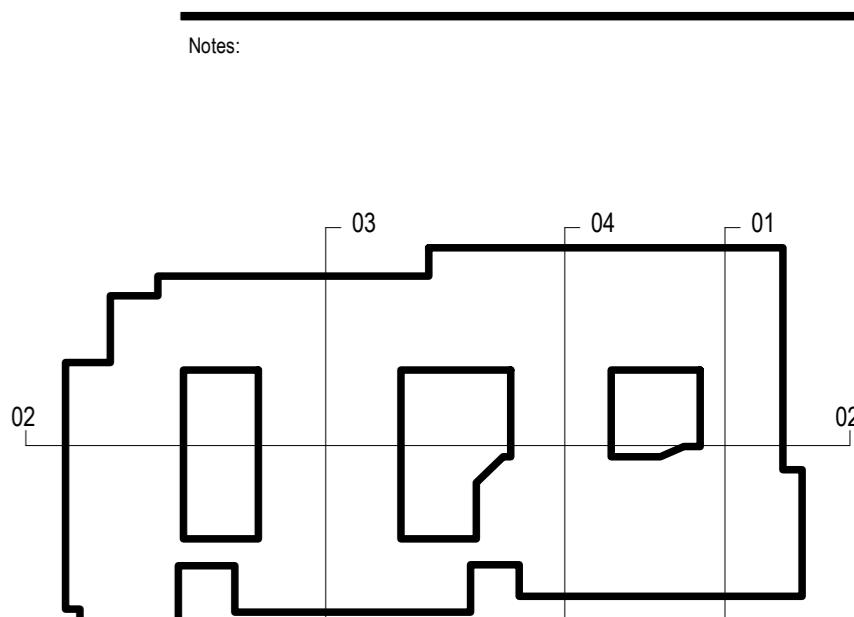
EVAN ARCHITECT

ame:
iver SEND School LB Hillingdon

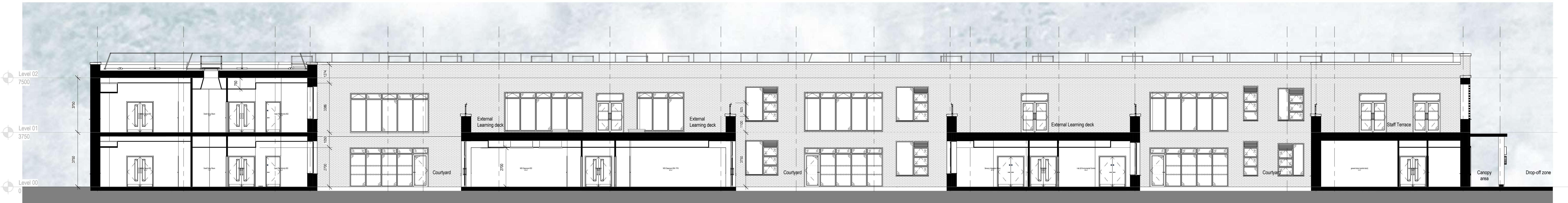
MR Checked: MG

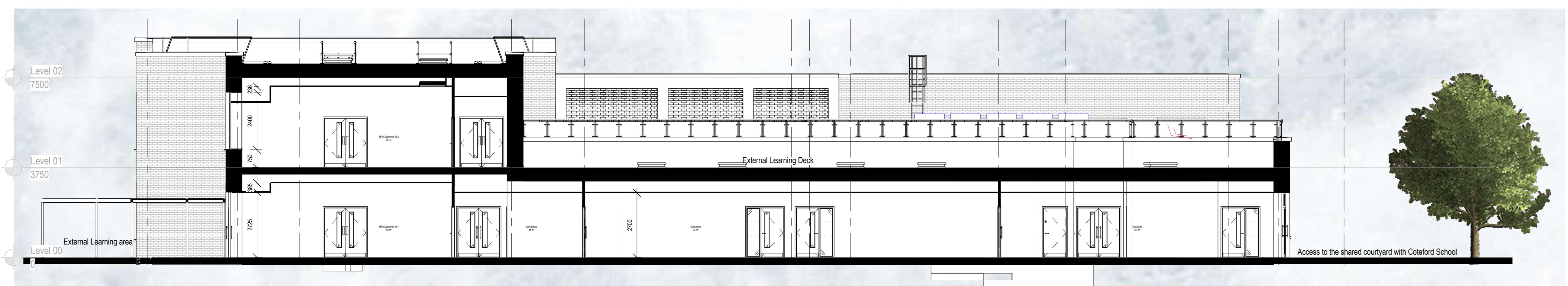

As indicated @ A0 Project Issue Date: September 2022

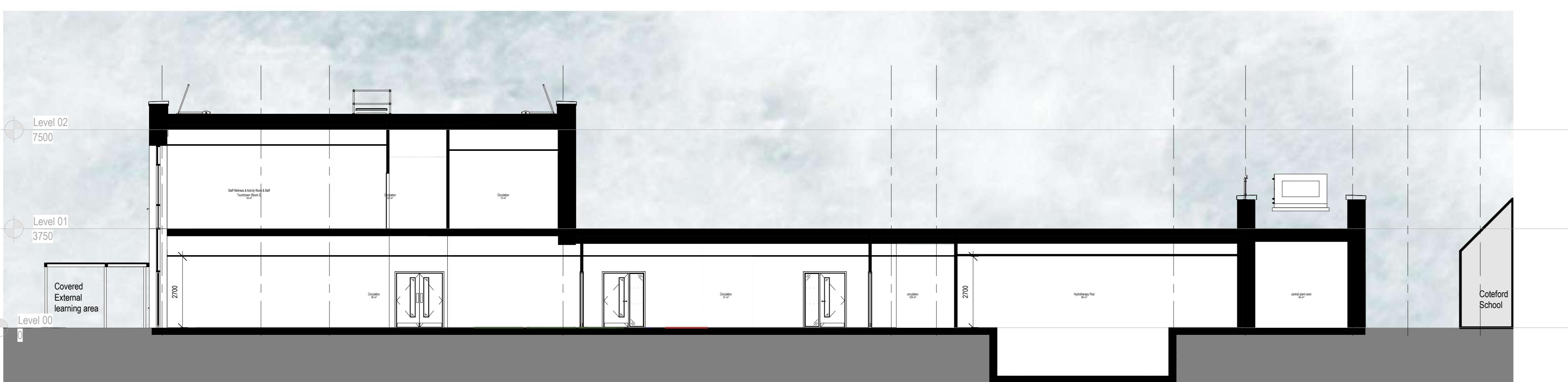
0728 - NOV - V1 - XX - DR - A - PL0


Suitability Description:	Orig Pap
INFORMATION	
Revision Description:	Novium

PLANNING




2 Section 01
1:100


1 Key Plan Copy 1
1:1000

3 Section 02
1:100

4 Section 03
1:100

5 Section 04
1:100

Scale 1 to 100 1 0 1 2 5 Metres
Amendments

1 Issued for planning 2022/11/07 MR
No. 1
Use figured dimensions only. All levels and dimensions to be checked on site. This
drawing is to be read in conjunction with all other relevant drawings and specifications.
©Novium Limited. All rights reserved

NOVNIUM
ARCHITECTS
Corn Exchange
Baffins Lane
Chichester
PO2 1EE
01243 588750
info@novium.com
www.novium.com
Project Name:
Pinn River SEND School LB Hillingdon

Draw: MR Checked: MG
Scale: As indicated @ A0 Project Issue Date: September 2022
Dwg Reference: Sections

Project: F50728 - NOV - V1 - XX - DR - A - PL09
Originator: S2 INFORMATION
Volume: 01 Paper Size: A0
Level: Revision Description: Novium Job No: Z0575
Type: P0 1 Revision: P0 1 Revision Description: PLANNING
Role: Number: Z0575

Notes:

Amendments

1	Issued for planning	2022.11.07	MR

Use figured dimensions only. All levels and dimensions to be checked on site. This drawing is to be read in conjunction with all other relevant drawings and specifications.
© Novium Limited. All rights reserved

NOVIUN ARCHITECTS

Corn Exchange
Baffins Lane
Chichester
PO19 1BF

T 01243 558750
info@noviun.com
www.noviun.com

Project Name: **Pinn River SEND School | B Hillingdon**

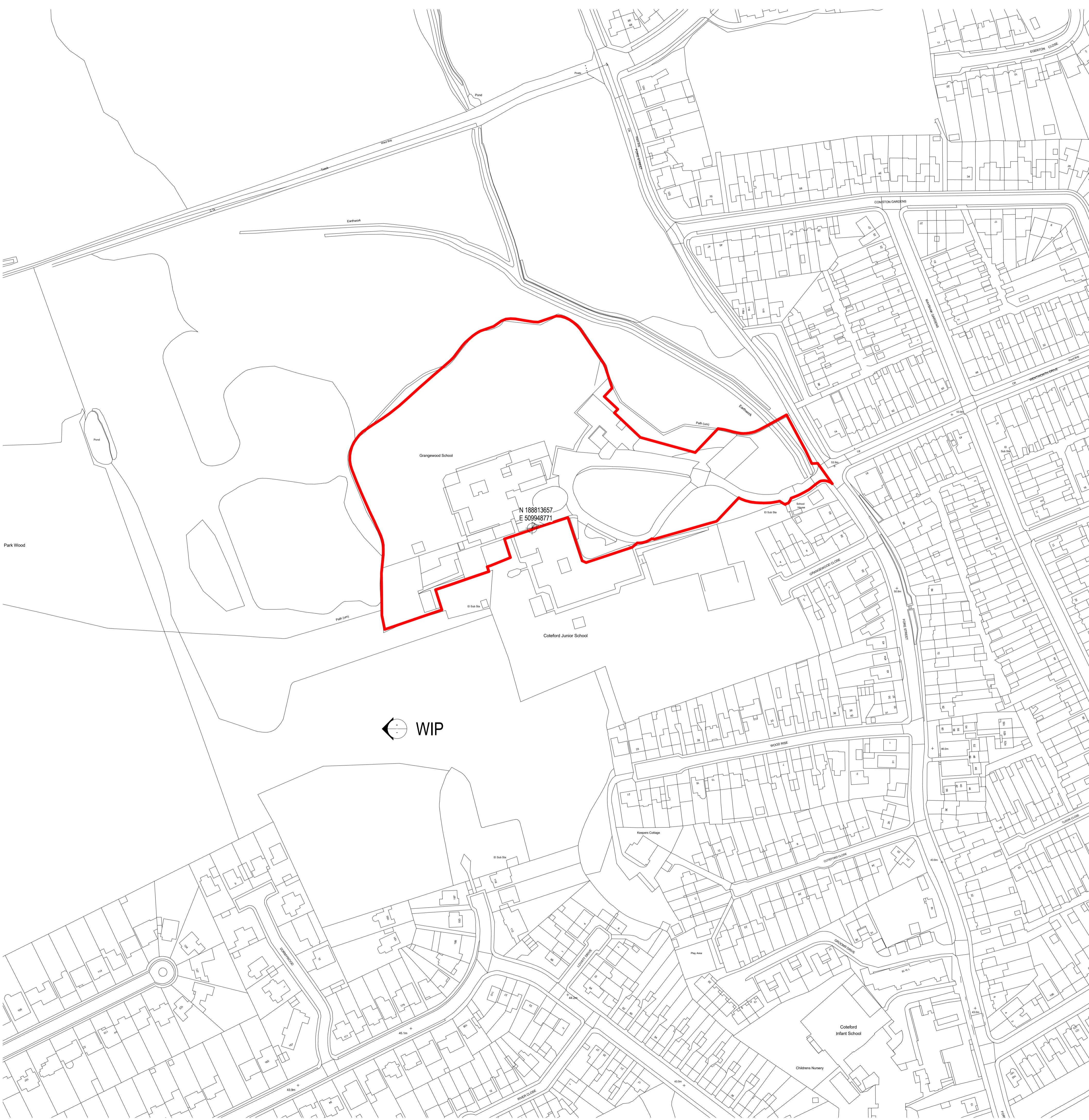
Dwg Reference:
External Visuals 01

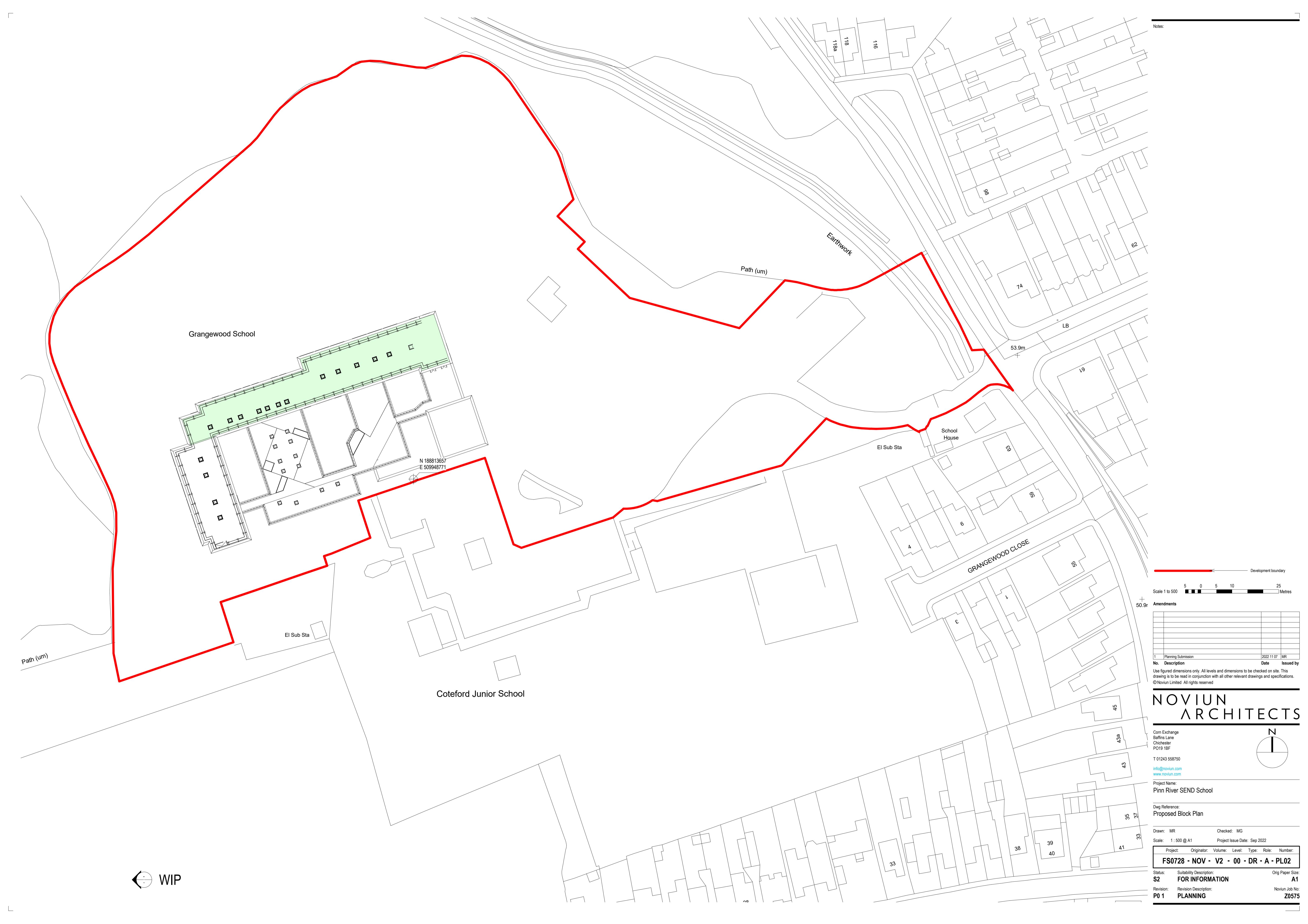
Scale: @ A1 Project Issue Date: September 2022

Project: Originator: Volume: Level: Type: Role: Number:

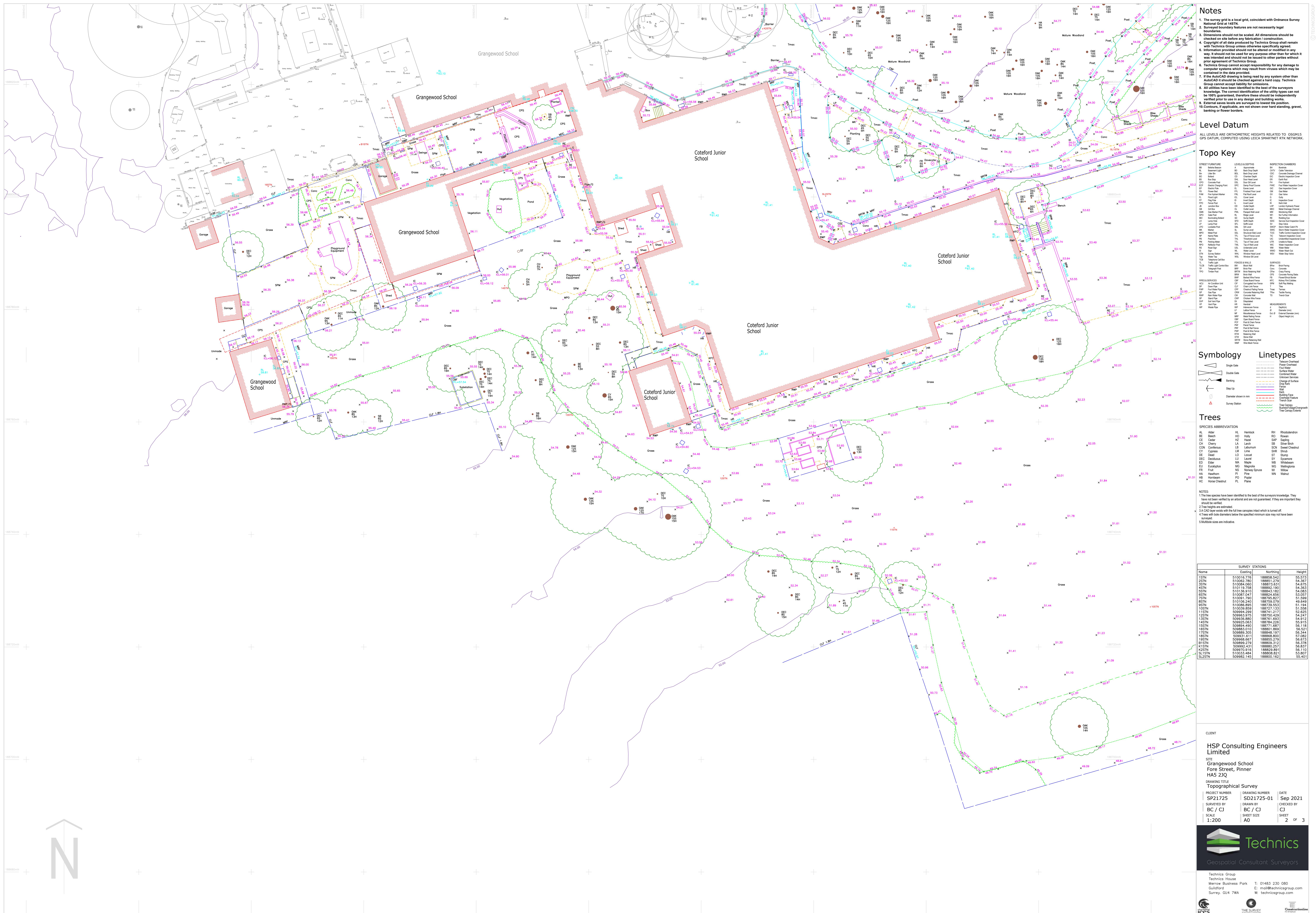
ES0728 - NOV - V1 - XX - DB - A - PI 10

Status: Suitability Description: Orig. Paper Size:


Status: **S2** Suitability Description: **INFORMATION** Orig Paper Size: **A1**


Revision: Revision Description: Noviun Job No.

P0 1 PLANNING Z0575



8.2 Appendix B – Topographical Survey

