

ALPHA
STRUCTURAL ENGINEERS

STRUCTURAL REPORT

Project No	24685
Description	Ground Floor Extension & New Basement
Client Name	
Address	102 Green Lane Northwood Middlesex HA6 1AJ
Date	12.2024
Prepared By	Kemal Erturk

1. Introduction

- THIS CALCULATION IS BASED UPON DRAWINGS PREPARED BY OTHER. DIMENSIONS USED HAVE BEEN SCALED FORM SUCH DRAWINGS.
- ALL DIMENSIONS TO BE RECONFIRMED ON SITE BY BUILDER AND ANY DISCREPANCIES SHALL BE NOTIFIED TO THE SURVEYOR/ENGINEER.
- THE CONTRACTOR IS ULTIMATELY RESPONSIBLE FOR ENSURING THE STABILITY AND SAFETY OF THE STRUCTURAL OPERATIONS, AND THERE FOR SHALL UNDERTAKE EVERY EFFORT NOT TO CAUSE DISTRESS TO THE STRUCTURAL FABRIC OF THE BUILDING.
- CONTRACTOR TO TAKE ALL NECESSARY PRECAUTIONS TO PROP AND BRACE DURING CONSTRUCTION. HEALTH & SAFETY CONSULTANT SHOULD BE EMPLOYED.
- CONTRACTOR TO ISSUE METHOD STATEMENT (PRIOR TO COMMENCEMENT OF ALL WORK) FOR APPROVAL.
- IT IS THE CLIENT/ BUILDING OWNER RESPONSIBILITY TO VERIFY AND AGREE ADJOINING OWNER OF BUILDING, LINE OF BOUNDARY, OR OBTAIN PARTY WALL AGREEMENT.
- ANY DOUBLED-UP JOISTS (AROUND SKYLIGHT, STAIRCASE AND UNDER PARTITION, OR DESIGNED AS DOUBLED JOISTS) TO BE BOLTED TOGETHER BY M12 BOLTS EVERY 500MM -50MM ABOVE AND BELOW LONGITUDINAL CENTER
- IT IS THE RESPONSIBILITY OF THE CONTRACT TO INFORM THE DISTRICT SURVEYOR OF EACH STAGE OF WORKS AND TO ENSURE INSPECTIONS ARE MADE.
- ANY WORKS THAT COMMENCE BEFORE THE BUILDING REGULATION HAVE BEEN APPROVED IS THE RESPONSIBILITY OF THE CLIENT
- ALL TEMPORARY PROPPING AND SHORING OF NEIGHBORING BUILDING TO CONTRACTOR DETAILS AND APPROVAL OF LOCAL AUTHORITY
- IT IS THE CLIENT RESPONSIBILITY TO SEEK AN ENGINNER/ OR SURVEYOR CONSOLTATIONS FOR THE POSIBILTY OF REMOVING ANY STRUCTRAL ELEMENTS BEFORE THE DESIGN IS CARRIED OUT.
- ANY DOUBLED BEAMS (IF EXISTED) TO BE BOLTED TOGETHER WITH TUBE SPACERS OR SUITABLE CONNECTION AT MAX 1.5MC/S. USE M16 BOLTS
- STEEL BEAMS AND COLUMNS TO BE PROTECTED FROM FIRE. MINIMUM 1HOUR FIR RESISTANCE IS REQUIRED. 2 COATS OF INTUMESCENT PAINT OR DOUBLE LAYER OF PLASTER BOARD TO BE PROVIDED
- DIMENSION OF STRUCTURAL OPENING TO BE CONFIRMED BEFORE ANY ORDERS ARE PLACE FOR WINDOWS/DOORS
- ANY DEVIATION FROM WHAT IS SHOWN ON THIS CALCULATION AND RELEVENT DRAWINGS, CONTRACTOR TO CONSULT THE STRUCTURALENGINEER.
- THE ENGINEE IS NOT RESPONSIBLE FOR ANY EXISTING CRACK, DAMAGES OR STRESS THAT ARE NOT SHOWN IN THE DRAWINGS.

2. Loading

LOADING TABLE

DEAD LOADS

SUSPENDED TIMBER JOIST FLOOR	
TIMBER JOISTS	0.20 kN/m²
TIMBER BOARDS	0.15 kN/m²
PLASTERBOARD CEILING (2 LAYERS)	0.30 kN/m²
SERVICES	0.05 kN/m²
INSULATION	0.10 kN/m²
	0.80 kN/m²

SUSPENDED TIMBER JOIST FLAT ROOF	
TIMBER JOISTS	0.20 kN/m²
TIMBER BOARDS	0.15 kN/m²
PLASTERBOARD CEILING (2 LAYERS)	0.30 kN/m²
SERVICES	0.05 kN/m²
INSULATION	0.10 kN/m²
WATERPROOFING	0.50 kN/m²
	1.30 kN/m²

TIMBER PITCHED ROOF	
TIMBER RAFTERS	0.20 kN/m²
TIMBER BOARDS	0.15 kN/m²
PLASTERBOARD CEILING (2 LAYERS)	0.30 kN/m²
SERVICES	0.05 kN/m²
INSULATION	0.10 kN/m²
TILES, BATTENS AND FELT	0.70 kN/m²
	1.50 kN/m²

BRICK/BLOCK CAVITY MASONRY WALL	
100mm BLOCKWORK (1450kg/m³)	1.50 kN/m²
102mm BRICKWORK (2000kg/m)	2.20 kN/m²
PLASTERBOARD & SKIM (13mm ONE SIDE)	0.12 kN/m²
INSULATION & SERVICES	0.15 kN/m²
	3.97 kN/m²

TIMBER STUD WALL (INTERNAL)

TIMBER STUDS	0.15 kN/m²
PLASTERBOARD (2 LAYERS EACH FACE)	0.55 kN/m²
SERVICES	0.05 kN/m²
INSULATION	0.10 kN/m²
	0.85 kN/m²

TIMBER STUD WALL (EXTERNAL)

TIMBER STUDS	0.20 kN/m²
TIMBER BOARDS	0.15 kN/m²
PLASTERBOARD (2 LAYERS)	0.30 kN/m²
SERVICES	0.05 kN/m²
INSULATION	0.10 kN/m²
TILES, BATTENS AND FELT	0.70 kN/m²
	1.50 kN/m²

100mm BRICK MASONRY WALL

100mm BRICKWORK (2000kg/m)	2.20 kN/m²
PLASTERBOARD & SKIM (13mm ONE SIDE)	0.12 kN/m²
INSULATION & SERVICES	0.15 kN/m²
	2.47 kN/m²

215mm BRICK MASONRY WALL

215mm BRICKWORK (2000kg/m)	4.30 kN/m²
PLASTERBOARD & SKIM (13mm ONE SIDE)	0.12 kN/m²
INSULATION & SERVICES	0.15 kN/m²
	4.57 kN/m²

LIVE LOADS

OCCUPANCY - DOMESTIC/RESIDENTIAL	1.50 kN/m²
SNOW LOAD ON FLAT ROOF	0.60 kN/m²
SNOW LOAD ON PITCHED ROOF	0.60 kN/m²

ALPHA
STRUCTURAL ENGINEERS

ALPHA Structural Engineers

Structural Calculation Report

Site address: 102

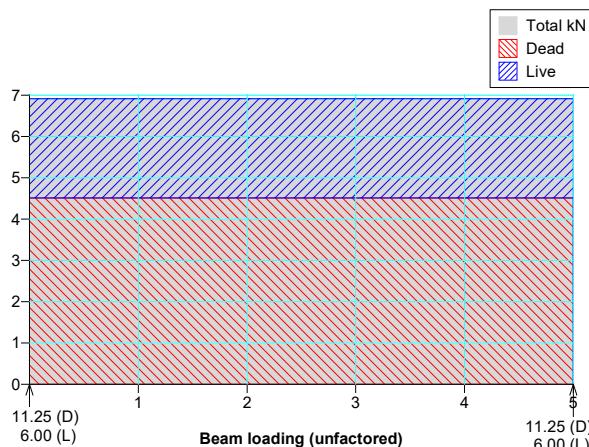
Job number:
Made by: KE
Page: 1

Beam: B1

	Load name	Loading w1	Start x1	Loading w2	End x2	R1comp	R2comp	Defl.
O G	o.w.	0.5	0		L	1.25	1.25	4.1
U G	ROOF DEAD	4*1	0		L	10.00	10.00	32.6
U QA	ROOF LIVE	4*0.6	0		L	6.00	6.00	19.5
			Total load (unfactored): 34.50 kN			17.25	17.25	56.2
			Dead/Permanent (unfactored): 22.50 kN			11.25	11.25	36.6
			Live/Variable (unfactored): 12.00 kN			6.00	6.00	19.5
			Factored (6.10): 48.38 kN			24.19	24.19	

Load types: O:Beam o.w.; U:UDL; Load positions: m. from R1

Load durations: G: Dead; Qx: Imposed; QA: Residential



Maximum B.M. = 30.23 kNm (6.10) at 2.50 m. from R1

Maximum S.F. = 24.2 kN (6.10) at R1

Mid-span deflections: Dead: $36.6 \times 10^8 / EI$ (E in N/mm 2 , I in cm 4)

Live: $19.5 \times 10^8 / EI$

Total: $56.2 \times 10^8 / EI$

Beam calculation to BS EN1993.1.1 using S355 steel

SECTION SIZE : 203 x 203 x 46 UKC S355

D=203.2 mm B=203.6 mm t=7.2 mm T=11.0 mm $I_y=4,570 \text{ cm}^4$ $i_z=5.13 \text{ cm}$ $W_{pl,y}=497 \text{ cm}^3$ $W_{el,y}=450 \text{ cm}^3$

Classification: Flange: $c/t = 88.0/11.0 = 8.00 \leq 10\epsilon$ (8.14): Class 2, compact

EC3 Table 5.2 Web: $c/t = 160.8/7.2 = 22.3 \leq 72\epsilon$ (58.6): Class 1, plastic

Shear

Design shear force, $V_{Ed} = 24.19 \text{ kN}$

Shear area, $A_v = A - 2bt_f + (t_w + 2r)t_f = 58.7 \times 100 - 2 \times 204 \times 11.0 + (7.20 + 2 \times 10.2) \times 11.0 = 1,694 \text{ mm}^2$ [EC3 6.2.6 (3)]

Shear resistance, $V_{pl,Rd} = A_v(f_y/\sqrt{3})/\gamma_{M0} = 1,694 \times (355/\sqrt{3})/(1.0 \times 1000) = 347 \text{ kN} (\geq 24.19) \text{ OK}$ [EC3 6.2.6]

Shear buckling: $h_w/t_w = 181.2/7.2 = 25.17 \leq 72\epsilon$ (58.58): check not required [EC3 6.2.6(6)]

Bending

Moment resistance

Design moment, $M_{Ed} = 30.2 \text{ kNm}$

Moment resistance, $M_{c,y,Rd} = f_y W_{pl,y} = 355 \times 497/1000 = 176 \text{ kNm}$ OK

Lateral-torsional buckling check

Beam is laterally restrained at supports only

Support conditions R1/R2: Compression flange laterally restrained. Nominal torsional restraint. Both flanges free to rotate on plan (1.0L)

Design buckling resistance moment, $M_{b,Rd} = \chi_{LT,mod} \cdot M_{c,Rd}$

$\chi_{LT,mod} = \chi_{LT}/f$ (but $\leq 1/\lambda_{LT}^2$ and ≤ 1.0) [Eq.6.58]

$f = 1 - 0.5(1-k_c)[1 - 2(\lambda_{LT} - 0.8)^2]$ 6.3.2.3(2) $k_c = 1/\sqrt{C_1}$ [NA2.18]

Use buckling curve b: $\alpha = 0.340$ [EC3 Tables 6.3/6.4 NA 2.17]

$\chi_{LT} = 1/[\phi_{LT} + \sqrt{(\Phi_{LT})^2 - \beta\lambda_{LT}^2}]$ [EC3 (6.57)]

ALPHA
STRUCTURAL ENGINEERS

ALPHA Structural Engineers

Structural Calculation Report

Site address: 102

Job number:
Made by: KE
Page: 2

$$\Phi_{LT} = 0.5[1 + \alpha_{LT}(\bar{\lambda}_{LT} - \bar{\lambda}_{LT,0}) + \beta\bar{\lambda}_{LT}^2]$$

$$\bar{\lambda}_{LT,0} = 0.4 \quad \beta = 0.75 \quad [\text{EC3 UK NA 2.17}]$$

$$\bar{\lambda}_{LT} = \sqrt{(f_y \cdot W_{pl,y} / M_{cr})}$$

$$M_{cr} = C_1(\pi^2 EI_z / L_e^2) / (I_w / L_e + L_e^2 GI_T / \pi^2 EI_z) \quad [\text{SN003: k and k_w taken as 1.0, conservative}]$$

$$W_y = 497.0 \text{ cm}^3 \quad I_w = 0.143 \text{ dm}^6 \quad I_T = 22.2 \text{ cm}^4 \quad I_z = 1,550 \text{ cm}^4 \quad G = 81,000 \text{ N/mm}^2$$

Segment	L_e	M_{Max}	C_1	k_c	M_{cr}	$\bar{\lambda}_z$	$\bar{\lambda}_{LT}$	ϕ_{LT}	χ_{LT}	$\chi_{LT, \text{mod}}$	$M_{c,Rd}$	$M_{b,Rd}$
0.00-5.00	5.00	30.2	1.00d	1.00	195.6	1.276	0.950	0.932	0.730	0.730	176.4	128.8 OK

C1 derivation: d: taken as 1.0 (conservative)

Combined bending and shear

$V_{Ed} \leq 0.5 V_{c,Rd}$: Check for bending/shear interaction not required [EC3 6.2.8(2)]

Web buckling and crushing have not been checked

Deflection

LL deflection = $19.5 \times 10^8 / (210,000 \times 4,570) = 2.0 \text{ mm (L/2457) OK}$

TL deflection = $56.2 \times 10^8 / (210,000 \times 4,570) = 5.9 \text{ mm (L/855)}$

ALPHA
STRUCTURAL ENGINEERS

ALPHA Structural Engineers

Structural Calculation Report

Site address: 102

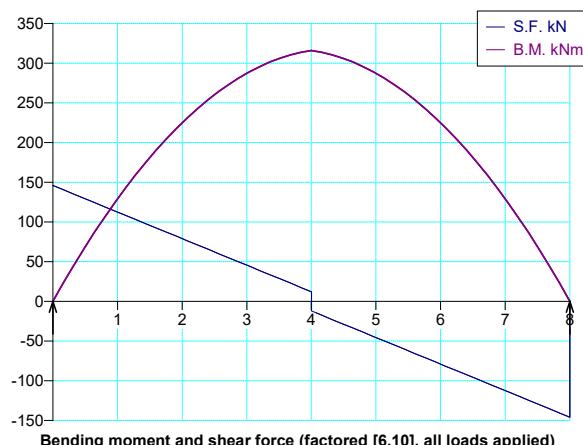
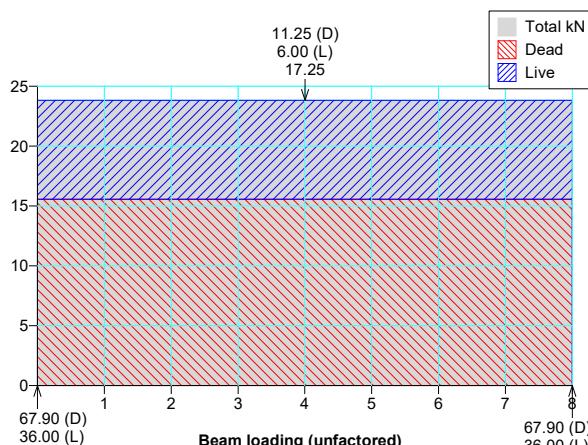
Job number:
Made by: KE
Page: 3

Beam: B2

							Span: 8.0 m.
	Load name	Loading w1	Start x1	Loading w2	End x2	R1comp	R2comp
O G	o.w.	1.3	0		L	5.20	5.20
U G	FLOOR DEAD	2.75*0.5*2	0		L	11.00	11.00
U QA	FLOOR LIVE	2.75*1.5*2	0		L	33.00	33.00
U G	WALL	4.8*2.4	0		L	46.08	46.08
P G	Beam: B1 [3.8 m.]: R1	11.25	4			5.63	5.63
P QA	Beam: B1 [3.8 m.]: R1	6.00	4			3.00	3.00
Total load (unfactored): 208 kN				103.90	103.90	1454	
Dead/Permanent (unfactored): 136 kN				67.90	67.90	950	
Live/Variable (unfactored): 72 kN				36.00	36.00	504	
Factored (6.10): 291 kN				145.67	145.67		

Load types: O:Beam o.w.; U:UDL; P:Point load; Load positions: m. from R1

Load durations: G: Dead; Qx: Imposed; QA: Residential



Maximum B.M. = 316 kNm (6.10) at 4.00 m. from R1

Maximum S.F. = 146 kN (6.10) at R1

Mid-span deflections: Dead: $950 \times 10^8 / EI$ (E in N/mm², I in cm⁴)

Live: $504 \times 10^8 / EI$

Total: $1,454 \times 10^8 / EI$

Beam calculation to BS EN1993.1.1 using S355 steel

SECTION SIZE : 356 x 368 x 129 UKC S355

D=355.6 mm B=368.6 mm t=10.4 mm T=17.5 mm $I_y=40,200 \text{ cm}^4$ $i_z=9.43 \text{ cm}$ $W_{pl,y}=2,480 \text{ cm}^3$ $W_{el,y}=2,260 \text{ cm}^3$

Classification: Flange: $c/t = 163.9/17.5 = 9.37 \leq 14\epsilon$ (11.55): Class 3, semi-compact

EC3 Table 5.2 Web: $c/t = 290.2/10.4 = 27.9 \leq 72\epsilon$ (59.4): Class 1, plastic

Shear

Design shear force, $V_{Ed} = 146 \text{ kN}$

Shear area, $A_v = A - 2bt_f + (t_w + 2r)t_f = 164 \times 100 - 2 \times 369 \times 17.5 + (10.4 + 2 \times 15.2) \times 17.5 = 4,213 \text{ mm}^2$ [EC3 6.2.6 (3)]

Shear resistance, $V_{pl,Rd} = A_v \cdot (f_y / \sqrt{3}) / \gamma_{M0} = 4,213 \times (345 / \sqrt{3}) / (1.0 \times 1000) = 839 \text{ kN} (\geq 146) \text{ OK}$ [EC3 6.2.6]

Shear buckling: $h_w / t_w = 320.6 / 10.4 = 30.83 \leq 72\epsilon$ (58.58): check not required [EC3 6.2.6(6)]

Bending

Moment resistance

Design moment, $M_{Ed} = 316 \text{ kNm}$

Moment resistance, $M_{c,y,Rd} = f_y \cdot W_{el,y} = 345 \times 2,260 / 1000 = 780 \text{ kNm}$ OK

Lateral-torsional buckling check

Beam is laterally restrained at supports only

Support conditions R1/R2: Compression flange laterally restrained. Nominal torsional restraint. Both flanges free to rotate on plan (1.0L)

Design buckling resistance moment, $M_{b,Rd} = \chi_{LT,mod} \cdot M_{c,Rd}$

$\chi_{LT,mod} = \chi_{LT} / f$ (but $\leq 1 / \lambda_{LT}^2$ and ≤ 1.0) [Eq.6.58]

ALPHA
STRUCTURAL ENGINEERS

ALPHA Structural Engineers

Structural Calculation Report

Site address: 102

Job number:
Made by: KE
Page: 4

$$f = 1 - 0.5(1-k_c)[1 - 2(\bar{\lambda}_{LT} - 0.8)^2] \quad 6.3.2.3(2) \quad k_c = 1/\sqrt{C_1} \quad [\text{NA2.18}]$$

Use buckling curve b: $\alpha = 0.340$ [EC3 Tables 6.3/6.4 NA 2.17]

$$\chi_{LT} = 1/[\phi_{LT} + \sqrt{(\Phi_{LT}^2 - \beta \bar{\lambda}_{LT}^2)}] \quad [\text{EC3 (6.57)}]$$

$$\Phi_{LT} = 0.5[1 + \alpha_{LT}(\bar{\lambda}_{LT} - \bar{\lambda}_{LT,0}) + \beta \bar{\lambda}_{LT}^2]$$

$$\bar{\lambda}_{LT,0} = 0.4 \quad \beta = 0.75 \quad [\text{EC3 UK NA 2.17}]$$

$$\bar{\lambda}_{LT} = \sqrt{(f_y W_{pl,y} / M_{cr})}$$

$$M_{cr} = C_1(\pi^2 EI_z / L_e^2) / (I_w / I_z + L_e^2 G I_T / \pi^2 E I_z) \quad [\text{SN003: k and k_w taken as 1.0, conservative}]$$

$$W_y = 2,260 \text{ cm}^3 \quad I_w = 4.18 \text{ dm}^6 \quad I_T = 153 \text{ cm}^4 \quad I_z = 14,600 \text{ cm}^4 \quad G = 81,000 \text{ N/mm}^2$$

Segment	L_e	M_{Max}	C_1	k_c	M_{cr}	$\bar{\lambda}_z$	$\bar{\lambda}_{LT}$	ϕ_{LT}	χ_{LT}	$\chi_{LT, \text{mod}}$	$M_{c,Rd}$	$M_{b,Rd}$
0.00-8.00	8.00	315.5	1.00d	1.00	1106.3	1.095	0.840	0.839	0.795	0.795	779.7	619.9 OK

C1 derivation: d: taken as 1.0 (conservative)

Combined bending and shear

$V_{Ed} \leq 0.5 V_{c,Rd}$: Check for bending/shear interaction not required [EC3 6.2.8(2)]

Web buckling and crushing have not been checked

Deflection

LL deflection = $504 \times 10^8 / (210,000 \times 40,200) = 6.0 \text{ mm}$ (L/1340) OK

TL deflection = $1454 \times 10^8 / (210,000 \times 40,200) = 17.2 \text{ mm}$ (L/464)

ALPHA
STRUCTURAL ENGINEERS

ALPHA Structural Engineers

Structural Calculation Report

Site address: 102

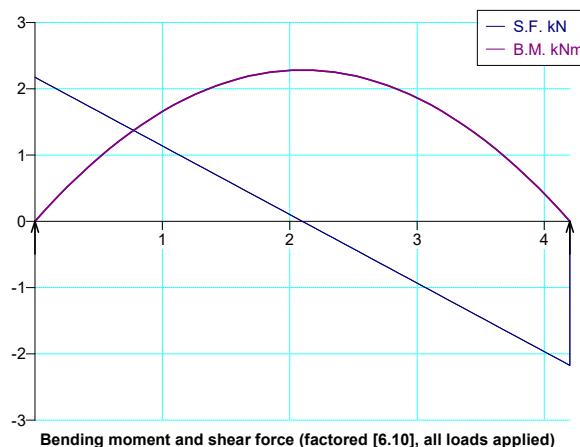
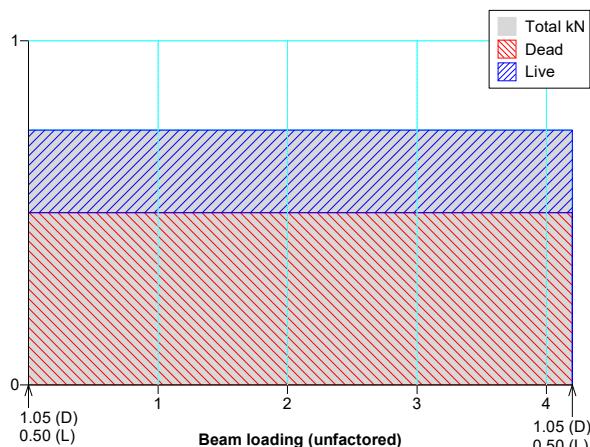
Job number:
Made by: KE
Page: 5

Beam: FLAT ROOF JOISTS

	Load name	Loading w1	Start x1	Loading w2	End x2	R1comp	R2comp	Defl.
O G	o.w.	0.1	0		L	0.21	0.21	0.41
U G	ROOF DEAD	1*0.4	0		L	0.84	0.84	1.62
U QA	ROOF LIVE	0.6*0.4	0		L	0.50	0.50	0.97
			Total load (unfactored): 3.11 kN			1.55	1.55	3.00
			Dead/Permanent (unfactored): 2.10 kN			1.05	1.05	2.03
			Live/Variable (unfactored): 1.01 kN			0.50	0.50	0.97
			Factored (6.10): 4.35 kN			2.17	2.17	

Load types: O:Beam o.w.; U:UDL; Load positions: m. from R1

Load durations: G: Dead; Qx: Imposed; QA: Residential



Maximum B.M. = 2.28 kNm (6.10) at 2.10 m. from R1

Maximum S.F. = 2.17 kN (6.10) at R1

Mid-span deflections: Dead: $2.03 \times 10^8 / EI$ (E in N/mm 2 , I in cm 4)

Live: $0.97 \times 10^8 / EI$

Total: $3.00 \times 10^8 / EI$

Timber beam calculation to BS EN1995-1-1 using C24 timber

Use 50 x 200 C24 4.2 kg/m approx

$W_{el,y} = 333.3 \text{ cm}^3$ $I_y = 3,333 \text{ cm}^4$

Timber grade: C24

Grade bending strength, $f_{m,k} = 24.0 \text{ N/mm}^2$ [BS EN 338: 2009 Table 1]

Grade shear strength, $f_{v,k} = 4.0 \text{ N/mm}^2$ [BS EN 338: 2009 Table 1]

$E_{0.05} = 7,400 \text{ N/mm}^2$; $E_{0,mean} = 11,000 \text{ N/mm}^2$ [BS EN 338: 2009 Table 1]

Material partial factor, $\gamma_m = 1.3$ [EC5 UK Table NA.3]

Loading modification factor, $k_{mod} = 0.6$ (Service class 1; Live load duration: Permanent) [EC5 Tables 2.2/3.1]

Load sharing factor, $k_{sys} = 1.0$

Deflection modification factor, $k_{def} = 0.60$ (Service class 1, solid timber/glulam/LVL) [EC5 Table 3.2]

Bending

Height factor, $k_h = 1.0$ [EC5 3.2(3)]

Design bending strength, $f_{m,y,d} = f_{m,k} \cdot k_{mod} \cdot k_{sys} / \gamma_m = 24.0 \times 0.60 \times 1.00 \times 1.0 / 1.30 = 11.08 \text{ N/mm}^2$

Design bending stress, $\sigma_{m,y,d} = 2.28 \times 1000 / 333 = 6.85 \text{ N/mm}^2$ OK

Bending resistance = $11.08 \times 333 / 1000 = 3.69 \text{ kNm}$

Shear

Effective width for shear, $b_{ef} = k_{cr} \cdot b = 0.67 \times 50 = 33.5 \text{ mm}$. [A1:2008 (6.13a)]

Design shear strength, $f_{v,d} = f_{v,k} \cdot k_{mod} \cdot k_{sys} / \gamma_m = 4.00 \times 0.60 \times 1.0 / 1.30 = 1.85 \text{ N/mm}^2$

Design shear stress, $\sigma_{v,y,d} = 2.17 \times 1000 \times (3/2) / (33.5 \times 200) = 0.49 \text{ N/mm}^2$ OK

Shear resistance = $1.85 \times 33.5 \times 200 \times (2/3) / 1000 = 8.25 \text{ kN}$

ALPHA
STRUCTURAL ENGINEERS

ALPHA Structural Engineers

Structural Calculation Report

Site address: 102

Job number:
Made by: KE
Page: 6

Deflection

Final deflection limit = $0.003L = 12.60 \text{ mm}$

Final deflection, $u_{\text{fin}} = \sum u_{\text{inst}}(1 + \psi_2 \cdot k_{\text{def}})$ [EC2 Eq.2.29/2.30]

Instantaneous mid-span shear deflection, $u_{\text{inst,v}} = 1.2M_{\text{unf}}/(G_{\text{mean}}A)$ where ($G = E/16$)

$$u_{\text{inst,v}} = 1.2 \times 1.63 \times 10^6 / ((11,000/16) \times 50 \times 200) = 0.28 \text{ mm}$$

Final shear deflection is assumed to increase in proportion to total bending deflection

Mid-span deflections:	$x 10^8/EI$	Inst. mm	k_{def}	ψ_2	Final mm	
G:	2.03	5.53	0.60	1.00	8.84	
QA:	0.97	2.65	0.60	0.30	3.13	
Shear deflection:		0.28			0.42	
Total mm.		<u>8.46</u>			<u>12.39</u>	OK

ALPHA
STRUCTURAL ENGINEERS

ALPHA Structural Engineers

Structural Calculation Report

Site address: 102

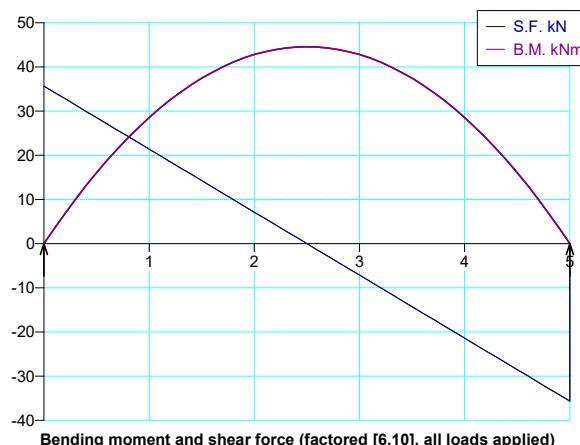
Job number:
Made by: KE
Page: 7

Beam: B3

	Load name	Loading w1	Start x1	Loading w2	End x2	R1comp	R2comp	Defl.
O G	o.w.	0.5	0		L	1.25	1.25	4.1
U G	FLOOR DEAD	4*0.6	0		L	6.00	6.00	19.5
U QA	FLOOR LIVE	4*1.5	0		L	15.00	15.00	48.8
U G	PARTITIONS	1	0		L	2.50	2.50	8.1
Total load (unfactored): 49.5 kN						24.75	24.75	80.6
Dead/Permanent (unfactored): 19.5 kN						9.75	9.75	31.7
Live/Variable (unfactored): 30.0 kN						15.00	15.00	48.8
Factored (6.10): 71.3 kN						35.66	35.66	

Load types: O:Beam o.w.; U:UDL; Load positions: m. from R1

Load durations: G: Dead; Qx: Imposed; QA: Residential


Maximum B.M. = 44.58 kNm (6.10) at 2.50 m. from R1

Maximum S.F. = 35.7 kN (6.10) at R1

Mid-span deflections: Dead: $31.7 \times 10^8 / EI$ (E in N/mm 2 , I in cm 4)

Live: $48.8 \times 10^8 / EI$

Total: $80.6 \times 10^8 / EI$

Beam calculation to BS EN1993.1.1 using S355 steel

SECTION SIZE : 203 x 203 x 46 UKC S355

D=203.2 mm B=203.6 mm t=7.2 mm T=11.0 mm $I_y=4,570 \text{ cm}^4$ $i_z=5.13 \text{ cm}$ $W_{pl,y}=497 \text{ cm}^3$ $W_{el,y}=450 \text{ cm}^3$

Classification: Flange: $c/t = 88.0/11.0 = 8.00 \leq 10\epsilon$ (8.14): Class 2, compact

EC3 Table 5.2 Web: $c/t = 160.8/7.2 = 22.3 \leq 72\epsilon$ (58.6): Class 1, plastic

Shear

Design shear force, $V_{Ed} = 35.7 \text{ kN}$

Shear area, $A_v = A - 2bt_f + (t_w + 2r)t_f = 58.7 \times 100 - 2 \times 204 \times 11.0 + (7.20 + 2 \times 10.2) \times 11.0 = 1,694 \text{ mm}^2$ [EC3 6.2.6 (3)]

Shear resistance, $V_{pl,Rd} = A_v \cdot (f_y / \sqrt{3}) / \gamma_{M0} = 1,694 \times (355 / \sqrt{3}) / (1.0 \times 1000) = 347 \text{ kN} (\geq 35.7) \text{ OK}$ [EC3 6.2.6]

Shear buckling: $h_w / t_w = 181.2 / 7.2 = 25.17 \leq 72\epsilon$ (58.58): check not required [EC3 6.2.6(6)]

Bending

Moment resistance

Design moment, $M_{Ed} = 44.6 \text{ kNm}$

Moment resistance, $M_{c,y,Rd} = f_y \cdot W_{pl,y} = 355 \times 497 / 1000 = 176 \text{ kNm}$ OK

Lateral-torsional buckling check

Beam is laterally restrained at supports only

Support conditions R1/R2: Compression flange laterally restrained. Nominal torsional restraint. Both flanges free to rotate on plan (1.0L)

Design buckling resistance moment, $M_{b,Rd} = \chi_{LT,mod} \cdot M_{c,Rd}$

$\chi_{LT,mod} = \chi_{LT} / f$ (but $\leq 1 / \bar{\lambda}_{LT}^2$ and ≤ 1.0) [Eq.6.58]

$f = 1 - 0.5(1 - k_c)[1 - 2(\bar{\lambda}_{LT} - 0.8)^2]$ 6.3.2.3(2) $k_c = 1 / \sqrt{C_1}$ [NA2.18]

Use buckling curve b: $\alpha = 0.340$ [EC3 Tables 6.3/6.4 NA 2.17]

ALPHA
STRUCTURAL ENGINEERS

ALPHA Structural Engineers

Structural Calculation Report

Site address: 102

Job number:
Made by: KE
Page: 8

$$\chi_{LT} = 1/[\phi_{LT} + \sqrt{(\Phi_{LT}^2 - \beta \bar{\lambda}_{LT}^2)}] \quad [\text{EC3 (6.57)}]$$

$$\Phi_{LT} = 0.5[1 + \alpha_{LT}(\bar{\lambda}_{LT} - \bar{\lambda}_{LT,0}) + \beta \bar{\lambda}_{LT}^2]$$

$$\bar{\lambda}_{LT,0} = 0.4 \quad \beta = 0.75 \quad [\text{EC3 UK NA 2.17}]$$

$$\bar{\lambda}_{LT} = \sqrt{(f_y \cdot W_{pl,y} / M_{cr})}$$

$$M_{cr} = C_1(\pi^2 EI_z / L_e^2) / (I_w / I_z + L_e^2 G I_T / \pi^2 EI_z) \quad [\text{SN003: k and k_w taken as 1.0, conservative}]$$

$$W_y = 497.0 \text{ cm}^3 \quad I_w = 0.143 \text{ dm}^6 \quad I_T = 22.2 \text{ cm}^4 \quad I_z = 1,550 \text{ cm}^4 \quad G = 81,000 \text{ N/mm}^2$$

Segment	L_e	M_{Max}	C_1	k_c	M_{cr}	$\bar{\lambda}_z$	$\bar{\lambda}_{LT}$	ϕ_{LT}	χ_{LT}	$\chi_{LT, \text{mod}}$	$M_{c,Rd}$	$M_{b,Rd}$
0.00-5.00	5.00	44.6	1.00d	1.00	195.6	1.276	0.950	0.932	0.730	0.730	176.4	128.8 OK

C1 derivation: d: taken as 1.0 (conservative)

Combined bending and shear

$V_{Ed} \leq 0.5 V_{c,Rd}$: Check for bending/shear interaction not required [EC3 6.2.8(2)]

Web buckling and crushing have not been checked

Deflection

LL deflection = $48.8 \times 10^8 / (210,000 \times 4,570) = 5.1 \text{ mm}$ (L/983) OK

TL deflection = $80.6 \times 10^8 / (210,000 \times 4,570) = 8.4 \text{ mm}$ (L/596)

ALPHA
STRUCTURAL ENGINEERS

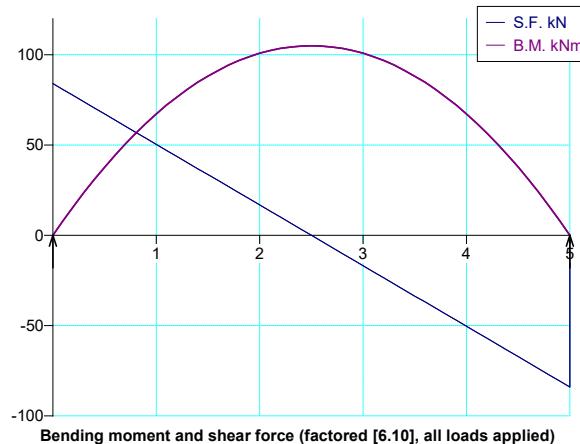
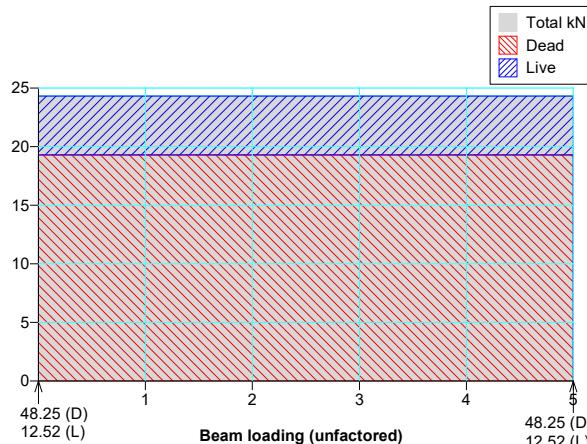
ALPHA Structural Engineers

Structural Calculation Report

Site address: 102

Job number:
Made by: KE
Page: 9

Beam: B4



								Span: 5.0 m.
	Load name	Loading w1	Start x1	Loading w2	End x2	R1comp	R2comp	Defl.
O G	o.w.	0.75	0		L	1.88	1.88	6
U G	ROOF DEAD	1*1.2	0		L	3.00	3.00	10
U QA	ROOF LIVE	0.6*1.2	0		L	1.80	1.80	6
U G	FLOOR DEAD	0.5*2.1	0		L	2.63	2.63	9
U QA	FLOOR LIVE	1.5*2.1	0		L	7.88	7.88	26
U G	WALL	3*4.8	0		L	36.00	36.00	117
U G	EXTENSION ROOF	1*1.9	0		L	4.75	4.75	15
U QA	EXTENSION ROOF LIVE	0.6*1.9	0		L	2.85	2.85	9
Total load (unfactored): 121.5 kN						60.77	60.77	198
Dead/Permanent (unfactored): 96.5 kN						48.25	48.25	157
Live/Variable (unfactored): 25.0 kN						12.52	12.52	41
Factored (6.10): 167.9 kN						83.93	83.93	

Load types: O:Beam o.w.; U:UDL; Load positions: m. from R1
Load durations: G: Dead; Qx: Imposed; QA: Residential

Maximum B.M. = 104.9 kNm (6.10) at 2.50 m. from R1

Maximum S.F. = 83.9 kN (6.10) at R1

Mid-span deflections: Dead: $157 \times 10^8 / EI$ (E in N/mm 2 , I in cm 4)
Live: $41 \times 10^8 / EI$
Total: $198 \times 10^8 / EI$

Beam calculation to BS EN1993.1.1 using S355 steel

SECTION SIZE : 203 x 203 x 71 UKC S355

D=215.8 mm B=206.4 mm t=10.0 mm T=17.3 mm $I_y=7,620 \text{ cm}^4$ $i_z=5.30 \text{ cm}$ $W_{pl,y}=799 \text{ cm}^3$ $W_{el,y}=706 \text{ cm}^3$

Classification: Flange: $c/t = 88.0/17.3 = 5.09 \leq 9\epsilon$ (7.43): Class 1, plastic

EC3 Table 5.2 Web: $c/t = 160.8/10.0 = 16.1 \leq 72\epsilon$ (59.4): Class 1, plastic

Shear

Design shear force, $V_{Ed} = 83.9 \text{ kN}$

Shear area, $A_v = A - 2bt_f + (t_w + 2r)t_f = 90.4 \times 100 - 2 \times 206 \times 17.3 + (10.0 + 2 \times 10.2) \times 17.3 = 2,424 \text{ mm}^2$ [EC3 6.2.6 (3)]

Shear resistance, $V_{pl,Rd} = A_v \cdot (f_y \cdot \sqrt{3}) / \gamma_{M0} = 2,424 \times (345 \cdot \sqrt{3}) / (1.0 \times 1000) = 483 \text{ kN} (\geq 83.9) \text{ OK}$ [EC3 6.2.6]

Shear buckling: $h_w/t_w = 181.2/10.0 = 18.12 \leq 72\epsilon$ (58.58): check not required [EC3 6.2.6(6)]

Bending

Moment resistance

Design moment, $M_{Ed} = 105 \text{ kNm}$

Moment resistance, $M_{c,y,Rd} = f_y \cdot W_{pl,y} = 345 \times 799/1000 = 276 \text{ kNm} \text{ OK}$

Lateral-torsional buckling check

Beam is laterally restrained at supports only

Support conditions R1/R2: Compression flange laterally restrained. Nominal torsional restraint. Both flanges free to rotate on plan (1.0L)

Design buckling resistance moment, $M_{b,Rd} = \chi_{LT,mod} \cdot M_{c,Rd}$

ALPHA
STRUCTURAL ENGINEERS

ALPHA Structural Engineers

Structural Calculation Report

Site address: 102

Job number:
Made by: KE
Page: 10

$$\chi_{LT,mod} = \chi_{LT}/f \text{ (but } \leq 1/\bar{\lambda}_{LT}^2 \text{ and } \leq 1.0) \text{ [Eq.6.58]}$$

$$f = 1 - 0.5(1-k_c)[1 - 2(\bar{\lambda}_{LT} - 0.8)^2] \text{ 6.3.2.3(2) } k_c = 1/\sqrt{C_1} \text{ [NA2.18]}$$

Use buckling curve b: $\alpha = 0.340$ [EC3 Tables 6.3/6.4 NA 2.17]

$$\bar{\lambda}_{LT} = 1/[\phi_{LT} + \sqrt{(\Phi_{LT}^2 - \beta \bar{\lambda}_{LT}^2)}] \text{ [EC3 (6.57)]}$$

$$\Phi_{LT} = 0.5[1 + \alpha_{LT}(\bar{\lambda}_{LT} - \bar{\lambda}_{LT,0}) + \beta \bar{\lambda}_{LT}^2]$$

$$\bar{\lambda}_{LT,0} = 0.4 \quad \beta = 0.75 \text{ [EC3 UK NA 2.17]}$$

$$\bar{\lambda}_{LT} = \sqrt{(f_y \cdot W_{pl,y} / M_{cr})}$$

$$M_{cr} = C_1(\pi^2 EI_z / L_e^2) / (I_w / I_z + L_e^2 G I_T / \pi^2 EI_z) \text{ [SN003: k and k_w taken as 1.0, conservative]}$$

$$W_y = 799.0 \text{ cm}^3 \quad I_w = 0.250 \text{ dm}^6 \quad I_T = 80.2 \text{ cm}^4 \quad I_z = 2,540 \text{ cm}^4 \quad G = 81,000 \text{ N/mm}^2$$

Segment	L_e	M_{Max}	C_1	k_c	M_{cr}	$\bar{\lambda}_z$	$\bar{\lambda}_{LT}$	ϕ_{LT}	χ_{LT}	$\chi_{LT,mod}$	$M_{c,Rd}$	$M_{b,Rd}$
0.00-5.00	5.00	104.9	1.00d	1.00	424.2	1.217	0.806	0.813	0.814	0.814	275.7	224.3 OK

C1 derivation: d: taken as 1.0 (conservative)

Combined bending and shear

$V_{Ed} \leq 0.5 V_{c,Rd}$: Check for bending/shear interaction not required [EC3 6.2.8(2)]

Web buckling and crushing have not been checked

Deflection

LL deflection = $41 \times 1e8 / (210,000 \times 7,620) = 2.5 \text{ mm (L/1962) OK}$

TL deflection = $198 \times 1e8 / (210,000 \times 7,620) = 12.4 \text{ mm (L/404)}$

ALPHA
STRUCTURAL ENGINEERS

ALPHA Structural Engineers

Structural Calculation Report

Site address: 102

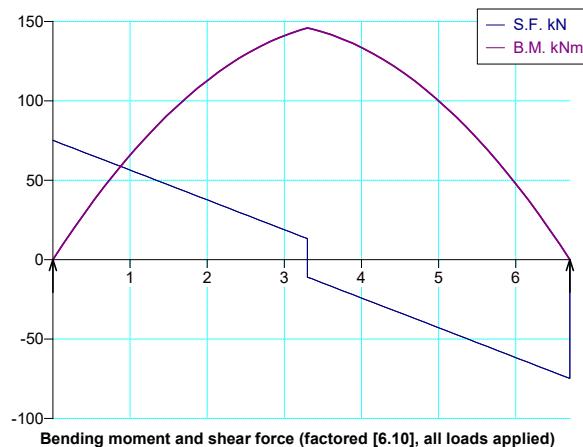
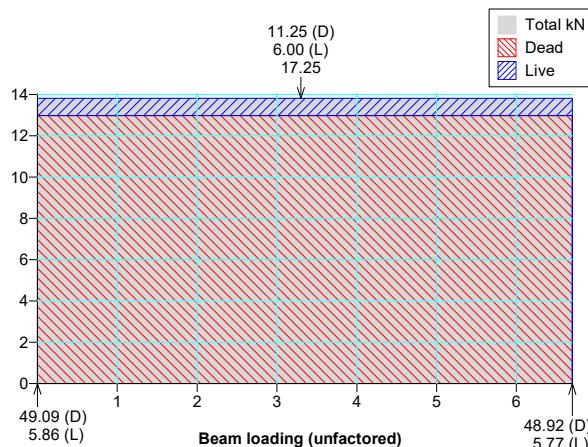
Job number:
Made by: KE
Page: 11

Beam: B5

								Span: 6.7 m.
	Load name	Loading w1	Start x1	Loading w2	End x2	R1comp	R2comp	Defl.
O G	o.w.	1.05	0		L	3.52	3.52	28
U G	ROOF DEAD	1*1.4	0		L	4.69	4.69	37
U QA	ROOF LIVE	0.6*1.4	0		L	2.81	2.81	22
U G	WALL	3*3.5	0		L	35.17	35.17	276
P G	Beam: B1 [5.0 m.]: R1	11.25	3.3			5.71	5.54	70
P QA	Beam: B1 [5.0 m.]: R1	6.00	3.3			3.04	2.96	38
Total load (unfactored): 109.6 kN						54.95	54.69	470
Dead/Permanent (unfactored): 98.0 kN						49.09	48.92	410
Live/Variable (unfactored): 11.6 kN						5.86	5.77	60
Factored (6.10): 149.8 kN						75.06	74.70	

Load types: O:Beam o.w.; U:UDL; P:Point load; Load positions: m. from R1

Load durations: G: Dead; Qx: Imposed; QA: Residential



Maximum B.M. = 145.7 kNm (6.10) at 3.30 m. from R1

Maximum S.F. = 75 kN (6.10) at R1

Mid-span deflections: Dead: $410 \times 10^8 / EI$ (E in N/mm 2 , I in cm 4)

Live: $60 \times 10^8 / EI$

Total: $470 \times 10^8 / EI$

Beam calculation to BS EN1993.1.1 using S355 steel

SECTION SIZE : 254 x 254 x 107 UKC S355

D=266.7 mm B=258.8 mm t=12.8 mm T=20.5 mm $I_y=17,500 \text{ cm}^4$ $i_z=6.59 \text{ cm}$ $W_{pl,y}=1,480 \text{ cm}^3$ $W_{el,y}=1,310 \text{ cm}^3$

Classification: Flange: $c/t = 110.3/20.5 = 5.38 \leq 9\epsilon$ (7.43): Class 1, plastic

EC3 Table 5.2 Web: $c/t = 200.3/12.8 = 15.6 \leq 72\epsilon$ (59.4): Class 1, plastic

Shear

Design shear force, $V_{Ed} = 75.1 \text{ kN}$

Shear area, $A_v = A - 2bt_f + (t_w + 2r)t_f = 136 \times 100 - 2 \times 259 \times 20.5 + (12.8 + 2 \times 12.7) \times 20.5 = 3,772 \text{ mm}^2$ [EC3 6.2.6 (3)]

Shear resistance, $V_{pl,Rd} = A_v \cdot (f_y / \sqrt{3}) / \gamma_{M0} = 3,772 \times (345 / \sqrt{3}) / (1.0 \times 1000) = 751 \text{ kN} (\geq 75.1) \text{ OK}$ [EC3 6.2.6]

Shear buckling: $h_w/t_w = 225.7/12.8 = 17.63 \leq 72\epsilon$ (58.58): check not required [EC3 6.2.6(6)]

Bending

Moment resistance

Design moment, $M_{Ed} = 146 \text{ kNm}$

Moment resistance, $M_{c,y,Rd} = f_y \cdot W_{pl,y} = 345 \times 1,480 / 1000 = 511 \text{ kNm}$ OK

Lateral-torsional buckling check

Beam is laterally restrained at supports only

Support conditions R1/R2: Compression flange laterally restrained. Nominal torsional restraint. Both flanges free to rotate on plan (1.0L)

Design buckling resistance moment, $M_{b,Rd} = \chi_{LT,mod} \cdot M_{c,Rd}$

$\chi_{LT,mod} = \chi_{LT}/f$ (but $\leq 1/\lambda_{LT}^2$ and ≤ 1.0) [Eq.6.58]

ALPHA
STRUCTURAL ENGINEERS

ALPHA Structural Engineers

Structural Calculation Report

Site address: 102

Job number:
Made by: KE
Page: 12

$$f = 1 - 0.5(1-k_c)[1 - 2(\bar{\lambda}_{LT} - 0.8)^2] \quad 6.3.2.3(2) \quad k_c = 1/\sqrt{C_1} \quad [\text{NA2.18}]$$

Use buckling curve b: $\alpha = 0.340$ [EC3 Tables 6.3/6.4 NA 2.17]

$$\chi_{LT} = 1/[\phi_{LT} + \sqrt{(\Phi_{LT}^2 - \beta \bar{\lambda}_{LT}^2)}] \quad [\text{EC3 (6.57)}]$$

$$\Phi_{LT} = 0.5[1 + \alpha_{LT}(\bar{\lambda}_{LT} - \bar{\lambda}_{LT,0}) + \beta \bar{\lambda}_{LT}^2]$$

$$\bar{\lambda}_{LT,0} = 0.4 \quad \beta = 0.75 \quad [\text{EC3 UK NA 2.17}]$$

$$\bar{\lambda}_{LT} = \sqrt{(f_y W_{pl,y}/M_{cr})}$$

$$M_{cr} = C_1(\pi^2 EI_z/L_e^2) / (I_w/I_z + L_e^2 GI_T/\pi^2 EI_z) \quad [\text{SN003: k and k_w taken as 1.0, conservative}]$$

$$W_y = 1,480 \text{ cm}^3 \quad I_w = 0.898 \text{ dm}^6 \quad I_T = 172 \text{ cm}^4 \quad I_z = 5,930 \text{ cm}^4 \quad G = 81,000 \text{ N/mm}^2$$

Segment	L_e	M_{Max}	C_1	k_c	M_{cr}	$\bar{\lambda}_z$	$\bar{\lambda}_{LT}$	ϕ_{LT}	χ_{LT}	$\chi_{LT, \text{mod}}$	$M_{c,Rd}$	$M_{b,Rd}$
0.00-6.70	6.70	145.1	1.00d	1.00	702.5	1.312	0.853	0.849	0.788	0.788	510.6	402.2 OK

C1 derivation: d: taken as 1.0 (conservative)

Combined bending and shear

$V_{Ed} \leq 0.5 V_{c,Rd}$: Check for bending/shear interaction not required [EC3 6.2.8(2)]

Web buckling and crushing have not been checked

Deflection

LL deflection = $60 \times 10^8 / (210,000 \times 17,500) = 1.6 \text{ mm}$ (L/4130) OK

TL deflection = $470 \times 10^8 / (210,000 \times 17,500) = 12.8 \text{ mm}$ (L/524)

ALPHA
STRUCTURAL ENGINEERS

ALPHA Structural Engineers

Structural Calculation Report

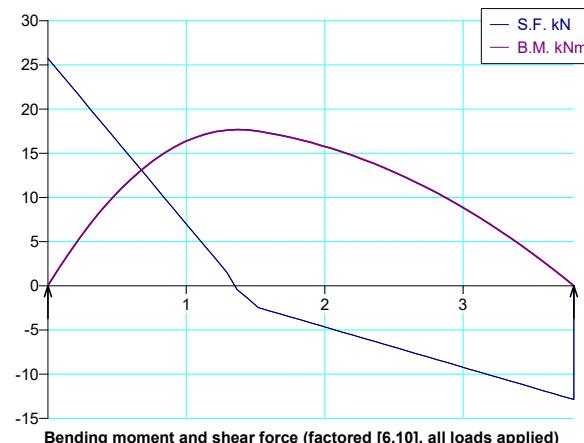
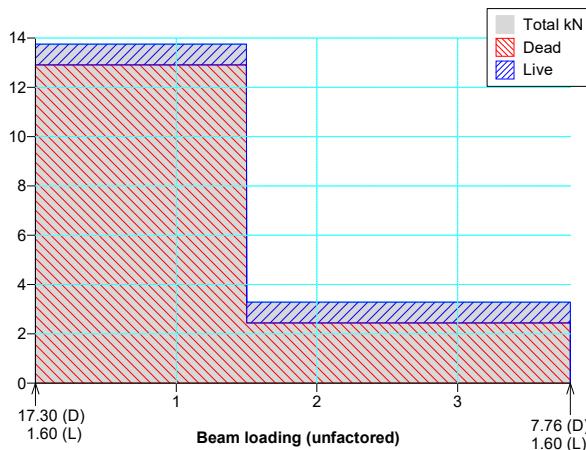
Site address: 102

Job number:
Made by: KE
Page: 13

Beam: B6

	Load name	Loading w1	Start x1	Loading w2	End x2	R1comp	R2comp	Defl.
O G	o.w.	1.05	0		L	1.99	1.99	2.85
U G	ROOF DEAD	1*1.4	0		L	2.66	2.66	3.80
U QA	ROOF LIVE	0.6*1.4	0		L	1.60	1.60	2.28
R G	WALL	3*3.5	0		1.5	12.64	3.11	9.55
Total load (unfactored): 28.3 kN						18.89	9.36	18.49
Dead/Permanent (unfactored): 25.1 kN						17.30	7.76	16.21
Live/Variable (unfactored): 3.2 kN						1.60	1.60	2.28
Factored (6.10): 38.6 kN						25.74	12.87	

Load types: O:Beam o.w.; U:UDL; R:Part UDL; Load positions: m. from R1
Load durations: G: Dead; Qx: Imposed; QA: Residential



Maximum B.M. = 17.68 kNm (6.10) at 1.36 m. from R1

Maximum S.F. = 25.74 kN (6.10) at R1

Mid-span deflections: Dead: $16.21 \times 10^8 / EI$ (E in N/mm², I in cm⁴)

Live: $2.28 \times 10^8 / EI$

Total: $18.49 \times 10^8 / EI$

Beam calculation to BS EN1993.1.1 using S355 steel

SECTION SIZE : 203 x 203 x 46 UKC S355

D=203.2 mm B=203.6 mm t=7.2 mm T=11.0 mm $I_y=4,570 \text{ cm}^4$ $i_z=5.13 \text{ cm}$ $W_{pl,y}=497 \text{ cm}^3$ $W_{el,y}=450 \text{ cm}^3$

Classification: Flange: $c/t = 88.0/11.0 = 8.00 \leq 10\epsilon$ (8.14): Class 2, compact

EC3 Table 5.2 Web: $c/t = 160.8/7.2 = 22.3 \leq 72\epsilon$ (58.6): Class 1, plastic

Shear

Design shear force, $V_{Ed} = 25.7 \text{ kN}$

Shear area, $A_v = A - 2bt_f + (t_w + 2r)t_f = 58.7 \times 100 - 2 \times 204 \times 11.0 + (7.20 + 2 \times 10.2) \times 11.0 = 1,694 \text{ mm}^2$ [EC3 6.2.6 (3)]

Shear resistance, $V_{pl,Rd} = A_v \cdot (f_y / \sqrt{3}) / \gamma_{M0} = 1,694 \times (355 / \sqrt{3}) / (1.0 \times 1000) = 347 \text{ kN} (\geq 25.7) \text{ OK}$ [EC3 6.2.6]

Shear buckling: $h_w / t_w = 181.2 / 7.2 = 25.17 \leq 72\epsilon$ (58.58): check not required [EC3 6.2.6(6)]

Bending

Moment resistance

Design moment, $M_{Ed} = 17.68 \text{ kNm}$

Moment resistance, $M_{c,y,Rd} = f_y \cdot W_{pl,y} = 355 \times 497 / 1000 = 176 \text{ kNm}$ OK

Lateral-torsional buckling check

Beam is laterally restrained at supports only

Support conditions R1/R2: Compression flange laterally restrained. Nominal torsional restraint. Both flanges free to rotate on plan (1.0L)

Design buckling resistance moment, $M_{b,Rd} = \chi_{LT,mod} \cdot M_{c,Rd}$

$\chi_{LT,mod} = \chi_{LT} / f$ (but $\leq 1 / \bar{\lambda}_{LT}^2$ and ≤ 1.0) [Eq.6.58]

$f = 1 - 0.5(1 - k_c)[1 - 2(\bar{\lambda}_{LT} - 0.8)^2]$ 6.3.2.3(2) $k_c = 1 / \sqrt{C_1}$ [NA2.18]

Use buckling curve b: $\alpha = 0.340$ [EC3 Tables 6.3/6.4 NA 2.17]

ALPHA
STRUCTURAL ENGINEERS

ALPHA Structural Engineers

Structural Calculation Report

Site address: 102

Job number:
Made by: KE
Page: 14

$$\chi_{LT} = 1/[\phi_{LT} + \sqrt{(\Phi_{LT}^2 - \beta \bar{\lambda}_{LT}^2)}] \quad [\text{EC3 (6.57)}]$$

$$\Phi_{LT} = 0.5[1 + \alpha_{LT}(\bar{\lambda}_{LT} - \bar{\lambda}_{LT,0}) + \beta \bar{\lambda}_{LT}^2]$$

$$\bar{\lambda}_{LT,0} = 0.4 \quad \beta = 0.75 \quad [\text{EC3 UK NA 2.17}]$$

$$\bar{\lambda}_{LT} = \sqrt{(f_y \cdot W_{pl,y} / M_{cr})}$$

$$M_{cr} = C_1(\pi^2 EI_z / L_e^2) / (I_w / I_z + L_e^2 G I_T / \pi^2 EI_z) \quad [\text{SN003: k and k_w taken as 1.0, conservative}]$$

$$W_y = 497.0 \text{ cm}^3 \quad I_w = 0.143 \text{ dm}^6 \quad I_T = 22.2 \text{ cm}^4 \quad I_z = 1,550 \text{ cm}^4 \quad G = 81,000 \text{ N/mm}^2$$

Segment	L_e	M_{Max}	C_1	k_c	M_{cr}	$\bar{\lambda}_z$	$\bar{\lambda}_{LT}$	ϕ_{LT}	χ_{LT}	$\chi_{LT, \text{mod}}$	$M_{c,Rd}$	$M_{b,Rd}$
0.00-3.80	3.80	17.7	1.00d	1.00	292.4	0.969	0.777	0.790	0.830	0.830	176.4	146.4 OK

C1 derivation: d: taken as 1.0 (conservative)

Combined bending and shear

$V_{Ed} \leq 0.5 V_{c,Rd}$: Check for bending/shear interaction not required [EC3 6.2.8(2)]

Web buckling and crushing have not been checked

Deflection

LL deflection = $2.28 \times 10^8 / (210,000 \times 4,570) = 0.2 \text{ mm OK}$

TL deflection = $18.49 \times 10^8 / (210,000 \times 4,570) = 1.9 \text{ mm (L/1972)}$

ALPHA
STRUCTURAL ENGINEERS

ALPHA Structural Engineers

Structural Calculation Report

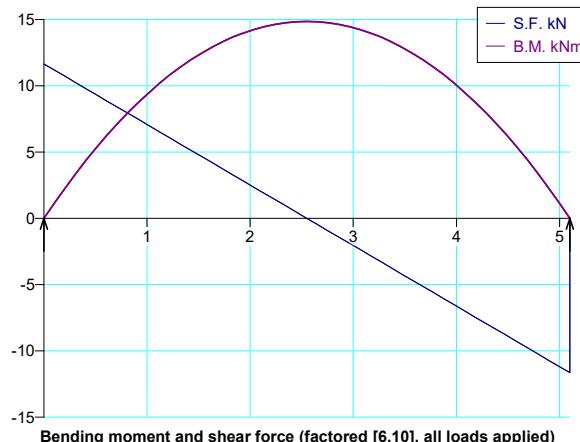
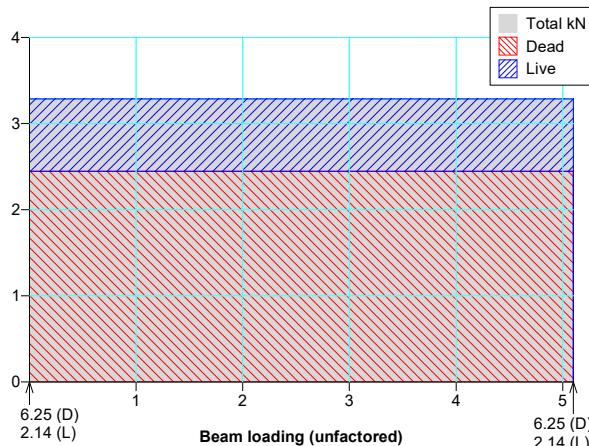
Site address: 102

Job number:
Made by: KE
Page: 15

Beam: B7

	Load name	Loading w1	Start x1	Loading w2	End x2	R1comp	R2comp	Defl.
O G	o.w.	1.05	0		L	2.68	2.68	9.2
U G	ROOF DEAD	1*1.4	0		L	3.57	3.57	12.3
U QA	ROOF LIVE	0.6*1.4	0		L	2.14	2.14	7.4
			Total load (unfactored): 16.78 kN			8.39	8.39	29.0
			Dead/Permanent (unfactored): 12.49 kN			6.25	6.25	21.6
			Live/Variable (unfactored): 4.28 kN			2.14	2.14	7.4
			Factored (6.10): 23.29 kN			11.65	11.65	

Load types: O:Beam o.w.; U:UDL; Load positions: m. from R1
Load durations: G: Dead; Qx: Imposed; QA: Residential



Maximum B.M. = 14.85 kNm (6.10) at 2.55 m. from R1

Maximum S.F. = 11.65 kN (6.10) at R1

Mid-span deflections: Dead: $21.6 \times 10^8 / EI$ (E in N/mm², I in cm⁴)

Live: $7.4 \times 10^8 / EI$

Total: $29.0 \times 10^8 / EI$

Beam calculation to BS EN1993.1.1 using S355 steel

SECTION SIZE : 152 x 152 x 37 UKC S355

D=161.8 mm B=154.4 mm t=8.0 mm T=11.5 mm $I_y=2,210 \text{ cm}^4$ $i_z=3.87 \text{ cm}$ $W_{pl,y}=309 \text{ cm}^3$ $W_{el,y}=273 \text{ cm}^3$

Classification: Flange: $c/t = 65.6/11.5 = 5.70 \leq 9\epsilon$ (7.32): Class 1, plastic

EC3 Table 5.2 Web: $c/t = 123.6/8.0 = 15.4 \leq 72\epsilon$ (58.6): Class 1, plastic

Shear

Design shear force, $V_{Ed} = 11.65 \text{ kN}$

Shear area, $A_v = A - 2bt_f + (t_w + 2r)t_f = 47.1 \times 100 - 2 \times 154 \times 11.5 + (8.00 + 2 \times 7.60) \times 11.5 = 1,426 \text{ mm}^2$ [EC3 6.2.6 (3)]

Shear resistance, $V_{pl,Rd} = A_v(f_y/\sqrt{3})/\gamma_{M0} = 1,426 \times (355/\sqrt{3})/(1.0 \times 1000) = 292 \text{ kN} (\geq 11.65) \text{ OK}$ [EC3 6.2.6]

Shear buckling: $h_w/t_w = 138.8/8.0 = 17.35 \leq 72\epsilon$ (58.58): check not required [EC3 6.2.6(6)]

Bending

Moment resistance

Design moment, $M_{Ed} = 14.85 \text{ kNm}$

Moment resistance, $M_{c,y,Rd} = f_y W_{pl,y} = 355 \times 309/1000 = 110 \text{ kNm} \text{ OK}$

Lateral-torsional buckling check

Beam is laterally restrained at supports only

Support conditions R1/R2: Compression flange laterally restrained. Nominal torsional restraint. Both flanges free to rotate on plan (1.0L)

Design buckling resistance moment, $M_{b,Rd} = \chi_{LT,mod} M_{c,Rd}$

$\chi_{LT,mod} = \chi_{LT}/f$ (but $\leq 1/\lambda_{LT}^2$ and ≤ 1.0) [Eq.6.58]

$f = 1 - 0.5(1-k_c)[1 - 2(\lambda_{LT} - 0.8)^2]$ 6.3.2.3(2) $k_c = 1/\sqrt{C_1}$ [NA2.18]

Use buckling curve b: $\alpha = 0.340$ [EC3 Tables 6.3/6.4 NA 2.17]

$\chi_{LT} = 1/[\phi_{LT} + \sqrt{(\Phi_{LT})^2 - \beta \lambda_{LT}^2}]$ [EC3 (6.57)]

ALPHA
STRUCTURAL ENGINEERS

ALPHA Structural Engineers

Structural Calculation Report

Site address: 102

Job number:
Made by: KE
Page: 16

$$\Phi_{LT} = 0.5[1 + \alpha_{LT}(\bar{\lambda}_{LT} - \bar{\lambda}_{LT,0}) + \beta\bar{\lambda}_{LT}^2]$$

$$\bar{\lambda}_{LT,0} = 0.4 \quad \beta = 0.75 \quad [\text{EC3 UK NA 2.17}]$$

$$\bar{\lambda}_{LT} = \sqrt{(f_y \cdot W_{pl,y} / M_{cr})}$$

$$M_{cr} = C_1(\pi^2 EI_z / L_e^2) / (I_w / L_e + L_e^2 GI_z / \pi^2 EI_z) \quad [\text{SN003: k and k_w taken as 1.0, conservative}]$$

$$W_y = 309.0 \text{ cm}^3 \quad I_w = 0.040 \text{ dm}^6 \quad I_T = 19.2 \text{ cm}^4 \quad I_z = 706 \text{ cm}^4 \quad G = 81,000 \text{ N/mm}^2$$

Segment	L_e	M_{Max}	C_1	k_c	M_{cr}	$\bar{\lambda}_z$	$\bar{\lambda}_{LT}$	ϕ_{LT}	χ_{LT}	$\chi_{LT, \text{mod}}$	$M_{c,Rd}$	$M_{b,Rd}$
0.00-5.10	5.10	14.9	1.00d	1.00	102.5	1.725	1.034	1.009	0.679	0.679	109.7	74.4 OK

C1 derivation: d: taken as 1.0 (conservative)

Combined bending and shear

$V_{Ed} \leq 0.5 V_{c,Rd}$: Check for bending/shear interaction not required [EC3 6.2.8(2)]

Web buckling and crushing have not been checked

Deflection

LL deflection = $7.4 \times 10^8 / (210,000 \times 2,210) = 1.6 \text{ mm}$ (L/3199) OK

TL deflection = $29.0 \times 10^8 / (210,000 \times 2,210) = 6.2 \text{ mm}$ (L/817)

ALPHA
STRUCTURAL ENGINEERS

ALPHA Structural Engineers

Structural Calculation Report

Site address: 102

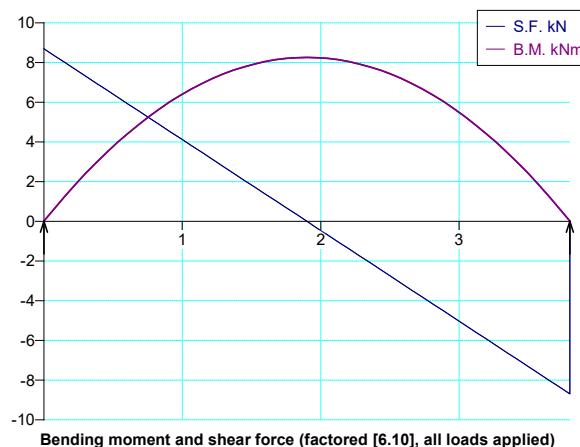
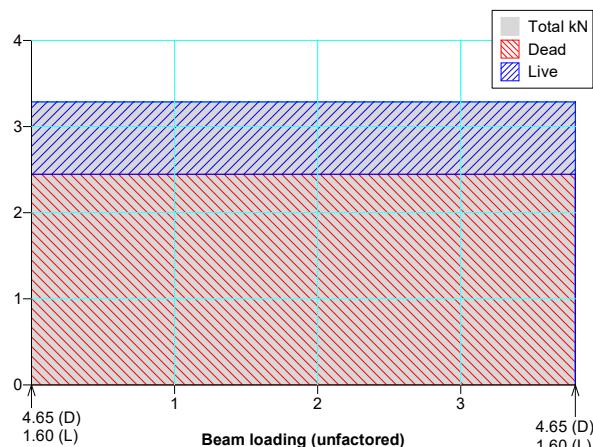
Job number:
Made by: KE
Page: 17

Beam: B8

	Load name	Loading w1	Start x1	Loading w2	End x2	R1comp	R2comp	Defl.
O G	o.w.	1.05	0		L	1.99	1.99	2.85
U G	ROOF DEAD	1*1.4	0		L	2.66	2.66	3.80
U QA	ROOF LIVE	0.6*1.4	0		L	1.60	1.60	2.28
			Total load (unfactored): 12.50 kN			6.25	6.25	8.93
Dead/Permanent (unfactored):			9.31 kN			4.65	4.65	6.65
Live/Variable (unfactored):			3.19 kN			1.60	1.60	2.28
Factored (6.10):			17.36 kN			8.68	8.68	

Load types: O:Beam o.w.; U:UDL; Load positions: m. from R1

Load durations: G: Dead; Qx: Imposed; QA: Residential



Maximum B.M. = 8.24 kNm (6.10) at 1.90 m. from R1

Maximum S.F. = 8.68 kN (6.10) at R1

Mid-span deflections: Dead: $6.65 \times 10^8 / EI$ (E in N/mm 2 , I in cm 4)

Live: $2.28 \times 10^8 / EI$

Total: $8.93 \times 10^8 / EI$

Beam calculation to BS EN1993.1.1 using S355 steel

SECTION SIZE : 152 x 152 x 30 UKC S355

D=157.6 mm B=152.9 mm t=6.5 mm T=9.4 mm $I_y=1,750 \text{ cm}^4$ $i_z=3.83 \text{ cm}$ $W_{pl,y}=248 \text{ cm}^3$ $W_{el,y}=222 \text{ cm}^3$

Classification: Flange: $c/t = 65.6/9.4 = 6.98 \leq 9\epsilon$ (7.32): Class 1, plastic

EC3 Table 5.2 Web: $c/t = 123.6/6.5 = 19.0 \leq 72\epsilon$ (58.6): Class 1, plastic

Shear

Design shear force, $V_{Ed} = 8.68 \text{ kN}$

Shear area, $A_v = A - 2bt_f + (t_w + 2r)t_f = 38.3 \times 100 - 2 \times 153 \times 9.40 + (6.50 + 2 \times 7.60) \times 9.40 = 1,159 \text{ mm}^2$ [EC3 6.2.6 (3)]

Shear resistance, $V_{pl,Rd} = A_v(f_y/\sqrt{3})/\gamma_{M0} = 1,159 \times (355/\sqrt{3})/(1.0 \times 1000) = 238 \text{ kN} (\geq 8.68) \text{ OK}$ [EC3 6.2.6]

Shear buckling: $h_w/t_w = 138.8/6.5 = 21.35 \leq 72\epsilon$ (58.58): check not required [EC3 6.2.6(6)]

Bending

Moment resistance

Design moment, $M_{Ed} = 8.24 \text{ kNm}$

Moment resistance, $M_{c,y,Rd} = f_y W_{pl,y} = 355 \times 248/1000 = 88.0 \text{ kNm}$ OK

Lateral-torsional buckling check

Beam is laterally restrained at supports only

Support conditions R1/R2: Compression flange laterally restrained. Nominal torsional restraint. Both flanges free to rotate on plan (1.0L)

Design buckling resistance moment, $M_{b,Rd} = \chi_{LT,mod} \cdot M_{c,Rd}$

$\chi_{LT,mod} = \chi_{LT}/f$ (but $\leq 1/\lambda_{LT}^2$ and ≤ 1.0) [Eq.6.58]

$f = 1 - 0.5(1-k_c)[1 - 2(\lambda_{LT} - 0.8)^2]$ 6.3.2.3(2) $k_c = 1/\sqrt{C_1}$ [NA2.18]

Use buckling curve b: $\alpha = 0.340$ [EC3 Tables 6.3/6.4 NA 2.17]

$\chi_{LT} = 1/[\phi_{LT} + \sqrt{(\Phi_{LT}^2 - \beta\lambda_{LT}^2)}]$ [EC3 (6.57)]

ALPHA
STRUCTURAL ENGINEERS

ALPHA Structural Engineers

Structural Calculation Report

Site address: 102

Job number:
Made by: KE
Page: 18

$$\Phi_{LT} = 0.5[1 + \alpha_{LT}(\bar{\lambda}_{LT} - \bar{\lambda}_{LT,0}) + \beta\bar{\lambda}_{LT}^2]$$

$$\bar{\lambda}_{LT,0} = 0.4 \quad \beta = 0.75 \quad [\text{EC3 UK NA 2.17}]$$

$$\bar{\lambda}_{LT} = \sqrt{(f_y \cdot W_{pl,y} / M_{cr})}$$

$$M_{cr} = C_1(\pi^2 EI_z / L_e^2) / (I_w / L_e + L_e^2 GI_T / \pi^2 EI_z) \quad [\text{SN003: k and k_w taken as 1.0, conservative}]$$

$$W_y = 248.0 \text{ cm}^3 \quad I_w = 0.031 \text{ dm}^6 \quad I_T = 10.5 \text{ cm}^4 \quad I_z = 560 \text{ cm}^4 \quad G = 81,000 \text{ N/mm}^2$$

Segment	L_e	M_{Max}	C_1	k_c	M_{cr}	$\bar{\lambda}_z$	$\bar{\lambda}_{LT}$	ϕ_{LT}	χ_{LT}	$\chi_{LT, \text{mod}}$	$M_{c,Rd}$	$M_{b,Rd}$
0.00-3.80	3.80	8.2	1.00d	1.00	101.9	1.298	0.929	0.914	0.742	0.742	88.0	65.4 OK

C1 derivation: d: taken as 1.0 (conservative)

Combined bending and shear

$V_{Ed} \leq 0.5 V_{c,Rd}$: Check for bending/shear interaction not required [EC3 6.2.8(2)]

Web buckling and crushing have not been checked

Deflection

LL deflection = $2.28 \times 10^8 / (210,000 \times 1,750) = 0.6 \text{ mm}$ (L/6125) OK

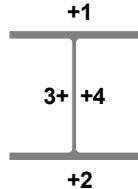
TL deflection = $8.93 \times 10^8 / (210,000 \times 1,750) = 2.4 \text{ mm}$ (L/1564)

ALPHA
STRUCTURAL ENGINEERS

ALPHA Structural Engineers

Structural Calculation Report

Site address: 102


Job number:
Made by: KE
Page: 19

Column calculation to EN1993-1-1 using S355 steel

Location: SC1-SC2

Length: 5.7 m.

PosDur	Load	kN	Fact	Offset	M _{yy}	M _{zz}
2 G	B/F Beam: B2 [8.0 m.]: R1	68	92	100	-20.81	0.00
2 QA	B/F Beam: B2 [8.0 m.]: R1	36	54	100	-12.26	0.00
Total load kN		104	146		-33.07	0.00

Load offsets are measured in mm. from faces of member; moments in kNm

Load durations: G: Dead; Qx: Imposed; QA: Residential

SECTION SIZE : 254 x 254 x 73 UKC S355

Section properties: B = 254.6mm D = 254.1mm T = 14.2mm t = 8.6mm A_g = 93.1cm²
i_y = 11.1cm i_z = 6.48cm W_{pl,y} = 992cm³ W_{el,y} = 898cm³

Design strength, f_y = 355 N/mm² ε = 0.814

Classification: Flange: c/t = 110.3/14.2 = 7.77 <= 10ε (8.14): Class 2, compact

[Table 5.2] Web: c/t = 200.3/8.6 = 23.3 <= 396ε/(13α - 1) = 45.7 : Class 1, plastic

α = 0.5(1 + N_{Ed}/(f_y.c.t_w)) = 0.5 x (1 + 146 x 1000/(355 x 200 x 8.60)) = 0.619 [SCI P362 Table 5.1 note 1]

Major axis: L_{Ey} = 1.0L = 5.70 m. Slenderness, λ_y = 5.70 x 100/11.1 = 51.4

Minor axis: L_{Ez} = 1.0L = 5.70 m. Slenderness, λ_z = 5.70 x 100/6.48 = 88.0

This calculation is based on NCCI SN048b - only valid if bending moment diagrams about each axis are linear and the member is restrained at each floor level but unrestrained between floors. Only Class 1, 2 or 3 hot rolled I or H sections or rectangular hollow sections can be considered

Compression

Design axial load, N_{Ed} = 146 kN

Design compression resistance, N_{c,Rd} = A.f_y/γ_{M0} = 93.1 x 100 x 355/(1.0 x 1000) = 3,305 kN OK

Calculate flexural buckling resistances, N_{b,Rd}

λ₁ = 93.9ε = 93.9 x 0.814 = 76.4

Buckling about y-y (major) axis

$$\bar{\lambda}_y = \lambda_y/\lambda_1 = 51.4/76.4 = 0.672 \text{ [EC3 6.3.1.3]}$$

Use curve b: α = 0.340 φ = 0.5(1 + α(λ_y - 0.2) + λ_y²) = 0.81 [EC3 (6.49)]

Flexural buckling reduction factor, χ_y = 1/(φ + √(φ² - λ_y²)) = 0.80 [EC3 (6.49)]

Design buckling resistance, N_{b,y,Rd} = χ_yA.f_y/γ_{M1} = 0.80 x 93.1 x 100 x 355/(1.0 x 1000) = 2,641 kN OK [EC3 (6.47)]

Buckling about z-z (minor) axis

$$\bar{\lambda}_z = \lambda_z/\lambda_1 = 88.0/76.4 = 1.15 \text{ [EC3 6.3.1.3]}$$

Use curve c: α = 0.490 φ = 0.5(1 + α(λ_z - 0.2) + λ_z²) = 1.40 [EC3 Table 6.2]

Flexural buckling reduction factor, χ_z = 1/(φ + √(φ² - λ_z²)) = 0.458 [EC3 (6.49)]

Design buckling resistance, N_{b,z,Rd} = χ_zA.f_y/γ_{M1} = 0.458 x 93.1 x 100 x 355/(1.0 x 1000) = 1,512 kN OK [EC3 (6.47)]

Bending about y-y (major) axis:

Design moment, M_{y,Ed} = 33.1 kNm

Moment resistance, M_{c,y,Rd} = f_y.W_{pl,y} = 355 x 992/1000 = 352 kNm OK

Calculate buckling resistance moment

Design buckling resistance moment, M_{b,y,Rd} = χ_{LT,mod}.M_{c,y,Rd}

$$M_{cr} = C_1(\pi^2 EI_z/L_{eff}^2)[\sqrt{(I_w/I_z + L_{eff}^2 GI_z/\pi^2 EI_z)}] = 453 \text{ [NCCI SN003 2(1)]}$$

$$C_1 = 1.0 \text{ (conservative)} \bar{\lambda}_{LT} = \sqrt{(M_{c,y,Rd}/M_{cr})} = 0.88$$

$$\bar{\lambda}_{LT,0} = 0.4 \quad \beta = 0.75 \text{ [EC3 UK NA 2.17]}$$

Use buckling curve b: α = 0.340 [EC3 Tables 6.3/6.4 NA2.17]

$$\bar{\phi}_{LT} = 0.5[1 + \alpha_{LT}(\bar{\lambda}_{LT} - \bar{\lambda}_{LT,0}) + \beta\bar{\lambda}_{LT}^2] = 0.87$$

$$\chi_{LT} = 1/[\phi_{LT} + \sqrt{(\phi_{LT}^2 - \beta\bar{\lambda}_{LT}^2)}] = 0.77 \text{ [EC3 (6.56)]}$$

$$M_{b,y,Rd} = \chi_{LT}.M_{c,y,Rd}/\gamma_M = 0.77 \times 352/1.0 = 271 \text{ kNm}$$

Bending about z-z (minor) axis: N/A

ALPHA
STRUCTURAL ENGINEERS

ALPHA Structural Engineers

Structural Calculation Report

Site address: 102

Job number:
Made by: KE
Page: 20

Summary:

$$N_{Ed}/N_{min,b,Rd} = 146/1512 = 0.096 \quad [1]$$

$$M_{y,Ed}/M_{bs} = 33.1/271 = 0.122 \quad [2]$$

$$M_{z,Ed}/M_{z,cb,Rd} = 0.000 \quad [3] \times 1.5 \quad [\text{NCCI SN048}]$$

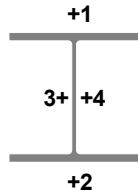
Sum of stress ratios [1] + [2] + 1.5 x [3] = **0.218** **OK** subject to all SN048b criteria being complied with

ALPHA
STRUCTURAL ENGINEERS

ALPHA Structural Engineers

Structural Calculation Report

Site address: 102


Job number:
Made by: KE
Page: 21

Column calculation to EN1993-1-1 using S355 steel

Location: SC3

Length: 3.0 m.

Pos	Dur	Load	kN	Fact	Offset	M _{yy}	M _{zz}
2	G	B/F Beam: B3 [5.0 m.] : R1	9.8	13.2	100	-2.32	0.00
2	QA	B/F Beam: B3 [5.0 m.] : R1	15.0	22.5	100	-3.96	0.00
Total load kN			24.8	35.7		-6.28	0.00

Load offsets are measured in mm. from faces of member; moments in kNm

Load durations: G: Dead; Qx: Imposed; QA: Residential

SECTION SIZE : 152 x 152 x 23 UKC S355

Section properties: B = 152.2mm D = 152.4mm T = 6.8mm t = 5.8mm A_g = 29.2cm²
i_y = 6.54cm i_z = 3.70cm W_{pl,y} = 182cm³ W_{el,y} = 164cm³

Design strength, f_y = 355 N/mm² ε = 0.814

Classification: Flange: c/t = 65.6/6.8 = 9.65 <= 14ε (11.39): Class 3, semi-compact

[Table 5.2] Web: c/t = 123.6/5.8 = 21.3 <= 396ε/(13α - 1) = 50.3 : Class 1, plastic

α = 0.5(1 + N_{Ed}/(f_y.c.t_w)) = 0.5 x (1 + 35.7 x 1000/(355 x 124 x 5.80)) = 0.570 [SCI P362 Table 5.1 note 1]

Major axis: L_{Ey} = 1.0L = 3.00 m. Slenderness, λ_y = 3.00 x 100/6.54 = 45.9

Minor axis: L_{Ez} = 1.0L = 3.00 m. Slenderness, λ_z = 3.00 x 100/3.70 = 81.1

This calculation is based on NCCI SN048b - only valid if bending moment diagrams about each axis are linear and the member is restrained at each floor level but unrestrained between floors. Only Class 1, 2 or 3 hot rolled I or H sections or rectangular hollow sections can be considered

Compression

Design axial load, N_{Ed} = 35.7 kN

Design compression resistance, N_{c,Rd} = A.f_y/γ_{M0} = 29.2 x 100 x 355/(1.0 x 1000) = 1,037 kN OK

Calculate flexural buckling resistances, N_{b,Rd}

λ₁ = 93.9ε = 93.9 x 0.814 = 76.4

Buckling about y-y (major) axis

λ̄_y = λ_y/λ₁ = 45.9/76.4 = 0.600 [EC3 6.3.1.3]

Use curve b: α = 0.340 φ = 0.5(1 + α(λ̄_y - 0.2) + λ̄_y²) = 0.75 [EC3 (6.49)]

Flexural buckling reduction factor, χ_y = 1/(φ + √(φ² - λ̄_y²)) = 0.84 [EC3 (6.49)]

Design buckling resistance, N_{b,y,Rd} = χ_yA.f_y/γ_{M1} = 0.84 x 29.2 x 100 x 355/(1.0 x 1000) = 867 kN OK [EC3 (6.47)]

Buckling about z-z (minor) axis

λ̄_z = λ_z/λ₁ = 81.1/76.4 = 1.06 [EC3 6.3.1.3]

Use curve c: α = 0.490 φ = 0.5(1 + α(λ̄_z - 0.2) + λ̄_z²) = 1.27 [EC3 Table 6.2]

Flexural buckling reduction factor, χ_z = 1/(φ + √(φ² - λ̄_z²)) = 0.51 [EC3 (6.49)]

Design buckling resistance, N_{b,z,Rd} = χ_zA.f_y/γ_{M1} = 0.51 x 29.2 x 100 x 355/(1.0 x 1000) = 524 kN OK [EC3 (6.47)]

Bending about y-y (major) axis:

Design moment, M_{y,Ed} = 6.28 kNm

Moment resistance, M_{c,y,Rd} = f_yW_{pl,y} = 355 x 182/1000 = 64.6 kNm OK [SN048b: use W_{pl,y} although Class 3]

Calculate buckling resistance moment

Design buckling resistance moment, M_{b,y,Rd} = χ_{LT,mod} M_{c,y,Rd}

M_{cr} = C₁(π²EI_z/L_{eff}²) [√(I_w/I_z + L_{eff}²GI_t/(π²EI_z))] = 88.9 [NCCI SN003 2(1)]

C₁ = 1.0 (conservative) λ̄_{LT} = √(M_{c,y,Rd} / M_{cr}) = 0.81

λ̄_{LT,0} = 0.4 β = 0.75 [EC3 UK NA 2.17]

Use buckling curve b: α = 0.340 [EC3 Tables 6.3/6.4 NA2.17]

φ_{LT} = 0.5[1 + α_{LT}(λ̄_{LT} - λ̄_{LT,0}) + βλ̄_{LT}²] = 0.82

χ_{LT} = 1/[φ_{LT} + √(φ_{LT}² - βλ̄_{LT}²)] = 0.81 [EC3 (6.56)]

M_{b,y,Rd} = χ_{LT} M_{c,y,Rd} / γ_M = 0.81 x 64.6/1.0 = 52.5 kNm

Bending about z-z (minor) axis: N/A

ALPHA
STRUCTURAL ENGINEERS

ALPHA Structural Engineers

Structural Calculation Report

Site address: 102

Job number:
Made by: KE
Page: 22

Summary:

$$N_{Ed}/N_{min,b,Rd} = 35.7/524 = 0.068 \quad [1]$$

$$M_{y,Ed}/M_{bs} = 6.28/52.5 = 0.120 \quad [2]$$

$$M_{z,Ed}/M_{z,cb,Rd} = 0.000 \quad [3] \times 1.5 \quad [\text{NCCI SN048}]$$

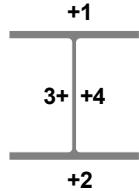
Sum of stress ratios [1] + [2] + 1.5 x [3] = **0.188** **OK** subject to all SN048b criteria being complied with

ALPHA
STRUCTURAL ENGINEERS

ALPHA Structural Engineers

Structural Calculation Report

Site address: 102


Job number:
Made by: KE
Page: 23

Column calculation to EN1993-1-1 using S355 steel

Location: SC4

Length: 3.0 m.

Pos	Dur	Load	kN	Fact	Offset	M _{yy}	M _{zz}
2	G	B/F Beam: B5 [6.7 m.] : R1	49.1	6.10	100	-13.36	0.00
2	QA	B/F Beam: B5 [6.7 m.] : R1	5.9	8.8	100	-1.77	0.00
		Total load kN	55.0	75.1		-15.13	0.00

Load offsets are measured in mm. from faces of member; moments in kNm

Load durations: G: Dead; Qx: Imposed; QA: Residential

SECTION SIZE : 203 x 203 x 46 UKC S355

Section properties: B = 203.6mm D = 203.2mm T = 11.0mm t = 7.2mm A_g = 58.7cm²
i_y = 8.82cm i_z = 5.13cm W_{pl,y} = 497cm³ W_{el,y} = 450cm³

Design strength, f_y = 355 N/mm² ε = 0.814

Classification: Flange: c/t = 88.0/11.0 = 8.00 <= 10ε (8.14): Class 2, compact

[Table 5.2] Web: c/t = 160.8/7.2 = 22.3 <= 396ε/(13α - 1) = 48.2 : Class 1, plastic

α = 0.5(1 + N_{Ed}/(f_y.c.t_w)) = 0.5 x (1 + 75.1 x 1000/(355 x 161 x 7.20)) = 0.591 [SCI P362 Table 5.1 note 1]

Major axis: L_{Ey} = 1.0L = 3.00 m. Slenderness, λ_y = 3.00 x 100/8.82 = 34.0

Minor axis: L_{Ez} = 1.0L = 3.00 m. Slenderness, λ_z = 3.00 x 100/5.13 = 58.5

This calculation is based on NCCI SN048b - only valid if bending moment diagrams about each axis are linear and the member is restrained at each floor level but unrestrained between floors. Only Class 1, 2 or 3 hot rolled I or H sections or rectangular hollow sections can be considered

Compression

Design axial load, N_{Ed} = 75.1 kN

Design compression resistance, N_{c,Rd} = A.f_y/γ_{M0} = 58.7 x 100 x 355/(1.0 x 1000) = 2,084 kN OK

Calculate flexural buckling resistances, N_{b,Rd}

λ₁ = 93.9ε = 93.9 x 0.814 = 76.4

Buckling about y-y (major) axis

$$\bar{\lambda}_y = \lambda_y/\lambda_1 = 34.0/76.4 = 0.445 \text{ [EC3 6.3.1.3]}$$

$$\text{Use curve b: } \alpha = 0.340 \quad \phi = 0.5(1 + \alpha(\bar{\lambda}_y - 0.2) + \bar{\lambda}_y^2) = 0.64 \text{ [EC3 (6.49)]}$$

$$\text{Flexural buckling reduction factor, } \chi_y = 1/(\phi + \sqrt{(\phi^2 - \bar{\lambda}_y^2)}) = 0.91 \text{ [EC3 (6.49)]}$$

$$\text{Design buckling resistance, } N_{b,y,Rd} = \chi_y A.f_y/\gamma_{M1} = 0.91 \times 58.7 \times 100 \times 355/(1.0 \times 1000) = 1,892 \text{ kN OK [EC3 (6.47)]}$$

Buckling about z-z (minor) axis

$$\bar{\lambda}_z = \lambda_z/\lambda_1 = 58.5/76.4 = 0.765 \text{ [EC3 6.3.1.3]}$$

$$\text{Use curve c: } \alpha = 0.490 \quad \phi = 0.5(1 + \alpha(\bar{\lambda}_z - 0.2) + \bar{\lambda}_z^2) = 0.93 \text{ [EC3 Table 6.2]}$$

$$\text{Flexural buckling reduction factor, } \chi_z = 1/(\phi + \sqrt{(\phi^2 - \bar{\lambda}_z^2)}) = 0.68 \text{ [EC3 (6.49)]}$$

$$\text{Design buckling resistance, } N_{b,z,Rd} = \chi_z A.f_y/\gamma_{M1} = 0.68 \times 58.7 \times 100 \times 355/(1.0 \times 1000) = 1,425 \text{ kN OK [EC3 (6.47)]}$$

Bending about y-y (major) axis:

Design moment, M_{y,Ed} = 15.13 kNm

Moment resistance, M_{c,y,Rd} = f_y.W_{pl,y} = 355 x 497/1000 = 176 kNm OK

Calculate buckling resistance moment

Design buckling resistance moment, M_{b,y,Rd} = χ_{LT,mod}.M_{c,y,Rd}

$$M_{cr} = C_1(\pi^2 EI_z/L_{eff}^2)[\sqrt{(I_w/I_z + L_{eff}^2 GI_z/(\pi^2 EI_z)} = 426 \text{ [NCCI SN003 2(1)]}$$

$$C_1 = 1.0 \text{ (conservative)} \quad \bar{\lambda}_{LT} = \sqrt{(M_{c,y,Rd}/M_{cr})} = 0.64$$

$$\bar{\lambda}_{LT,0} = 0.4 \quad \beta = 0.75 \text{ [EC3 UK NA 2.17]}$$

$$\text{Use buckling curve b: } \alpha = 0.340 \text{ [EC3 Tables 6.3/6.4 NA2.17]}$$

$$\bar{\phi}_{LT} = 0.5[1 + \alpha_{LT}(\bar{\lambda}_{LT} - \bar{\lambda}_{LT,0}) + \beta \bar{\lambda}_{LT}^2] = 0.70$$

$$\chi_{LT} = 1/[\bar{\phi}_{LT} + \sqrt{(\bar{\phi}_{LT}^2 - \beta \bar{\lambda}_{LT}^2)}] = 0.90 \text{ [EC3 (6.56)]}$$

$$M_{b,y,Rd} = \chi_{LT}.M_{c,y,Rd}/\gamma_M = 0.90 \times 176/1.0 = 158 \text{ kNm}$$

Bending about z-z (minor) axis: N/A

ALPHA
STRUCTURAL ENGINEERS

ALPHA Structural Engineers

Structural Calculation Report

Site address: 102

Job number:
Made by: KE
Page: 24

Summary:

$$N_{Ed}/N_{min,b,Rd} = 75.1/1425 = 0.053 \quad [1]$$

$$M_{y,Ed}/M_{bs} = 15.13/158 = 0.096 \quad [2]$$

$$M_{z,Ed}/M_{z,cb,Rd} = 0.000 \quad [3] \times 1.5 \text{ [NCCI SN048]}$$

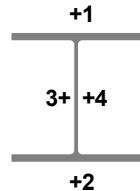
Sum of stress ratios [1] + [2] + 1.5 x [3] = **0.148** **OK** subject to all SN048b criteria being complied with

ALPHA
STRUCTURAL ENGINEERS

ALPHA Structural Engineers

Structural Calculation Report

Site address: 102


Job number:
Made by: KE
Page: 25

Column calculation to EN1993-1-1 using S355 steel

Location: SC5

Length: 3.0 m.

Pos	Dur	Load	kN	Fact	Offset	M _{yy}	M _{zz}
1	G	B/F Beam: B6 [3.8 m.]: R1	17.3	23.4	100	4.71	0.00
1	QA	B/F Beam: B6 [3.8 m.]: R1	1.6	2.4	100	0.48	0.00
2	G	B/F Beam: B5 [6.7 m.]: R1	48.9	66.0	100	-13.31	0.00
2	QA	B/F Beam: B5 [6.7 m.]: R1	5.8	8.7	100	-1.74	0.00
Total load kN			73.6	100.5		-9.87	0.00

Load offsets are measured in mm. from faces of member; moments in kNm

Load durations: G: Dead; Qx: Imposed; QA: Residential

SECTION SIZE : 203 x 203 x 46 UKC S355

Section properties: B = 203.6mm D = 203.2mm T = 11.0mm t = 7.2mm A_g = 58.7cm²
i_y = 8.82cm i_z = 5.13cm W_{pl,y} = 497cm³ W_{el,y} = 450cm³

Design strength, f_y = 355 N/mm² ε = 0.814

Classification: Flange: c/t = 88.0/11.0 = 8.00 <= 10ε (8.14): Class 2, compact

[Table 5.2] Web: c/t = 160.8/7.2 = 22.3 <= 396ε/(13α - 1) = 45.5 : Class 1, plastic

α = 0.5(1 + N_{Ed}/(f_y.c.t_w)) = 0.5 x (1 + 100 x 1000/(355 x 161 x 7.20)) = 0.622 [SCI P362 Table 5.1 note 1]

Major axis: L_{Ey} = 1.0L = 3.00 m. Slenderness, λ_y = 3.00 x 100/8.82 = 34.0

Minor axis: L_{Ez} = 1.0L = 3.00 m. Slenderness, λ_z = 3.00 x 100/5.13 = 58.5

This calculation is based on NCCI SN048b - only valid if bending moment diagrams about each axis are linear and the member is restrained at each floor level but unrestrained between floors. Only Class 1, 2 or 3 hot rolled I or H sections or rectangular hollow sections can be considered

Compression

Design axial load, N_{Ed} = 100 kN

Design compression resistance, N_{c,Rd} = A.f_y/γ_{M0} = 58.7 x 100 x 355/(1.0 x 1000) = 2,084 kN OK

Calculate flexural buckling resistances, N_{b,Rd}

λ₁ = 93.9ε = 93.9 x 0.814 = 76.4

Buckling about y-y (major) axis

λ̄_y = λ_y/λ₁ = 34.0/76.4 = 0.445 [EC3 6.3.1.3]

Use curve b: α = 0.340 φ = 0.5(1 + α(λ̄_y - 0.2) + λ̄_y²) = 0.64 [EC3 (6.49)]

Flexural buckling reduction factor, χ_y = 1/(φ + √(φ² - λ̄_y²)) = 0.91 [EC3 (6.49)]

Design buckling resistance, N_{b,y,Rd} = χ_yA.f_y/γ_{M1} = 0.91 x 58.7 x 100 x 355/(1.0 x 1000) = 1,892 kN OK [EC3 (6.47)]

Buckling about z-z (minor) axis

λ̄_z = λ_z/λ₁ = 58.5/76.4 = 0.765 [EC3 6.3.1.3]

Use curve c: α = 0.490 φ = 0.5(1 + α(λ̄_z - 0.2) + λ̄_z²) = 0.93 [EC3 Table 6.2]

Flexural buckling reduction factor, χ_z = 1/(φ + √(φ² - λ̄_z²)) = 0.68 [EC3 (6.49)]

Design buckling resistance, N_{b,z,Rd} = χ_zA.f_y/γ_{M1} = 0.68 x 58.7 x 100 x 355/(1.0 x 1000) = 1,425 kN OK [EC3 (6.47)]

Bending about y-y (major) axis:

Design moment, M_{y,Ed} = 9.87 kNm

Moment resistance, M_{c,y,Rd} = f_y.W_{pl,y} = 355 x 497/1000 = 176 kNm OK

Calculate buckling resistance moment

Design buckling resistance moment, M_{b,y,Rd} = χ_{LT,mod}.M_{c,y,Rd}

M_{cr} = C₁(π²EI_z/L_{eff}²)[√(I_w/I_z + L_{eff}²GI_t/(π²EI_z))] = 426 [NCCI SN003 2(1)]

C₁ = 1.0 (conservative) λ̄_{LT} = √(M_{c,y,Rd}/M_{cr}) = 0.64

λ̄_{LT,0} = 0.4 β = 0.75 [EC3 UK NA 2.17]

Use buckling curve b: α = 0.340 [EC3 Tables 6.3/6.4 NA2.17]

φ_{LT} = 0.5[1 + α_{LT}(λ̄_{LT} - λ̄_{LT,0}) + βλ̄_{LT}²] = 0.70

χ_{LT} = 1/[φ_{LT} + √(φ_{LT}² - βλ̄_{LT}²)] = 0.90 [EC3 (6.56)]

M_{b,y,Rd} = χ_{LT}.M_{c,y,Rd}/γ_M = 0.90 x 176/1.0 = 158 kNm

Bending about z-z (minor) axis: N/A

ALPHA
STRUCTURAL ENGINEERS

ALPHA Structural Engineers

Structural Calculation Report

Site address: 102

Job number:
Made by: KE
Page: 26

Summary:

$$N_{Ed}/N_{min,b,Rd} = 100/1425 = 0.070 \quad [1]$$

$$M_{y,Ed}/M_{bs} = 9.87/158 = 0.062 \quad [2]$$

$$M_{z,Ed}/M_{z,cb,Rd} = 0.000 \quad [3] \times 1.5 \quad [\text{NCCI SN048}]$$

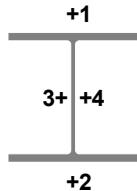
Sum of stress ratios [1] + [2] + 1.5 x [3] = 0.133 **OK** subject to all SN048b criteria being complied with

ALPHA
STRUCTURAL ENGINEERS

ALPHA Structural Engineers

Structural Calculation Report

Site address: 102


Job number:
Made by: KE
Page: 27

Column calculation to EN1993-1-1 using S355 steel

Location: SC6

Length: 3.0 m.

Pos	Dur	Load	kN	Fact	Offset	M _{yy}	M _{zz}
2	G	B/F Beam: B6 [3.8 m.]: R2	7.76	10.48	100	-1.85	0.00
2	QA	B/F Beam: B6 [3.8 m.]: R2	1.60	2.40	100	-0.42	0.00
Total load kN			9.36	12.88		-2.27	0.00

Load offsets are measured in mm. from faces of member; moments in kNm

Load durations: G: Dead; Qx: Imposed; QA: Residential

SECTION SIZE : 152 x 152 x 23 UKC S355

Section properties: B = 152.2mm D = 152.4mm T = 6.8mm t = 5.8mm A_g = 29.2cm²
i_y = 6.54cm i_z = 3.70cm W_{pl,y} = 182cm³ W_{el,y} = 164cm³

Design strength, f_y = 355 N/mm² ε = 0.814

Classification: Flange: c/t = 65.6/6.8 = 9.65 <= 14ε (11.39): Class 3, semi-compact

[Table 5.2] Web: c/t = 123.6/5.8 = 21.3 <= 396ε/(13α - 1) = 55.3 : Class 1, plastic

α = 0.5(1 + N_{Ed}/(f_y.c.t_w)) = 0.5 x (1 + 12.9 x 1000/(355 x 124 x 5.80)) = 0.525 [SCI P362 Table 5.1 note 1]

Major axis: L_{Ey} = 1.0L = 3.00 m. Slenderness, λ_y = 3.00 x 100/6.54 = 45.9

Minor axis: L_{Ez} = 1.0L = 3.00 m. Slenderness, λ_z = 3.00 x 100/3.70 = 81.1

This calculation is based on NCCI SN048b - only valid if bending moment diagrams about each axis are linear and the member is restrained at each floor level but unrestrained between floors. Only Class 1, 2 or 3 hot rolled I or H sections or rectangular hollow sections can be considered

Compression

Design axial load, N_{Ed} = 12.88 kN

Design compression resistance, N_{c,Rd} = A.f_y/γ_{M0} = 29.2 x 100 x 355/(1.0 x 1000) = 1,037 kN OK

Calculate flexural buckling resistances, N_{b,Rd}

$$\lambda_1 = 93.9\epsilon = 93.9 \times 0.814 = 76.4$$

Buckling about y-y (major) axis

$$\bar{\lambda}_y = \lambda_y/\lambda_1 = 45.9/76.4 = 0.600 \text{ [EC3 6.3.1.3]}$$

$$\text{Use curve b: } \alpha = 0.340 \quad \phi = 0.5(1 + \alpha(\bar{\lambda}_y - 0.2) + \bar{\lambda}_y^2) = 0.75 \text{ [EC3 (6.49)]}$$

$$\text{Flexural buckling reduction factor, } \chi_y = 1/(\phi + \sqrt{(\phi^2 - \bar{\lambda}_y^2)}) = 0.84 \text{ [EC3 (6.49)]}$$

$$\text{Design buckling resistance, } N_{b,y,Rd} = \chi_y A.f_y/\gamma_{M1} = 0.84 \times 29.2 \times 100 \times 355/(1.0 \times 1000) = 867 \text{ kN OK [EC3 (6.47)]}$$

Buckling about z-z (minor) axis

$$\bar{\lambda}_z = \lambda_z/\lambda_1 = 81.1/76.4 = 1.06 \text{ [EC3 6.3.1.3]}$$

$$\text{Use curve c: } \alpha = 0.490 \quad \phi = 0.5(1 + \alpha(\bar{\lambda}_z - 0.2) + \bar{\lambda}_z^2) = 1.27 \text{ [EC3 Table 6.2]}$$

$$\text{Flexural buckling reduction factor, } \chi_z = 1/(\phi + \sqrt{(\phi^2 - \bar{\lambda}_z^2)}) = 0.51 \text{ [EC3 (6.49)]}$$

$$\text{Design buckling resistance, } N_{b,z,Rd} = \chi_z A.f_y/\gamma_{M1} = 0.51 \times 29.2 \times 100 \times 355/(1.0 \times 1000) = 524 \text{ kN OK [EC3 (6.47)]}$$

Bending about y-y (major) axis:

Design moment, M_{y,Ed} = 2.27 kNm

Moment resistance, M_{c,y,Rd} = f_y.W_{pl,y} = 355 x 182/1000 = 64.6 kNm OK [SN048b: use W_{pl,y} although Class 3]

Calculate buckling resistance moment

Design buckling resistance moment, M_{b,y,Rd} = χ_{LT,mod}.M_{c,y,Rd}

$$M_{cr} = C_1(\pi^2 EI_z/L_{eff}^2)[\sqrt{(I_w/I_z + L_{eff}^2 GI_z/\pi^2 EI_z)} = 88.9 \text{ [NCCI SN003 2(1)]}$$

$$C_1 = 1.0 \text{ (conservative)} \quad \bar{\lambda}_{LT} = \sqrt{(M_{c,y,Rd}/M_{cr})} = 0.81$$

$$\bar{\lambda}_{LT,0} = 0.4 \quad \beta = 0.75 \text{ [EC3 UK NA 2.17]}$$

$$\text{Use buckling curve b: } \alpha = 0.340 \text{ [EC3 Tables 6.3/6.4 NA2.17]}$$

$$\bar{\phi}_{LT} = 0.5[1 + \alpha_{LT}(\bar{\lambda}_{LT} - \bar{\lambda}_{LT,0}) + \beta \bar{\lambda}_{LT}^2] = 0.82$$

$$\chi_{LT} = 1/[\bar{\phi}_{LT} + \sqrt{(\bar{\phi}_{LT}^2 - \beta \bar{\lambda}_{LT}^2)}] = 0.81 \text{ [EC3 (6.56)]}$$

$$M_{b,y,Rd} = \chi_{LT}.M_{c,y,Rd}/\gamma_M = 0.81 \times 64.6/1.0 = 52.5 \text{ kNm}$$

Bending about z-z (minor) axis: N/A

ALPHA
STRUCTURAL ENGINEERS

ALPHA Structural Engineers

Structural Calculation Report

Site address: 102

Job number:
Made by: KE
Page: 28

Summary:

$$N_{Ed}/N_{min,b,Rd} = 12.88/524 = 0.025 \quad [1]$$

$$M_{y,Ed}/M_{bs} = 2.27/52.5 = 0.043 \quad [2]$$

$$M_{z,Ed}/M_{z,cb,Rd} = 0.000 \quad [3] \times 1.5 \quad [\text{NCCI SN048}]$$

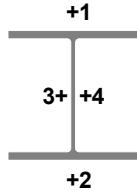
Sum of stress ratios [1] + [2] + 1.5 x [3] = **0.068** **OK** subject to all SN048b criteria being complied with

ALPHA
STRUCTURAL ENGINEERS

ALPHA Structural Engineers

Structural Calculation Report

Site address: 102


Job number:
Made by: KE
Page: 29

Column calculation to EN1993-1-1 using S355 steel

Location: SC7

Length: 3.0 m.

Pos	Dur	Load	kN	Fact	Offset	M _{yy}	M _{zz}
2	G	B/F Beam: B7 [5.1 m.]: R1	6.25	8.44	100	-1.49	0.00
2	QA	B/F Beam: B7 [5.1 m.]: R1	2.14	3.21	100	-0.57	0.00
Total load kN			8.39	11.65		-2.05	0.00

Load offsets are measured in mm. from faces of member; moments in kNm

Load durations: G: Dead; Qx: Imposed; QA: Residential

SECTION SIZE : 152 x 152 x 23 UKC S355

Section properties: B = 152.2mm D = 152.4mm T = 6.8mm t = 5.8mm A_g = 29.2cm²
i_y = 6.54cm i_z = 3.70cm W_{pl,y} = 182cm³ W_{el,y} = 164cm³

Design strength, f_y = 355 N/mm² ε = 0.814

Classification: Flange: c/t = 65.6/6.8 = 9.65 <= 14ε (11.39): Class 3, semi-compact

[Table 5.2] Web: c/t = 123.6/5.8 = 21.3 <= 396ε/(13α - 1) = 55.6 : Class 1, plastic

α = 0.5(1 + N_{Ed}/(f_y.c.t_w)) = 0.5 x (1 + 11.6 x 1000/(355 x 124 x 5.80)) = 0.523 [SCI P362 Table 5.1 note 1]

Major axis: L_{Ey} = 1.0L = 3.00 m. Slenderness, λ_y = 3.00 x 100/6.54 = 45.9

Minor axis: L_{Ez} = 1.0L = 3.00 m. Slenderness, λ_z = 3.00 x 100/3.70 = 81.1

This calculation is based on NCCI SN048b - only valid if bending moment diagrams about each axis are linear and the member is restrained at each floor level but unrestrained between floors. Only Class 1, 2 or 3 hot rolled I or H sections or rectangular hollow sections can be considered

Compression

Design axial load, N_{Ed} = 11.65 kN

Design compression resistance, N_{c,Rd} = A.f_y/γ_{M0} = 29.2 x 100 x 355/(1.0 x 1000) = 1,037 kN OK

Calculate flexural buckling resistances, N_{b,Rd}

λ₁ = 93.9ε = 93.9 x 0.814 = 76.4

Buckling about y-y (major) axis

λ̄_y = λ_y/λ₁ = 45.9/76.4 = 0.600 [EC3 6.3.1.3]

Use curve b: α = 0.340 φ = 0.5(1 + α(λ̄_y - 0.2) + λ̄_y²) = 0.75 [EC3 (6.49)]

Flexural buckling reduction factor, χ_y = 1/(φ + √(φ² - λ̄_y²)) = 0.84 [EC3 (6.49)]

Design buckling resistance, N_{b,y,Rd} = χ_yA.f_y/γ_{M1} = 0.84 x 29.2 x 100 x 355/(1.0 x 1000) = 867 kN OK [EC3 (6.47)]

Buckling about z-z (minor) axis

λ̄_z = λ_z/λ₁ = 81.1/76.4 = 1.06 [EC3 6.3.1.3]

Use curve c: α = 0.490 φ = 0.5(1 + α(λ̄_z - 0.2) + λ̄_z²) = 1.27 [EC3 Table 6.2]

Flexural buckling reduction factor, χ_z = 1/(φ + √(φ² - λ̄_z²)) = 0.51 [EC3 (6.49)]

Design buckling resistance, N_{b,z,Rd} = χ_zA.f_y/γ_{M1} = 0.51 x 29.2 x 100 x 355/(1.0 x 1000) = 524 kN OK [EC3 (6.47)]

Bending about y-y (major) axis:

Design moment, M_{y,Ed} = 2.05 kNm

Moment resistance, M_{c,y,Rd} = f_yW_{pl,y} = 355 x 182/1000 = 64.6 kNm OK [SN048b: use W_{pl,y} although Class 3]

Calculate buckling resistance moment

Design buckling resistance moment, M_{b,y,Rd} = χ_{LT,mod} M_{c,y,Rd}

M_{cr} = C₁(π²EI_z/L_{eff}²) [√(I_w/I_z + L_{eff}²GI_t/(π²EI_z))] = 88.9 [NCCI SN003 2(1)]

C₁ = 1.0 (conservative) λ̄_{LT} = √(M_{c,y,Rd} / M_{cr}) = 0.81

λ̄_{LT,0} = 0.4 β = 0.75 [EC3 UK NA 2.17]

Use buckling curve b: α = 0.340 [EC3 Tables 6.3/6.4 NA2.17]

φ_{LT} = 0.5[1 + α_{LT}(λ̄_{LT} - λ̄_{LT,0}) + βλ̄_{LT}²] = 0.82

χ_{LT} = 1/[φ_{LT} + √(φ_{LT}² - βλ̄_{LT}²)] = 0.81 [EC3 (6.56)]

M_{b,y,Rd} = χ_{LT} M_{c,y,Rd} / γ_M = 0.81 x 64.6/1.0 = 52.5 kNm

Bending about z-z (minor) axis: N/A

ALPHA
STRUCTURAL ENGINEERS

ALPHA Structural Engineers

Structural Calculation Report

Site address: 102

Job number:
Made by: KE
Page: 30

Summary:

$$N_{Ed}/N_{min,b,Rd} = 11.65/524 = 0.022 \quad [1]$$

$$M_{y,Ed}/M_{bs} = 2.05/52.5 = 0.039 \quad [2]$$

$$M_{z,Ed}/M_{z,cb,Rd} = 0.000 \quad [3] \times 1.5 \quad [\text{NCCI SN048}]$$

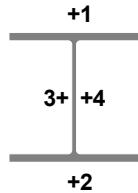
Sum of stress ratios [1] + [2] + 1.5 x [3] = **0.061** **OK** subject to all SN048b criteria being complied with

ALPHA
STRUCTURAL ENGINEERS

ALPHA Structural Engineers

Structural Calculation Report

Site address: 102


Job number:
Made by: KE
Page: 31

Column calculation to EN1993-1-1 using S355 steel

Location: SC8

Length: 3.0 m.

Pos	Dur	Load	kN	Fact	Offset	M _{yy}	M _{zz}
2	G	B/F Beam: B8 [3.8 m.]: R1	4.65	6.10	100	-1.11	0.00
2	QA	B/F Beam: B8 [3.8 m.]: R1	1.60	2.40	100	-0.42	0.00
Total load kN			6.25	8.68		-1.53	0.00

Load offsets are measured in mm. from faces of member; moments in kNm

Load durations: G: Dead; Qx: Imposed; QA: Residential

SECTION SIZE : 152 x 152 x 23 UKC S355

Section properties: B = 152.2mm D = 152.4mm T = 6.8mm t = 5.8mm A_g = 29.2cm²
i_y = 6.54cm i_z = 3.70cm W_{pl,y} = 182cm³ W_{el,y} = 164cm³

Design strength, f_y = 355 N/mm² ε = 0.814

Classification: Flange: c/t = 65.6/6.8 = 9.65 <= 14ε (11.39): Class 3, semi-compact

[Table 5.2] Web: c/t = 123.6/5.8 = 21.3 <= 396ε/(13α - 1) = 56.3 : Class 1, plastic

α = 0.5(1 + N_{Ed}/(f_y.c.t_w)) = 0.5 x (1 + 8.68 x 1000/(355 x 124 x 5.80)) = 0.517 [SCI P362 Table 5.1 note 1]

Major axis: L_{Ey} = 1.0L = 3.00 m. Slenderness, λ_y = 3.00 x 100/6.54 = 45.9

Minor axis: L_{Ez} = 1.0L = 3.00 m. Slenderness, λ_z = 3.00 x 100/3.70 = 81.1

This calculation is based on NCCI SN048b - only valid if bending moment diagrams about each axis are linear and the member is restrained at each floor level but unrestrained between floors. Only Class 1, 2 or 3 hot rolled I or H sections or rectangular hollow sections can be considered

Compression

Design axial load, N_{Ed} = 8.68 kN

Design compression resistance, N_{c,Rd} = A.f_y/γ_{M0} = 29.2 x 100 x 355/(1.0 x 1000) = 1,037 kN OK

Calculate flexural buckling resistances, N_{b,Rd}

$$\lambda_1 = 93.9\epsilon = 93.9 \times 0.814 = 76.4$$

Buckling about y-y (major) axis

$$\bar{\lambda}_y = \lambda_y/\lambda_1 = 45.9/76.4 = 0.600 \text{ [EC3 6.3.1.3]}$$

$$\text{Use curve b: } \alpha = 0.340 \quad \phi = 0.5(1 + \alpha(\bar{\lambda}_y - 0.2) + \bar{\lambda}_y^2) = 0.75 \text{ [EC3 (6.49)]}$$

$$\text{Flexural buckling reduction factor, } \chi_y = 1/(\phi + \sqrt{(\phi^2 - \bar{\lambda}_y^2)}) = 0.84 \text{ [EC3 (6.49)]}$$

$$\text{Design buckling resistance, } N_{b,y,Rd} = \chi_y A.f_y/\gamma_{M1} = 0.84 \times 29.2 \times 100 \times 355/(1.0 \times 1000) = 867 \text{ kN OK [EC3 (6.47)]}$$

Buckling about z-z (minor) axis

$$\bar{\lambda}_z = \lambda_z/\lambda_1 = 81.1/76.4 = 1.06 \text{ [EC3 6.3.1.3]}$$

$$\text{Use curve c: } \alpha = 0.490 \quad \phi = 0.5(1 + \alpha(\bar{\lambda}_z - 0.2) + \bar{\lambda}_z^2) = 1.27 \text{ [EC3 Table 6.2]}$$

$$\text{Flexural buckling reduction factor, } \chi_z = 1/(\phi + \sqrt{(\phi^2 - \bar{\lambda}_z^2)}) = 0.51 \text{ [EC3 (6.49)]}$$

$$\text{Design buckling resistance, } N_{b,z,Rd} = \chi_z A.f_y/\gamma_{M1} = 0.51 \times 29.2 \times 100 \times 355/(1.0 \times 1000) = 524 \text{ kN OK [EC3 (6.47)]}$$

Bending about y-y (major) axis:

Design moment, M_{y,Ed} = 1.53 kNm

Moment resistance, M_{c,y,Rd} = f_y.W_{pl,y} = 355 x 182/1000 = 64.6 kNm OK [SN048b: use W_{pl,y} although Class 3]

Calculate buckling resistance moment

Design buckling resistance moment, M_{b,y,Rd} = χ_{LT,mod}.M_{c,y,Rd}

$$M_{cr} = C_1(\pi^2 EI_z/L_{eff}^2)[\sqrt{(I_w/I_z + L_{eff}^2 GI_z/\pi^2 EI_z)} = 88.9 \text{ [NCCI SN003 2(1)]}$$

$$C_1 = 1.0 \text{ (conservative)} \quad \bar{\lambda}_{LT} = \sqrt{(M_{c,y,Rd}/M_{cr})} = 0.81$$

$$\bar{\lambda}_{LT,0} = 0.4 \quad \beta = 0.75 \text{ [EC3 UK NA 2.17]}$$

$$\text{Use buckling curve b: } \alpha = 0.340 \text{ [EC3 Tables 6.3/6.4 NA2.17]}$$

$$\bar{\phi}_{LT} = 0.5[1 + \alpha_{LT}(\bar{\lambda}_{LT} - \bar{\lambda}_{LT,0}) + \beta \bar{\lambda}_{LT}^2] = 0.82$$

$$\chi_{LT} = 1/[\bar{\phi}_{LT} + \sqrt{(\bar{\phi}_{LT}^2 - \beta \bar{\lambda}_{LT}^2)}] = 0.81 \text{ [EC3 (6.56)]}$$

$$M_{b,y,Rd} = \chi_{LT}.M_{c,y,Rd}/\gamma_M = 0.81 \times 64.6/1.0 = 52.5 \text{ kNm}$$

Bending about z-z (minor) axis: N/A

ALPHA
STRUCTURAL ENGINEERS

ALPHA Structural Engineers

Structural Calculation Report

Site address: 102

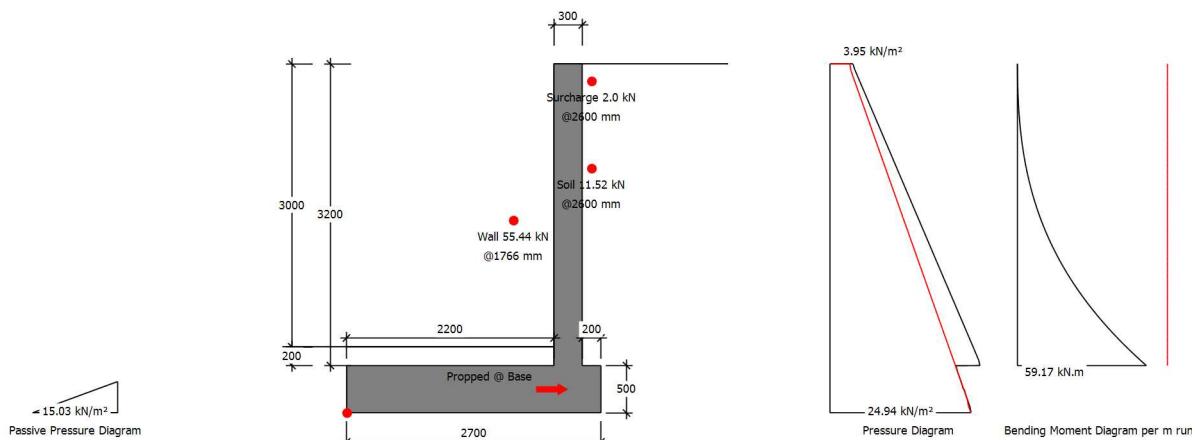
Job number:
Made by: KE
Page: 32

Summary:

$$N_{Ed}/N_{min,b,Rd} = 8.68/524 = 0.017 \quad [1]$$

$$M_{y,Ed}/M_{bs} = 1.53/52.5 = 0.029 \quad [2]$$

$$M_{z,Ed}/M_{z,cb,Rd} = 0.000 \quad [3] \times 1.5 \quad [\text{NCCI SN048}]$$


Sum of stress ratios [1] + [2] + 1.5 x [3] = **0.046** **OK** subject to all SN048b criteria being complied with

Alpha Structural Engineers 79, Venice House, Hatton Road, Harrow HA0 1QL	Cloud dd298	Job Ref : Sheet : / Made by : Date : 12 December 2024 / Ver. 2022.13.18 Checked : Approved :
--	-------------	---

MasterKey : Retaining Wall Design to BS 8002 : 1994 and BS 8110 : 1997

MAIN RETAINING WALL

Reinforced Concrete Retaining Wall with Reinforced Base

Summary of Design Data

Notes

Material Densities (kN/m³)

Concrete grade

Concrete covers (mm)

Reinforcement design

Surcharge and Water Table

Unplanned excavation depth

† The Engineer must satisfy him/herself to the reinforcement detailing requirements of the relevant codes of practice

All dimensions are in mm and all forces are per metre run

Soil 18.00, Concrete 24.00

fcu 30 N/mm², Permissible tensile stress 0.250 N/mm²

Wall inner cover 30 mm, Wall outer cover 30 mm, Base cover 50 mm

fy 500 N/mm² designed to BS 8110: 1997

Surcharge 10.00 kN/m², Fully drained

Front of wall 370 mm

Additional Loads

Wall Propped at Base Level

† Dimensions

Therefore no sliding check is required

Soil Properties

Bearing pressure

Back Soil Friction and Cohesion

Base Friction and Cohesion

Front Soil Friction and Cohesion

Premissable service pressure @ front 100.00 kN/m², @ back 100.00 kN/m²

 $\alpha = \text{Atn}(\text{Tan}(30)/1.2) = 25.69^\circ$ $\delta = \text{Atn}(0.75 \times \text{Tan}(\text{Atn}(\text{Tan}(30)/1.2))) = 19.84^\circ$ $\phi = \text{Atn}(\text{Tan}(30)/1.2) = 25.69^\circ$

Loading Cases

 G_{Soil} - Soil Self Weight, G_{Wall} - Wall & Base Self Weight, F_{vHeel} - Vertical Loads over Heel, P_a - Active Earth Pressure, $P_{surcharge}$ - Earth pressure from surcharge, P_p - Passive Earth Pressure

Case 1: Geotechnical Design

 $1.00 G_{Soil} + 1.00 G_{Wall} + 1.00 F_{vHeel} + 1.00 P_a + 1.00 P_{surcharge} + 1.00 P_p$

Case 2: Structural Ultimate Design

 $1.40 G_{Soil} + 1.40 G_{Wall} + 1.60 F_{vHeel} + 1.00 P_a + 1.00 P_{surcharge} + 1.00 P_p$

Geotechnical Design

Wall Stability - Virtual Back Pressure

Case 1 Overturning/Stabilising 72.444/133.036 0.545 OK

Wall Sliding - Virtual Back Pressure

 $F_x/(R_x \text{Friction} + R_x \text{Passive})$ 0.000/(24.884+2.487) 0.000 OK
Prop Reaction Case 2 (Service) 52.5 kN @ Base

Soil Pressure

Virtual Back 52.323/100 kN/m², Length under pressure 2.636 m 0.523 OK
Wall Back 67.848/100 kN/m², Length under pressure 2.033 m 0.678 OK

Alpha Structural Engineers 79, Venice House, Hatton Road, Harrow HA0 1QL	Cloud dd298	Job Ref : Sheet : / Made by : Date : 12 December 2024 / Ver. 2022.13.18 Checked : Approved :
--	-------------	---

Structural Design

Prop Reaction

Maximum Prop Reaction (Ultimate) 60.8 kN @ Base

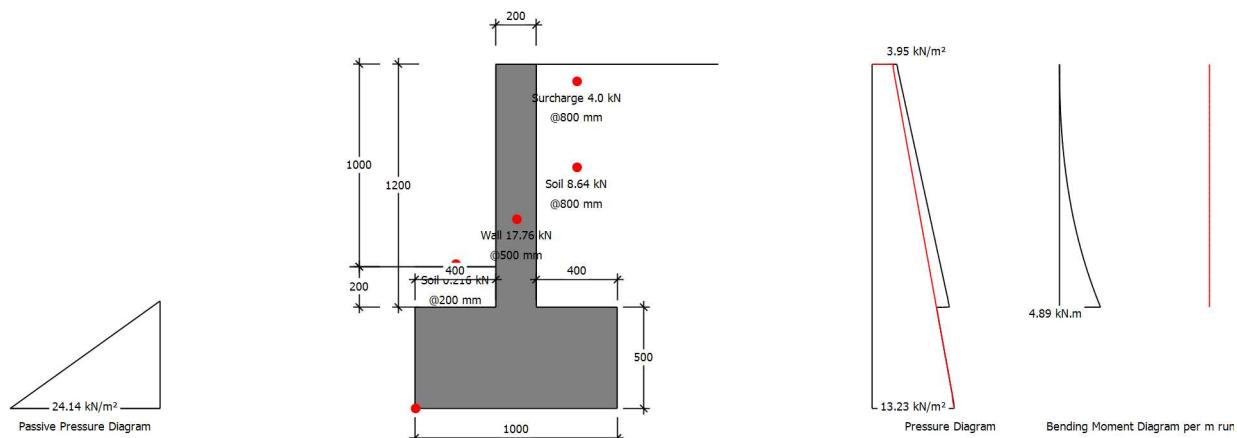
Wall Design (Inner Steel)

Critical Section	Critical @ 0 mm from base, Case 2		
Steel Provided (Cover)	Main H10@125 (30 mm) Dist. H10@200 (40 mm)	628 mm ²	OK
Compression Steel Provided (Cover)	Main H10@300 (30 mm) Dist. H10@300 (40 mm)	262 mm ²	
Leverarm z=fn(d,b,As,fy,Fcu)	265 mm, 1000 mm, 628 mm ² , 500 N/mm ² , 30.0 N/mm ²	252 mm	
Mr=fn(above,As',d',x,x/d)	262 mm ² , 35 mm, 23 mm, 0.09	68.8 kN.m	
Moment Capacity Check (M/Mr)	M 59.2 kN.m, Mr 68.8 kN.m	0.860	OK
Shear Capacity Check	F 49.0 kN, vc 0.461 N/mm ² , Fvr 122.1 kN	0.40	OK

Base Top Steel Design

Steel Provided (Cover)	Main H10@100 (50 mm) Dist. H10@100 (60 mm)	785 mm ²	OK
Compression Steel Provided (Cover)	Main H10@100 (50 mm) Dist. H10@100 (60 mm)	785 mm ²	
Leverarm z=fn(d,b,As,fy,Fcu)	445 mm, 1000 mm, 785 mm ² , 500 N/mm ² , 30 N/mm ²	423 mm	
Mr=fn(above,As',d',x,x/d)	785 mm ² , 55 mm, 28 mm, 0.06	144.4 kN.m	
Moment Capacity Check (M/Mr)	M 2.0 kN.m, Mr 144.4 kN.m	0.014	OK
Shear Capacity Check	F 20.1 kN, vc 0.367 N/mm ² , Fvr 163.2 kN	0.12	OK

Base Bottom Steel Design


Steel Provided (Cover)	Main H10@100 (50 mm) Dist. H10@100 (60 mm)	785 mm ²	OK
Compression Steel Provided (Cover)	Main H10@100 (50 mm) Dist. H10@100 (60 mm)	785 mm ²	
Leverarm z=fn(d,b,As,fy,Fcu)	445 mm, 1000 mm, 785 mm ² , 500 N/mm ² , 30 N/mm ²	423 mm	
Mr=fn(above,As',d',x,x/d)	785 mm ² , 55 mm, 28 mm, 0.06	144.4 kN.m	
Moment Capacity Check (M/Mr)	M 73.4 kN.m, Mr 144.4 kN.m	0.508	OK
Shear Capacity Check	F 52.1 kN, vc 0.367 N/mm ² , Fvr 163.2 kN	0.32	OK

Alpha Structural Engineers 79, Venice House, Hatton Road, Harrow HA0 1QL		Cloud dd298 Job Ref : Sheet : / Made by : Date : 12 December 2024 / Ver. 2022.13.18 Checked : Approved :
--	--	--

MasterKey : Retaining Wall Design to BS 8002 : 1994 and BS 8110 : 1997

GARDEN RETAINING WALL

Reinforced Concrete Retaining Wall with Reinforced Base

Summary of Design Data

Notes

Material Densities (kN/m³)

Concrete grade

Concrete covers (mm)

Reinforcement design

Surcharge and Water Table

Unplanned excavation depth

† The Engineer must satisfy him/herself to the reinforcement detailing requirements of the relevant codes of practice

All dimensions are in mm and all forces are per metre run

Soil 18.00, Concrete 24.00

fcu 30 N/mm², Permissible tensile stress 0.250 N/mm²

Wall inner cover 30 mm, Wall outer cover 30 mm, Base cover 50 mm

fy 500 N/mm² designed to BS 8110: 1997

Surcharge 10.00 kN/m², Fully drained

Front of wall 170 mm

Soil Properties

Bearing pressure

Back Soil Friction and Cohesion

Base Friction and Cohesion

Front Soil Friction and Cohesion

Premissable service pressure @ front 100.00 kN/m², @ back 100.00 kN/m²

$\phi = \text{Atn}(\text{Tan}(30)/1.2) = 25.69^\circ$

$\delta = \text{Atn}(0.75 \times \text{Tan}(\text{Atn}(\text{Tan}(30)/1.2))) = 19.84^\circ$

$\phi = \text{Atn}(\text{Tan}(30)/1.2) = 25.69^\circ$

Loading Cases

G_{Soil} - Soil Self Weight, G_{Wall} - Wall & Base Self Weight, F_{vHeel} - Vertical Loads over Heel,

P_a - Active Earth Pressure, $P_{\text{surcharge}}$ - Earth pressure from surcharge, P_p - Passive Earth Pressure

Case 1: Geotechnical Design

$1.00 G_{\text{Soil}} + 1.00 G_{\text{Wall}} + 1.00 F_{\text{vHeel}} + 1.00 P_a + 1.00 P_{\text{surcharge}} + 1.00 P_p$

Case 2: Structural Ultimate Design

$1.40 G_{\text{Soil}} + 1.40 G_{\text{Wall}} + 1.60 F_{\text{vHeel}} + 1.00 P_a + 1.00 P_{\text{surcharge}} + 1.00 P_p$

Geotechnical Design

Wall Stability - Virtual Back Pressure

Case 1 Overturning/Stabilising 9.588/19.035 0.504 OK

Wall Sliding - Virtual Back Pressure

$F_x/(R_x \text{Friction} + R_x \text{Passive})$ 14.105/(11.048+6.410) 0.808 OK

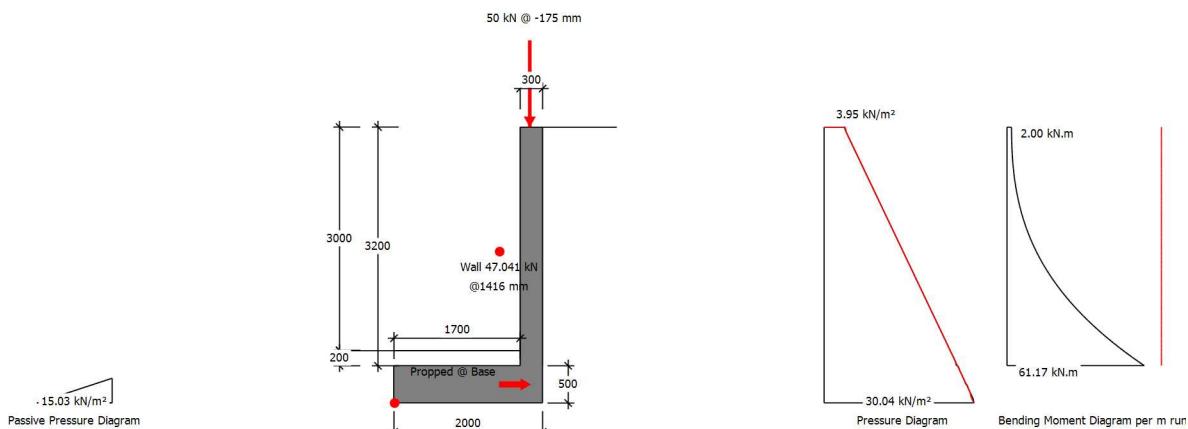
Soil Pressure

Virtual Back 66.144/100 kN/m², Length under pressure 0.926 m 0.661 OK
Wall Back 69.959/100 kN/m², Length under pressure 0.875 m 0.700 OK

Structural Design

Wall Design (Inner Steel)

Critical Section	Critical @ 0 mm from base, Case 2		
Steel Provided (Cover)	Main H10@300 (30 mm) Dist. H10@300 (40 mm)	262 mm ²	OK
Compression Steel Provided (Cover)	Main H10@300 (30 mm) Dist. H10@300 (40 mm)	262 mm ²	
Leverarm z=fn(d,b,As,fy,Fcu)	165 mm, 1000 mm, 262 mm ² , 500 N/mm ² , 30.0 N/mm ²	157 mm	


Alpha Structural Engineers 79, Venice House, Hatton Road, Harrow HA0 1QL		Cloud dd298 Job Ref : Sheet : / Made by : Date : 12 December 2024 / Ver. 2022.13.18 Checked : Approved :
Mr=fn(above,As',d',x,x/d)	262 mm ² , 35 mm, 9 mm, 0.06	17.9 kN.m
Moment Capacity Check (M/Mr)	M 4.9 kN.m, Mr 17.9 kN.m	0.274
Shear Capacity Check	F 9.8 kN, vc 0.454 N/mm ² , Fvr 74.9 kN	0.13
Base Top Steel Design		
Steel Provided (Cover)	Main H10@100 (50 mm) Dist. H10@100 (60 mm)	785 mm ²
Compression Steel Provided (Cover)	Main H10@100 (50 mm) Dist. H10@100 (60 mm)	785 mm ²
Leverarm z=fn(d,b,As,fy,Fcu)	445 mm, 1000 mm, 785 mm ² , 500 N/mm ² , 30 N/mm ²	423 mm
Mr=fn(above,As',d',x,x/d)	785 mm ² , 55 mm, 28 mm, 0.06	144.4 kN.m
Moment Capacity Check (M/Mr)	M 3.2 kN.m, Mr 144.4 kN.m	0.022
Shear Capacity Check	F 14.4 kN, vc 0.367 N/mm ² , Fvr 163.2 kN	0.09
Base Bottom Steel Design		
Steel Provided (Cover)	Main H10@100 (50 mm) Dist. H10@100 (60 mm)	785 mm ²
Compression Steel Provided (Cover)	Main H10@100 (50 mm) Dist. H10@100 (60 mm)	785 mm ²
Leverarm z=fn(d,b,As,fy,Fcu)	445 mm, 1000 mm, 785 mm ² , 500 N/mm ² , 30 N/mm ²	423 mm
Mr=fn(above,As',d',x,x/d)	785 mm ² , 55 mm, 28 mm, 0.06	144.4 kN.m
Moment Capacity Check (M/Mr)	M 3.7 kN.m, Mr 144.4 kN.m	0.026
Shear Capacity Check	F 17.1 kN, vc 0.367 N/mm ² , Fvr 163.2 kN	0.10

Alpha Structural Engineers 79, Venice House, Hatton Road, Harrow HA0 1QL	Cloud dd298 Job Ref : Sheet : / Made by : Date : 12 December 2024 / Ver. 2022.13.18 Checked : Approved :
---	--

MasterKey : Retaining Wall Design to BS 8002 : 1994 and BS 8110 : 1997

MAIN RETAINING WALL- UNDER THE WALL

Reinforced Concrete Retaining Wall with Reinforced Base

Summary of Design Data

Notes

Material Densities (kN/m³)

Concrete grade

Concrete covers (mm)

Reinforcement design

Surcharge and Water Table

Unplanned excavation depth

† The Engineer must satisfy him/herself to the reinforcement detailing requirements of the relevant codes of practice

All dimensions are in mm and all forces are per metre run

Soil 18.00, Concrete 24.00

fcu 30 N/mm², Permissible tensile stress 0.250 N/mm²

Wall inner cover 30 mm, Wall outer cover 30 mm, Base cover 50 mm

fy 500 N/mm² designed to BS 8110: 1997

Surcharge 10.00 kN/m², Fully drained

Front of wall 370 mm

Additional Loads

Wall Propped at Base Level

Therefore no sliding check is required

Vertical Line Load

50 kN/m @ X -175 mm and Y 0 mm - Load type Live

† Dimensions

Ties, line loads and partial loads are measured from the inner top edge of the wall

Soil Properties

Bearing pressure

Premissable service pressure @ front 100.00 kN/m², @ back 100.00 kN/m²

$\alpha = \text{Atn}(\text{Tan}(30)/1.2) = 25.69^\circ$

$\delta = \text{Atn}(0.75 \times \text{Tan}(\text{Atn}(\text{Tan}(30)/1.2))) = 19.84^\circ$

$\phi = \text{Atn}(\text{Tan}(30)/1.2) = 25.69^\circ$

Loading Cases

G_{Wall} - Wall & Base Self Weight, F_{VHeel} - Vertical Loads over Heel, P_a - Active Earth Pressure,

$P_{\text{surcharge}}$ - Earth pressure from surcharge, P_p - Passive Earth Pressure

Case 1: Geotechnical Design

$1.00 G_{\text{Wall}} + 1.00 F_{\text{VHeel}} + 1.00 P_a + 1.00 P_{\text{surcharge}} + 1.00 P_p$

Case 2: Structural Ultimate Design

$1.40 G_{\text{Wall}} + 1.60 F_{\text{VHeel}} + 1.00 P_a + 1.00 P_{\text{surcharge}} + 1.00 P_p$

Geotechnical Design

Wall Stability - Virtual Back Pressure

Case 1 Overturning/Stabilising	87.285/157.876	0.553	OK
--------------------------------	----------------	-------	----

Wall Sliding - Virtual Back Pressure

Fx/(Rx _{Friction} + Rx _{Passive})	0.000/(35.017+2.487)	0.000	OK
Prop Reaction Case 2 (Service)	63.3 kN @ Base		

Soil Pressure

Virtual Back (No uplift)	Max(88.196/100, 8.840/100) kN/m²	0.882	OK
Wall Back (No uplift)	Max(87.621/100, 9.415/100) kN/m²	0.876	OK

Alpha Structural Engineers 79, Venice House, Hatton Road, Harrow HA0 1QL	Cloud dd298 Job Ref : Sheet : / Made by : Date : 12 December 2024 / Ver. 2022.13.18 Checked : Approved :
---	--

Structural Design

Prop Reaction

Maximum Prop Reaction (Ultimate) 63.2 kN @ Base

Wall Design (Inner Steel)

Critical Section	Critical @ 0 mm from base, Case 2		
Steel Provided (Cover)	Main H10@125 (30 mm)	Dist. H10@200 (40 mm)	628 mm ² OK
Compression Steel Provided (Cover)	Main H10@300 (30 mm)	Dist. H10@300 (40 mm)	262 mm ²
Leverarm z=fn(d,b,As,fy,Fcu)	265 mm, 1000 mm, 628 mm ² , 500 N/mm ² , 30.0 N/mm ²	252 mm	
Mr=fn(above,As',d',x,x/d)	262 mm ² , 35 mm, 23 mm, 0.09	68.8 kN.m	
Moment Capacity Check (M/Mr)	M 61.2 kN.m, Mr 68.8 kN.m	0.889	OK
Wall Axial Design (N/Ncap)	N 112.3 kN, Ncap 3600.0 kN	0.031	OK
Wall Slenderness λ	Leff/tk = 2.00x3200.0/300.0	21.3	OK
Kmin = (Nuz-N)/(Nuz-Nbal)	Min(1.0, 4000.0 - 112.3)/(4000.0 - 1687.9)	1.0	
M _{add} =N.Kmin.h.λ ² /2000	112.3x1.0x300.0x21.3 ² /2000	7.6kN.m	
(M+Madd)/Mr _{Axial}	M+Madd 68.8 kN, Mr _{Axial} 83.8 kN.m	0.820	OK
Shear Capacity Check	F 49.0 kN, vc 0.461 N/mm ² , Fvr 122.1 kN	0.40	OK

Base Top Steel Design

Steel Provided (Cover)	Main H10@100 (50 mm)	Dist. H10@100 (60 mm)	785 mm ² OK
Compression Steel Provided (Cover)	Main H10@100 (50 mm)	Dist. H10@100 (60 mm)	785 mm ²
Leverarm z=fn(d,b,As,fy,Fcu)	445 mm, 1000 mm, 785 mm ² , 500 N/mm ² , 30 N/mm ²	423 mm	
Mr=fn(above,As',d',x,x/d)	785 mm ² , 55 mm, 28 mm, 0.06	144.4 kN.m	
Moment Capacity Check (M/Mr)	M 0.0 kN.m, Mr 144.4 kN.m	0.000	OK
Shear Capacity Check	F 0.0 kN, vc 0.367 N/mm ² , Fvr 163.2 kN	0.00	OK

Base Bottom Steel Design

Steel Provided (Cover)	Main H10@100 (50 mm)	Dist. H10@100 (60 mm)	785 mm ² OK
Compression Steel Provided (Cover)	Main H10@100 (50 mm)	Dist. H10@100 (60 mm)	785 mm ²
Leverarm z=fn(d,b,As,fy,Fcu)	445 mm, 1000 mm, 785 mm ² , 500 N/mm ² , 30 N/mm ²	423 mm	
Mr=fn(above,As',d',x,x/d)	785 mm ² , 55 mm, 28 mm, 0.06	144.4 kN.m	
Moment Capacity Check (M/Mr)	M 75.0 kN.m, Mr 144.4 kN.m	0.519	OK
Shear Capacity Check	F 92.9 kN, vc 0.367 N/mm ² , Fvr 163.2 kN	0.57	OK