

12 High Street, Harewood. UB9 6BU

PLANNING COMPLIANCE REPORT

Report 12HS2021-A

Site Address	Report Date	Revision History
12 High Street, Harewood. UB9 6BU	15/05/2022	

CONTENTS

1.0	INTRODUCTION	1
2.0	ENVIRONMENTAL NOISE SURVEY AND EQUIPMENT	1
2.1	Procedure	1
2.2	Equipment	1
3.0	RESULTS	2
4.0	NOISE CRITERIA	2
5.0	DISCUSSION	2
5.1	Objective overview	3
6.0	CONCLUSION	4

List of Attachments

16884.SP1	Indicative Site Plan
16884.TH1	Environmental Noise Time History
Appendix A	Glossary of Acoustic Terminology
Appendix B	Acoustic Calculations
Appendix C	Anti-vibration Specification Reference Document

1.0 INTRODUCTION

KP Acoustics Ltd, Britannia House, 11 Glenthorne Road, London, W6 0LH, has been commissioned by Mrs Rubinder Shergill, 12 High Street, Harewood. UB9 6BU, to undertake an environmental noise survey 12 High Street, Harewood. UB9 6BU. The background noise levels measured will be used to determine daytime and night-time noise emission criteria for an extraction unit installation in agreement with the planning requirements of the Local Authority.

This report presents the overall methodology and results from the environmental survey followed by calculations to demonstrate the feasibility of the extraction unit installation to satisfy the emissions criterion at the closest noise-sensitive receiver and outline mitigation measures as appropriate.

2.0 ENVIRONMENTAL NOISE SURVEY AND EQUIPMENT

2.1 Procedure

Automated noise monitoring was undertaken at the position shown in Site Plan 16884.SP1. The choice of this position was based on security, accessibility and on collecting representative noise data in relation to the nearest noise sensitive receiver relative to the operations on site. The duration of the survey was between 21/03/2022 and 22/03/2022.

Initial inspection of the site revealed that the background noise profile at the monitoring location was largely dominated by road traffic noise from the surrounding roads.

The weather during the course of the survey was generally dry with wind speeds within acceptable tolerances and therefore suitable for the measurement of environmental noise. The measurement procedure complied with ISO 1996-2:2007 Acoustics "*Description, measurement and assessment of environmental noise - Part 2: Determination of environmental noise levels*".

2.2 Equipment

The equipment calibration was verified before and after the survey and no calibration irregularities were observed.

The equipment used was as follows.

- Svantek Type 957 Class 1 Sound Level Meter
- B&K Type 4231 Class 1 Calibrator

3.0 RESULTS

The results from the continuous noise monitoring are shown as a time history of L_{Aeq} , L_{Amax} , L_{A10} and L_{A90} averaged over 5 minute sample periods in Figure 16884.TH1.

Minimum background noise levels are shown in Table 3.1.

Minimum background noise level $L_{A90: 5min} \text{ dB(A)}$	
Daytime (07:00-23:00)	44
Night-time (23:00-07:00)	38

Table 3.1: Minimum measured background noise levels

4.0 NOISE CRITERIA

In order to ensure that the likelihood of complaints from the nearest noise sensitive receiver is minimised, we would propose a criteria of achieving inaudibility at the noise sensitive receiver. In order to achieve this, noise received as a result of the newly installed plant units should not exceed a level 10dB below the measured minimum background $L_{A90:5min}$.

We therefore propose to set the noise criteria as shown in Table 4.1 in order to comply with the above requirement.

	Daytime (07:00 to 23:00)	Night-time (23:00 to 07:00)
Noise criterion at nearest residential receiver (10dB below minimum L_{A90})	34	28

Table 4.1: Proposed Noise Emissions Criteria

As the extraction system will be used during daytime hours only, we would utilise the daytime noise emissions criteria.

5.0 DISCUSSION

The location of the extraction unit is as shown in indicative site plan 16884.SP1. The extraction system is proposed to be installed to the South West wall of the property, with a vertical flue terminating above roof level, and all silencers and fan units located internally. Currently a 630mm silencer with a central 'pod' is proposed to be installed on the outlet path. The closest noise

sensitive receivers to this location are the rear bedroom windows of the first floor apartment at a minimum distance of 5m.

It is understood that the installation comprises the following units:

- 1 no. Elta axial fan unit SCPP500/4-1

The sound power levels as provided by the manufacturer for the units are shown in Table 5.1.

Unit	Sound Power Level (dB) in each Frequency Band							
	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz
Elta axial fan unit outlet SCPP500/4-1	76	76	82	79	79	77	73	67

Table 5.1 Manufacturers Sound Power Level

5.1 Objective overview

Taking all acoustic corrections into consideration, including distance and screening corrections, the noise levels expected at the closest residential window would be as shown in Table 5.2. Detailed calculations are shown in Appendix B.

Receiver - Nearest Noise Sensitive Window	Criterion	Noise Level at Front Receiver
Operating hours	34 dB(A)	33 dB(A)

Table 5.2: Predicted noise levels and criterion at nearest noise sensitive location

As shown in Appendix B and Table 5.2, transmission of noise to the nearest sensitive windows due to the effects of the plant installation fully satisfies the emissions criteria set, provided that the 630mm silencer is installed as proposed.

It is the professional opinion of KP Acoustics that this level is not going to pose any negative impact on the amenity of nearby residential receivers. Furthermore, the value of 33dB(A) is to be considered outside of the building. Windows may be closed or partially closed leading to further attenuation, as follows.

Further calculations have been undertaken to assess whether the noise emissions from the proposed unit installation would be expected to meet the recognised British Standard recommendations, in order to further ensure the amenity of nearby noise sensitive receivers.

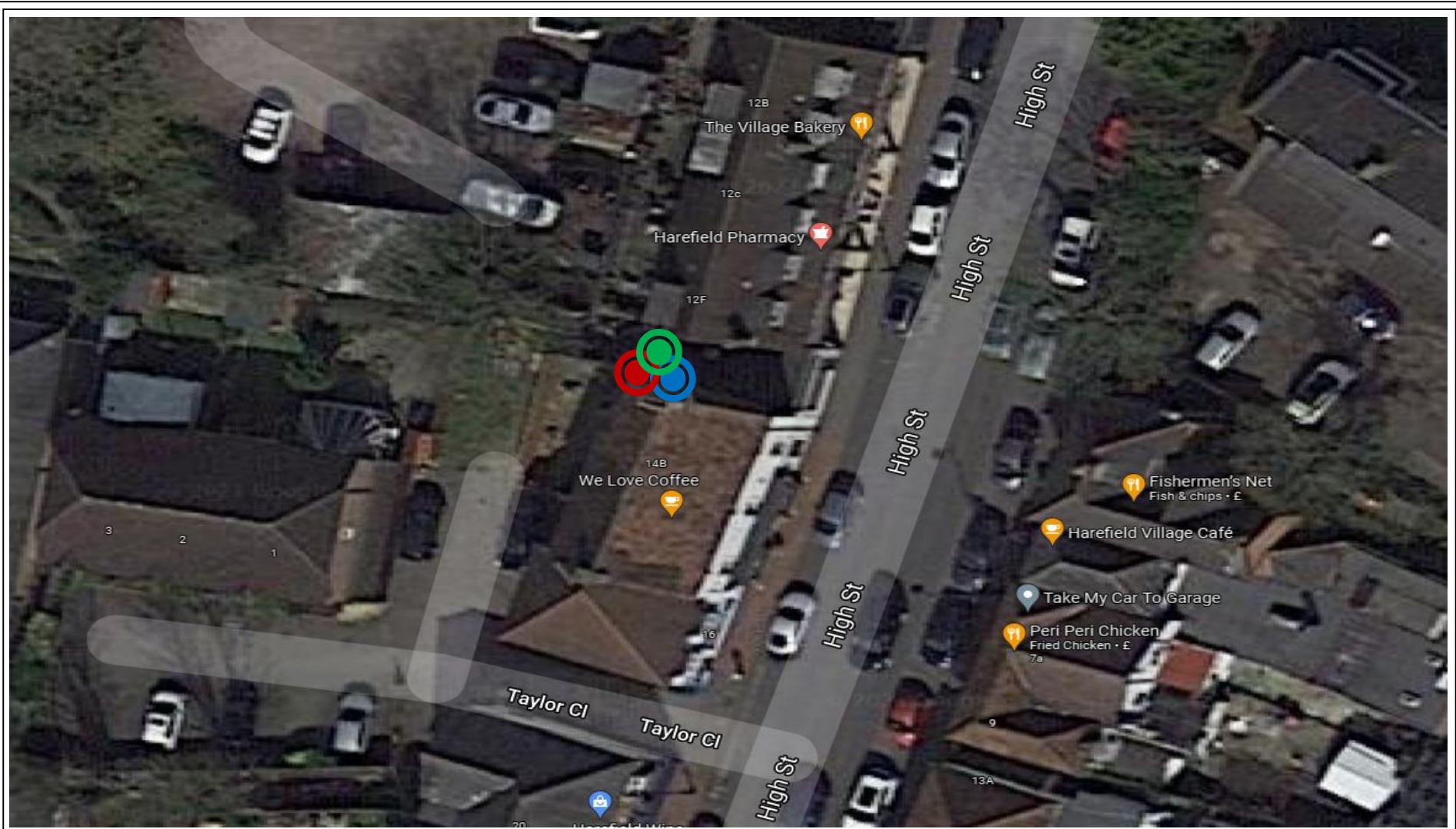
British Standard 8233:2014 '*Sound insulation and noise reduction for buildings – Code of Practise*' gives recommendations for acceptable internal noise levels in residential properties. Assuming

worst case conditions, of the closest window being for a bedroom, BS8233:2014 recommends 30-35dB(A) for internal resting/sleeping conditions during night-time and daytime respectively.

With calculated external levels of 33dB(A), the residential window would not need to provide any additional attenuation, in order for recommended conditions to be achieved. According to BS8233:2014, even a partially open window offers 10-15dB attenuation, thus leading to an acceptable interior noise level that meets the criterion.

Receiver	Design Range – <i>For resting/sleeping conditions in a bedroom, in BS8233:2014</i>	Noise Level at Receiver (due to plant installation)
Inside Nearest Residential Space	30-35 dB(A)	23 dB(A)

Table 5.3: Noise levels and criteria inside nearest residential space


Predicted levels are shown in Table 5.3, with detailed calculations shown in Appendix B. It can therefore be stated that, as well as complying with the noise emissions criterion, the emissions from the plant unit installation would be expected to comfortably meet the most stringent recommendations of the relevant British Standard, even with neighbouring windows partially open.

6.0 CONCLUSION

An environmental noise impact survey has been undertaken at 12 High Street, Harewood. UB9 6BU, by KP Acoustics Ltd between 21/03/2022 and 22/03/2022. The results of the survey have enabled criteria to be set for noise emissions. Using manufacturer noise data, noise levels are predicted at the nearby noise sensitive receivers for compliance with current requirements.

Calculations show that noise emissions from the proposed unit installations would meet the criteria of inaudibility as proposed.

Further calculations have been undertaken with regards to the relevant British Standard and it has been ensured that the amenity of nearby residential receivers will be protected.

Title: Indicative site plan showing noise monitoring position

Noise Survey Monitoring Position

Noise sensitive receiver

Plant unit position

Date: 25/11/2021

FIGURE 16884.SP1

12 High Street, Harewood. UB9 6BU
Environmental Noise Time History
21st November to 22nd November 2021

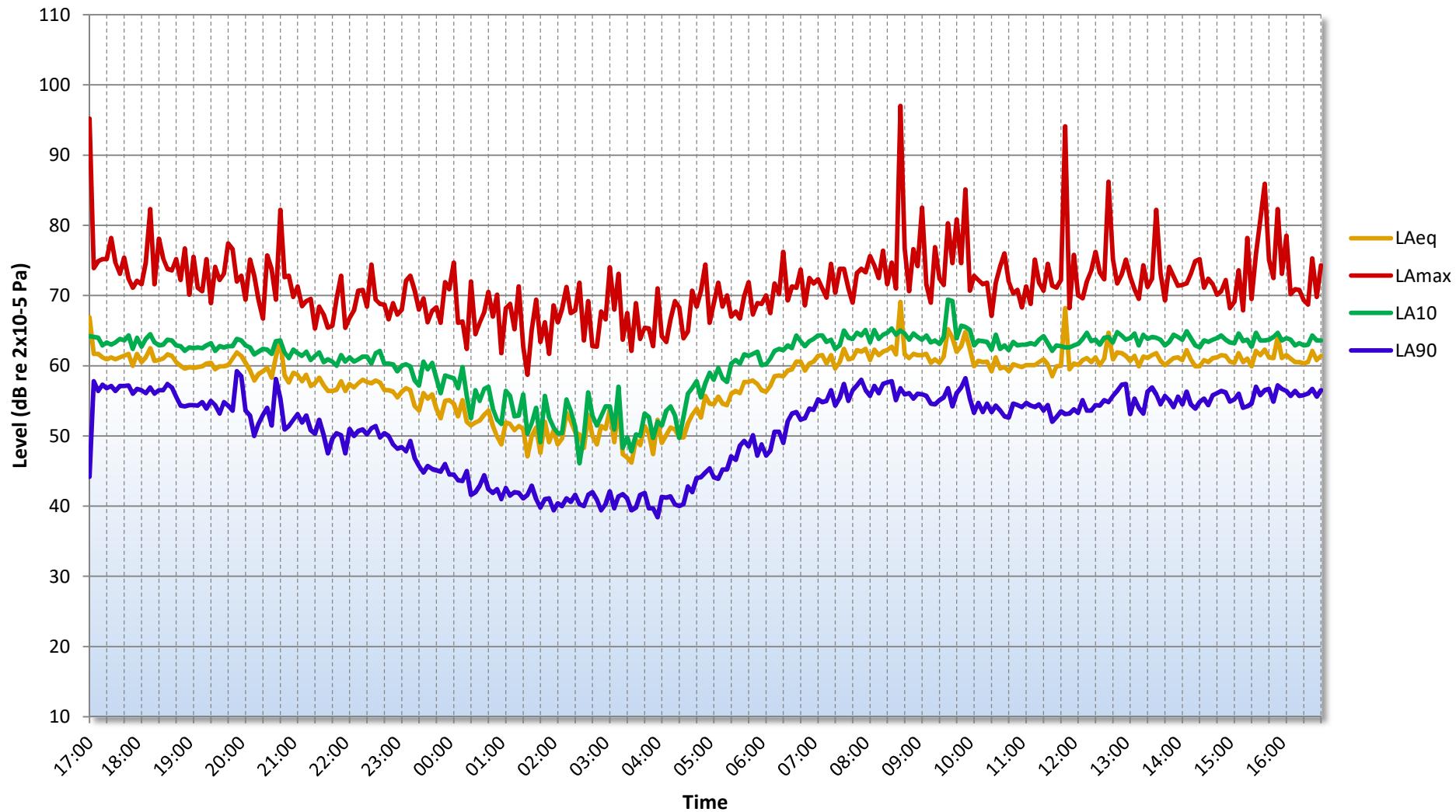


Figure 16884.TH1

APPENDIX A

GENERAL ACOUSTIC TERMINOLOGY

Decibel scale - dB

In practice, when sound intensity or sound pressure is measured, a logarithmic scale is used in which the unit is the 'decibel', dB. This is derived from the human auditory system, where the dynamic range of human hearing is so large, in the order of 10^{13} units, that only a logarithmic scale is the sensible solution for displaying such a range.

Decibel scale, 'A' weighted - dB(A)

The human ear is less sensitive at frequency extremes, below 125Hz and above 16Khz. A sound level meter models the ears variable sensitivity to sound at different frequencies. This is achieved by building a filter into the Sound Level Meter with a similar frequency response to that of the ear, an A-weighted filter where the unit is dB(A).

L_{eq}

The sound from noise sources often fluctuates widely during a given period of time. An average value can be measured, the equivalent sound pressure level L_{eq} . The L_{eq} is the equivalent sound level which would deliver the same sound energy as the actual fluctuating sound measured in the same time period.

L_{10}

This is the level exceeded for no more than 10% of the time. This parameter is often used as a "not to exceed" criterion for noise.

L_{90}

This is the level exceeded for no more than 90% of the time. This parameter is often used as a descriptor of "background noise" for environmental impact studies.

L_{max}

This is the maximum sound pressure level that has been measured over a period.

Octave Bands

In order to completely determine the composition of a sound it is necessary to determine the sound level at each frequency individually. Usually, values are stated in octave bands. The audible frequency region is divided into 11 such octave bands whose centre frequencies are defined in accordance with international standards. These centre frequencies are: 16, 31.5, 63, 125, 250, 500, 1000, 2000, 4000, 8000 and 16000 Hertz.

Environmental noise terms are defined in BS7445, *Description and Measurement of Environmental Noise*.

APPENDIX A

APPLIED ACOUSTIC TERMINOLOGY

Addition of noise from several sources

Noise from different sound sources combines to produce a sound level higher than that from any individual source. Two equally intense sound sources operating together produce a sound level which is 3dB higher than a single source and 4 sources produce a 6dB higher sound level.

Attenuation by distance

Sound which propagates from a point source in free air attenuates by 6dB for each doubling of distance from the noise source. Sound energy from line sources (e.g. stream of cars) drops off by 3dB for each doubling of distance.

Subjective impression of noise

Hearing perception is highly individualised. Sensitivity to noise also depends on frequency content, time of occurrence, duration of sound and psychological factors such as emotion and expectations. The following table is a guide to explain increases or decreases in sound levels for many scenarios.

Change in sound level (dB)	Change in perceived loudness
1	Imperceptible
3	Just barely perceptible
6	Clearly noticeable
10	About twice as loud

Transmission path(s)

The transmission path is the path the sound takes from the source to the receiver. Where multiple paths exist in parallel, the reduction in each path should be calculated and summed at the receiving point. Outdoor barriers can block transmission paths, for example traffic noise. The effectiveness of barriers is dependent on factors such as its distance from the noise source and the receiver, its height and construction.

Ground-borne vibration

In addition to airborne noise levels caused by transportation, construction, and industrial sources there is also the generation of ground-borne vibration to consider. This can lead to structure-borne noise, perceptible vibration, or in rare cases, building damage.

Sound insulation - Absorption within porous materials

Upon encountering a porous material, sound energy is absorbed. Porous materials which are intended to absorb sound are known as absorbents, and usually absorb 50 to 90% of the energy and are frequency dependent. Some are designed to absorb low frequencies, some for high frequencies and more exotic designs being able to absorb very wide ranges of frequencies. The energy is converted into both mechanical movement and heat within the material; both the stiffness and mass of panels affect the sound insulation performance.

APPENDIX B

12 High Street, Harewood. UB9 6BU

Extract Unit Emissions Calculations

Source: Extraction Unit Receiver: Closest Residential Receiver	Frequency, Hz								dB(A)
	63	125	250	500	1k	2k	4k	8k	
Manufacturers Sound Power Level									
Elta axial fan unit outlet SCPP500/4-1	76	76	82	79	79	77	73	67	
Attenuation provided by duct bends (1 no.)	-1	-1	-8	-5	-3	-3	-3	-3	
Attenuation provided by directivity	-1	-1	-3	-6	-9	-8	-8	-8	
Attenuation provided by distance to receiver (min. 5m)	-14	-14	-14	-14	-14	-14	-14	-14	
Attenuation provided by silencer (630mm w/ Pod)	-3	-5	-9	-18	-25	-22	-18	-13	
Conversion to Sound Pressure Level at 1m	-11	-11	-11	-11	-11	-11	-11	-11	
Sound pressure level 1m from nearest residential receiver	46	44	38	25	18	19	19	18	33

Design Criterion

34

Receiver: Inside Nearest Residential Window

APPENDIX C

ANTI-VIBRATION MOUNTING SPECIFICATION REFERENCE DOCUMENT

1.0 General

- 1.1 All mountings shall provide the static deflection, under the equipment weight, shown in the schedules. Mounting selection should allow for any eccentric load distribution or torque reaction, so that the design deflection is achieved on all mountings under the equipment, under operating conditions.
- 1.2 It is the supplier's responsibility to ensure that all mountings offered are suitable for the loads, operating and environmental conditions which will prevail. Particular attention should be paid to mountings which will be exposed to atmospheric conditions to prevent corrosion.
- 1.3 All mountings shall be colour coded, or otherwise marked, to indicate their load capacity, to facilitate identification during installation.

Where use of resilient supports allows omission of pipe flexible connections for vibration/noise isolation, it shall be the Mechanical Service Consultant's or Contractor's responsibility to decide whether such devices are required to compensate for misalignment or thermal strain.

2.1 Type A Mounting (Caged Spring Type)

- 2.1.1 Each mounting shall consist of cast or fabricated telescopic top and bottom housings enclosing one or more helical steel springs as the principle isolation elements, and shall incorporate a built-in levelling device. The housing should be designed to permit visual inspection of the springs after installation, i.e. the spring must not be totally enclosed.
- 2.1.2 The springs shall have an outside diameter of not less than 75% of the operating height, and be selected to have at least 50% overload capacity before becoming coil-bound.
- 2.1.3 The bottom plate of each mounting shall have bonded to it a rubber/neoprene pad designed to attenuate any high frequency energy transmitted by the springs.
- 2.1.4 Mountings incorporating snubbers or restraining devices shall be designed so that the snubbing, damping or restraining mechanism is capable of being adjusted to have no significant effect during the normal running of the isolated machine.
- 2.1.5 All nuts, bolts or other elements used for adjustment of a mounting shall incorporate locking mechanisms to prevent the isolator going out of adjustment as a result of vibration or accidental or unauthorised tampering.

2.2 Type B Mounting (Open Spring Type)

- 2.2.1 Each mounting shall consist of one or more helical steel springs as the principal isolation elements, and shall incorporate a built-in levelling device.
- 2.2.2 The springs shall be fixed or otherwise securely located to cast or fabricated top and bottom plates, shall have an outside diameter of not less than 75% of the operating height, and shall be selected to have at least 50% overload capacity before becoming coil-bound.
- 2.2.3 The bottom plate shall have bonded to it a rubber/ neoprene pad designed to attenuate any high frequency energy transmitted by the springs.

APPENDIX C

2.3 Type C Mounting (Rubber/Neoprene Type)

Each mounting shall consist of a steel top plate and base plate completely embedded in oil resistant rubber/neoprene. Each mounting shall be capable of being fitted with a levelling device, and should have bolt holes in the base plate and a threaded metal insert in the top plate so that they can be bolted to the floor and equipment where required.

3.0 Plant Bases

3.1 Type A Bases (A.V. Rails)

An A.V. Rail shall comprise a steel beam with two or more height-saving brackets. The steel sections must be sufficiently rigid to prevent undue strain in the equipment and if necessary should be checked by the Structural Engineer.

3.2 Type B Bases (Steel Plant Bases)

Steel plant bases shall comprise an all-welded steel framework of sufficient rigidity to provide adequate support for the equipment, and fitted with isolator height saving brackets. The frame depth shall be approximately 1/10 of the longest dimension of the equipment with a minimum of 150 mm. This form of base may be used as a composite A.V. rail system.

3.3 Type C Bases (Concrete Inertia Base: for use with steel springs)

These shall consist of an all-welded steel pouring frame-work with height saving brackets, and a frame depth of approximately 1/12 of the longest dimension of the equipment, with a minimum of 100 mm. The bottom of the pouring frame should be blanked off, and concrete (2300 kg/m³) poured in over steel reinforcing rods positioned 35 mm above the bottom. The inertia base should be sufficiently large to provide support for all parts of the equipment, including any components which over-hang the equipment base, such as suction and discharge elbows on centrifugal pumps.