

44 Murray Road Northwood HA6 2YL

Phase II Arboricultural Impact Assessment (AIA)
(Ref. 101 772)

Date: 27/01/2023

Prepared by:

Russell Ball BSc. (Hons.), P.G. Dip. LM, CBiol., MRSB

Royal Society of Biology *Chartered Biologist*

International Society of Arboriculture *Certified Arborist*

LANTRA Approved *Professional Tree Inspector*

International Society of Arboriculture *Qualified Tree Risk Assessor*

No. 1 Landford Close, Rickmansworth, WD3 1 NG
Mobile: 078844 26671 Email: russell@arboleuro.co.uk www.arboleuro.co.uk

CONTENTS

- 1.0** Instructions & Terms of Reference
- 2.0** Introduction
- 3.0** General Data
- 4.0** Statutory Controls
- 5.0** Wildlife Habitats
- 6.0** Tree Report at 44 Murray Road Northwood HA6 2YL
- 7.0** Conclusions
- 8.0** Recommendations
- 9.0** Owners Liability Acts
- 10.0** References

APPENDICES

- 1.** Tree Survey Schedules & Table 1 - Category Grading (Quality Assessment)
- 2.** Tree Constraint and Protection Plans
- 3.** Arboricultural Method Statement
- 4.** Tree Protection Barrier Specification
- 5.** Outline CV and Professional Experience

For Local Planning Authorities that have previously seen our standard report format are directed to Sections 4-7 that contain the key relevant information for this planning application.

1.0 INSTRUCTIONS & TERMS OF REFERENCE

1.1 INSTRUCTIONS

Arbol Euro Consulting Ltd. is instructed to assess the on and off-site trees in regard to the proposed development. See section 6.1.2. We visited the site on 09/01/2023 to carry out the tree survey.

NB This report does not seek to authorise any tree works (see Section 4.1).

Please be advised that this is a Development Control – and not a Building Control – focused document. In regard to the latter, this deals with foundation depth and design in relation to trees using NHBC/Zurich national guidance. For advice, consult with the local council Building Control Officer or an approved NHBC inspector in order to gain Full Plans Approval or a Completion Certificate. The latter are governed by the Building Act 1984 and Building Regulations 2010. As such the above Building Control issues are outside the remit of a Consulting Arborist.

Our tree reporting is in-line with BS:5837 (2012) and our tree survey assessments are consistent with the LANTRA professional tree inspector criteria. However, please be advised* that this AIA does not necessarily provide any guarantees that the associated Local Planning Authority will agree with the opinion of the Consulting Arborist or grant planning consent based on the content and findings of this AIA report.

* As per our Terms & Conditions.

1.2 PHASE 1, 2 & 3: ARBORICULTURAL IMPLICATION ASSESSMENTS (AIA) IN CONTEXT

1.2.1 Phase 1 (AIA1). The initial stage for trees within the development process is a survey of those trees that should be retained and those that may/should be removed. Retention trees are allocated Root Protection Areas (RPAs) that are then detailed on a Tree Constraints Plan (TCP). The RPAs provide for sufficient rooting (soil) volume to ensure that trees are successfully retained during and after the completed development. The TCP represents Phase 1 of an Arboricultural Implications Assessment (AIA1). It indicates a notional development footprint for any given site but moreover, it **may affect the value of land** earmarked for development. The AIA1 is **only** a baseline survey. It is not intended to represent, in isolation, the supporting information for an LPA* application: to obtain full planning permission.

* Local Planning Authority

1.2.2 Phase 2 (AIA2). The next stage is for ‘site layout master planners’ to factor the tree constraints into draft layout proposals. This draft is then referred to the consulting Arborist for further implication assessment, to arrive at a ‘best fit’ scheme, which achieves site proposal viability whilst allowing for the retention of appropriate trees. This layout review represents Phase 2 of an Arboricultural Implications Assessment (AIA2). Once it has been agreed, the consulting Arborist can then prepare a supporting report to accompany the planning application. This report should demonstrate that the trees have been properly considered such that the site layout is defensible in arboricultural terms, both at the application stage and also, if necessary, at Appeal. As the proposal develops, the AIA2 also involves the consulting Arborist working as part of the development team to secure discharge of any initial (frequently pre-commencement) tree related LPA planning conditions. These will need to be formally discharged to avoid any breach of Condition and/or enforcement action.

1.2.3 Phase 3 (AIA3). All the effort put into the pre-application phases (AIA12) to protect retention trees is likely to fail without effective site supervision. Arboricultural Implications Assessment (AIA3) covers the **on-site project implementation**, including arranging (LPA) approved tree

removal/ pruning, overseeing the installation of tree protection fencing, ground protection and any special engineering works through to periodic reporting on the retention of tree protection measures. Many if not all of the latter are usually specified as LPA planning conditions that need to be formally discharged. All personnel associated with the construction process must be familiar with the specified Tree Protection Plans (TPP) and Arboricultural Method Statements (AMS) that affect the site. The TPP and AMS should be retained on site at all times and they should be included in the site's Project Management Plan.

- 1.2.4** Phases 1–3 are in line with *BS 5837; Trees in relation to design, demolition and construction - Recommendations* (2012).

1.3 TREES & BUILDING SUBSIDENCE/HEAVE ISSUES

Assessing the potential influence of trees upon load-bearing soils beneath existing and proposed structures, resulting from water abstraction by trees on shrinkable soils, was not included in the contract brief and is not, therefore, considered in any detail in this report. **Arbol EuroConsulting** cannot be held responsible for damage arising from soil shrinkage or heave issues related to the retention or removal of trees on site.

1.4 TREE SAFETY MATTERS AND TREE RISK ASSESSMENT

The BS:5837 tree survey is carried out in sufficient detail to gather data for and to inform the current project. Our appraisal of the structural integrity of trees on the site is of a preliminary nature and sufficient only to inform the current project. The tree assessment is carried out from ground level – as is appropriate for this type of survey - without invasive investigation. The disclosure of hidden tree defects cannot therefore be expected. Whilst the survey is not specifically commissioned to report on matters of tree safety, we report obvious visual defects that are significant in relation to the existing and proposed land use.

Lastly and to further clarify, this BS:5837 survey does not constitute a full *Visual Tree Assessment* (= TRAM* Level 2 - *Basis Assessment*) that would ordinarily be carried out for Tree Risk Assessment reporting. In effect, this BS:5837 survey equates to a TRAM Level 1 *Limited Visual Assessment*.

* “Tree Risk Assessment Manual” (2nd edition) Dunster, Julian A., E. Thomas Smiley, Nelda Matheny, and Sharon Lilly (2017) International Society of Arboriculture

1.5 SITE OBSERVATIONS

This report has been based on my site observations and in light of my experience. This along with my qualifications are appended to this report.

1.6 CAVEATS

The author does not have formal qualifications in the areas of structural engineering or law. However, making comment on such matters from an arboricultural perspective is both within the normal scope of our instructions and also within the range of the author's experience. Notwithstanding this, specialist professional advice should be sought to clarify/confirm any observations on engineering or legal matters that this report may contain.

2.0 INTRODUCTION

2.1 THE ASSESSMENT METHODOLOGY

The British Standard BS:5837 ‘*Trees in relation to design, demolition, construction - Recommendations*’ (2012) provides “guidance on the principles to be applied to achieve a satisfactory juxtaposition of trees.....with structures”. The Standard recommends that trees with categories A-C (where A is the highest quality) are a material consideration in the development process. Such trees may then become a constraint for a planning proposal. Category U trees are those that will not be expected to exist for long enough to justify their consideration in the planning process (i.e. no more than 10 years). Tree categories are used with the number 1, 2, or 3 to signify whether the category was made based on arboricultural, landscape or cultural (including conservation) values respectively. The tree categories are shown on plan by colour-coding:

Category A (green colour-coded): Good examples of their species with an estimated life expectancy of at least 40 years.

Category B (blue colour-coded): Not suitable for an 'A' category due to impaired condition or a tree lacking special 'A' qualities: with an estimated life expectancy of at least 20 years.

Category C (grey colour-coded): Unremarkable trees of very limited merit or with a significant impaired condition not warranting an 'A' or 'B' category: with an estimated life expectancy of at least 10 years. See young trees below.

Category U (red colour-coded): Structurally defect /dead tree.

Reasonably young trees below 150mm stem diameter would normally be given a C category (if they satisfy the retention quality criteria). However, as they are small they could be replaced/transplanted and as such they should not be regarded as a significant constraint on a development.

2.2 ARBORICURAL IMPACT ASSESSMENT (AIA)

We have considered - with access permitting for 3rd party trees - the following BS:5837 (2012) recommendations:

1. Tree Categories (Quality Assessment).
2. Crown Spread measured to the four cardinal compass points for single specimens only.
3. Tree Constraints.
4. Tree retention & protection

N.B. Trees and shrubs are living organisms whose health and condition can change rapidly, for this reason the BS 5837 grades along with any conclusions or tree management recommendations remain valid for a period of 12 months.

The specific tree report is documented in Section 7 of this report.

3.0 GENERAL DATA

3.1 GENERAL

The three phases of an Arboricultural Implication Assessment were outlined in Section 1.1.1-1.1.4. In addition, during the development process for retention trees, there may be three and even four constraints to consider - Construction Exclusion Zone (CEZs):

- CEZ 1: Root Protection Area (see 3.1.1).
- CEZ 2: Tree Crown Protection (see 3.1.2).
- CEZ 3: Tree Dominance (see 3.1.3).
- CEZ 4: New Tree Planting Zone (see 3.1.4).

The above CEZ's are explained further below.

3.1.1 CEZ 1: ROOT PROTECTION AREA (RPA)

The RPA, calculated in m², should be protected before and during any demolition/construction works. This ensures the effective retention of trees by preventing physical damage to (a) roots and (b) their rooting environment (typical problems - soil compaction; soil level changes and soil capping that can impede gaseous exchange to living roots*). The RPA is based on a radial measure from the centre of the tree stem, which is calculated by multiplying the stem diameter by a factor of twelve. With the AIA1, the RPA is only shown indicatively on the preliminary Tree Constraints Plan (TCP), as its shape may be subject to amendment as the design progresses.

During the AIA2, the derived radial measure is converted by the consulting Arborist into the actual area to be protected, having due regard to prevailing site conditions and how these may have affected the tree(s).

The means of protecting the RPA will include the installation of Tree Protection Fencing prior to the start of any demolition or construction work on site, the prohibition of various harmful

activities within the RPA (e.g. mechanical excavation, soil stripping & trenching, fire lighting, materials storage and creating excessive sealed surfacing), and may include the use of temporary ground protection and/or special engineering solutions where construction is proposed near to retention trees or within the RPA.

* Roots must have oxygen for survival, growth and effective functioning.

3.1.2 CEZ 2: TREE CROWN PROTECTION ZONE

This is the area above ground occupied by the tree crown (branches) and considers the required demolition/construction working space necessary for the development. The possibility of an acceptable quantum of pruning may be considered: subject to Council permission/consent (see Section 4.1.1).

Arising from the above, the means of protecting CEZ 2 is likely to include providing an adequate separation distance between retention trees and new buildings. This will relate to the CEZ 3: below.

3.1.3 CEZ 3: TREE DOMINANCE ZONE

This is the area above ground dominated by the tree in relation to issues of shading, seasonal debris and the safety apprehension by the site owner/occupier. This area is assessed by considering the height and spread of the tree (now and in the future) relative to the proposed buildings, cross-referenced with the intended end-use. As such, what is assessed is the likely psychological effect of the tree(s) on the end-user.

The purpose of identifying CEZ 3 is to protect trees from post-development pressure by the site's end-users, who may, if resentful of the trees, seek to procure excessive pruning treatments (i.e. the bad practice of topping & lopping) or even to have them removed. This is a common LPA concern, which may lead to application withdrawals, refusals and/or dismissed Appeals.

The means of protecting CEZ 3 is likely to include optimising the site layout and room type (especially in relation to new residential dwellings), such that any adverse impacts of trees are reduced to an acceptable minimum. The key principle is to ensure adequate separation distances between trees and new buildings: notably with habitable space & primary windows.

3.1.4 CEZ 4: NEW PLANTING ZONE

In some cases, it may be appropriate to identify and protect areas (see soil conservation below) intended for new landscape planting, which can fail to establish if the soil has been heavily compacted or contaminated during the demolition/construction process. The means of protecting CEZ 4 will either be by fencing prior to the start of construction/demolition works or by pre-planting soil remediation once construction has finished. Topsoil protection in areas destined for new planting is frequently an economic measure, saving on soil structure remediation and tree (failure) replacement costs.

NB Soil conservation is the process of protecting soil from degradation within a defined area. The physical, chemical and biological properties of a native soil can take hundreds of years to develop but can be destroyed in minutes (i.e. by demolition/construction traffic). Soil conservation is the most effective way to protect soil for future tree planting.

4.0 STATUTORY CONTROLS

4.1 PLANNING LEGISLATION (TREES)

4.1.1 STATUTORY TREE PROTECTION

Trees can be protected in law – via Tree Preservation Orders (TPOs) or by virtue of them growing in a Conservation Area (CA) – by the Government's Town & Country Planning Act 1990. (the Act). Trees may also be protected by Planning Conditions. If any of these apply, written local planning authority (LPA) permission/consent is required before protected trees can be

pruned or felled*. Contravention of the Act may carry a fine of up to £20,000 and a criminal record.

* Exceptions include those trees that are dead/hazardous or those that are causing an actionable nuisance to a third-party. In any event, evidence must be provided to defend the removal of such trees.

4.1.2 TREES ON/OFF SITE

We are advised by the client that the site is not within a CA and that none of the on/off-site trees are subject to any TPOs. However, if required and before any tree works are carried out, this should be double-checked with the LPA. If any statutory (tree) protection is confirmed then advance LPA permission/consent would be required.

4.2 WILDLIFE LEGISLATION

The Wildlife and Countryside Act 1981, the Habitats Regulations 1994 (or any other acts offering wildlife protection) form the basis for UK legal wildlife protection. It is not a defence to claim that harm was accidental/unintentional in the course of carrying out tree works (i.e. the negligence of *reckless* harm can now be applied). There is therefore an onus on the operative to check for the presence bird of nesting/bat roosts (e.g. holes, limb cracks/splits or cavities) prior to carrying out any tree work. The bird nesting season is considered to run from March to August, but due to the vagaries of climate change, nesting birds can be found outside of this core period. Bats and their roosts are afforded the highest protection in UK Law.

Specifically:

Bats

All British bats, as well as their roosts and breeding sites are protected under British Law. The Wildlife and Countryside Act 1981 schedule 5 and The Habitat Regulations make it an offence to:

- Deliberately disturb bats
- Damage, destroy or obstruct access to bat roosts.
- Possess or transport a bat or any part of a bat

Birds

The Wildlife and Countryside Act 1981 makes it an offence to:

- Intentionally kill injure or take a wild bird
- Destroy a nest while in use or take or destroy eggs.

5.0 WILDLIFE HABITATS

A cursory assessment of wildlife habitat values of trees and hedgerows on the site was carried out during the survey. No protected or exceptional habitats were identified and details were not recorded. However, trees and hedgerows of most species provide valuable nesting sites for a wide range of birds and it is likely that nesting birds will be present on the site during the period March to September. We have not been made aware of the presence of roosting bats and have not identified any obvious signs of roost sites. However, this does not mean that roost sites are absent.

6.0 No. 44 Murray Road Northwood HA6 2YL: TREE REPORT (to be read in conjunction with the appended Tree Protection Plan and Tree Survey)

6.1 THE PROPERTY AND THE DEVELOPMENT PROPOSAL

6.1.1 Site description: A detached bungalow accessed off the road via a concrete sloped driveway that then levels off to a graveled driveway. The latter also provides access to an attached double garage. The soft landscaping around the property is limited to grass lawn areas with one tree and a linear cypress group (see section 6.2).

6.1.2 The proposal: Demolition of the existing bungalow to be replaced with a block of five residential apartments with a side detached bike shed and frontage EV car parking bays with a bin store. The location and detail of the proposed development and the positioning and numbering of the trees can be found plotted on the Tree Protection Plan at Appendix 2. **NB** The original of this plan was produced in colour – a monochrome copy should not be relied upon.

6.2 TREES ON-SITE

6.2.1 Front: There is only one tree: a heavily *Wisteria* clad hazel T5. Consequently, this is an average tree.

6.2.2 Side: Close the public-realm boundary on the elevated lawn area there is a low-grade linear cypress group: G1

6.3 TREES OFF-SITE

6.3.1 No. 40 Murray Road: There are four trees two of which (frontage trees) we had access to fully survey. The two cypresses T1 and T2 at the rear of this property are largely insignificant and as such only merit C-grades. Importantly, the frontage trees – beech T3 and western red cedar T4 - have respective issues in terms of their stability and vitality. T3 is colonized with a pathogenic fungus with associated trunk base hollowing. As such T3 has a high (hazard) risk rating* and should be removed within two months (see note on the attached Tree Survey). T4 with its poor vitality has clearly entered into a *mortality spiral of decline* and should be removed* within 12 months (or sooner should it die – also see note on the attached Tree Survey). Even though these removal timeframes differ it would likely be more cost effective to remove both trees in the one operation. Obviously, this would require the tree owner collaboration. Moreover the legal *duty of care* rests with the tree owner to have these hazard trees removed as set out in our recommended timeframes.

NB Both T3 and T4 have hazard features and therefore will require removal regardless of the proposed on-site development. Consequently, in referring to the latter they cannot be regarded as a material constraint.

* Within falling distance of a public road.

6.3.2 Murray Road: The public realm lime T9 has good ‘pollard’ form and is a B-grade tree.

6.3.3 Apartments in Lingfield Close: The holly T7 is an average tree. In contrast, the lime T8 has good well-balanced crown form and clearly merits a B-grade.

6.4 IMPACT PROPOSAL ON TREES (to be read in conjunction with the Tree Protection Plan - TPP - at Appendix 2 and the Arboricultural Method Statement at Appendix 3)

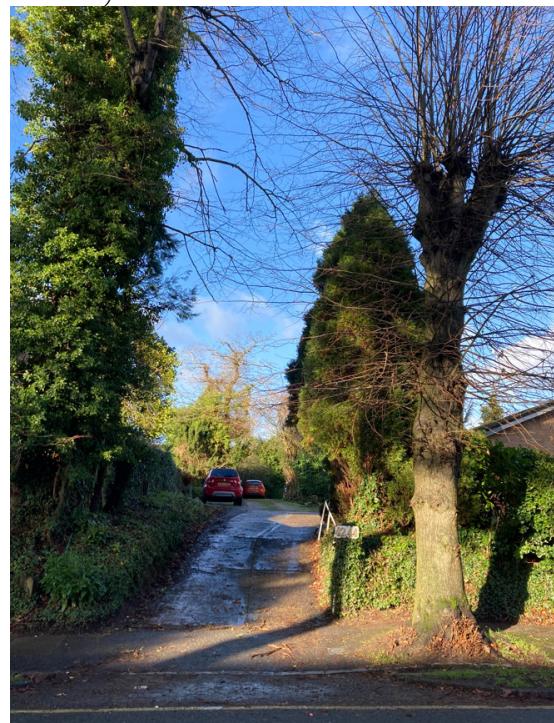
6.4.1 Underground Utilities: Locations of any proposed/renewed underground services were not identified on the provided plans: any such services would *not* be sited within the Root Protection Area (RPA) of any retention trees* without prior discussion and approval from the LPA and/or a Consulting Arborist. See section 6.5.

* Trees T8 and T9

6.4.2 CEZ 1: Root Protection Areas (RPAs)

6.4.2.1 Footprint of the Proposed Build

There would be no RPA incursion with the build footprint of the proposed new dwelling. As described above, the off-site trees beech T3 and cedar T4 both require removal.


Frontage bin store: G1 would require removal for the bin store. This store would be placed on a *shallow* largely *above-ground* foundation with no significant tree-root impact on T3 and T4.

New landscaping: to provide space we would recommend the removal of the low-grade (Wisteria clad) hazel T5.

Bike store: The hard-core base of the existing (part demolished shed) could be used for the base of this store. This would mitigate, to an acceptable level, any RPA disturbance on the adjacent cypress T2. See photo below with the cypress trees T1 and T2 on the right-hand side just beyond the (wavy) boundary fence. See also Note 2 on the appended TPP.

Frontage sloped concrete slabbed driveway: This would be retained unchanged. Given the restricted site access it is unlikely that large lorries would be able to enter the site. This driveway would therefore be robust enough as to not require additional temporary ground protection. See photo below. If this view changes (e.g. the appointed build contractor) then we should be notified.

6.4.2.2 Construction Activity

As set out below, extensive tree protection measures would be required. Firstly, to ensure these are installed in a timely manner, we would recommend that a pre-commencement site meeting is held with the on-site contractors (see section 1 within the appended Arb. Method Statement [AMS]). Secondly, there should be adequate site supervision (see section 6.7.2 below and section 6.0 within the appended AMS). Thirdly, active random site monitoring by a Consulting Arborist throughout the development process would be strongly recommended.

Tree Protection Barriers (TPBs): As per the appended Tree Protection Plan, if *temporary* TPBs are installed – to establish Construction Exclusion Zones (CEZ) - this would afford adequate RPA protection for all third-party trees. The TPBs would be installed following completion of the tree works and prior to any demolition and/or construction. **NB** Due to restricted space for angular staking the TPBs would be booted with sections **clamped together** and stabilizing struts so they cannot be moved. On no account would these CEZs be used for the storage/preparation of any construction/building materials.

Tree Protection Box (TPB): To protect both the trunk and tree pit of the street (lime) tree T9 a *temporary* braced heavy-duty ply-board TPB would be installed. See example below. **NB I** To be installed prior to any demolition and/or construction **NB II** It is likely that a Highways Licence would be needed for installation of the TPB.

Photo to show *example* braced heavy-duty ply-board (trunk & tree pit protection) sheeting Tree Protection Box that would be used around T9

Temporary Storage of Machinery and/or Materials: There would be space on site. See notation on the appended TPP.

Temporary Site Office: There would be space on site.

6.4.2.3 Cellular Confinement Systems (CCS)

Car bays 3-5 would be within the RPAs of T8 and T9. To mitigate any RPA impact on these trees, these bays would be installed using a minimal/no-dig CCS. See the appended Arboricultural Association “The use CCSs: a guide to good practice” (Guidance Note 12: yr. 2020):

“The concept of CCS - A CCS is a series of geo-cells arranged in a honeycomb-like formation that is combined with an underlying geo-textile and angular stone to spread loads in such a way as to minimise compaction of underlying soil. Due to its 3-dimensional structure, a geo-cell mat offers all-round confinement to the

encapsulated material, which provides a long-term improvement in the performance of the sub-base. When a surface is reinforced in this way the load is distributed over a larger area of the subgrade-base interface, leading to lower vertical stress and reduced deformation of the sub-grade”.

There are a number of CCS systems* on the market but it is vital that whichever system is used (a) the depth of the CCS is specified by their structural engineer and (b) the CCS is installed in-line with the site specific Method Statement using their installation team/a contractor experienced in using a CCS system.

NB I In terms of timing we recommend that the CCS is installed **before** the demolition has commenced on site. And importantly, over these CCS bays to prevent any soil compaction by any construction vehicles during the development process, heavy-duty plastic sheeting**, heavy-duty metal road plates, or a temporary *sacrificial* CCS layer would be used. **NB II** This would also serve as RPA ground protection for T8 and T9.

* Wrekin ProtectaWeb; CellWeb, Presto Geosystems, Terram, *et al.*

**We would recommend the use of Durabase (<http://terrafirma.gb.com/>),
Ground Guards (www.greentek.org.uk) or Eve-Trackway <http://www.evetrakway.co.uk/>) due to their recognised *anti-soil compaction* properties

6.4.4 CEZ 2: Tree Crown Protection Zones

Construction Vehicle Site Access (access facilitation pruning)

As this is an open site with a high crown on the adjacent off-site lime T8 there would be no such issues with this proposal. One exception maybe some secateur tipping-back of the trunk epicormic growth on T9 that extends out over the driveway (e.g. to provide height clearance for skip-lorries). See photo above on bottom of page 9.

6.4.5 CEZ 3: Tree Dominance Zones

As there are no close proximity trees there would be no such issues with this proposal.

6.4.6 CEZ 4: New Tree Planting Zone

At this stage no soft landscaping plan – to include new trees and shrubs – has been commissioned though we are advised by the client as follows: *as part of the scheme there will be replacement native planting that is appropriate and typical of the local area.* Importantly, again we are advised by the client that evergreen hedging would be planted along the site boundary with Linfield Close: between T6 and T8. We recommend Western Red Cedar. See note 3 on the appended TPP. The specification (i.e. pot-size, tree height and number required) for this hedging should form part of the aforementioned landscape plan.

6.5 UNDERGROUND UTILITIES

Service runs would enter properties using junctions from existing services where at all possible and located outside retention tree RPA*s. New or replacement underground services should not be installed within RPA*s without prior consultation with the LPA. **NB** If incursion into the RPAs is unavoidable then services routing should be achieved by either thrust boring or hand excavation. For more information regarding underground services, reference should be made to the National Joint Utilities Group (NJUG) Publication Volume 4: Issue 1. *‘Guidelines for the Planning, Installation & Maintenance of Utility Apparatus in Proximity to Trees’ 2007.*

* RPAs of T8 and T9

6.6 TREE PROTECTION DURING CONSTRUCTION

6.6.1 Tree Protection: The protection of retention trees is *paramount* to the granting of planning permission, the discharge of tree protection Planning Conditions, the design of the development and the future health, stability and success of the trees. It is widely recognised that mature trees add value to both land and property values.

6.6.2 The Root Protection Area (RPA): RPAs around retention trees should be maintained by the erection of a *temporary* tree protection barrier (TPB) as described at Appendix 4 to this report. The position and extent for the TPB will normally concur with the radius/squared area of the RPA. This staked-off area shall be known as the **Construction Exclusion Zone** (CEZ). The integrity of the TPB to protect **CEZs** should be maintained for the duration of the entire development works. The **CEZs** are marked-up on the appended Tree Protection Plan.

6.7 ARBORICULTURAL METHOD STATEMENT

6.7.1 Purpose & Use

In consideration of the above issues, we have included an Arboricultural Method Statement (AMS) at Appendix 3, which details working methods in relation to trees. This AMS lays down the methodology for any demolition and/or construction works that may have an effect upon trees on and adjacent to this site. It is essential within the scope of any contracts - related to this development - that this AMS is observed and adhered to. It is recommended that this document forms part of the work schedule and that specifications are issued to the building contractor(s) and these should be used to form part of their contract.

6.7.2 Site Supervision

An individual – ideally the Site Agent - must be nominated to be responsible for all arboricultural matters on site (specific responsibilities are set out in the appended Arboricultural Method Statement). This person must:

- be present on site for the majority of the time;
- be aware of (a) the Tree Protection Plan and (b) the tree protection measures to be installed and maintained throughout the build;
- have the authority to stop any work that is causing, or has the potential to cause, harm to any retention trees;
- be responsible for ensuring that all site operatives are aware of their responsibilities toward on/off site trees and the consequences of the failure to observe these responsibilities;
- make immediate contact with the designated Consulting Arborist (contact number listed on the appended AMS) in the event of any tree related problems occurring, whether actual or potential.

6.7.3 AMS Adoption

If conflicts between any part of a tree and the build arise in the course of the development these can – and should be – resolved quickly and at little costs if a qualified and experienced Consulting Arborist is contacted promptly. Lack of such care will likely lead to the decline and even death of affected trees: often with legal ramifications. The loss or damage to retention trees can spoil design, affect site sale ability and reflects badly on the construction and design personnel involved. Conversely, trees that have received careful handling during construction add considerably to the appeal and value of the finished development.

7.0 CONCLUSIONS

7.1 DEVELOPMENT PROPOSAL & POTENTIAL IMPACT ON TREES

7.1.1 The development proposal would require the removal of the low-grade hazel T5 and cypress group G1. The off-site trees beech T3 and cedar T4 both have hazard features and therefore require removal* regardless of the proposed on-site development. Consequently, these cannot be regarded as a material constraint. No tree pruning works would be required on any third-party trees. One exception maybe some secateur tipping-back of the trunk epicormic growth on T9 that extends out over the driveway (e.g. to provide height clearance for skip-lorries).

* The legal *duty of care* rests with the tree owner to have these hazard trees removed as set out in our recommended timeframes

7.1.2 As plotted on the Tree Protection Plan at Appendix 2, with the implementation (in a timely manner) of the tree protection measures specified in this report there should be no CEZ 1 (RPA) impact on the retention trees.

7.1.3 There would be no CEZ 2 or CEZ 3 issues with this application.

7.1.4 CEZ 4 – New tree/shrub planting. At this stage no new soft landscape plan – to include new trees and shrubs – has been commissioned though we are advised by the client as follows: *as part of the scheme there will be replacement native planting that is appropriate and typical of the local area.* Importantly, we are advised by the client that evergreen hedging would be planted along the site boundary with Linfield Close: between T6 and T8. We recommend Western Red Cedar. See Note 3 on the appended TPP. The specification (i.e. pot-sizes, tree height and number required) for this hedging should form part of the aforementioned landscape plan.

7.1.5 See Arboricultural Method Statement at Appendix 3. Active random site monitoring by a Consulting Arborist throughout the development process is strongly recommended (AIA3: Phase 3).

7.1.6 Site Supervision Responsibilities: This would be an essential element during the proposed build to ensure effect tree protection. See section 6.0 in the appended Arboricultural Method Statement.

8.0 RECOMMENDATIONS

8.1 EXECUTION OF CONTRACT

It is recommended that the Architect specifies in writing to the building contractor that tree care conditions apply to the execution of the contract. Lack of care frequently results in the damage, decline and eventual death of trees. This can adversely affect design aims & site sale-ability, and reflects poorly on the contractors and design personnel involved. Trees that have been the recipients of careful handling during construction add considerably to the appeal and value of finished developments.

8.2 PROPOSED REVISIONS TO THE SCHEME

We advise that all proposed revisions in respect of external layout, orientation of primary windows, location of underground services, external surfacing and/or landscaping; having implications for retention trees should be referred to us for review.

8.3 TREE WORKS - BEST PRACTICE

Subject to LPA written permission/consent (if applicable - see section 4.1.2) and owners consent, all tree works must conform rigorously to *BS 3998 (2010)* 'Recommendations for Tree Work'* and as modified by research more recent.

All retention trees should be inspected annually by an Arboriculturist to assess the significance of any future physiological, morphological or environmental changes.

* Including any subsequent revisions.

8.4 WILDLIFE CONSIDERATIONS

Trees and hedgerows should be carefully inspected for birds' nests prior to tree pruning or removal and any work likely to destroy or disturb active nests should be avoided until the young birds have fledged, unless however, the trees pose an immediate danger (advice should be sought from the relevant wildlife authorities). All personnel working with or in trees should be vigilant and mindful of the possible presence of roosting bats. A competent ecologist should investigate any indication that trees on the site are used as bat roosts. See section 4.2.

8.5 OUTDOOR AMENITY SPACE

Design of outdoor amenity space should fully consider the locations of existing trees to be retained. Alterations of soil levels and cultivation of ground beneath trees (the RPA) can result in significant root loss or damage and altered drainage patterns, which could lead to a decline in tree health and possible (tree) structural instability. Removal of existing herbaceous vegetation, by hand or appropriate herbicide application* and addition of a thin layer (100-150mm) of sandy-loam topsoil will facilitate the establishment of grass or other vegetation beneath the canopies of existing trees, whilst avoiding unnecessary root disturbance.

* The selection & application of herbicides must be undertaken by a competent person in accordance with the Control of Substances Hazardous to Health (COSHH) regulations. Inappropriate use of herbicides can damage/ kill leaves, shoots, branches or whole trees.

- 8.5.1** In order to avoid mower/strimmer damage to the base on tree trunks (i.e. bark stripping), grass seed/turf **should not** be laid within a 0.5m (min.) radius around trees.
- 8.5.2** With respect to any soft landscaping works, there should only be limited soil cultivation works (max. depth 150mm) within the retention tree RPAs.

9.0 OCCUPIERS LIABILITY ACTS

Attention is drawn to the provisions of the Occupiers liability Acts (England & Wales - 1957 & 1984), which place a responsibility upon landowners to ensure the safety of others entering their land whether by invitation or permission: inclusive of trespassers. There is a special responsibility to ensure the safety of children, who may be unaware of hazards. Annual inspections of trees by a competent person, or following storm events, together with implementation of any remedial tree work recommendations, should ensure compliance with the legislation regarding the above legislation.

10.0 REFERENCES

- *BS 5837; 2012 'Trees in relation to design, demolition and construction - Recommendations'* British Standards Institute, London.
- Arboricultural Association guidance note "*The use of cellular confinement systems near trees: a guide to good practice*" (2020).
- *BS 3998; 2010 'Tree Work Recommendations'* British Standards Institute, London
- *NJUG Guidelines for the Planning, Installation and Maintenance of Utility Apparatus in Proximity to Trees' 2007* National Joint Utilities Group (NJUG) Volume No. 4: No. 1.
- Arboricultural Practice Note 12; 2007 – AAIS
- '*Availability of Sunshine*' BRE - CP 75/75
- '*Tree Roots in the Built Environment*' 2006 - Dept. for Communities & Local Government (DCLG).
- '*Up by Roots: healthy soils & trees in the built environment*' 2008 James Urban, International Society of Arboriculture.

- '*Arboriculture*'; 1999 3rd edition R. Harris, J. Clarke & N. Matheny. Prentice Hall.
- '*Soil Management for Urban Trees*' 2014 International Society of Arboriculture, Best Management Practice series.

Russell Ball BSc. (Hons.), P.G. Dip. LM, CBiol., MRSB.

Technical Director: Arbol EuroConsulting Ltd.

Royal Society of Biology **Chartered Biologist**

International Society of Arboriculture **Certified Arborist** (ID: UI-1287A)

LANTRA Approved **Professional Tree Inspector** (Ref: HO00178227 504187)

International Society of Arboriculture **Qualified Tree Risk Assessor** (ID: 2148)

No. 1 Landford Close Rickmansworth WD3 1 NG

Mobile: 078844 26671

Email: russell@arboleuro.co.uk

APPENDIX 1

TREE SURVEY SCHEDULE
(see appended at end of report)
2 pages

APPENDIX 2

TREE CONSTRAINT AND PROTECTION PLANS

(see appended to the report)

NB The original of this plan was produced in colour – a monochrome copy should not be relied upon.

APPENDIX 3

ARBORICULTURAL METHOD STATEMENT
4 pages

ARBORICULTURAL METHOD STATEMENT (AMS)
Site: No. 44 Murray Road Northwood HA6 2YL

To be read in conjunction with the Tree Report sections 6-8 and Tree Protection Plan at Appendix 2.

NB The original of this plan was produced in colour – a monochrome copy should not be relied upon.

This AMS lays down the methodology for any demolition and/or construction works that may have an effect upon trees on and adjacent to this site. It is essential within the scope of any contracts - related to this development - that this AMS is observed and adhered to. It is recommended that this document forms part of the work schedule and that specifications are issued to the building contractor(s) and these must be used to form part of their contract.

Consulting Arborist contact details: Russell Ball – mob. No. 078844 26671

SEQUENCE OF WORKS

From commencement of the subject development, the following methodology will be implemented in the manner and sequence described:

1. Pre-commencement site meeting.
2. Arboricultural works: with written LPA permission for any protected trees.
3. Erect *temporary* Tree Protection Barriers (TPBs) to establish the fenced-off Construction Exclusion Zones (CEZ): **before** any demolition and/or construction works begin on-site.
4. Route underground services: not within the RPAs of any retention trees.
5. New Driveway: Cellular Confinement System.
6. Main construction works.
7. Site Supervision Responsibilities
8. Remove TPBs.

1. PRE- COMMENCEMENT SITE MEETING

To outline on-site working methods in relation to trees prior to any demolition and/or construction activity, a site meeting of the following shall take place:

- Client
- Architect/Planning Consultant
- Structural Engineer
- Main Contractor
- LPA Arboricultural Officer (*optional*)
- Consulting Arborist
- Site Agent

2. ARBORICULTURAL WORKS

1. Before the erection of the *temporary* Tree Protection Barriers (see below) remove trees: hazel T5 and cypress group G1. No tree pruning works would be required on any retention/third-party trees. One exception maybe some secateur tipping-back of the lime T9 trunk epicormic growth that extends out over the driveway (e.g. to provide height clearance for skip-lorries).
We are advised by the client that the site is not within a Conservation Area and that none of the on-site trees are subject to any Tree Preservation Orders. However, before any tree works are carried out, this should be double-checked with the LPA. If any statutory (tree) protection is confirmed then advance LPA permission/consent will be required.
2. **Wildlife Legislation:** In general, wild birds and bats are protected by the Wildlife and Countryside Act 1981 (schedule 1 & 5) as amended by the Countryside and Rights of Way Act 2000 and statutory instruments. It is not a defence to claim that harm was accidental/unintentional in the course of carrying out tree works (i.e. the negligence of *reckless* harm can now be applied). There is therefore an onus on the operative to check for the presence bird of nesting/bat roosts (e.g. holes, limb cracks/splits or cavities) prior to carrying out work. The bird nesting season is considered to run from March to August, but due to the vagaries of climate change, nesting birds can be found outside of this core period. Bats and their roosts are afforded the highest protection in UK Law.
3. No fires or chip piling to occur within 5m of the drip line of any tree canopy or within 10m of any tree trunk: whichever is further.
4. All operatives must be equipped with and use personal protective equipment (PPE) in accordance with current Health & Safety Executive current directives and industry codes of practice.

5. Performance of all arboricultural operations and use of equipment must be in accordance with current Health & Safety Executive current directives and industry codes of practice.

3. ERECT TEMPORARY AND BRACED TREE PROTECTION BARRIERS (TPBs)

1. Following completion of the tree works and prior to demolition and/or construction, the main contractor will erect the TPBs as per the appended Tree Protection Plan (TPP) and as detailed in the 'Tree Protection Barrier Specification' at Appendix 4 of this report. See also Appendix MS(i) below. This will establish the fenced-off Construction Exclusion Zones: CEZs (marked up on the TPP). **NB** Due to restricted space for angular staking the TPBs shall be booted with sections *clamped together* and stabilizing struts so they cannot be moved.
2. On no account shall these CEZs be used for the storage/preparation of any construction/building materials.
3. Prior to commencement of any site demolition, construction, preparation, excavation or material deliveries, the Consulting Arborist will inspect installation of the TPB and the CEZs. Any damage occurring to the TPB during the demolition or construction phase will be made good by the main contractor.
4. **Tree Protection Box (TPB):** To protect both the trunk and tree pit of the street (lime) tree T9 a *temporary* braced heavy-duty ply-board TPB shall be installed. See example below. **NB I** To be installed prior to any demolition and/or construction **NB II** It is likely that a Highways Licence would be needed for installation of the TPB.

Photo to show *example* braced heavy-duty ply-board (trunk & tree pit protection) sheeting Tree Protection Box that would be used around T9

4. ROUTE UNDERGROUND SERVICES

1. Service runs will enter the property using junctions from existing services where at all possible. Replacement/new underground services shall not be installed within RPA*s without prior consultation with the LPA and if RPA incursion is unavoidable then services routing should be achieved by either thrust boring or hand excavation. For more information regarding underground services, reference should be made to the National Joint Utilities Group (NJUG) Publication Volume 4: Issue 1. 'Guidelines for the Planning, Installation & Maintenance of Utility Apparatus in Proximity to Trees' 2007.

* RPAs of trees: T8 and T9

5. NEW BAYS (3-5): 3D CELLULAR CONFINEMENT SYSTEM (CCS)

1. Car bays 3-5 'run over' the RPAs of T8 & T9. These bays shall therefore be installed using a three-dimensional minimal/no-dig CCS to provide adequate vehicular load-bearing capacity.
2. In terms of timing the CCS should be installed before the demolition has commenced on site. And importantly, over these CCS bays to prevent any soil compaction by construction vehicles during the development process, heavy-duty plastic sheeting**, heavy-duty metal road plates, or a temporary *sacrificial* CCS layer should be used.

* Wrekin ProtectaWeb; CellWeb, Presto Geosystems, Terram, *et al.*

**We would recommend the use of Durabase (<http://terra firma gb.com/>),
Ground Guards (www.greentek.org.uk) or Eve-Trackway <http://www.evetrakway.co.uk/>) due to their recognised *anti-soil compaction* properties

3. There are a number of CCS systems* on the market but it is vital that whichever system is used (a) the depth of the CCS is specified by their structural engineer and (b) the CCS is installed in-line with the site-specific Method Statement using their installation team/a contractor experienced in using a CCS system.

* Wrekin ProtectaWeb; CellWeb, Presto Geosystems, Terram, *et al.*

4. The final top-surface shall be a porous material.

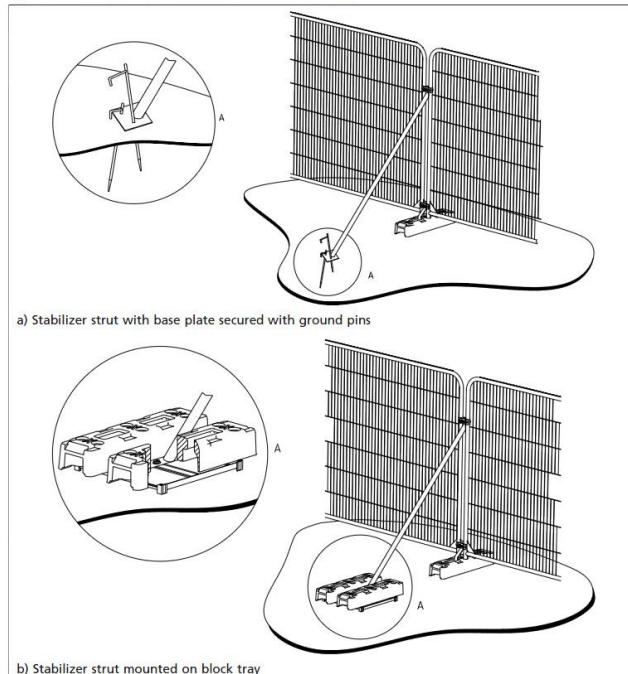
5. For general and recommended advice see the appended Arboricultural Association “**The use of Cellular Confinement Systems near trees: a guide to good practice**” (Guidance Note 12: yr. 2020).
6. The sub-base of the existing crazy-paved/tarmac drive shall be **retained** and used for the news CCS driveway.
7. In regard to the CCS due consideration will be given to the principles with the Communities and Local Government publication “Guidance on the Permeable Surfacing of Front Gardens” (2008) Product Code: 08 COMM 05532. ISBN: 978-1-4098-0485-7
8. The final finished surface will be of a porous material agreed with Local Planning Authority.
9. Edge restraints to the no-dig section of the CCS will be constructed from pressure treated timber boards secured to timber posts, or other means agreed with Local Planning Authority. In the installation of edge restraints, there will be no excavation of ground other than that described at (1.0) above. All timber will be treated in compliance with BS 4072 (Wood Preservation by Means of CCA Compositions).

6. MAIN CONSTRUCTION WORKS

1. **Site Office:** there will be a site office.
2. **Temporary Storage of Construction Material/Equipment:** See area plotted on the appended TPP.
3. **Construction Exclusion Zone (CEZ):** There must be no (a) storage of construction material/equipment or (b) preparation of noxious substances (e.g. cement) in any area designated as the CEZ and enclosed by the TPB.
4. **Bike store:** The hard-core base of the existing (part demolished shed) shall be used for the base of this store. See Note 2 on the appended TPP.
5. **Frontage bin store:** This store shall be placed on a *shallow* largely *above-ground* foundation to minimise any RPA impact on T8 and T9.
6. Before commencing work on site, all operatives must be briefed by the **Site Agent/Contract Manager** on the importance of protecting both on and off-site trees. The basis of this briefing will be the protection measures as set out on the Tree Protection Plan (TPP) including the position of staked and braced **Tree Protection Barriers/Box** and **Construction Exclusion Zones**. As such the TPP shall be clearly displayed on the wall of the site hut/office. **NB** During the demolition and/or construction the **Site Agent/Contract Manager** will be responsible for all tree protection measures. See also **Site Supervision Responsibilities** below.

7. SITE SUPERVISION RESPONSIBILITIES

1. It will be the responsibility of the main contractor to ensure that any tree protection planning conditions attached to planning consent are adhered to at all times and that a monitoring regime in regards to tree protection is adopted on site.
2. The main contractor must assign tree protection monitoring duties to one or more individuals working at the site, who will be responsible for all tree protection monitoring and supervision (see the *Site Personnel Induction Form* at Appendix MS ii).
3. The individual(s) assigned tree protection monitoring duties must:
 - Be present on site for the majority of the time;
 - Be aware of (a) the Tree Protection Plan and (b) the tree protection measures to be installed and maintained throughout all phases of the development;
 - Be responsible for ensuring all tree protection measures are adhered to as detailed in the Arboricultural Impact Assessment (AIA) report and Arboricultural Method Statement (AMS);
 - Ensure all site operatives without exception read and understand the tree protection and control measures detailed in the AMS;
 - Keep on file all individual Site Personnel Induction Forms which must be signed by all site operatives (including sub contractors) indicating they have read and understood the control measures detailed within the AIA report and AMS;
 - Maintain a written record of Tree Protection / Construction Exclusion Zone inspections, to be kept up to date by the person(s) who have been designated the inspection and monitoring duties;
 - Have the authority to stop any work that is causing, or has the potential to cause, harm to any retention trees;
 - Be responsible for ensuring that all site operatives including sub contractors are aware of their responsibilities toward on/off site trees and the consequences of the failure to observe these responsibilities;
 - Make immediate contact with the Consulting Arboriculturist in the event of any tree related problems occurring, whether actual or potential. (Contact details including telephone number and email address are listed on the Title Page).
4. The Construction Exclusion Zone fencing, ground protection and all signs must be maintained in position at all times and checked on a regular basis by the on-site person(s) who have been designated that responsibility.
5. The main contractor will be responsible for contacting the Local Planning Authority and the Consulting Arboriculturist at any time issues are raised relating to the trees on site.


6. If at any time pruning works are required, permission must be sought from the Local Planning Authority first and then carried out in accordance with BS 3998:2010 Tree Work – Recommendations (As updated).
7. The main contractor will ensure the build sequence and phasing is appropriate to ensure that no damage occurs to the trees during the construction processes. Protective fences will remain in position and undisturbed until completion of ALL construction works on the site.
8. The main contractor will be responsible for ensuring all site operatives including sub-contractors do not carry out any process or operation that is likely to adversely impact upon any tree on site.

8. REMOVAL OF TEMPORARY TREE PROTECTION BARRIERS AND TREE PROTECTION BOX (TPBs)

1. The TPBs will be removed only upon completion of the construction.

APPENDIX MS(i)

Figure 3 Examples of above-ground stabilizing systems

APPENDIX MS(ii)

Site Personnel Induction Form

Name:

Site Address:

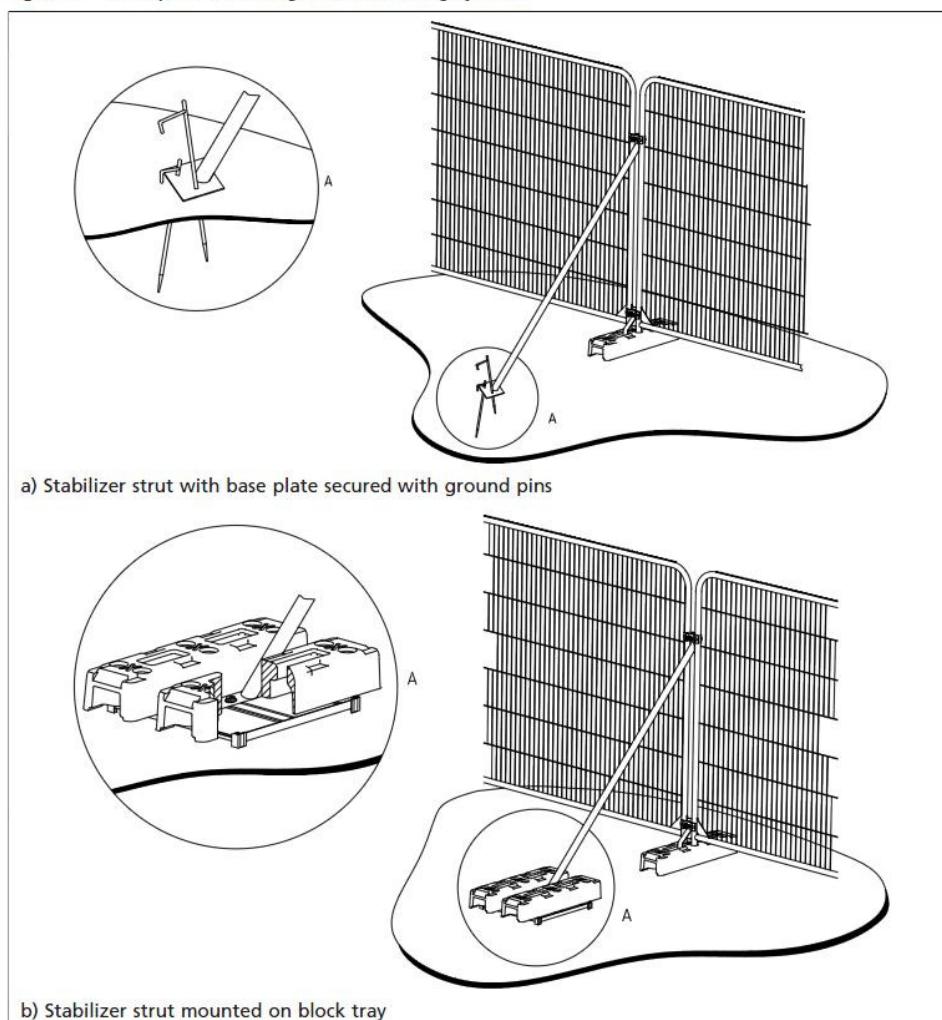
Date:

Declaration	Tick to Confirm
I have read and understand the Arboricultural Method Statement and the requirements to be employed / actioned at the site regarding tree protection.	<input type="checkbox"/>
I understand that all tree protection measures (fencing and ground protection) must not be moved or disturbed throughout the development project without prior agreement with the Consulting Arboriculturist.	<input type="checkbox"/>
I understand that certain operations must only be undertaken under supervision of the Consulting Arboriculturist or a suitably qualified Arborist and/or must not be undertaken without their approval.	<input type="checkbox"/>
I acknowledge that any concerns I have regarding the protection of trees at and adjacent to the development site will be brought to the attention of the Site Manager/Supervisor.	<input type="checkbox"/>
I acknowledge that I must not cause direct or indirect damage to any on site or neighbouring tree, either above or below ground level during the course of my daily operational duties.	<input type="checkbox"/>

Signed:.....

APPENDIX 4

TREE PROTECTION BARRIER
SPECIFICATION
1 page only


TREE PROTECTION BARRIER SPECIFICATION

The Root Protection Area (RPA) and Construction Exclusion Zone (CEZ) enclosed by temporary protective fencing must:

1. Be erected prior to any site works, demolition or construction works, delivery of site accommodation or materials and must remain for the duration of the demolition/construction works. All-weather notices should be attached to the barriers with the following wording: **“CONSTRUCTION EXCLUSION ZONE – NO ACCESS”**
2. Be protected by temporary protective fencing and other measures as specified and as defined by area (m²) on the drawings (Tree Protection Plan - TPP).
3. Preclude the storage or tipping of all materials and substances, in addition, toxic substances such as fuels, oils, additives, cement, or other deleterious substances within 5.0 metres of an exclusion zone.
4. Any incursion into the Root Protection Area (RPA) and Construction Exclusion Zone (CEZ) as indicated on the Tree Protection Plan (TPP) must be by prior arrangement, following consultation with the Local Planning Authority.

Temporary Tree Protection Barrier (Specification taken from BS:5837 -2012)

Figure 3 Examples of above-ground stabilizing systems

APPENDIX 5

OUTLINE CIRRICULUM VITAE AND PROFESSIONAL EXPERIENCE

Russell Ball BSc. (Hons.), P.G. Dip. LM, CBiol., MSB.
Chartered Biologist

Qualifications

- BSc. (Hons.) Botany (Manchester University).
- Post Graduate Diploma: Landscape Management (Manchester University).
- Royal Society of Biology **Chartered Biologist** (since 1995).
- International Society of Arboriculture **Certified Arborist** No. UI 1287A (2017)
- *LANTRA* Approved **Professional Tree Inspector** (Ref: HO00178227 504187)
- International Society of Arboriculture **Qualified Tree Risk Assessor** (ID: 2148)

Professional Experience (1984-2012)

- Tree Works Contractor.
- Harrow Council: Assistant Tree Officer (Parks Dept.)
- London Tree Officers Association: Executive Officer.
- International Society of Arboriculture (European office): Senior Executive.
- Arbol Euro Consulting: Technical Director (**Madrid, Spain**).
- Harrow Council: Principal Tree Preservation (TPO) Officer. During my employ with Harrow Council I served on the Executive Committee of the "*London Tree Officers Association*".
- Arbol Euro Consulting Ltd: Technical Director (**London, UK**).

Professional Memberships

- International Society of Arboriculture (ISA). President of the ISA UK/I Chapter (2010-2012).
- Arboricultural Association
- Consulting Arborist Society
- Royal Society of Biology
- Royal Horticultural Society (Chelsea Flower Show *Silver-Gilt* medal Winner: *Rainforest Belize* – 1996)

Contact Details

- Mobile: 078844 26671
- Email: russell@arboleuro.co.uk

HEADINGS & ABBREVIATIONS**TREE NO.****SPECIES:****AGE RANGE/LIFE STAGE:****HEIGHT:****CROWN SPREAD:****CROWN CLEARANCE & DIRECTION OF GROWTH:****STEM DIA/MULTI-STEM DIA:****VITALITY:****ESTIMATED REMAINING CONTRIBUTION:****BS 5837 CATEGORY & SUB-CATEGORY GRADING:****BS 5837 RPA:****BS 5837 RADIUS:**

REFERENCE NUMBER. REFER TO PLAN OR NUMBERED TAGS WHERE APPLICABLE

COMMON NAME (LATIN NAMES AVAILABLE ON REQUEST)

Y = YOUNG, SM = SEMI MATURE, EM = EARLY MATURE, M = MATURE, PM = POST MATURE

ESTIMATED AND RECORDED IN METRES. APPROXIMATELY 1 IN 10 TREES ARE MEASURED USING A CLINOMETER AND THE REMAINDER ESTIMATED AGAINST THE MEASURED TREES

MAXIMUM CROWN RADIUS MEASURED TO THE FOUR CARDINAL COMPASS POINTS FOR SINGLE SPECIMENS ONLY (MEASUREMENT FOR TREE GROUPS - MAXIMUM RADIUS OF THE GROUP)

HEIGHT IN METRES OF CROWN CLEARANCE ABOVE ADJACENT GROUND LEVEL (TO INFORM ON GROUND CLEARANCE, CROWN/STEM RATIO AND SHADING)

STEM DIAMETER - MEASURED AT APPROXIMATELY 1.5 METRES ABOVE GROUND LEVEL OR A COMBINATION OF STEMS FOR MULTI-STEMMED TREES

A MEASURE OF PHYSIOLOGICAL CONDITION. D = DEAD, MD = MORIBUND, P = POOR, M = MODERATE, N = NORMAL

RELATIVE USEFUL LIFE EXPECTANCY (YEARS)

A = HIGH QUALITY AND VALUE, B = MODERATE QUALITY AND VALUE, C = LOW QUALITY AND VALUE, U = UNSUITABLE FOR RETENTION: SUB-CATEGORY REFERS TO ARBORICULTURAL (1), LANDSCAPE (2) & CULTURAL/CONSERVATION VALUES (3).

ROOT PROTECTION AREA - BS 5837 (2012) ANNEX D (THE RECOMMENDATIONS STATE THAT THE RPA SHOULD BE CAPPED AT 707 M²)

PROTECTIVE DISTANCE - RADIUS FROM THE CENTRE OF THE STEM TO THE LINE OF TREE PROTECTION (CONSTRUCTION EXCLUSION ZONE - CEZ) AND PROTECTIVE BARRIER

SITE:	44 MURRAY ROAD NORTHWOOD HA6 2YL									
CLIENT:	GAVACAN HOMES									
BRIEF:	CARRY OUT A PHASE II ARBORICULTURAL IMPACT ASSESSMENT ON THE PROPOSED DEVELOPMENT AT THE ABOVE SITE.									

SURVEYOR:	R. BALL
ASSESSMENT DATE:	09/01/2023
VIEWING CONDITIONS:	SUNNY - CLEAR
JOB REFERENCE:	101 772

PAGE: 1 of 2

TREE HEDGE GROUP NO.	SPECIES (COMMON NAME)	AGE RANGE/ LIFE STAGE	HEIGHT (m)	RADIAL CROWN SPREAD (m)				CROWN CLEARANCE & DIRECTION OF GROWTH (m)	STEM/ MULTI-STEM* DIA. (mm)	VITALITY	COMMENTS/STRUCTURAL MORPHOLOGY	PRELIMINARY MANAGEMENT	CATEGORY & SUB-CATEGORY GRADING BS 5837	BS 5837 RPA RADIUS (m)	BS 5837 RPA (m ²)
				N	E	S	W								
T1	Lawson Cypress <i>Third-party tree with no access to fully survey</i>	SM	6.0	1.2	1.2	1.2	1.2	-	Est. 120	N	Average group tree with T2	?	C1 ? See access	1.4	6.5
T2	Lawson Cypress <i>Third-party tree with no access to fully survey</i>	SM	6.5	1.2	1.2	1.2	1.2	-	Est. 180	N	Average group tree with T1	?	C1 ? See access	2.1	14.6
T3	Beech <i>Third-party tree with access to fully survey</i>	M	18+	4.0	2.5	3.0	2.5	2.5	510	P	Sparse upper and mid crowns. Tree entering into a mortality spiral. The causal agent is multiple <i>Ganoderma</i> spp. fungal fruiting bodies around the trunk base. Importantly, significant trunk hollowing - associated with the fungal decayed heart & sapwood - was detected with the Sounding Hammer. A <i>high risk</i> tree. See photos no. 1 and 2.	Advise the tree owner in writing to have T3 removed within 2 months (subject to any statutory LPA permission/consent)	U	-	-
T4	Western Red Cedar <i>Third-party tree with access to fully survey</i>	M	24+	4.0	4.0	4.0	4.0	3.5	Est. 700	P	Sparse crown throughout with notably upper crown acute die-back. Tree entering into a mortality spiral. During the Visual Tree Assessment no likely causal agent could be observed. A <i>medium risk</i> tree. See photos no. 3	Advise the tree owner in writing to have T4 removed within 12 months or sooner should it die completely (subject to any statutory LPA permission/consent)	U	-	-
T5	Hazel	M	7.0	2.0	1.8	2.5	1.0	-	Est. 120; 140; 180; 90;60 <i>Wisteria</i>	N	Crown heavily clad with <i>Wisteria</i> – an average tree	None at time of survey	C1	3.35	35.3

SITE:	44 MURRAY ROAD NORTHWOOD HA6 2YL
CLIENT:	GAVAN HOMES
BRIEF:	CARRY OUT A PHASE II ARBORICULTURAL IMPACT ASSESSMENT ON THE PROPOSED DEVELOPMENT AT THE ABOVE SITE.

SURVEYOR:	R. BALL
ASSESSMENT DATE:	09/01/2023
VIEWING CONDITIONS:	SUNNY - CLEAR
JOB REFERENCE:	101 772

PAGE: 2 OF 2

TREE HEDGE GROUP NO.	SPECIES (COMMON NAME)	AGE RANGE/ LIFE STAGE	HEIGHT (m)	RADIAL CROWN SPREAD (m)				CROWN CLEARANCE & DIRECTION OF GROWTH (m)	STEM/ MULTI-STEM* DIA. (mm)	VITALITY	COMMENTS/STRUCTURAL MORPHOLOGY	PRELIMINARY MANAGEMENT	CATEGORY & SUB-CATEGORY GRADING BS 5837	BS 5837 RPA RADIUS (m)	BS 5837 RPA (m ²)	
				N	E	S	W									
T6	False Acacia <i>Third-party tree with access to fully survey</i>	M	16	4.0	3.0	3.0	3.0	?	Ivy	Est. 400 (ivy)	N	Heavily ivy clad – an average tree	Ideally the tree owner should be advised to remove the trunk ivy (base up to 1.5m off ground) using only hand-tools so as not to damage the underlying bark: this will prevent the entire crown from becoming ivy-clad	C1	4.8	72.3
T7	Holly <i>Third-party tree with no access to fully survey</i>	EM	6.5	1.6	1.6	1.6	1.6	1.7	Est. 250	N	Average site boundary tree	?	See access	C2(?) See access	3.0	28.2
T8	Lime <i>Third-party tree with no access to fully survey</i>	M	26+	5.0	5.0	5.0	5.0	?	See ivy	Est. 750 (ivy)	N	Well-balanced open crown: a significant tree in the immediate locale and provides important public visual amenity. Trunk and low-mid crowns are becoming ivy-clad.	Ideally the tree owner should be advised to remove the trunk ivy (base up to 1.5m off ground) using only hand-tools so as not to damage the underlying bark: this would be to prevent the entire crown from becoming ivy-clad	B2 ? See access & ivy	9.0	254.4
T9	Lime <i>Public-realm tree</i>	EM	9.0	1.9	1.9	1.9	1.9	2.5	560	N	A 'pollard' that provides some important public visual amenity.	None at time of survey	B1	6.7	141.8	
G1	Lawson Cypress x 4	SM-EM	6-9	1.3	1.3	1.3	1.3	-	Est. Av. 120 x 3	N	An average linear tree group	None at time of survey	C1	2.4	19.5	

Beech T3 - Photo No. 1 to show the *Ganoderma* spp. fungal fruiting bodies around the western trunk base
A4 folder and pen included for scale

Beech T3 - Photo No. 2 to show the smaller emerging *Ganoderma* spp. fungal fruiting bodies around the eastern trunk base
A4 folder and pen included for scale

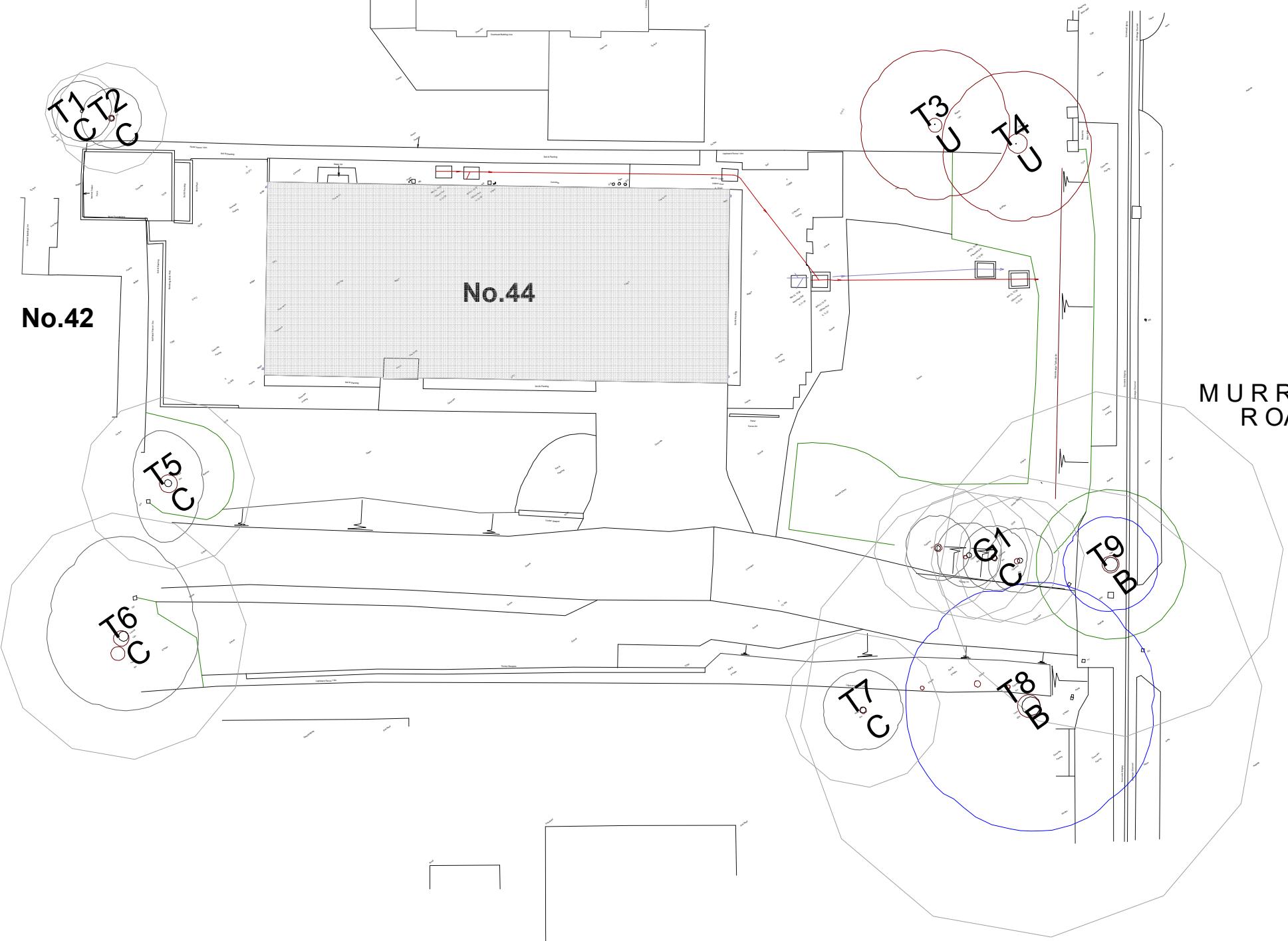


Photo No. 3 to show the beech T3 (left-hand side) with sparse mid-upper crowns and cedar T4 (right-hand side) with sparse crown throughout and notably upper crown acute die-back.
Note the large amount of blue sky that can be seen through the crown of T4: this is normally an evergreen tree with a thick dense canopy

KEY

- Root Protection Area (RPA)
- Crown Spread
- BS: 5837 Retention Grade

No.40

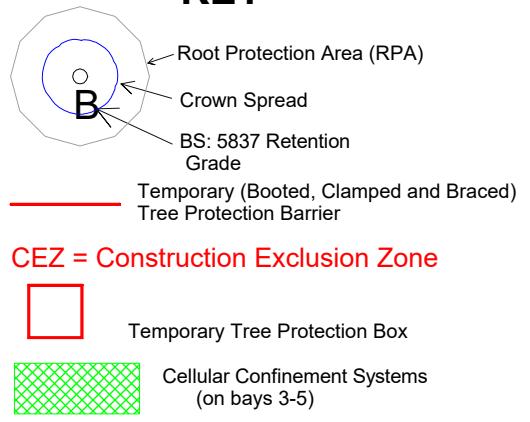
**Apartments In
LINGFIELD CLOSE**

5m 10m 15m 20m
SCALE BAR

Arbol EuroConsulting

1 Landford Close Rickmansworth WD3 1NG

44 MURRAY ROAD, NORTHWOOD, HA6 2YL
TREE CONSTRAINTS PLAN


SCALE : 1 : 200 @ A3 DATE : 10/01/2023

MAP FILENAME : 101 772

Map data shown may contain Ordnance Survey © products supplied by
Pear Technology Services Ltd. Email: info@peartechology.co.uk
© Crown Copyright and database rights from date shown above
Ordnance Survey © licence number 100023148

The original of this drawing was produced in
colour - a monochrome copy should not be
relied upon

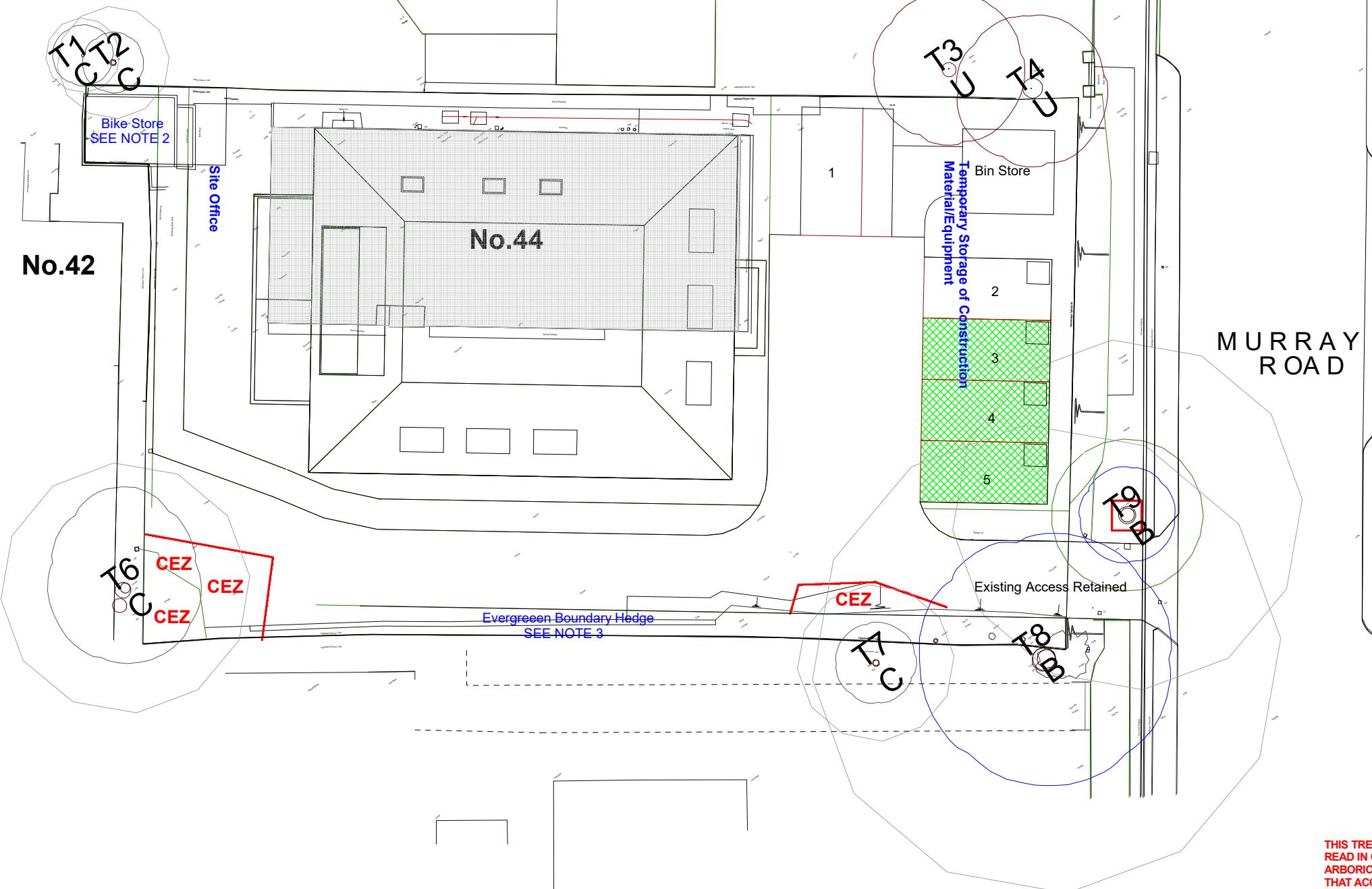
KEY**NOTES**

1. T5 and G1 have been removed off plan to facilitate development with T3 and T4 'scheduled' to be removed.
2. Bike store: The hard-core base of the existing (part demolished shed) shall be used for the base of this store.
3. Evergreen hedging to be planted along the site boundary with Linfield Close: between T6 and T8. We recommend Western Red Cedar.
4. Bin store: This store shall be placed on a shallow largely above-ground foundation.

Arbol EuroConsulting

1 Landford Close Rickmansworth WD3 1NG

44 MURRAY ROAD, NORTHWOOD, HA6 2YL
TREE PROTECTION PLAN

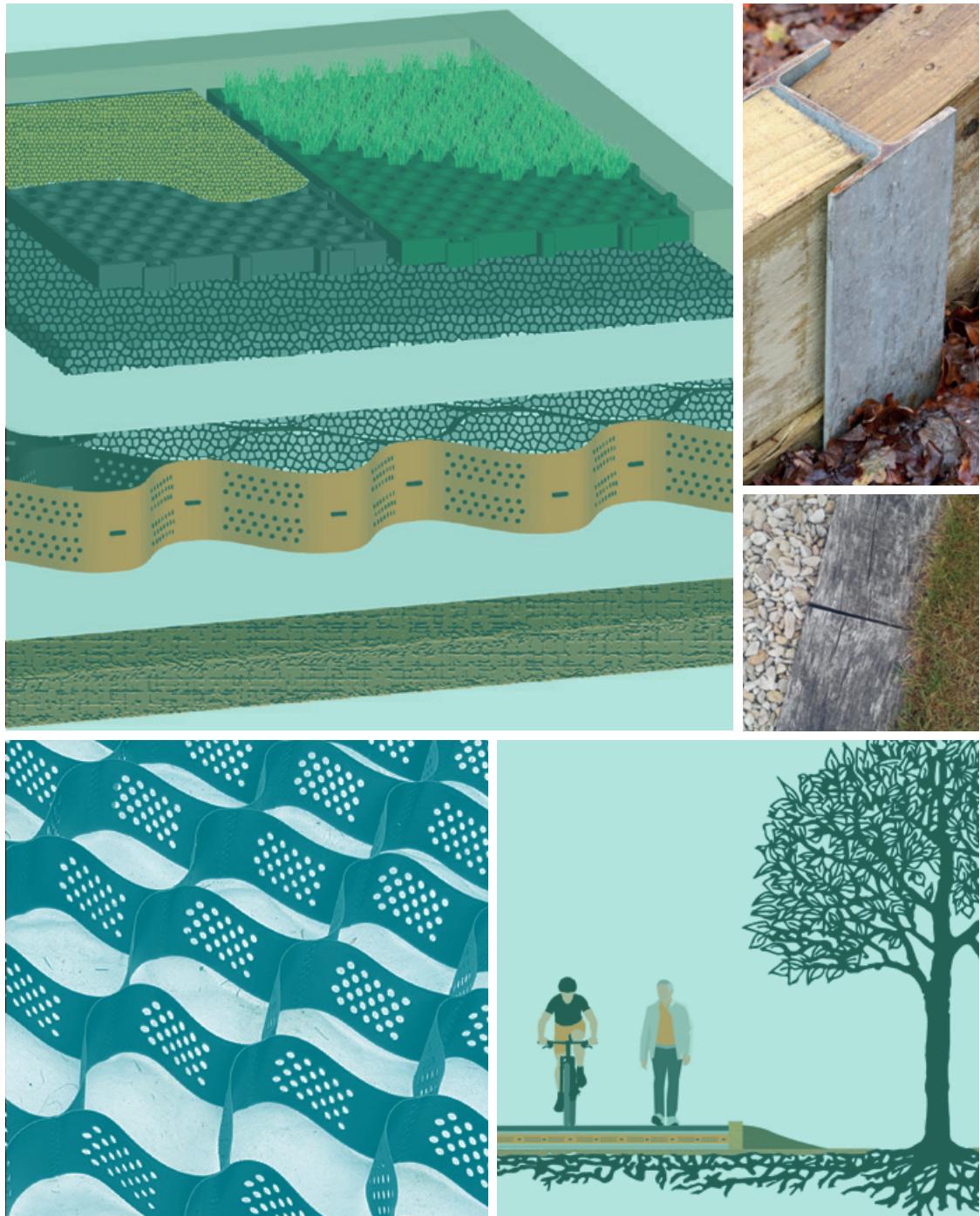

SCALE : 1 : 200 @ A3 DATE : 26/01/2023

MAP FILENAME : 101 772

Map data shown may contain Ordnance Survey © products supplied by
Pear Technology Services Ltd. Email: info@peartechnology.co.uk
© Crown Copyright and database rights from date shown above
Ordnance Survey © licence number 100023148

The original of this drawing was produced in
colour - a monochrome copy should not be
relied upon

No.40


**Apartments In
LINGFIELD CLOSE**

THIS TREE PROTECTION PLAN MUST BE
READ IN CONJUNCTION WITH THE
ARBORICULTURAL METHOD STATEMENT
THAT ACCOMPANIES THE TREE REPORT
(IN APPENDIX 3)

GUIDANCE NOTE 12

THE USE OF CELLULAR CONFINEMENT SYSTEMS NEAR TREES: A GUIDE TO GOOD PRACTICE

Author:

Ben Rose

Published in the UK by

Arboricultural Association,

The Malthouse, Stroud Green, Standish, Stonehouse, Gloucestershire GL10 3DL

Tel: **+44 (0)1242 522152**

Email: admin@trees.org.uk

Web: www.trees.org.uk

First published in September 2020
with the support of

Arboricultural Consultancy

ISBN 978-0-900978-65-4

© Arboricultural Association 2020

Background to the Arboricultural Association

Founded in 1964, the Arboricultural Association is the largest and longest-established UK body and authority for the amenity tree care profession. It has a base of circa 3,000 members in central and local government, commercial and educational employment, at craft, technical, supervisory, managerial, tutor and consultancy level.

The Arboricultural Association is regarded by central government departments, the Royal Horticultural Society and local government as the focal point for good practice in arboriculture, for certification and regulation of the industry, for information, education and research. It is unique in the profession in that its body of knowledge extends across the full spectrum of arboricultural issues and it can represent and advise a wide range of members from small operators to large corporate bodies, local and central government.

The Association publishes a range of technical leaflets, guidance notes and other publications concerning arboriculture, the quarterly *ARB Magazine* and the quarterly *Arboricultural Journal*. In its function as voluntary regulator for the arboricultural industry, the Association produces an online directory of Registered Consultants and Approved Contractors, all of whom have reached standards of excellence in arboriculture. The Association offers training through a varied programme of topical workshops, seminars, an annual trade show (The ARB Show) and an annual Amenity Conference. Various grades of membership exist for professional arboriculturists, those in related disciplines and enthusiasts.

Front cover image credits:

Images courtesy of Core LP,
Advanced Arboriculture Ltd and Bosky Trees

Image credits:

Illustrations courtesy of Core LP and
Presto Geosystems/Greenfix.

Photo images courtesy of
Advanced Arboriculture Ltd, Bosky Trees
and Hauraton Ltd

Contents

1	Using cellular confinement systems for ground protection	5
1.1	Introduction	5
1.2	The concept of cellular confinement systems	6
1.3	The relevance of different types of ground conditions	9
2	Practical application	10
2.1	Project planning	10
2.2	Suitable machinery to use for installation	12
2.3	Ground preparation	13
2.4	The use of geotextile membranes in cellular confinement systems	14
2.5	Suitable stone infill	14
2.6	Installing geocell ground protection	15
2.7	Edge supports	16
3	Suitable surface finishes	18
3.1	The need for permeable surfacing	18
3.2	Surfacing options	19
3.2.1	Porous asphalt	19
3.2.2	Loose gravel	20
3.2.3	Resin-bound gravel	20
3.2.4	Permeable block paving	21
3.3	Surface maintenance	22
4	Arboricultural implications	23
4.1	Potential impacts on tree health	23
4.2	Limitations of geocells	24
5	Key recommendations	25
	References	26

Foreword and acknowledgements

Foreword

This Guidance Note provides much needed technical direction for the arboricultural sector working alongside other professionals in development and construction.

The use of cellular confinement systems has increased over the last 20 years and the understanding of its effects and efficacy has also grown. To date, much practice regarding the installation of hard surfaces incorporating ground protection near to existing trees has been based upon an Arboricultural Practice Note (APN) 12: *Through the Trees to Development*, by Derek Patch and Ben Holding, which was published in 2007 by the Tree Advice Trust. APN 12 set out the principles of 'no dig' construction for hard surfaces, highlighting the impacts of excavation and compaction on tree roots and their soil environment.

Since then, research, technological advances and numerous studies of different materials and techniques have been explored, a revised edition of the British Standard BS5837 has been published and many architects and development and construction companies are recognising the benefits of using cellular confinement systems in this context. Indeed, as planning policy evolves it is becoming more and more relevant to consider these systems in order to meet the expected multiple demands of housing and commercial development density, while maintaining the maximum green infrastructure for societal benefit.

This Guidance Note sets out the background, concepts and relevance of cellular confinement systems, describes how to plan and prepare appropriate systems for a wide range of different applications and provides detailed technical advice and specification for implementing systems using a range of available surface treatments. It also includes detail on the arboricultural impact from the use of geocells and the limitations on their use.'

Acknowledgements

I am grateful to all of those that have reviewed and provided feedback on earlier versions of the text. In particular, I would like to express my gratitude to Dr Martin Dobson for providing detailed comments on several earlier drafts of the document. I would also like to thank Paul Muir for his thoughtful discussion which contributed to the final content and Manni Keates for producing the majority of the diagrams used in the document.

Section

Using cellular confinement systems for ground protection

1

1.1 Introduction

1. Cellular confinement systems can be used for ground protection in areas where tree root damage would be caused by digging into the ground to lay a conventional sub-base for new hard surfacing and where the long-term viability of trees could be harmed if soil that they may depend upon is at risk of becoming compacted. Compaction can occur for many reasons but vehicles passing over unreinforced ground are particularly damaging, although repeated foot traffic can also be detrimental to soil structure.
2. Roots penetrate soil partly by growing through existing voids and partly by moving soil particles aside, and these processes are impeded in compacted ground where soils are dense and voids are small. The combination of high soil density and elevated soil strength can directly limit root growth. Roots and soil organisms use oxygen to convert organic compounds into energy through the process of respiration, and so they require a continual supply of oxygen from the above-ground atmosphere to be distributed through the soil profile via diffusion. The large pores in a well-structured soil are important avenues for gas exchange and they are lost when soils are compacted to high bulk densities. Soil compaction also reduces the rate of water infiltration, the availability of water to roots, and the root system's ability to support a healthy crown. The compaction of soil within tree root zones¹ can ultimately lead to crown dieback and a decline in tree health (Ruark *et al.* 1982). Once a soil has become compacted it is difficult to reverse the effects and restore a soil structure suitable for tree root growth; even with positive intervention, soil rehabilitation may take years to achieve.
3. Roads and pavements cannot be placed on an excessively yielding subgrade because if the ground moves the surface will deform or crack after a few load repetitions. To create a lasting load-supporting surface the standard engineering practice is to remove the upper layer of soil and lay a compacted sub-base that is capped by a durable wearing course. The final surface is usually engineered so that the top dressing is level with the surrounding ground. However, surfaces constructed in this way can cause severance of tree roots at shallow depth and future root growth can be inhibited by the soil compaction caused during the installation of the surface. One way to prevent damage to roots is to keep roads and paths away from trees, but with modern-day pressures to develop land it is sometimes deemed necessary to install new hard surfacing near to established trees. In such cases, where the adjacent trees are to be retained, the soil needs to be protected in some way.
4. The use of above-ground cellular confinement systems, or 'geocells', to install surfacing near trees has been employed in the UK for over 20 years. The accepted approach involves laying a geocell mat on a non-woven geotextile laid on the surface of the ground, filling it with clean stone aggregate, and topping this sub-base with a wearing course (see Figure 1). In recent years this approach has been regularly used in construction projects because it is considered to be an acceptable way of creating a new hard surface above tree root zones. But the use of geocells is not always a simple matter and the limitations of the approach are often misunderstood. Also, very few research studies have been conducted regarding the long-term effects of installing such surfaces on soil structure and on the health of adjacent trees.

¹ For the purposes of this document, tree root zones, or root protection areas, are considered to be the minimum area around a tree deemed to contain sufficient roots and rooting volume to maintain the tree's viability. The recommended methodology for calculating root protection areas is described in *BS5837:2012 Trees in relation to design, demolition and construction - Recommendations* and is generally a radial distance equivalent to 12 times the trunk diameter measured at a height of 1.5m. Greater separation distances are required for veteran trees. It is advised that a buffer zone around a veteran tree should be at least 15 times larger than the diameter of the tree or 5m from the edge of the tree's canopy if that area is larger than 15 times the tree's diameter. For ancient woodlands, the buffer zone should be at least 15m wide.

1

Section

Using cellular confinement systems for ground protection

5. Guidance on installing new surfacing near trees was previously provided by Arboricultural Practice Note 12: *Through the Trees to Development* (Patch & Holding 2007). The aim of this guide is to draw on the subsequent industry experience in order to provide updated guidance that will be helpful to arboriculturists, landscape architects, engineers and building contractors.

- 1 Porous/permeable wearing course
- 2 Separation geotextile (100-300g/m²)
- 3 HDPE geocell filled with aggregate
- 4 Base geotextile (300g/m² min.)
- 5 Existing subgrade

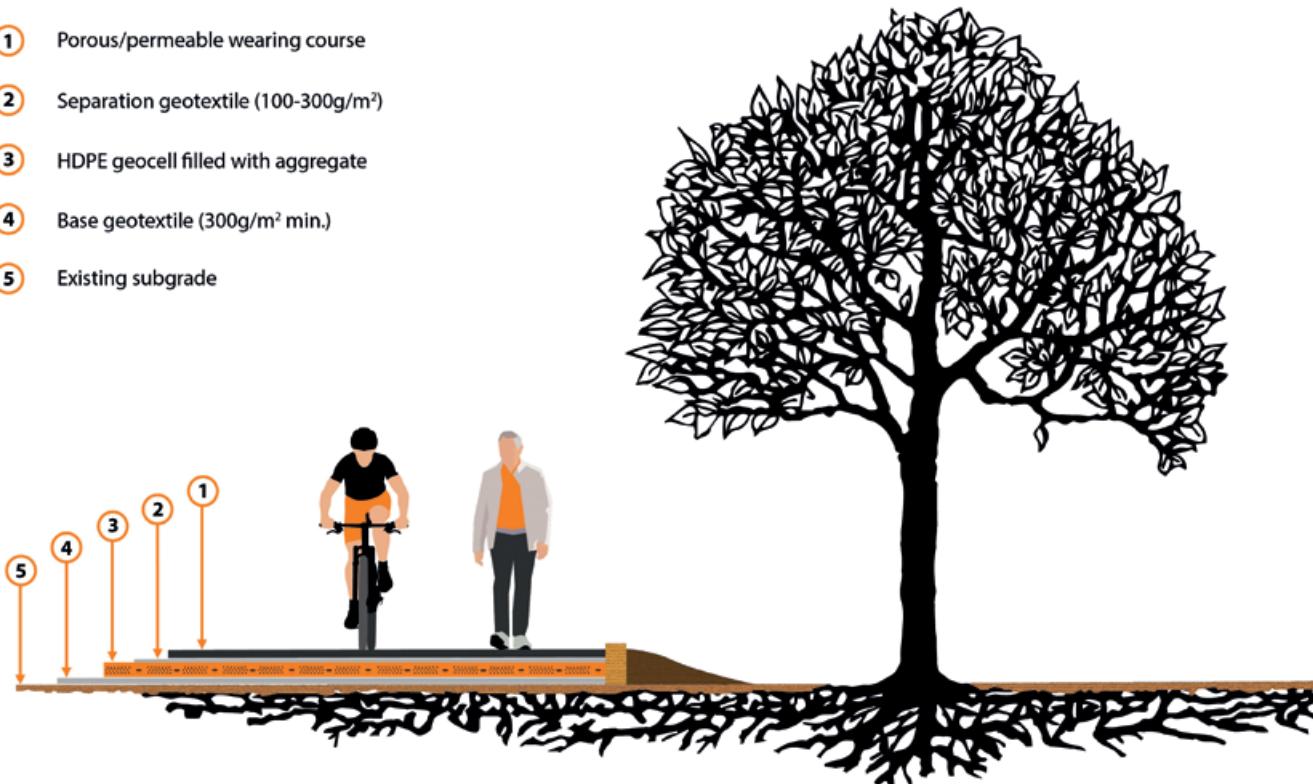


Figure 1: The basic approach to using cellular confinement systems for ground protection near trees [image courtesy of Core LP].

1.2 The concept of cellular confinement systems


6. A cellular confinement system is a series of geocells arranged in a honeycomb-like formation that is combined with an underlying geotextile and angular stone to spread loads in such a way as to minimise compaction of underlying soil. Due to its 3-dimensional structure, a geocell mat offers all-round confinement to the encapsulated material, which provides a long-term improvement in the performance of the sub-base. When a surface is reinforced in this way the load is distributed over a larger area of the subgrade-base interface, leading to lower vertical stress and reduced deformation of the subgrade (Bathurst & Jarrett 1988; Saride *et al.* 2011). Cellular confinement systems are considered to be cost effective, durable and easy to use. They also function effectively in all weather conditions (Hegde 2017). There are a variety of uses for cellular confinement systems in the construction industry, but this guidance focuses on their use when new hard surfacing is installed near trees.
7. It is relatively common for engineers to specify planar reinforcement² to improve the service life of a surface and/or to obtain equivalent performance with less depth of material. This is

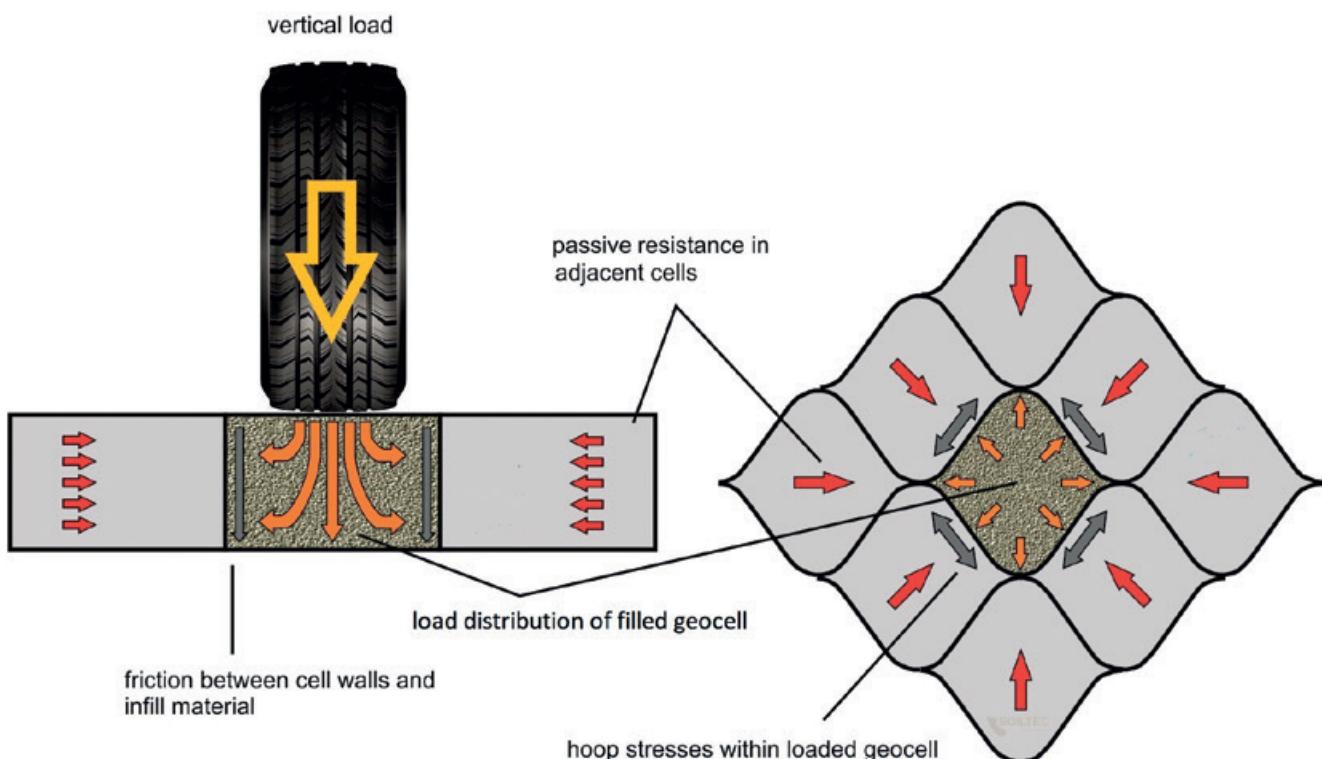
Section 1

Using cellular confinement systems for ground protection

typically a 2-dimensional geogrid³ installed beneath a minimum depth of 150mm compacted stone aggregate (GMA 2000). The geogrid and the aggregate interlock and together they form a composite material that has better load-bearing properties than the aggregate alone. But this approach is not suited for use near trees because when the stone is compacted there is a high risk of compacting the soil beneath. Also, geogrids transfer loads via the 'tensioned membrane effect', and the stretching of a geogrid under tensile loading allows a degree of deformation which results in wheel rutting and the compaction of the subgrade beneath. Therefore, the use of geogrids alone is not recommended for installing new footpaths or roads near trees. They can, however, be installed beneath a geocell mat as a separation layer and to add extra strength.

8. In order to create a stable base for hard surfacing near trees it is recommended that a cellular confinement system made of high-density polyethylene (HDPE) should be used. The plastic strips are ultrasonically bonded together to form a 3-dimensional matrix that can be filled with soil, sand, aggregate, or concrete (as shown in Figure 2), but when new hard surfacing is constructed over tree roots it is necessary to infill the geocells with angular stone because this type of fill increases friction between stones and enhances load spreading. In this context stone infill has the added benefit of being permeable, which allows water ingress and gaseous diffusion into and out of the soil.
9. The seam strength of the cells is critical to the durability of the system because these are often the weakest part of the system, and so products used should conform to ISO 13426-1:2003 Geotextiles and geotextile-related products – strength of internal structural junctions – Part 1: Geocells.
10. The walls of each cell should be textured to provide additional friction with the infill material. When geocells are infilled with stone aggregate a new composite entity is created that possesses enhanced mechanical and geotechnical properties.

Figure 2: An expanded geocell sheet before it has been filled with stone
[Image courtesy of Bosky Trees].


² Reinforcement is a way to improve the performance or to reduce the thickness of a flexible hard surface. Hard surfaces can be reinforced using 2-dimensional or planar reinforcement, or 3-dimensional (geocell) reinforcement, or a combination of both, to improve the performance or to reduce the base layer thickness without compromising the required level of service. For this reason, these methods are commonly used to reinforce sub-bases below roads or other structures.

³ A geogrid is 2-dimensional geosynthetic material made of polypropylene or high-tenacity polyester used to reinforce soils and similar materials. Soils pull apart under tension and, compared to soil, geogrids are strong in tension. This property allows them to transfer loads to a larger area of soil than would otherwise be the case.

1

Section Using cellular confinement systems for ground protection

11. As with other geosynthetics used as surface or planar reinforcement, the development of resistance in a cellular confinement system is the result of different mechanisms working together to develop improved bearing capacity over soil. However, unlike 2-dimensional planar reinforcements which trigger the confinement and membrane effects, cellular confinement systems employ a third mechanism – the stress dispersion effect, which distributes the applied load over a wider area (Avesani Neto *et al.* 2013). The walls of the cells confine the infill material and hoop stresses prevent it from expanding laterally under load. Additional support is provided by the passive resistance of adjacent cells (as illustrated in Figure 3). A further benefit is that the downward pressure of the geocell mattress prevents the soil beneath from moving upward outside of the area directly beneath the load. All these properties work together to prevent ground deformation under load (i.e. wheel rutting). Experience has shown that harmful compaction of the soil around a tree can be avoided if an appropriate thickness of geocell is used for the loading and frequency of traverse experienced during its lifetime.

Figure 3: This diagram illustrates how forces are dispersed when a vertical load is applied to a cellular confinement system [image courtesy of Presto Geosystems/Greenfix].

12. For a cellular confinement system to function effectively it is crucial that all of the cells are fully expanded and filled to capacity. Geocells made out of flexible geotextiles are generally unsuitable for use near trees because they have a tendency to deform as they are filled with stone which impairs their dimensional stability and consequently their ability to spread the load.
13. Studies have shown that geocell foundations can provide adequate support at approximately 50% of the thickness required by non-reinforced base courses (Bathurst & Jarrett 1988). Therefore, the use of cellular confinement systems can significantly reduce the amount of material required to stabilise a soil. Sometimes this will mean that the use of a geocell sub-base is cheaper than using conventional surfacing techniques because less extensive groundworks are required and a smaller volume of new material needs to be transported to the site.

Section 1

Using cellular confinement systems for ground protection

1.3 The relevance of different types of ground conditions

14. The basic approach of using a cellular confinement system over tree root zones can be prescribed by an arboriculturist, but in order to guarantee that the surface will be suitably durable the final specification should be produced or approved by a civil engineer. This may be the project engineer or an engineer from a geocell provider (such advice is a standard service provided by most UK geocell suppliers and adds little or nothing to the cost of the installation).
15. The soil conditions need to be considered when designing a cellular confinement system because the strength of the particular soil plays an important role in the effectiveness of the geocell-reinforced base. Standard recommendations for suitable geocell depths are based on a minimum subgrade California Bearing Ratio (CBR) of 3.⁴ If the ground is soft (CBR <3) an engineer should be consulted to determine if an additional sub-base is needed beneath the cellular confinement system. It is important that the project engineer has soil information prior to the surface being specified; if a site-specific soil survey is to be carried out the key information that the engineer requires is the **saturated CBR value** of the soil.
16. In most situations the majority of a tree's fine root system is located within the upper 30cm of soil (Perry 1989; Gilman 1990), and so topsoil stripping within a tree's root zone is likely to cause harmful root damage. However, the depth and nature of the soil influence where tree roots are able to grow. In deep and well aerated soils the greatest density of roots, and almost all woody roots, will be contained in the upper 60cm of soil, although some may extend to depths of 2-3m (Dobson 1995). But in shallow or waterlogged soils roots will be located just beneath ground level, and if these roots are damaged there would be greater consequences for the tree.
17. Geocell mats need to be laid on level surfaces, so sloping or uneven ground can be challenging. The recommended approach in such situations is to first install an edge restraint (as detailed in Section 2.7), followed by the base geotextile, and then add infill to the lower areas to raise the level up to the highest point (see Figure 4). Sharp sand can be used to ramp over protruding roots but deep layers of sand beneath geocells should be avoided because there is a risk that they could be eroded by water movement which may lead to surface failures. For this reason, the use of angular stone aggregate is advised (ideally this would be the same as the infill material).

TREE ROOT PROTECTION SYSTEM ON SLOPED GROUND

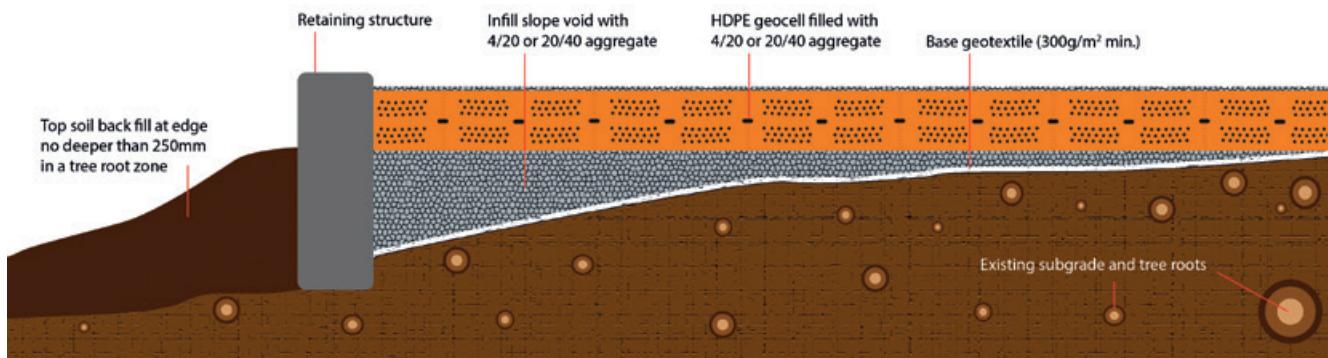


Figure 4: An example of how cellular confinement systems should be installed when the ground is sloping or uneven
[image courtesy of Core LP].

⁴ It should be noted that CBR is often referred to as a number rather than a percentage, e.g. 3 rather than 3%.

2 Section

Practical application

2.1 Project planning

18. If they are to be effective, cellular confinement systems must be installed properly with due regard to the particular circumstances of the site. Practitioners must approach projects of this nature with the same degree of knowledge, care and ingenuity that they would bring to any other aspect of a construction project.
19. There are alternative construction techniques which may sometimes provide a better solution than cellular confinement systems for surfacing above tree root systems. Suitable alternatives may include piled raft solutions using conventional or screw piles, or the use of stone-filled wire gabions. All options for bridging over tree root zones should only be considered acceptable where there are discernible reasons why encroachment into the root protection areas of retained trees cannot be avoided.
20. BS5837 states that *where permanent hard surfacing within the RPA is considered unavoidable, site-specific and specialist arboricultural and construction design advice should be sought to determine whether it is achievable without significant adverse impact on trees to be retained*. On that basis, sufficient justification should be provided where cellular confinement systems are proposed over the root zone of trees that have been assessed to be particularly vulnerable, or those that are considered at risk of being less resilient to even a minor degree of negative impact. Also, it may be inappropriate for a cellular confinement system to be used in a root protection area when it would be one of several impacts on a tree to be retained, such that the cumulative effect might be considered to be detrimental.
21. Veteran trees are valuable and may be less resilient than trees at earlier life stages, which is why in 2012 the concept of *buffer zones* was introduced for the protection of veteran trees and ancient woodland in England (Forestry Commission & Natural England 2018). To minimise the potential for harm to veteran trees or ancient woodland it is recommended that the installation of cellular confinement systems should not be permitted within the buffer zone of an ancient woodland or a veteran tree unless it can be determined that any direct impacts to soil and roots are likely to be tolerated by the affected tree(s). A cellular confinement system could be appropriate for ground protection when temporary access is required past a veteran tree if there are no other viable options available, or as a mitigation measure if a local planning authority has decided that there are wholly exceptional reasons⁵ for surfacing to be required in a buffer zone. It should be recognised during the design process that incorporating features which encourage activity close to a veteran tree or an ancient woodland is likely to create additional pressures on the long-term management of those trees. Though not directly related to the impact of the cellular confinement system on roots and soil, a precautionary approach is recommended to ensure that the tree(s) and the species that they support would not be put at risk by any indirect impacts that may be caused by introducing the new feature.
22. When geocells are used to protect tree root zones the central concept is that they are installed *above ground* and this normally results in a surface that is around 150mm above the existing ground level for footpaths, and in excess of 300mm above for roads and driveways. In many cases the necessary level differences required for the installation of cellular confinement systems over tree root systems make the approach infeasible. Designers and their clients need to be aware of this and make sure that the necessary level differences can be accommodated within a project layout.
23. Clean angular stone is an essential component required for filling the cells, and the haulage costs of this stone can be a large proportion of the overall cost (often the proximity of quarries to the site will dictate the types of infill materials that are available). For large installations this stone is typically transported in 30-tonne heavy goods vehicles (HGVs) and so a site must

⁵ For example, infrastructure projects where the public benefit would clearly outweigh the loss or deterioration of habitat (MHCLG 2019).

Section 2

Practical application

be accessible to an HGV and must include a suitable location where the load can be tipped and stored. This is particularly important when long roads or footpaths are being installed because the delivery lorries will need to deposit the stone in a suitable location away from root protection areas. The storage area needs to have enough space for the stone and for loading-vehicles to fill the dumpers that will transport the stone to the installation site.

24. In order to protect soils near trees the geocell surface often needs to be installed at the start of the project to protect ground in advance of demolition and construction activities. Alternatively, the area where the geocells are to be installed will need to be fenced off and treated as a construction exclusion zone until the time of installation.
25. If the geocell surface needs to be used as an access road during construction, its installation should be one of the first tasks the contractor carries out. In order to do this the contractor should be informed of the root protection areas required by the trees that are to be retained (determined in accordance with the guidance provided in Section 4 of BS5837:2012). Another factor that needs to be considered is the type of traffic that the surface will be subjected to during construction because very often this is heavier than the traffic that it will experience during its intended use; vehicles of particular concern include loaded dumpers and HGVs. Geocells are suitable for temporary access routes or roadways because it is a relatively simple operation to use an excavator to carefully remove a cellular confinement system when it is no longer required.
26. In some circumstances it may be necessary to install additional protection above the geocell during the demolition/construction phase. This may be required to prevent soil compaction by heavy vehicles during the development process, or as a temporary alternative to the final wearing course which might otherwise be damaged during the work. If a temporary wearing course is not used there is also a risk that mud could sink into the stone aggregate which would reduce its long-term permeability and effectiveness in maintaining gaseous exchange with the soil.

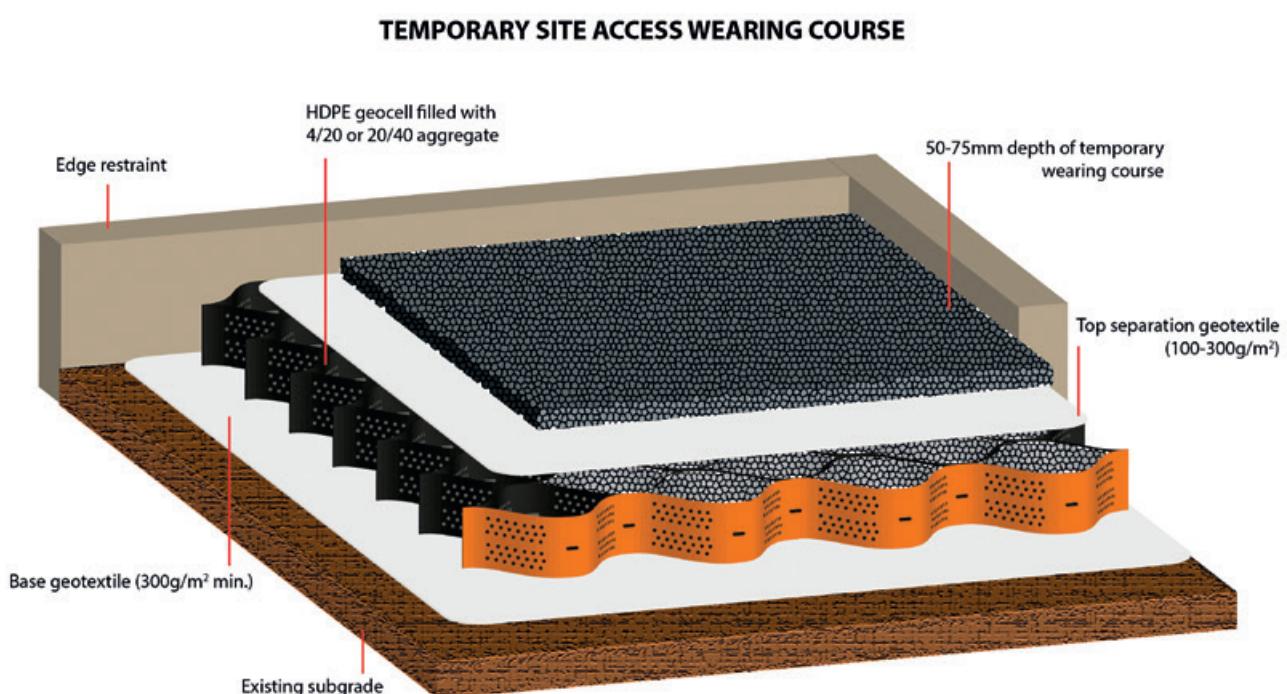


Figure 5: A geocell surface used during construction needs to be protected by a temporary wearing course and an upper geotextile is required to prevent mud from migrating down into the infill [image courtesy of Core LP].

2 Section

Practical application

In most situations overfilling the geocells with 50–75mm of material could be a suitable solution for temporary protection (as illustrated in Figure 5) but for long-term construction projects additional temporary protection would be required. Options for temporary surfacing include ply boards (for light use), heavy-duty plastic sheets, metal road plates, or a temporary sacrificial geocell layer over the surface. The latter approach is preferred as it is more likely to maintain porosity and permeability – a central concept to maintaining a healthy soil environment beneath.

27. A suitably qualified engineer should specify the appropriate depth of geocell to use for a specific location and this will depend on the bearing capacity and the strength of the soil. However, the general consensus from geocell manufacturers is that for soils with a CBR of 3 or above a loaded 6-tonne dumper can be supported by a 100mm geocell that has been overfilled by a minimum of 50mm of the same infill stone without damaging the soil structure beneath. A 150mm geocell depth is appropriate if the access road is to be used extensively by light construction traffic. However, loaded HGVs delivering construction materials, cranes, or piling rigs will require a geocell sub-base of at least 200mm.
28. The surface may also need to be protected from excessively heavy loading after construction and so vehicle use may need to be restricted; for example, bollards or barriers could be installed to prevent cars from accessing a surface that has been designed to be a cycle path only.
29. A crucial and often overlooked aspect of installing geocells is the interface between the surface laid on geocell sub-base and adjacent surfaces that have been laid on a conventional sub-base. Often the tree root zone is circular, and the intended hard surface is to cover a larger area than the sensitive root zone, and so it is tempting to only specify a geocell sub-base for the sensitive area. However, it is much easier to install surfacing in larger discrete blocks, and the final surface is likely to be much more durable if any interfaces between different surfaces are considered in the design. Therefore, it is advised that geocell is used beneath the full width of the surface rather than just part of it. The interface between different sub-bases can be incorporated within the design so that differential movement will not cause a crack to appear between the two different surface types. In order to achieve this an interface can be hidden at a point where the surfacing naturally changes (e.g. between a car-parking space and an access drive).

2.2 Suitable machinery to use for installation

30. Is not essential to use powered machinery to install geocell surfaces, and for small areas it may be easier to install them using only a shovel and a wheelbarrow.
31. Standard installations require a tracked excavator and a dumper truck. The dumper can tip stone directly into the cells and the bucket of the excavator can be used to spread the stone. The excavator should be fitted with an un-toothed spreading bucket, and on sloping ground an excavator with a tilting bucket may be more practical.
32. The ground pressure exerted by tracked excavators and loaded tracked dumpers ($\leq 6\text{-tonne}$) of all sizes is generally low enough to avoid soil compaction (provided the soil is not saturated), and so they are often the most suitable machines to use when installing cellular confinement systems in root protection areas. However, tracked vehicles are not always appropriate because although they exert lower ground pressures, their skid steering can cause surface smearing which reduces gas permeability and water infiltration rates and thus causes harm to the living soil. Therefore, if a tracked vehicle needs to turn it is advised that thick plywood boards or plastic ground guards/metal sheeting are put down so that the vehicle can turn on top of them. Ground protection is more difficult to achieve when larger vehicles are employed and so they should track outside the tree's root protection area before turning.

Section 2

Practical application

33. Clay soils and silty clay loams are particularly prone to compaction and smearing and so vehicle use on these types of soils needs to be managed with close attention. Wet soils are also particularly susceptible to compaction and smearing because they are more pliable than drier soils. Accordingly, arboriculturists must specify that no vehicle use is permitted in root protection areas when the ground is saturated. Contractors and clients must accept that this may involve time delays but that it is necessary to minimise the impacts of installing new surfacing near established trees.

2.3 Ground preparation

34. Cellular confinement systems can be laid directly on top of lawns or other flat soil surfaces but in most cases a degree of ground preparation is required. This is often the part of the process where trees are at the greatest risk of being damaged, and so in order to minimise the risk of harming them it is advised that any ground preparation works required are carried out under the supervision of a professional arboriculturist.
35. For most projects, the removal of up to 50mm of leaf litter and surface vegetation is appropriate but if there are obvious surface roots, or if the soil layer is shallow, it may not be appropriate to remove any surface material at all. Any protruding rocks should be removed, and it is recommended that tree stumps are ground out because this causes less disturbance than digging them out. Ramps made of sharp sand should be used as a protective layer to cover up any surface roots so that they are not damaged when the infill is introduced.
36. The concept of no-dig construction was first described in Arboricultural Practice Note 1: *Driveways Close to Trees* (Patch & Dobson 1996), and the three principles set out in that guidance remain valid today:
 - Roots must not be severed.
 - Soil must not be compacted.
 - Oxygen must be able to diffuse into the soil (and carbon dioxide out of the soil) beneath the engineered surface.
37. The design should not require excavation into the soil but if there are no obvious surface roots the turf layer or any other surface vegetation may be removed. A tracked excavator with a grading bucket is normally the best machine to use to remove the turf layer because this creates an even surface. For this application excavators should be of an appropriate size for delicate works (i.e. ≤5tonne). **Ground preparation works using excavators in root protection areas must be supervised by an arboriculturist** to make sure that significant roots (single roots >25mm diameter or clusters of roots 10–25mm in diameter) are preserved and to ensure that vehicles are being used appropriately. Where there are deep soils it may be possible to remove more than 50mm from the surface, but care is essential because a large proportion of the root system is likely to be near the soil surface. Surface skimming must be stopped immediately by the supervising arboriculturist if the upper side of any significant tree roots is exposed. Even though the ground is broken by such works this approach may still be described as 'no-dig' in the context of installing hard surfacing near trees – the crucial distinction is that the standard practice of installing sub-surface foundations by replacing soil with compacted stone aggregate is avoided when a cellular confinement system is used.
38. With careful application a glyphosate-based systemic herbicide could be used to kill off turf in advance of laying a cellular confinement system. But in general, the application of herbicides near trees is undesirable because there is a risk that they could affect adjacent trees. However, no herbicide application is necessary prior to laying down geocells because the base geotextile and surface layers are likely to be enough to prevent vegetation growth beneath the surface.

2 Section

Practical application

2.4 The use of geotextile membranes in cellular confinement systems

39. Geotextiles are manufactured from synthetic polymers in a process that produces either a non-woven or a woven fabric. When cellular confinement systems are installed the fabric is unrolled directly on to the subgrade before the placement of the geocell mat. Its primary function is to separate the soft ground from the stone aggregate infill because when stone aggregate is placed on fine-grained soils the soil can enter the voids of the stone aggregate and impair its drainage capacity. Also, the stone aggregate can intrude into the fine soil, resulting in a reduction in the strength of the aggregate layer. For installations above tree root zones it is important that the geotextile is permeable to air and water.
40. Woven geotextiles tend to have a few openings of a relatively large size, whereas non-woven geotextiles tend to have numerous small openings and are therefore more suitable for filtration applications (CIRIA 2015). The holes in the fabric function as particle filters and in some circumstances this can prevent pollutants from reaching the soil beneath. A needle-punched non-woven geotextile is best for installing geocells near trees because it provides adequate tensile resistance and allows water to reach the subgrade (Fannin 2000).
41. Very often a second geotextile is required above the geocells to stop the bedding layer (often sand) above from mixing with the infill. The only type of surfacing that does not require a second geotextile is asphalt.
42. It is recommended that the base geotextile is made of polypropylene or polyester (min. 300g/m²) with a CBR puncture resistance of 4000N. These properties are required because the angular stone infill can puncture thinner geotextiles. The upper geotextile is required for protecting the infill matrix; this can be of the same thickness or slightly thinner (100–300g/m²). Geotextiles made from recycled products are becoming increasingly available and they can be used in cellular confinement systems if they have sufficient tensile strength and puncture resistance.
43. Sometimes a 'cake' can form on the upper side of a filtration geotextile and because of this there will always be a concern that the geotextile will clog and become less permeable. It must be accepted that any geotextile will partially clog because some soil particles will embed themselves on or in the geotextile fabric. However, there is a lot of data suggesting that permeable surfaces are very robust and in most cases do not completely seal (DCLG 2009). The aim should be to avoid situations where the geotextile will clog to the degree where the system will be insufficiently permeable to gas and water. This is the primary reason that the infill used should not contain fine-grained material. It is worth considering the risk of sediment migration when designing the cellular confinement system, to ensure that stormwater does not carry too much material downhill onto the permeable surface. It follows that a cellular confinement system with a permeable surface course should not be installed at the low point of a site's surface drainage.

2.5 Suitable stone infill

44. Angular stone binds through interlocking, and in cellular confinement systems this cohesion is aided by the texture of the geocell walls. If the stone is not angular it does not lock within the geocells and the surface will deform in use. Marine-dredged shingle and river gravel are therefore unsuitable infill materials because they have rounded edges.
45. For cellular confinement systems above tree root zones, given the size of the geocells and the interlock required, the infill should ideally be crushed 20/40 stone (this means stones that are between 20mm and 40mm in diameter). However, where this is not available 4/20 stone can be used. In all situations the infill material should be washed or graded so that it contains no fine particles (fines).

Practical application

46. The aggregate must have enough internal strength to perform both during installation and in the long-term. Preferably the infill will be a crushed hard rock. However, due to haulage costs, the availability of infill will be dictated by the site location and the material produced at local quarries. Some parts of the UK do not naturally contain suitable stone for infilling cellular confinement systems and so it would need to be imported from elsewhere. Crushed granite, basalt or limestone are ideal. Flint is less suitable because some rounded edges remain after it has been crushed and the shiny faces of the fractured stone are slippery. When geocells are used for tree protection, MOT Type 1, Type 2 and Type 3 are not suitable for use as infill because they contain fines.
47. Generally, the amount of infill required can be calculated using the following equations:

Quantity of 4/20 stone infill required = m^2 of coverage \times depth of geocells (m) \times 2 tonnes

Quantity of 20/40 stone infill required = m^2 of coverage \times depth of geocells (m) \times 1.8 tonnes

48. An aggregate cover on top of the geocells does not contribute towards the increase of the bearing capacity of the surface but it protects the geocells, and so it is advised that geocells are overfilled by a minimum of 25mm additional aggregate before the surface layers are installed above.

2.6 Installing geocell ground protection

49. A base geotextile is always required beneath a cellular confinement system to separate the fill material and the subgrade; this geotextile must cover the entire area to be surfaced. If several sheets are required they should overlap by at least 30cm. On top of that the geocell mat is stretched out and staked in place. J-hooks (steel reinforcing bars bent into a 'candy cane' shape) are the easiest type of stake to use, but construction pins or wooden stakes can also be used. Ideally the length of the stake should be at least three times the cell height.
50. If conditions require that adjacent sections of the geocell be joined together rather than butted against each other, zip ties or staples can be used. Staples through each set of adjoining cells are attached using a heavy-duty stapler (usually available from the geocell supplier) and surplus cells can be cut off using a Stanley knife with a hooked blade. The infill material is then poured into the open pockets of the geocell.
51. Where possible, vehicle use should be restricted to areas outside the tree root zones. When introducing the stone the excavator should be positioned outside of the root protection area or on top of a stone-filled geocell mat. In some situations it may be possible to fill the geocells from the side of the track furthest away from the trees without any vehicles entering the root protection areas. When tracked vehicles are used in root protection areas, installers should start at one end of the area to be surfaced and work progressively past the tree(s) so that the need for manoeuvring is reduced, but if this is not possible additional ground protection may be required (as described in Section 2.2).
52. Engineers and contractors who are unfamiliar with cellular confinement systems will instinctively want to compact the infill but this is inappropriate when installing cellular confinement systems near trees because it would result in the compaction of the soil beneath the geocells and defeat the purpose of using the system. It is recommended that settlement of the infill material is achieved by a minimum of four passes of a smooth roller (max. weight of 1000kg/m width without vibration), or alternatively by several passes with a tracked excavator. After several passes the infill reorients and becomes stable, causing local fill stiffening. The aim is to reach the point where the infill is consolidated. Checks should be made to ensure that the infill is fully consolidated before laying the wearing course.

2 Section

Practical application

2.7 Edge supports

53. Edging is not required for the stability of the cellular confinement system but it is necessary to retain the wearing course and the filling of incomplete cells at the edge of a surface. Block paving that does not have a fixed edge can shift and the joints can spread, leading to movement and potential migration of the bedding material beneath. Asphalt can also crack at the edge if it is not properly retained. In all cases the appearance of the surface is adversely affected, and the longevity of the surfacing is greatly reduced. For these reasons all projects that include the use of cellular confinement systems should include a detailed specification for surface edging.
54. Kerb stones set in concrete haunchings dug into the ground are typical edging for standard surfaces but often this method of installation is not suitable where the kerbline passes through a tree root zone because the necessary excavations are likely to result in damaged roots. There are a variety of suitable alternative solutions including fixed sleepers, peg-and-board edging, concrete kerbs set above ground and pinned metal or plastic edging. Suitable systems are described in Table 1.

Table 1: The types of edging available for retaining wearing courses.

Peg-and-board edging

The use of treated timber peg-and-board edging is often the simplest option. However, loading can be high when the surface course is laid and so pegs are required at 1m spacing to prevent the side boards from bowing. A drawback of this approach is that the wood can splinter if tracked vehicles drive over it. Also, the wood deteriorates over time and so it is not a suitable solution for projects that are intended to have long life spans.

Thicker tanalised boards can be used for longer-term installations. The wide boards typically provide a more attractive finish and they last a lot longer than thinner boards.

King-posts

Where deeper above-ground support is needed steel I-bars can be used to support large wooden sleepers. A drawback of this approach is that the I-bars need to be set in concrete, and that part of the process could damage roots if it is not carried out with due care

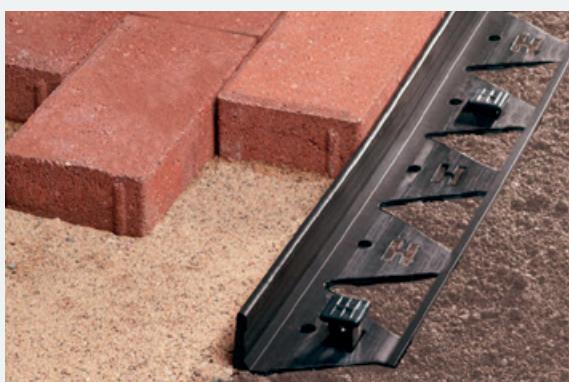
[image courtesy of Advanced Arboriculture Ltd].

Section 2

Practical application

Standard kerbs set on top of concrete-filled geocells

If the levels suit, standard kerbstones can be set on top of the geocells. The edge cells can be filled with concrete and the haunchings are above the cellular confinement system. The finish can look very good when this has been carried out properly.


Small concrete kerbs pegged and set in concrete

Where only small load resistance is required narrow concrete kerbstones can be set in concrete at the edge of the geocells, and these can be further stabilised by wooden pegs. This creates an attractive finish that is comparable to standard surface installations.

Railway sleepers fixed in place

An advantage of using railway sleepers is that they are easy to source and quick to install. They are particularly good for temporary access roads because they can be easily removed at the end of the project and re-used.

Metal or plastic edging strips

There is a range of edging products that are designed to retain block paving or to provide a clean edge to landscape areas. These are typically L-shaped edging strips that are secured by being pinned into the ground below [*image courtesy of Hauraton Ltd*].

3 Section

Suitable surface finishes

3.1 The need for permeable surfacing

55. Permeable paving needs to be suitable for pedestrian or vehicular traffic and contain pathways that allow air and water to pass through. Although some permeable paving materials are nearly indistinguishable from non-permeable materials in construction and appearance, their environmental effects are qualitatively different because they allow gases, water and heat to be exchanged between the soil and the atmosphere.
56. In the UK, sustainable drainage systems (SuDS) are actively encouraged in new development schemes. Cellular confinement systems topped with a permeable surface can be part of a SuDS design because they allow water to infiltrate directly into the soil and contribute to managing stormwater by detaining runoff, increasing infiltration, and treating water quality (Ferguson 2005).
57. If a permeable surface is acting as a road surface it may need to be adopted by the local highway/roads authority or drainage approval body. This is a complex subject, and guidance on relevant approval or adoption protocols may need to be sought from local stakeholders before a detailed design is drawn up.
58. In most cases standard tarmac surfacing is inappropriate above tree root zones because it seals the surface of the soil, preventing the ingress of water and gaseous exchange between the soil and the atmosphere. If this is a concern, alternative pathways for air and water to reach the soil beneath can be designed. Still, there may be exceptional circumstances where an above-ground geocell sub-base with a sealed surface is the only way of avoiding a standard foundation that would cause direct damage to tree roots. In order to decide if an impermeable surface is a suitable solution the arboriculturist will need to assess the overall impact of such works by considering the health of the affected trees, the proportion of the root zone affected, and whether the soil structure and water supply will be sufficient to fulfil the physiological needs of the tree in the long-term.

Suitable surface finishes

3.2 Surfacing options

3.2.1 Porous asphalt

59. Porous asphalt is an open-graded aggregate bound with asphalt cement to produce a permeable surface that allows water and air to pass through. It is probably the best surface to use over cellular confinement systems because it tends not to have cracking or pothole formation problems. Also, it provides a neat finish that looks very similar to standard tarmac. The asphalt binder never really hardens and so it interacts with the geocell base to form a single flexible structure. The installation of porous asphalt is marginally more expensive than standard tarmac but it has benefits for adjacent trees, pollution control, site drainage and stormwater management.
60. An advantage of porous asphalt is that it does not require proprietary ingredients to be manufactured. Most asphalt providers can easily prepare the mix, and since installing it does not require unusual equipment or specialised paving skills, general paving contractors can install it as they would standard surfaces. The asphalt must be thoroughly mixed immediately before being laid or there can be an uneven distribution of binder as the surface is laid, and this leads to some parts of the surface being impervious because they have too much binder in the pores and other areas breaking up because there is too little binder around the aggregate. Standard porous asphalt may be used for cyclepaths and footpaths but stronger binding agents are required for car parking areas and driveways because the power steering of modern vehicles can cause the surface aggregate to break up.

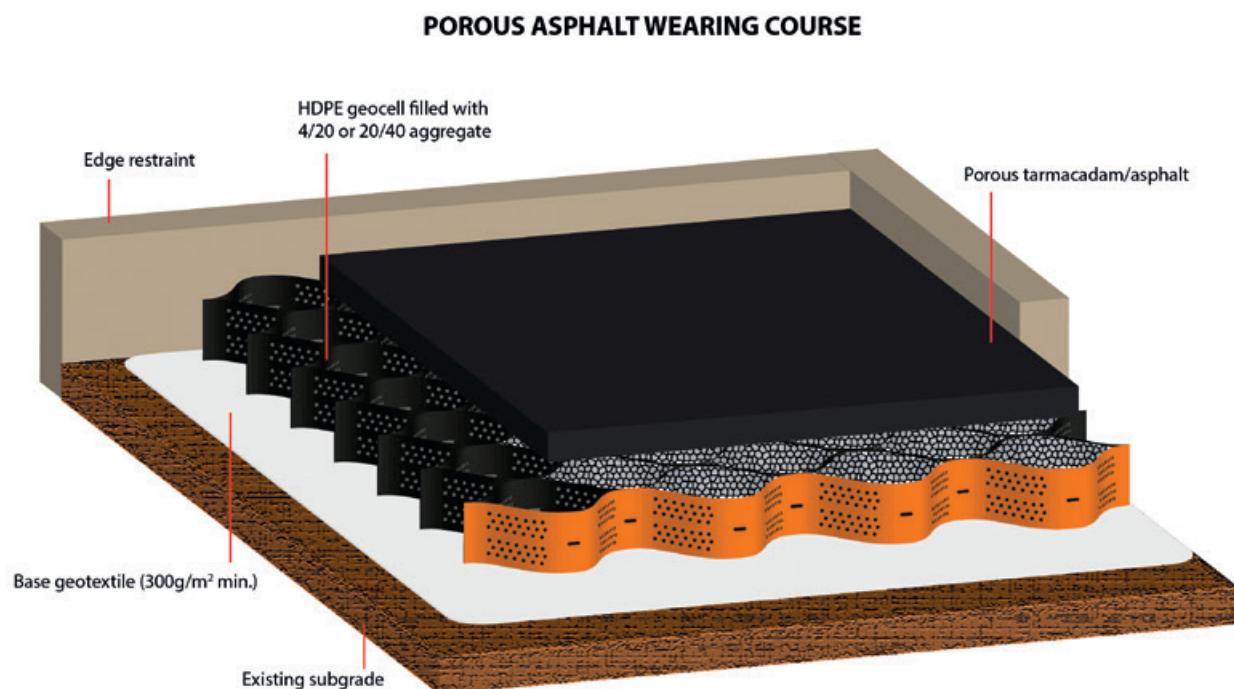


Figure 6: The typical composition of a porous asphalt surface with a geocell sub-base [image courtesy of Core LP].

3 Section

Suitable surface finishes

3.2.2 Loose gravel

61. Residential driveways typically bear light and slow-moving vehicular traffic and unbound gravel is suitable for this type of use. It can also be used as a temporary surface, but the gravel is often disturbed by vehicles turning, and there is a risk of the upper separation geotextile tearing and the gravel contaminating the infill. Also, as with all gravel installations, the surface camber must be suitable or the gravel will migrate downhill.
62. Small plastic stabilisation grids are the best solution for car parking areas. They are not a solution in themselves beneath trees because they do not spread loads sufficiently to prevent soil compaction and they also need to be laid on a sub-base. However, they can be used to retain gravel or soil above a geocell sub-base (see Figure 7). One particular benefit of these small panels is that they are lightweight and easy to put into position. Another advantage is that they can easily be removed and replaced if necessary.
63. Stabilisation grids with grass are possible over tree root systems but their appearance suffers under heavy traffic. For this reason, permeable grass-covered surfacing is best for overflow parking areas or other areas that have only occasional use.

STABILISATION GRID WEARING COURSE FILLED WITH SOIL OR GRAVEL

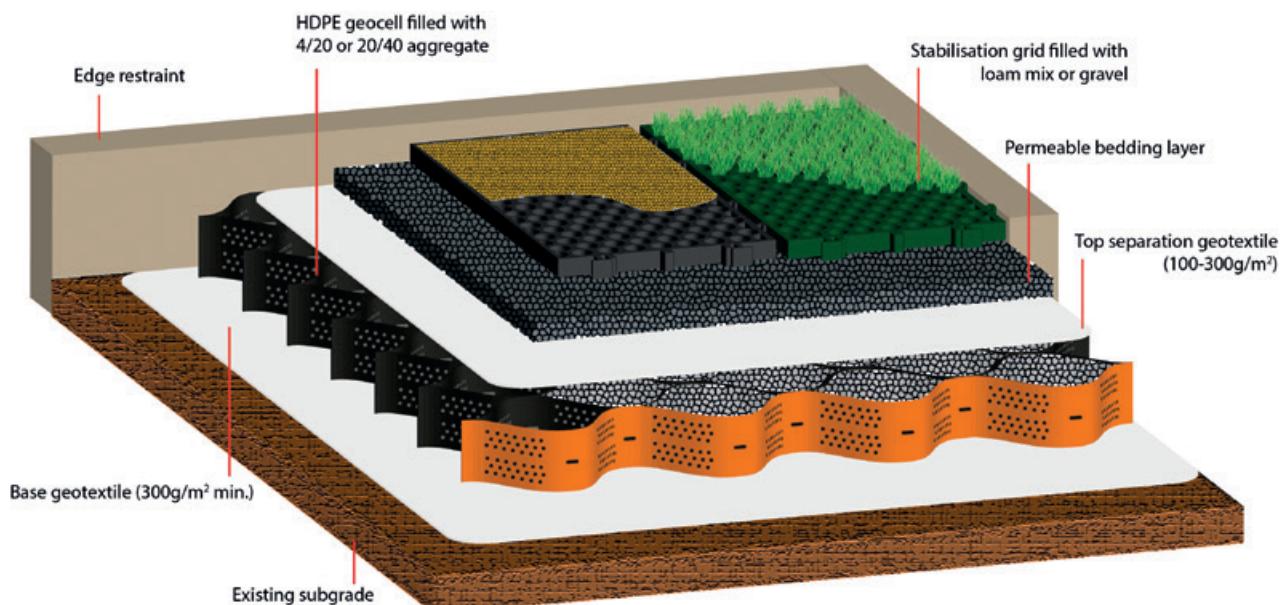


Figure 7: The sub-base configuration required for gravel or grass surfacing [image courtesy of Core LP].

3.2.3 Resin-bound gravel

64. Resin-bound gravel provides a permeable and durable wearing course. It is better than loose gravel when a surface has heavy traffic because it remains stable. The resin is typically UV-stable polyurethane, mixed with aggregate with a typical grading of 6–10mm. A variety of resin-bound products are available, and they come in a range of colours. Specifiers should be aware that resin-bonded surfaces are typically thin layers (18–25mm) and they have to be laid on a porous asphalt base (80–150mm deep).

Suitable surface finishes

3.2.4 Permeable block paving

65. Block paving (concrete block permeable paving, porous block paving, and clay block permeable paving) can be used as a wearing course. It is commonly used because the final surface is attractive. It is highly permeable and can bear heavy traffic. Another benefit is that this is a surface that most contractors know how to install.
66. Joint fill material is spread into the joints and the surface is vibrated to settle the blocks, bedding and joint-fill into a firm position. Block paving is a sensible solution on corners or on sloping ground because the surface is given stability by the interlocking blocks. The adjacent blocks wedge together and so creep is resisted when they are put under horizontal loads such as vehicle braking or turning.
67. Paving blocks need to be laid on a bed of sand or fine stone chippings and so a second geotextile is required above the infill to prevent the sand from migrating down the profile. There are numerous different types of block paving available and paving experts should be consulted to find the best type for specific applications.

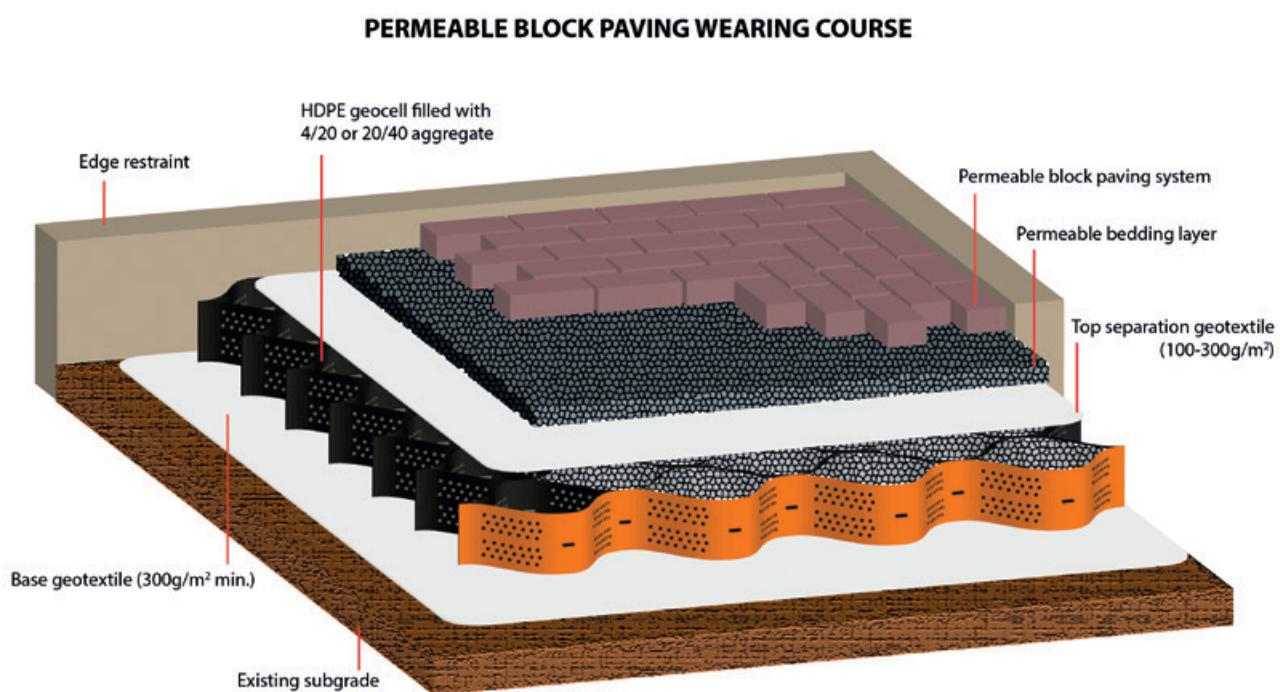


Figure 8: The recommended specification when installing permeable block paving above a cellular confinement system
[Image courtesy of Core LP].

3 Section

Suitable surface finishes

3.3 Surface maintenance

68. Over time all permeable surfaces are likely to require a degree of maintenance to prevent them from becoming clogged because this would impair their function and could therefore adversely impact adjacent trees. Smaller particles trap larger particles. Therefore, the rate of clogging increases as more fines are trapped. It is a good idea to install permanent signs to alert maintenance personnel to keep silt and debris away from a porous surface; and also to warn them not to seal the pavement or use de-icing salts if there are adjacent trees.
69. Surface clogging can be managed by regular maintenance. Brush and suction road sweepers should be used for regular cleaning of roads and car parks. Leaf and litter vacuums are a quick and effective way to clean porous surfaces; these are small machines that are pushed by the operator. Hand-held pressure washers can also be used to unblock surface pores that have become blocked with moss, tree leaves and needles. All types of cleaning are most effective when they are done before clogging is complete.
70. As a general rule, permeable surfaces should be cleaned once every year to remove silt and dirt particles. Surfaces beneath trees that drop lots of blossom or fruit may need to be cleaned more regularly (refer to Section 20.14 of the CIRIA SuDS Manual for more detailed maintenance guidance).
71. The HDPE that makes up the cells can degrade if exposed to sunlight and the cells can also be damaged by traffic if they protrude. Consequently, the functionality of the system is impaired and the surface develops a tatty appearance. Therefore, uncapped cellular confinement systems need to be checked annually and topped up with suitable stone if any cells are visibly exposed.

Section

4

Arboricultural implications

4.1 Potential impacts on tree health

72. A major concern about surfacing above a tree root zone is the impact that this will have on the availability of water and oxygen to the soil immediately beneath the surface. Soil aeration deficiencies result in reduced levels of tree root growth (Weltecke & Gaertig 2012) and so it is important that new surfacing above a tree root system maintains gas permeability at the soil-atmosphere interface.
73. Laying a new load-bearing surface over an area of ground is likely to increase the bulk density of the soil beneath to some degree. As a result, the soil will contain less macropore space and the pores will have fewer connections between them. With these effects on the soil profile, wide or extensive surfacing above a root zone will have the effect of decreasing the saturated hydraulic conductivity and increasing the tortuosity⁶ of flow paths through the soil. With reduced levels of oxygen and water there will also be reduced biological activity in the soil, which will consequently decrease the opportunities for soil-pore creation and the turnover of soil organic matter. An inadequate supply of oxygen impairs root growth and function because respiration becomes anaerobic, which is inefficient and does not release enough energy to maintain essential physiological processes in root tissue (Roberts *et al.* 2006). Consequently, the uptake of water and nutrients by the root system decreases, causing reduced photosynthesis above ground. It has been found that low soil oxygen concentrations increase the susceptibility of plants to diseases, the virulence of pathogens, or both (Craul 1992). These adverse effects would be more extreme beneath an impermeable surface because air and rainwater would be prevented from infiltrating directly from the above-ground atmosphere.
74. There is a risk that the preparatory works required to level the ground could cause direct root damage which would leave affected trees vulnerable to soil-borne pathogens and, ultimately, this could lead to the accelerated decline of the tree.
75. Taking into consideration the effects that surfacing has on soil structure and permeability, it cannot be said that any form of hard surfacing will have no impact on the environment of tree roots growing beneath. When the full implications of installing cellular confinement systems are considered, one has to conclude that the impact of installing such a surface will inevitably have a small adverse impact on the health of affected trees. But experience has shown that healthy trees usually remain in good health when a permeable hard surface is laid on top of a geocell sub-base within their root zones. Overall, it seems that in a great majority of cases the impact of installing cellular confinement systems in tree root zones is small enough for it not to result in an obvious deterioration in the condition of affected trees, and the benefits of using this approach far outweigh the problems of laying a conventional surface.
76. BS5837:2012 recommends that new permanent hard surfacing should not exceed 20% of any existing unsurfaced ground within the root protection area of a tree (BSI 2012). This is a cautious recommendation and it should not necessarily be considered an absolute limit because in some circumstances covering a higher proportion of the root zone with a permeable surface may be acceptable, provided that it has been sufficiently justified.

⁶ Tortuosity is one of the properties of a porous material, usually defined as the ratio of actual flow path length to the straight distance between the ends of the flow path. In terms of void connectivity, a highly tortuous soil is the opposite of an uncompacted and biologically active loam soil. If the soil's pore passages are tortuous (as in a compacted soil), gaseous diffusion and soil water movement are inhibited.

4 Section

Arboricultural implications

4.2 Limitations of geocells

77. Underground services should not be routed beneath cellular confinement systems because they may need to be accessed in the future, either for repair or for making new connections, which could severely compromise the installation. On many development sites this can be a significant limitation. Therefore, when cellular confinement systems are specified the requirement for new underground services, and where they need to be installed, must be detailed at the planning stage.
78. Ramping up from an existing road to a new geocell surface can be difficult to achieve if there are tree roots at the edge of the road. It may be necessary to create a build-out in the road so that the ramp can be installed before the geocell begins. The preference would always be to have ramping formed outside tree root zones but the level change caused by building a new surface above ground often means that it is not practically feasible to ramp up from existing roads. In such situations some digging (and possibly ground consolidation) within the root protection zone of adjacent trees would be required in order to smoothly connect the two different types of surface construction. Alternatively, a metal ramp can be installed on mini-piles. Adjacent trees could be compromised if there are significant roots where the excavation for a ramp is required, and all parties involved should be aware that in this context the use of a cellular confinement system may not be an appropriate solution. The level differences caused by installing above-ground surfacing can have a variety of consequences; for example in some cases they will dictate the floor level of buildings in the vicinity.
79. HDPE geocells are made of virgin plastic and, provided they are not exposed to sunlight, they have a design life of 120 years. They can also be reused. The design life of permeable paving is approximately 20 years (DCLG 2009; CIRIA 2015). Therefore, in most cases the wearing course or edging would need to be replaced before the cellular confinement system.
80. The static load of the infill is low (approx. 15–20kPa per metre height depending what infill is used), and geocell mats disperse active loads. Therefore, unless the ground is particularly soft (CBR < 3), the stone-filled geocell sub-base can be up to 2m deep and used by refuse trucks or fire engines without causing compaction of the soil beneath.
81. There are few long-term studies that demonstrate the effectiveness of cellular confinement systems near trees. At present it is difficult to say with confidence what the long-term impacts of such surfacing may be on the soil beneath. Independent studies that measure the bulk density, moisture and oxygen levels of soils beneath geocells would help develop understanding of how effectively they function. Also, key features of cellular confinement systems, such as the effects of infill materials, stress distribution patterns, joint strength and wall deformation characteristics, have still not been fully explored. Refined guidance should be developed as the use of cellular confinement systems increases and if data from long-term tree health monitoring studies become publicly available.

Key recommendations

5 Key recommendations

- 1) The use of cellular confinement systems can be effective in protecting soils and tree root systems when new hard surfacing is required near trees. However, in this context the installation of geocell sub-bases inevitably involves working on top of tree root systems and as such there will be an elevated risk of damaging tree roots and the structure of the soil. Therefore, careful working procedures are required to ensure that trees are suitably protected when the installation works are carried out.
- 2) The installation of cellular confinement systems should be directed by a project-specific arboricultural method statement. The arboricultural method statement should list any aspect of the proposed construction project that has the potential to adversely impact adjacent trees and detail appropriate methodologies for how the works will be undertaken in ways that would minimise those impacts.
- 3) Tree roots can be directly damaged as the ground is levelled in advance of laying down a cellular confinement system and so it is recommended that this part of the process is carried out under arboricultural supervision. The use of a tracked excavator within a tree's root protection area should only be permitted if it is supervised by a suitably qualified arboriculturist. Local authorities should condition such supervision and stipulate that records of the supervision visits be provided to demonstrate that the works have been carried out appropriately.
- 4) The cellular confinement system must be filled with clean angular stone that contains no fine material. To protect the geocell membrane it is advised that geocells are overfilled by a minimum of 25mm. In order to function effectively it is crucial that all of the cells are fully expanded and filled to capacity. Therefore, if there is insufficient space for a cell to be expanded it should be cut away and discarded.
- 5) When cellular confinement systems are installed within tree root zones it is important that the wearing course is permeable so that air and water can reach the soil beneath. Systems should be put in place to ensure that the surface is regularly cleaned so that it maintains its porosity.
- 6) The means to successfully prevent ground compaction during construction need to be planned from the conceptual stages of a building project. It may be that the no-dig surface needs to be installed and used during construction, and in other situations the ground may need to be protected until it is time to install the cellular confinement system. Therefore, the project arboriculturist needs to work with the architect, the project engineer, and the building contractor during the planning stages as well as during the construction of the surface.

References

- Avesani Neto, J.O., Bueno, B.S. and Futai, M.M. (2013). A bearing capacity calculation method for soil reinforced with a geocell. *Geosynthetics International*, Vol. 20(3):129–142.
- Bathurst, R. and Jarrett, P.M. (1988). *Large-Scale Model Tests of Geocomposite Mattresses over Peat Subgrades*. Transportation Research Record Journal of the Transportation Research Board.
- BSI (2012). *BS5837:2012 Trees in relation to design, demolition and construction – Recommendations*. British Standards Institution, London.
- CIRIA (2015). *CIRIA 753: The SuDS Manual*. CIRIA, London.
- Craul, P.J. (1992). *Urban Soil in Landscape Design*. John Wiley & Sons Inc.
- DCLG (2009). *Understanding Permeable and Impermeable Surfaces – Technical Report on Surfacing Options and Cost Benefit Analysis*. Department of Communities and Local Government. London.
- Dobson, M.C. (1995). Tree Root Systems. *Arboriculture Research and Information Note 130/95/ARB*. Arboricultural Advisory and Information Service. Farnham, Surrey.
- Fannin, J. (2000). *Basic Geosynthetics: A Guide to Best Practices in Forest Engineering*. Ph.D., P. Eng., Forest Resources Management and Civil Engineering, University of British Columbia, Canada.
- Ferguson, K. (2005). *Porous Pavements*. CRC Press, Florida.
- Forestry Commission and Natural England (2018). *Ancient Woodland, Ancient Trees and Veteran Trees: Protecting them from Development*. Available at: www.gov.uk/guidance/ancient-woodland-and-veteran-trees-protection-surveys-licences
- Gilman, E.F. (1990). Tree root growth and development. 1. Form, spread, depth and periodicity. *Journal of Environmental Horticulture*, Vol.8: 215–220.
- GMA (2000). *Geosynthetic Reinforcement of the Aggregate Base/Subbase Courses of Pavement Structures – GMA White Paper II*; by Berg, R. B., Christopher, B. R. and Perkins, S.; prepared for American Association of Highway and Transportation Officials Committee 4E, Geosynthetics Materials Association, Roseville.
- Hegde, A. (2017). Geocell reinforced foundation beds – past findings, present trends and future prospects: A state-of-the-art review. *Construction and Building Materials*, Vol. 154: 658–674.
- Jackson, R.B., Canadell, J., Ehleringer, J.R., Mooney, H.A., Sala, O.E. and Schulze, E.D. (1996). A global analysis of root distributions for terrestrial biomes. *Oecologia*, Vol. 108: 389–411.
- MHCLG (2019). *National Planning Policy Framework: Conserving and enhancing the natural environment*. Available at: www.gov.uk/government/publications/national-planning-policy-framework--2
- Patch, D. and Dobson, M. (1996). *Driveways Close to Trees*. Arboricultural Practice Note 1. Arboricultural Advisory and Information Service. Alice Holt Lodge, Surrey.
- Patch, D. and Holding, B. (2007). *Through the Trees to Development*. Arboricultural Practice Note 12. Arboricultural Advisory and Information Service. Alice Holt Lodge, Surrey.
- Perry, T.O. (1989). Tree roots: facts and fallacies. *Arnoldia*, Vol. 49, 1–21.
- Roberts, J., Jackson, N. and Smith, M. (2006). *Tree Roots in the Built Environment*. DCLG, TSO, London.
- Ruark, G.A., Madler, D.L. and Tattar, T.A. (1982). The influence of soil compaction and aeration on the root growth and vigour of trees – a literature review. Part 1. *Arboricultural Journal*, Vol. 6(4), 251–265.
- Saride, S., Sitharam, T.G. and Puppala, A.J. (2011). The function of basal geogrids in minimizing rutting of geocell reinforced subgrades. *ASCE Geofrontiers*, 4645–4652.
- Weltecke, K. and Gaertig, T. (2012). Influence of soil aeration on rooting and growth of the Beuys-trees in Kassel, Germany. *Urban Forestry & Urban Greening*. Vol. 11, 329–338.

Notes

Arboricultural Association

The Malthouse, Stroud Green, Standish, Stonehouse, Gloucestershire GL10 3DL

📞 **01242 522152** 📩 admin@trees.org.uk www.trees.org.uk

ISBN 978-0-900978-65-4

Printed September 2020

© Arboricultural Association 2020

