APPENDIX 8.6

SUBSURFACE ASBESTOS REPORT

engineers | scientists | innovators

Subsurface Asbestos Investigation: Main Building Undercroft & South-Eastern Surrounding Area

Nestlé Hayes, Middlesex

Prepared for

Nestlé UK Ltd

Prepared by

Geosyntec Consultants Ltd. 1st Floor, Gatehead Business Park, Delph New Road Delph, Oldham OL3 5DE

Project Number GCU0124025

July 2014

Project Title: Subsurface Asbestos Investigation: Main Building Undercroft &

South-Eastern Surrounding Area

Project No: GCU0124025

Report Ref: GCU0124025 Draft Report

Status: Draft (Private & Confidential)

Client: Nestlé UK Ltd

1 City Place Gatwick RH6 0PA

Issued By: Geosyntec Consultants Ltd

1st Floor Gatehead Business Park

Delph New Road

Delph

Oldham, OL3 5DE

Document Production / Approval Record (final documents only)

	Name	Signature	Date	Position
Prepared by	Andrew Morgan		July 2014	Project Manager
Reviewed & Approved by	Mark Harris		July 2014	Project Director

LIMITATION

Geosyntec Consultants Ltd (Geosyntec) has prepared this report for the sole use of Alps Group Ltd and Nestlé UK Ltd in accordance with the Agreement under which our services were performed. No other warranty, express or implied, is made as to the professional advice included in this report or any other services provided by us. This report may not be relied upon by any other party without the prior and express written agreement of Geosyntec, which will not be unreasonably withheld.

Unless otherwise stated in this report, the assessments made assume that the site and facilities will continue to be used for their current purpose without significant change. The conclusions and recommendations contained in this report are based upon information provided by others and upon the assumption that all relevant information has been provided by those parties from whom it has been requested. Information obtained from third parties has not been independently verified by Geosyntec, unless otherwise stated in the report.

Where assessments of works or costs required to reduce or mitigate any environmental liability identified in this report are made, such assessments are based upon the information available at the time and may be subject to further investigations or information which may become available. It is therefore possible that cost estimates, where provided, may vary outside stated ranges. Where assessments of works or costs necessary to achieve compliance have been made these are based upon measures which, in Geosyntec's experience could normally be negotiated with the relevant authorities under present legislation and enforcement practice, assuming a pro-active and reasonable approach by site management.

COPYRIGHT

© This Report is the copyright of Geosyntec Consultants Ltd. Any unauthorised reproduction or usage by any person other than the addressee is strictly prohibited.

TABLE OF CONTENTS

1	GEN	ERAL I	NTRODUCTION	1
	1.1	Introd	duction & Objective	1
	1.2	-	ct Background & Current Understanding	
	1.3	Scope	e of Works	1
2	INVE	ESTIGA	TION WORKS	3
	2.1	Deve	lopment and Refinement of the Scope of Works & Preliminaries	3
	2.2	Site V	Work	
		2.2.1	Window Sampling Locations & Sampling Depths	4
		2.2.2	Personal Verification and Re-Assurance Monitoring	
		2.2.3	Sample Collection and Scheduling of Analysis	5
3	INVE	ESTIGA	TION RESULTS	6
	3.1	Re-E	valuated Extent of Undercroft & Identified Characteristics	6
	3.2	Labo	ratory Results	7
		3.2.1	ACM Analysis	7
		3.2.2	Waste Classification Analysis and Other Contaminants	
		3.2.3	ACM Soil Surface Analysis: Bardon Environmental	9
4	DISC	USSIO	N OF RESULTS	9
	4.1	Unde	ercroft Locations (U1-U23)	9
	4.2	Exter	rnal SE Main Building Locations (WS101-WS105)	10
FIGU	RES			
Figure	e 1:	Mair	n Building Plan and Undercroft Investigation Area	
Figure	e 2:	Inves	stigation Area: Key Characteristics	
Figure	e 3:	Initia	al Window Sampling & Coring Locations	
Figure	e 4 :	Com	plete Window Sample Investigation Array	
Figure	e 5:	Revi	sed Undercroft Extent Drawing	
Figure	e 6:	Initia	al Asbestos Identification Results	
Figure	e 7:	Und	ercroft and Asbestos Summary Section	
Figure	e 8:	Eleva	ation and Asbestos Summary Section	
APPE	NDIC	ES		
Apper	ndix A	:	Photographs of Drilling Methodology	
Apper	ndix B:	•	External Window Sample Geological Logs (WS101-WS015)	
Apper			Personal and Reassurance Verification Monitoring Certificates	
Apper			Laboratory Certificates	

1 GENERAL INTRODUCTION

1.1 Introduction & Objective

Geosyntec Consultants Ltd (Geosyntec) was retained by Nestlé UK Ltd (Nestlé) to conduct a subsurface investigation of the Undercroft that is present below the eastern part of the Main Building, as shown on **Figure 1**. This investigation was carried out to evaluate the potential presence of Asbestos Containing Materials (ACM) within the subsurface soils and to complement the findings of a Refurbishment and Demolition (R&D) Asbestos Survey of the Undercroft void that was performed by Bardon Environmental (Bardon) at the same time.

This focus of this investigation was to better understand the vertical and lateral extent of ACM within the subsurface soils and it comprised of two distinct stages of work, as described below:

- Stage 1 The area of the Undercroft beneath the Main Building;
- > Stage 2 Outside the south-eastern (SE) corner of the Main Building, plus two infill locations within the Undercroft.

This report presents the findings of both stages of investigation.

1.2 Project Background & Current Understanding

Nestlé commissioned Geosyntec to undertake an intrusive investigation to understand the potential for and the scale of potential liabilities associated with asbestos contamination in soils within the Undercroft.

This requirement arose from a programme of work which was carried out in 2007 to construct a new ramp into the eastern side of the Main Building. As part of the work, an asbestos survey of the void below the ground floor in the vicinity of the ramp encountered ACM lagging on pipes which had deteriorated with ACM debris having fallen to the Undercroft surface (which is open ground rather than hard standing). It was also reported that the Undercroft soils may have become impregnated with ACM down to 0.75-1m below the Undercroft surface, because it is non-surfaced ground at this level.

For the Stage 1 investigation, Nestlé commissioned Bardon to perform a R&D asbestos survey within the Undercroft void from the underside of the Main Building floor slab to the surface of the soil, including the lumps of asbestos that have fallen onto the soil surface. Geosyntec's intrusive investigation was focussed on the soils within the Undercroft, from the soil surface down to typically 1m below the soil surface.

From the results of the Stage 1 investigation it was concluded that the Stage 2 investigation outside the SE corner of the Main Building was required to further assess the potential extent of ACM impacted soils in this area.

1.3 Scope of Works

The scope of works related to the Undercroft soils investigation was carried out in two separate stages. The first stage focused on the area of the Undercroft within the eastern part of the Main Building, and the second stage focused on the area outside the SE corner of the Main Building. Both stages of investigation have been summarised below:

Stage 1 - The area of the Undercroft

The tasks carried out for Stage 1 of the investigation are as follows:

> Task 1: Development and Refinement of the Scope of Works

- a) Site meeting with Nestlé management and Bardon to select the preferred and alternative access points into the Undercroft;
- b) Development of the window sampling methodology for the soils within the Undercroft which has to be adapted to account for drilling from the surface of the ground floor within the Main Building via a void space whilst protecting workers from the potential presence of air-borne asbestos fibres;
- c) Day-to-day sequencing of the whole work programme based on the window sampling technique;
- d) Detailing of the refined scope of works to Nestlé and Bardon;
- e) Asbestos-related training and PPE requirements for the drilling operatives; and
- f) Clarification of the optimum laboratory analytical testing methods for asbestos.

> Task 2: Preliminaries

- a) Preparation of method statements and risk assessment's to accurately appraise this bespoke drilling technique and ensure potential risks are adequately mitigated;
- b) Place orders with suppliers and subcontractors; and
- c) Provide hydraulic manhole lifter to Nestlé to gain access through the selected manhole covers.

> Task 3: Sampling of Undercroft Soils

- a) Concrete coring of Main Building floor at 25 locations;
- b) Window sampling of soils at 21 locations;
- c) Collection and preparation of recovered soil cores for transportation;
- d) Sub-sampling of soil cores and phased laboratory analysis; and
- e) Personal verification/re-assurance monitoring.

Task 4: Data Assessment and Reporting

- a) Interpretation of the lateral and vertical extent of the Undercroft;
- b) Evaluation of the lateral and depth extent of ACM in the subsurface soils; and
- c) Discussion on additional key observations recorded during the investigation.

Following completion of Tasks 1-4 above, it was concluded that a potential 'hotspot' of asbestos was present within the SE corner of the Main Building centred on investigation locations U1, U2 and U3 (See Section 3.2). These results indicated there may be an additional potential source of asbestos contamination outside the SE corner of the Main Building footprint. Therefore, an additional stage of investigation work was devised to provide a greater level of understanding of the potential presence of asbestos in subsurface soil around the SE corner of the building.

A secondary aim of the Stage 2 investigation was to retrieve soil samples for asbestos analysis from an area within the Undercroft that Bardon had been unable to access due to surface water flooding during their R&D asbestos survey of the Undercroft void.

<u>Stage 2 - The area outside the SE corner of the Main Building, plus two infill locations</u> within the Undercroft

The second stage of investigation included the following work elements.

Task 6 - Updated Preliminaries:

- a) Updated method statements and risk assessments for the drilling methods to be used; and
- b) Liaison with suppliers and subcontractors.

Task 7 - Drilling and Sampling of Subsurface Soils:

- a) Concrete coring of 5 locations outside of the SE corner of the Main Building;
- b) Window sampling of 7 locations 5 outside and 2 within the Main Building;
- c) Sub-sampling of soil cores and phased laboratory analysis; and
- d) Personal verification/re-assurance monitoring.

> Task 8: Revised Data Assessment and Reporting

a) Interpretation and reporting on the lateral and vertical extent of ACM soils within the Undercroft and in the external SE corner of the Main Building.

2 INVESTIGATION WORKS

2.1 Development and Refinement of the Scope of Works & Preliminaries

During a site walkover with both Nestlé and Bardon representatives on 14th February 2014 it was decided that access through the floor of the Main Building at six locations via removable manhole covers would be sufficient to achieve reasonable coverage of the Undercroft area. These locations would be accessed through purpose built asbestos enclosures erected by Bardon with drilling operatives adhering to the procedures and decontamination processes instructed by Bardon. These locations are illustrated on **Figure 2**.

Allowance was also made for soil sampling using hand-held window sampling equipment at 20 locations. These locations were advanced by concrete coring through the Main Building floor with subsequent window sampling proceeding with no asbestos enclosure present but with alternative protective measures being employed to mitigate against the potential release of air borne fibres from the Undercroft into the Main Building. The locations of the cored holes were chosen based upon the visual assessment and surveying information that was provided by Bardon on a daily basis, particularly to avoid services that Bardon observed during their survey.

Method statements and risk assessments were developed for the aforementioned procedures. As site works progressed it was acknowledged by all parties that window sampling through the open manholes within the asbestos enclosures would be relatively time consuming and provide little additional benefit compared to the alternative technique of concrete coring and follow-on drilling. Therefore, the sampling of underlying soils through the open manholes within the asbestos enclosures was substituted with additional sample locations through concrete core holes.

Prior to commencement of the drilling works field operatives completed the Bardon non-licensed asbestos awareness and management training course. Additionally, field personnel also passed face fit tests for their individual respirator protection equipment.

The second stage of investigation works comprised 5 boreholes in external locations around the SE corner of the Main Building. These boreholes were advanced initially by coring through the concrete hardstanding, then by Geotool GTR790 window sampling rig, as previously adopted within our site-wide Phase 2 investigations¹. For the 2 locations within the Main Building, the hand-held window sampling equipment was used following the same procedures as those completed for the earlier stage of this investigation.

2.2 Site Work

2.2.1 Window Sampling Locations & Sampling Depths

The first stage of the investigation works were completed over a two week period between 25th March and 4th April 2014 with the follow-on investigation works being completed between 2nd and 3rd July 2014.

During the first stage, a total of 21 window sample locations (U1-21) were drilled across the area and an additional 4 locations were cored to only penetrate the Main Building floor slab (C1-4) to investigate the extent of the Undercroft void and an area of flooding reported by Bardon. The distribution of these 25 investigation locations was based on the following:

- i. To provide good coverage across the Undercroft investigation area;
- ii. To utilise information from Bardon as they progressed their R&D asbestos survey of the Undercroft void;
- iii. To take into account other site constraints including forklift truck access routes and subsurface utility corridors; and
- iv. To limit (where possible) any identified uncertainties which arise as investigation observations were progressively reviewed.

Figure 2 illustrates the key site characteristics within the Main Building across the Undercroft working area and **Figure 3** presents the initial investigation locations. Photo Plate 1, included as **Appendix A**, illustrates the investigation methodology adopted within the Main Building.

All of the window sample locations through the Undercroft were designed to target the upper one metre of the Undercroft soil profile. This depth of investigation was based on the 2007 ramp construction works during which a sample indicated ACM impacted material at a depth of 0.75m below surface level.

The second stage of investigation works involved taking soil cores at locations C1 and C2 (**Figure 3**), which have subsequently been renamed as U22 and U23. In addition, 5 further window sample locations were drilled outside of the main building to a maximum of 2 metres below ground level (or earlier refusal). **Figure 4** illustrates the complete investigation window sample array.

At all inside and outside locations, the window sampling tube was driven to the target depth or until earlier refusal was reached. The total length of recovered soil core was often

¹ Geosyntec report entitled "Phase 2 Environmental Assessment of the Nestlé Site in Hayes, Middlesex (Final). Project Number: GCU0124024. Dated: June 2014.

less than the total depth of penetration due to compaction within the soil core that was caused by the energy imparted by the window sampler to penetrate the soil profile. For this reason, it has been necessary to interpret the soil profile from the recovered soil core lengths.

2.2.2 Personal Verification and Re-Assurance Monitoring

A programme of personal and re-assurance monitoring for asbestos fibres was commissioned over the two phases of investigation to assess the efficacy of the protective measures that were implemented to mitigate against the risk for potential release of air borne fibres during Geosyntec's site work activities within the Main Building. This monitoring comprised the use of personal sampling units adjacent the wearer's nose and mouth to assess the exposure of the individual, and static sampling to establish ambient airborne fibre levels during or post work activities. This monitoring was performed by an independent asbestos analyst (Tersus) on a daily basis. A copy of the test certificates have been provided within **Appendix C**.

All re-assurance monitoring results were below <0.01 fibres/ml (f/ml) which is the criterion for re-occupation of an area following asbestos removal work. All personal monitoring results were <0.08 fibres/ml and validated the implemented methodology as successful in minimising potential exposure to airborne fibres.

2.2.3 Sample Collection and Scheduling of Analysis

It was decided that onsite soil sample handling of the internal Undercroft soils represented an additional exposure risk which could be avoided by direct transportation of the soil core, within its plastic recovery liner, to the laboratory for sub-sampling within a negative pressure fume cupboard.

Both ends of the recovered soil core/liner was packed with tissue to minimise potential movement of the soils within the liner during transportation, then it was further sealed with top and bottom caps. The liner was labelled and then placed within a strong cardboard tube for additional protection, which was also sealed at the top and bottom and labelled. Finally the tube was placed and sealed within a red asbestos labelled bag and then wrapped within a secondary clear asbestos awareness bag ready for collection by the courier.

The laboratory was instructed to recover sub-samples from the soil core based on specific measurements along the length of the recovered soil core. For the reasons discussed in Section 2.2.1 above, it should be noted that the soil sample depth intervals shown on the laboratory reports (**Appendix D**) are the measurements along the recovered soil core, and the depths included within the figures and discussed in sections of this report are relative to the top of the soil surface within the Undercroft (metres below Undercroft level – mbul).

Soil collected from the locations outside of the Main Building was sub-sampled onsite and separated into the correct laboratory containers prior to transportation to the laboratory; therefore depths on the laboratory certificates for these samples represent actual depths below ground level.

From the 28 window sample locations (23 inside and 5 outside the Main Building), a total of 88 soil samples were scheduled for asbestos identification screening analysis. This initial analysis indicates the absence or presence of asbestos within the sample, along with the type of asbestos and reporting of whether the asbestos was either present at trace² (typically

² If asbestos fibres are reported at trace levels there will not be enough fibres to quantify and is inferred by the laboratory to be less than 0.001%.

<0.001%) concentrations or a quantifiable level. Samples within the upper 0.2mbul from each of the investigation locations were usually scheduled for analysis. The testing of deeper samples was also scheduled for the following reasons:

- Field observations of suspected ACM;
- Significant changes in ground composition; and
- Sampling of the base of boreholes for validation purposes.

Following review of the asbestos identification results, subsequent asbestos quantification analysis was undertaken on seven samples which were indicated to contain quantifiable ACM concentrations at levels equal to or greater than the 0.001% threshold. In addition, Waste Acceptance Criteria (WAC) analysis was also completed on ten samples for the purpose of classifying the waste, in case a decision is made to remove the ACM impacted soil from site to licensed landfill.

Additional soil samples were collected by Bardon from the upper 50mm of the surface. Analytical results from these surface soil samples were made available to complement the Geosyntec data. The Bardon surface soil samples locations are illustrated on **Figures 5 and 6.**

3 INVESTIGATION RESULTS

3.1 Re-Evaluated Extent of Undercroft & Identified Characteristics

Based on anecdotal information provided by Nestlé it was inferred that the Undercroft void extended beneath the eastern portion of the Main Building, to the northern and southern extent of the building, as illustrated on **Figure 1**. Based on these assumptions the calculated area of the Undercroft would be approximately 10,200m².

Following completion of the 25 intrusive locations within the Main Building it was observed that the Undercroft does not extend across the entire envisaged area, as illustrated by **Figure** 5. Locations U5, U6, U7, U8, U20 and U21 all located with the northern half of the investigation area were found to have no Undercroft void, with Made Ground encountered directly beneath the Main Building floor slab. Similarly the additional C3 and C4 cored locations confirmed the absence of void which supports the assumption that the likely extent of Undercroft runs along column line "L" in a westerly direction.

In addition, the external window sample locations positioned around the SE corner on the Main Building confirmed that the void does not extend outside of the building footprint in this direction. Based upon the re-evaluated inferred extent of the Undercroft the total surface area is reduced from the original estimate of 10,200m² to 6,000m².

Figures 5 & 7 illustrates the depth from the Main Building floor level to the top of the Undercroft soil surface. In general, the void height increases from approximately 0.9m at the western extremity (also referred to as the rear elevation) to approximately 1.6m along the eastern boundary (also referred to as the front elevation). If an average Undercroft void thickness of 1m is assumed between column lines H and L and a 1.5m void thickness between column lines A and H the approximate Undercroft void space would be 7,500m³.

Figure 8 illustrates the cross-section through the SE corner of the Main Building which indicates that Undercroft soil surface is approximately level with the ground level outside.

During their asbestos survey of the Undercroft area, Bardon identified three pipe runs with asbestos insulation. Window sample locations U11, U13, U15, U17 and U18 were all located in relatively close proximity to these sources of asbestos as illustrated on **Figures 5 & 7**.

During the first stage of this investigation, standing water was observed in two separate areas of the Undercroft:

- ➤ The area in the vicinity of U3, U16 and U15 During the R&D asbestos survey of the area (25th March 2014) Bardon noted that this area was flooded consequently access for their survey was restricted. During coring of C1 and C2 locations (2nd April 2014) and window sampling (2nd July 2014) no free standing water was observed although the surface soils were wet on each occasion;
- Access hatch 5 (**Figure 2**) The evening prior to entry into this access point, conditions were observed to be dry. The following morning, standing water was observed within the Undercroft at this location.

The standing water at both locations is not considered to be related to changes in groundwater table elevation. Prior to, and during, the first stage of the Undercroft investigation, no significant rainfall event occurred. It is considered likely, that in both situations, nearby process water lines could have leaked and produced the localised ponding of water. The soil in the cores from C1 & C2 (U22 & U23) locations were observed to be relatively dry with the deeper clay deposits appearing dry to friable in places.

Due to the project specific requirement of retaining the Undercroft soil cores within the plastic liners to mitigate potential health and safety risks associated with the presence of asbestos fibres (as discussed in Section 2.2.3), detailed soil descriptions could not be prepared. However, visual observations of the recovered soil cores through the plastic liner were undertaken onsite and the apparent Made Ground/Superficial deposits interface was recorded and illustrated on **Figure 7**.

Geological logs for the external window sample locations (WS101-WS105) have been prepared and included within **Appendix B.**

3.2 Laboratory Results

3.2.1 ACM Analysis

As discussed in Section 2.2.3, 88 samples where initially scheduled for asbestos screening. Qualitative analysis indicated that 72 of the samples reported "no asbestos detectable", with 9 samples recording "trace" levels of asbestos and the remaining 7 samples reporting "quantifiable" levels of asbestos. Table 1 below summarises the asbestos screening analysis.

Table 1: Summarised Asbestos Identification Results

Asbestos Result	Locations*
No Asbestos	U2, U4, U5, U8, U9, U10, U11, U12, U13, U14, U16, U17, U19, U20, U22,
Detected	U23 and WS104
Trace Levels	U1 (0.5-0.6mbul), U2 (0.05-0.25mbul), U3 (0.4-0.5mbul), U6 (0.1-0.25mbul),
Recorded	U7 (0.03-0.09mbul), WS101 (0.2-0.3mbgl), WS102 (0.25mbgl), WS102
	(0.55mbgl) and WS103 (0.5-0.6mbgl)
Quantifiable	U1 (0.1-0.15mbul), U1 (0.8-1mbul), U2 (0.25-0.6mbul), U15 (0.025-0.2mbul),
Levels Recorded	U18 (0.025-0.2mbul), WS101 (0.7-0.75mbgl) and WS105 (0.4-0.5mbgl)

^{*}Where no specific sample depths are reported then multiple samples analysed throughout the borehole all provided "no asbestos detected" results.

Results indicate that 17 of the 28 locations are free of asbestos at the scheduled sampling depths.

^{*}mbul – metres below Undercroft soil surface level

The results showed that in all cases the asbestos present was chrysotile in composition and was observed to be in free fibre form with the exception of WS101 where a fragment of asbestos cement sheet was found within Made Ground at 0.7-0.75mbgl.

Six of the 7 samples that indicated positive asbestos identification results at quantifiable concentrations were scheduled for subsequent asbestos quantification analysis. The asbestos cement debris fragment found in WS101 was not scheduled for quantification testing as the asbestos was present in bonded form.

The quantification analysis indicated that 5 out of the 6 samples analysed contained asbestos concentrations less than 0.001%, with U15 indicating a concentration of 0.001% precisely.

3.2.2 Waste Classification Analysis and Other Contaminants

To assess the broader characteristics of the asbestos impacted soils, selected samples were submitted for additional laboratory analysis and Waste Acceptance Criteria (WAC) testing.

Samples were scheduled for WAC testing from locations U1, U4, U5, U15, U21, WS102, WS103 and WS105. Soil samples were scheduled from U4, U5, U21 and WS103 which did not contain asbestos to allow the loss of ignition and total organic carbon elements of the WAC to be completed³. Nevertheless, the close proximity of these samples to the identified asbestos impacted soils provides a good representation of the soil characteristics with regards to WAC.

A summary of the results for this laboratory testing is provided as follows:

- ➤ 8 metals were reported above the laboratory Limit of Detection (LOD) notably mercury (1.7mg/kg at U1 at sample depth 250-400mm) and lead (280mg/kg at WS102 at sample depth 0.55mbgl);
- > Total Polycyclic Aromatic Hydrocarbons (PAHs)⁴ were reported marginally above the LOD in five out of eight samples tested. The ΣPAH concentration of 4,925mg/kg was reported for a sample of Made Ground at WS102 (0.55mbgl) containing occasional flecks of coal tar. This sample was also analysed for total petroleum hydrocarbons (TPH) for which a concentration of 17,876mg/kg was reported. The TPH mostly comprised of aromatic hydrocarbons predominantly >C16 carbon chain length which is indicative of the presence of coal tar;
- For TPH, 2 other samples were reported above detection limit; 275mg/kg TPH at location U1 (0.25-0.4mbul) and 1,873mg/kg at U21 (0.02-0.1mbul). The U1 result comprised an approximately equal aliphatic/aromatic hydrocarbons split. The U21 result comprised approximately two-thirds aromatic hydrocarbons, all of which is >C21.

Based on the available data, the shallow Made Ground with elevated TPH and PAH concentrations appears to be localised around WS102 with corresponding concentrations at nearby locations (U1, U4 and WS103) all reported to be low or non-detect.

All ten of the samples analysed reported concentrations which would characterise the soils as either inert, non-hazardous, or stable, non-reactive hazardous waste in a non-hazardous

³ The loss of ignition and total organic carbon tests require the soil sample to be dried prior to being analysed. The laboratory considered this to be a significant health and safety concern where it is known that free asbestos fibres are present and were therefore not able to complete to process in this specific situation.

⁴ USEPA 16 cogeners, includes naphthalene. Symbol Σ used for Total (i.e. ΣPAHs = Total PAHs)

landfill. A copy of the laboratory certificates have been provided within **Appendix D**. However, in the event that it is decided to remediate the part of the site that includes WS102 by excavation and offsite disposal to landfill, repeat WAC analyses will be required to classify the excavated materials.

3.2.3 ACM Soil Surface Analysis: Bardon Environmental

To supplement the interpretation of ACM within the Undercroft, test results on surface samples (described as dust/debris) collected by Bardon have been incorporated into this report. The locations and results of this analysis are summarised on **Figure 5** and laboratory certificates enclosed in **Appendix D**.

In total 32 dust/debris samples were collected by Bardon from the near surface Undercroft soils (within the top few millimetres, typically less than about 25mm depth). Chrysotile and amosite asbestos was identified in 8 of the 32 samples, all present within the vicinity of access Hatch 5 (between columns H-I and 17-20) as illustrated within **Figure 5**.

4 DISCUSSION OF RESULTS

The following sections present discussion on the ACM sources and extent of ACM impacted soils encountered during both stages of this investigation.

4.1 Undercroft Locations (U1-U23)

- ➤ Bardon found 3 principal sources of ACM during their surveying of the Undercroft void (Figure 5). These sources were all in the form of asbestos insulation around utility/process pipes and on the Undercroft surface below these pipelines where the insulation has fallen off and now lays on the Undercroft floor as debris material.
- ➤ For all of the soil samples from the Undercroft that are reported to have been impacted with asbestos, the asbestos is in the form of free chrysotile fibres.
- According to the findings of Bardon's R&D asbestos survey, the insulation on the pipe which runs along the southern boundary (garden elevation) of the Undercroft contains amosite, chrysotile and crocidolite asbestos. However, no ACM was recorded within any of the 4 surface samples collected by Bardon within the proximity of this pipe or within the analysed samples from the nearby window sample locations of (U11, U12 and U13);
- ➤ From Bardon's survey, the insulation on the pipe which runs parallel to the ramp in the central eastern portion of the Main Building contains amosite, chrysotile and crocidolite. Three surface soil samples taken by Bardon within close proximity showed that asbestos was absent. Soil analysis from the U15 window sample location did indicate that chrysotile asbestos free fibres were present within the upper 25cm of the soil profile at a mass percentage of 0.001% (equal to level of laboratory detection). A lower sample from between 0.3-0.4mbul reports the absence of asbestos from which it can be inferred that impact by ACM is limited to the near surface soils in this location;
- A third asbestos insulated pipe was found by Bardon between columns H-I and 18-21 with insulation that contained chrysotile, crocidolite and amosite. All corresponding surface soil samples taken by Bardon in the vicinity of this pipe (13 in total) also contained these three forms of asbestos. Window samples U17 and U18 are located at each end of this pipe run. Results for U17 samples indicate the absence of ACM at this location. Chrysotile is present within the upper 20cm of the U18 soil

- core at a concentration <0.001%. Two deeper U18 samples indicated an absence of asbestos;
- ➤ Soil samples collected from U6 and U7 at depths of 0.1–0.25mbul and 0.03-0.09mbul, respectively, contain chrysotile fibres at "trace" levels. Both of these locations are beyond the extent of the Undercroft area. In this case, the free fibres must have been present within the Made Ground that was placed within this area prior to construction of the ground slab;
- ➤ Within the SE corner of the Undercroft, window sample locations U1, U2 and U3 all report positive asbestos results with concentrations less than 0.001%. The asbestos was identified as chrysotile and present as free fibres. Within U1, the asbestos fibres were encountered at the maximum drilled depth of 1mbul. At U2, chrysotile fibres were recorded within the top 0.5m of soil with underlying results indicating an absence of asbestos. Within U3, "trace" asbestos concentrations (<0.001%) were reported at 0.4 0.5mbul, however soil sampled from above and below these depths reported the absence of asbestos;
- ➤ The Service Trenches that extend into the Undercroft area (Figures 1 and 2) have been constructed with brick or concrete walls and floor. Bardon carried out asbestos survey work within these Service Trenches. It is considered that ACM present within these sections of Service Trenches remains contained within and isolated from the wider Undercroft area.

4.2 External SE Main Building Locations (WS101-WS105)

- ➤ The results of the second stage of the investigation indicate that trace levels of asbestos fibres, as well as rare/infrequent and small fragments of asbestos cement sheet are present within shallow Made Ground and reworked natural material outside the SE corner of the Main Building.
- ➤ Five of the thirty samples analysed contained chrysotile asbestos fibres at trace concentrations plus one sample (WS102) which was reported as a fragment of asbestos cement sheet.
- All six asbestos impacted soil samples were from within 0.75m of the ground surface, and all subsequent samples from below this depth reported "no asbestos detected".
- ➤ It is inferred from these results that the original source of this asbestos may potentially be localised and linked to the construction of the building, such as the temporary laydown and preparation of insulation material for the lagging of the Undercroft pipework. Alternatively, it may have been introduced to this location via the materials that were used during the preparation of the subgrade and placement of Made Ground to create the development platform for the construction of the Main Building.
- ➤ Depending on the future use for the site, the remedial approach for the asbestos impacted soil generally outside the SE corner of the Main Building must take into consideration the localised shallow hydrocarbons impacted material encountered at WS102.

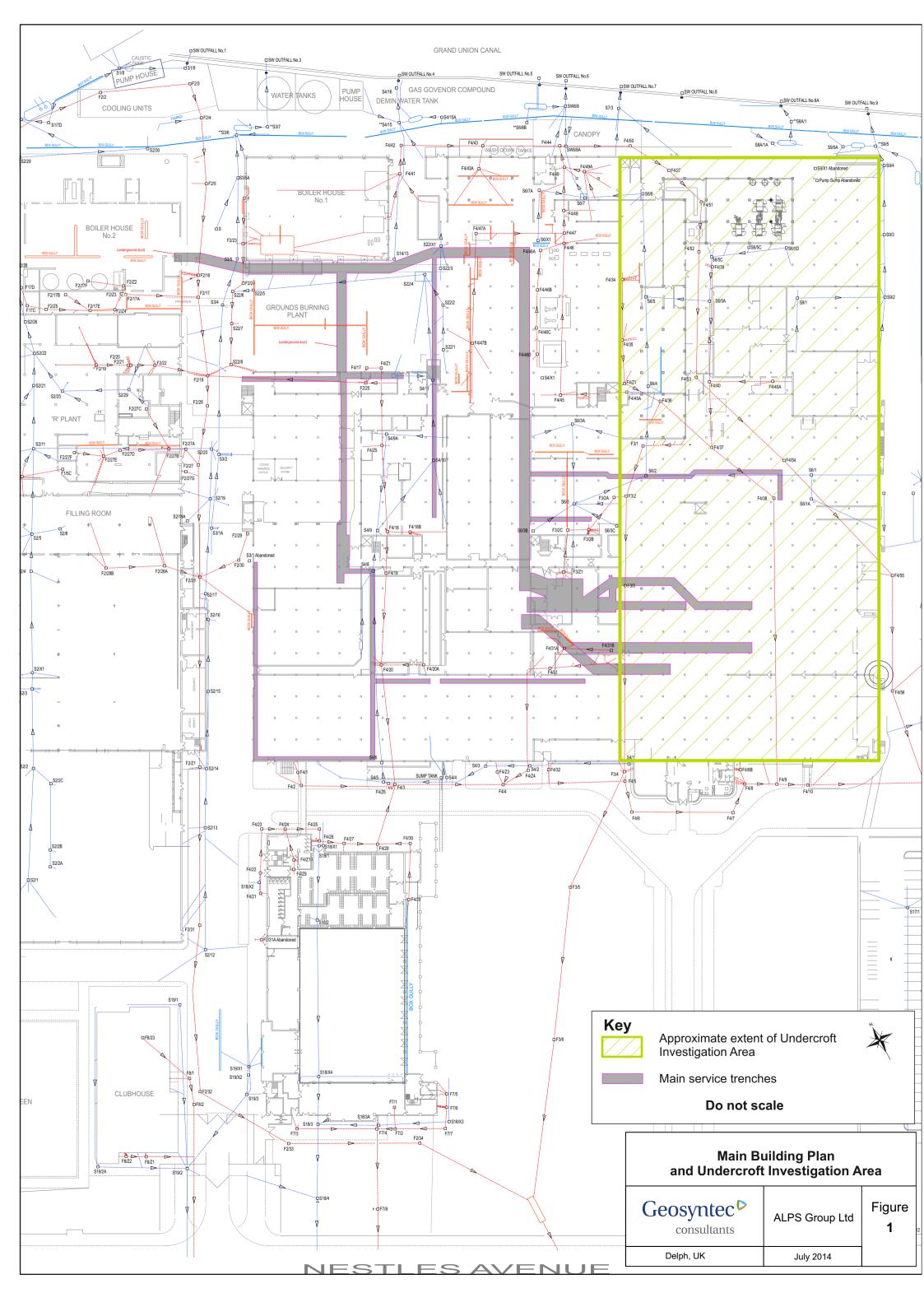
➤ When the results for the shallow material at WS102 are compared to Generic Assessment Criteria (GAC) for possible commercial end-use, there are seven individual PAH species that exceed their respective GACs, however, the TPH value (all fractions considered) does not exceed GAC values for human health because the majority of the hydrocarbons present are typically long chain heavy-end fractions. In the case of potential residential end use, screening of the results for the shallow WS102 (0.55mbgl) against GAC values indicates multiple individual PAH and TPH exceedences. In addition, the elevated benzo(a)pyrene concentration of 7.1mg/kg at WS105 (0.4-0.5mbgl) also represents a GAC exceedance for a residential development scenario.

000

Geosyntec Consultants trust the information and discussion contained in this report meets all your immediate requirements. Please do not hesitate to contact the undersigned if you have any further comments or questions about any aspect of the work.

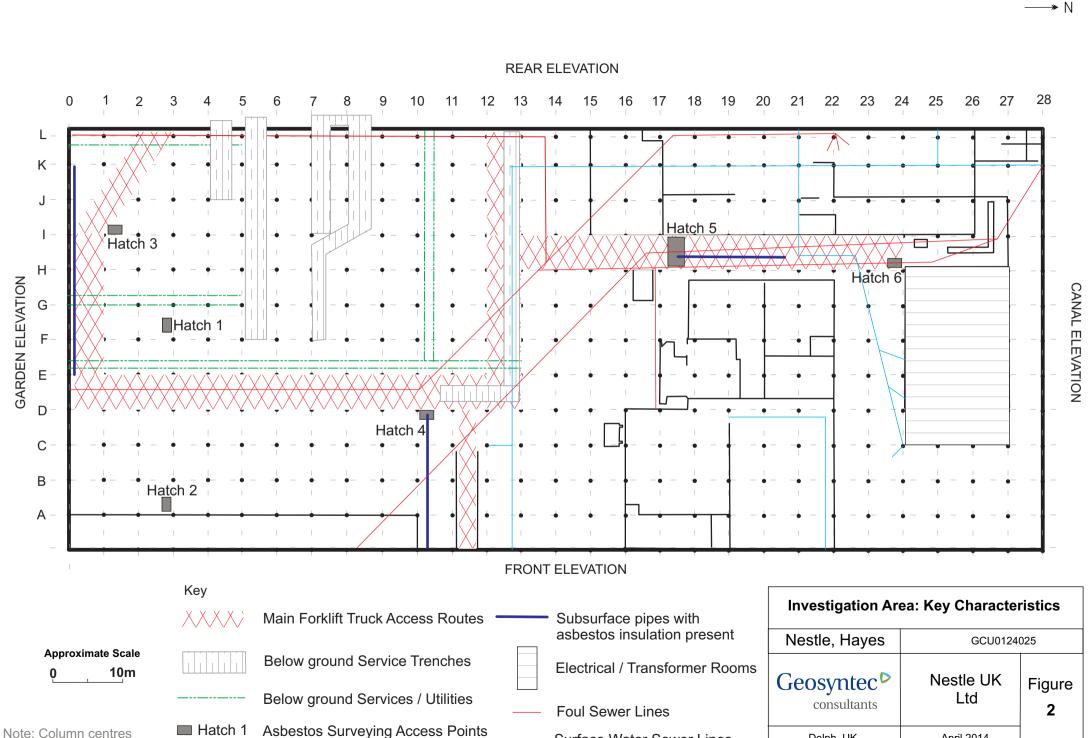
Respectfully submitted

On behalf of Geosyntec Consultants

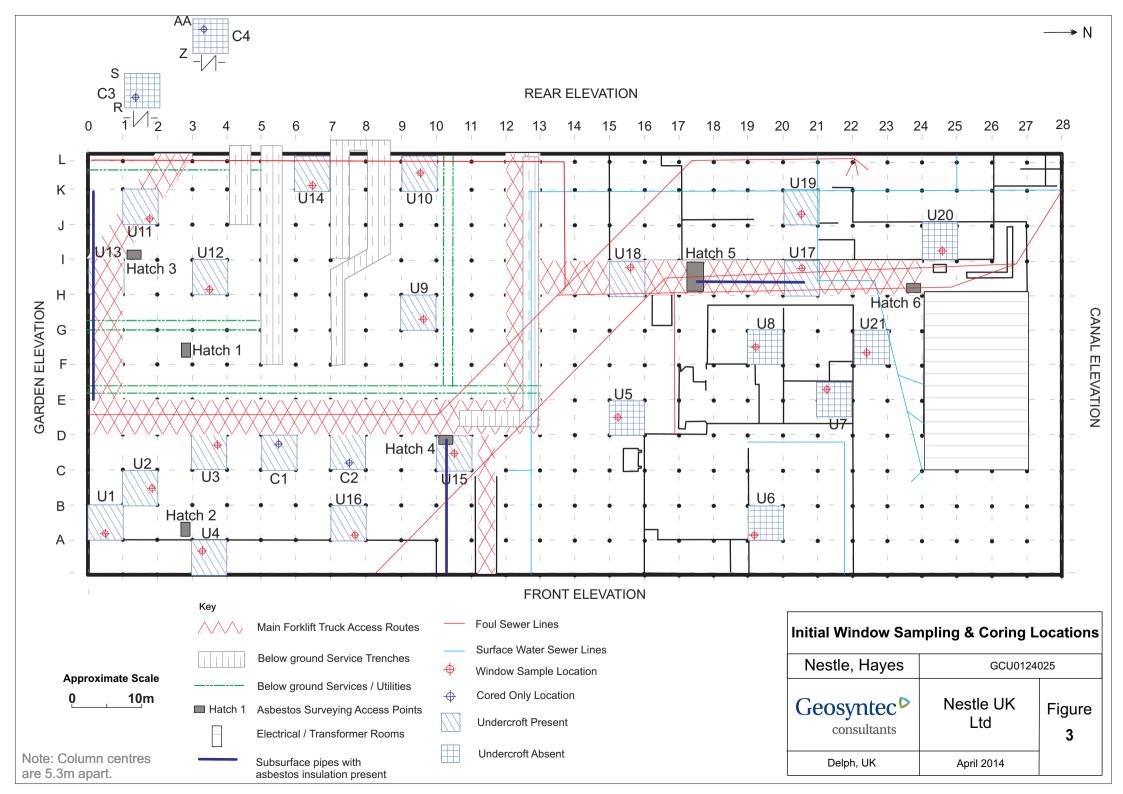

Andrew Morgan Mark Harris

Project Engineer Project Director

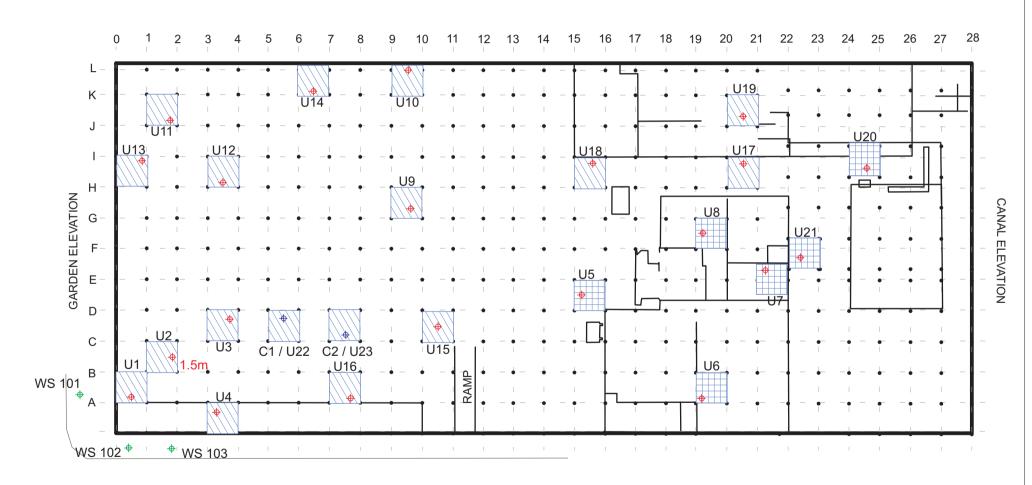
11

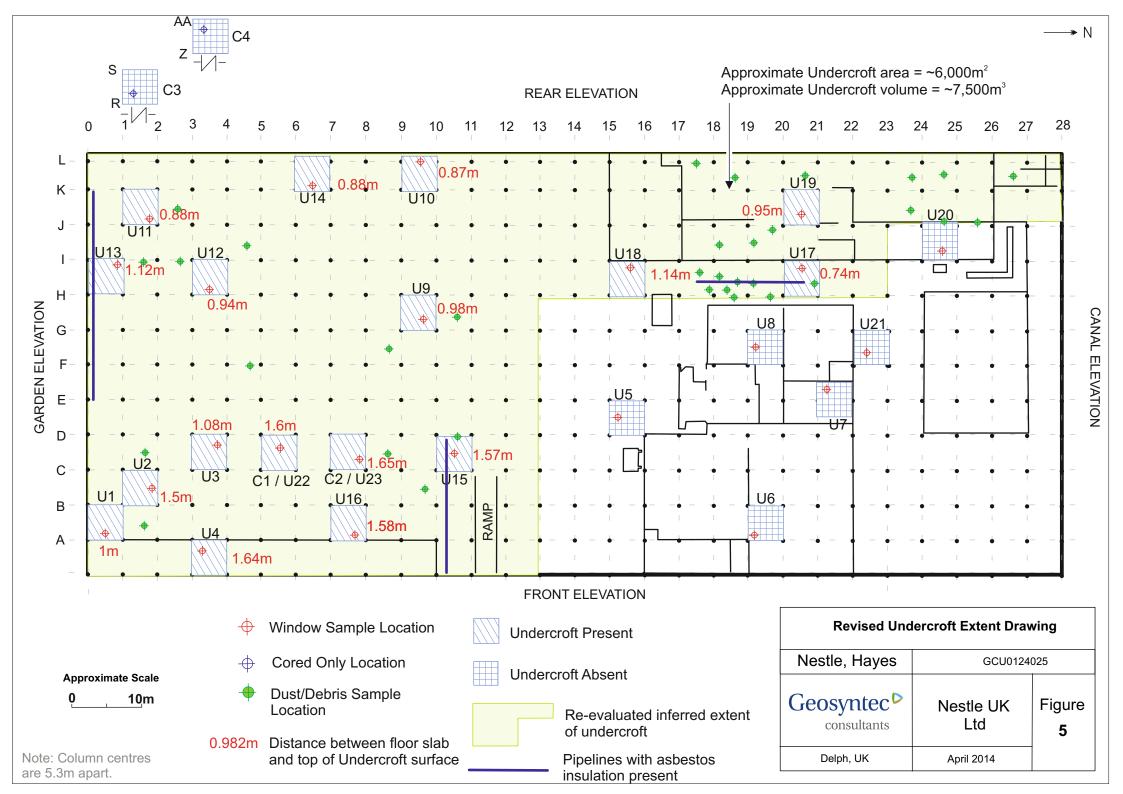

Geosyntec consultants

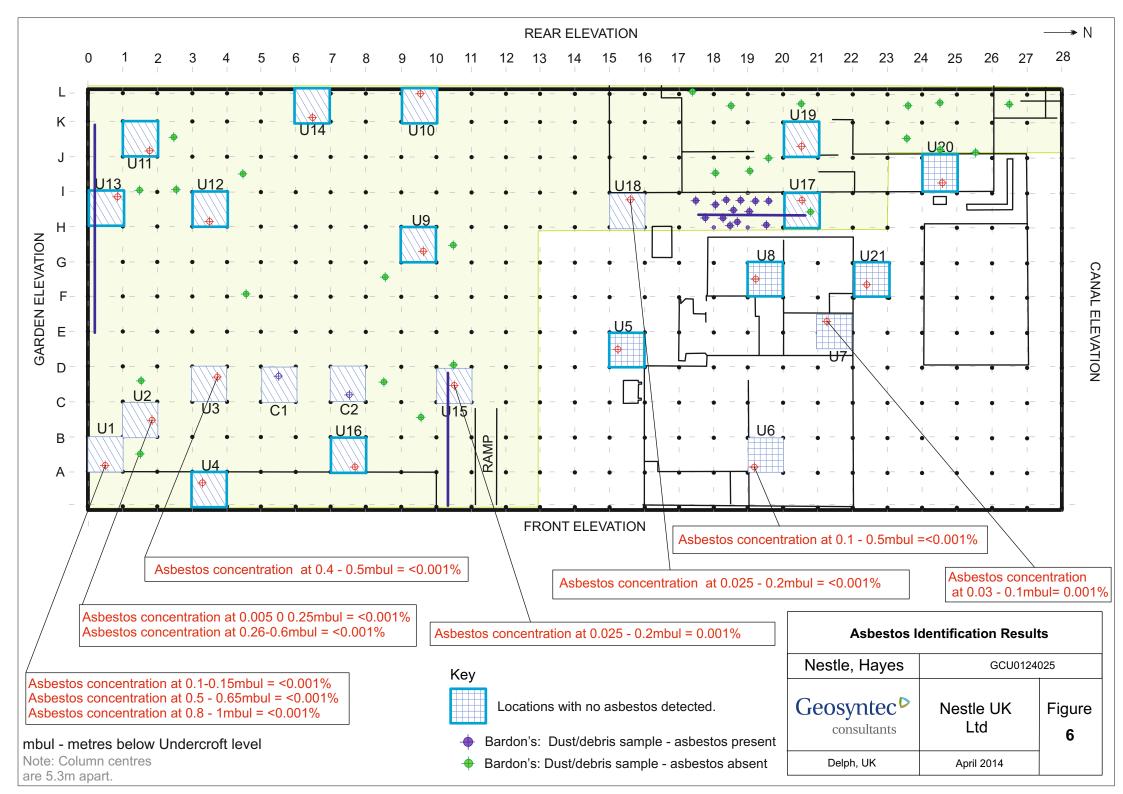
r I G U R E S

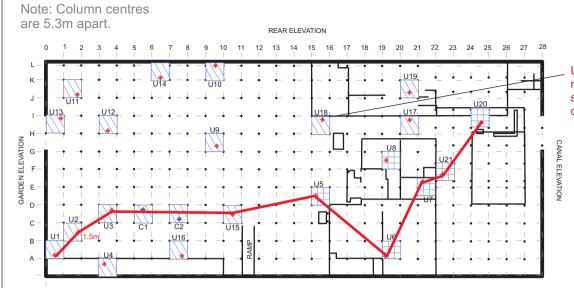

April 2014

Delph, UK

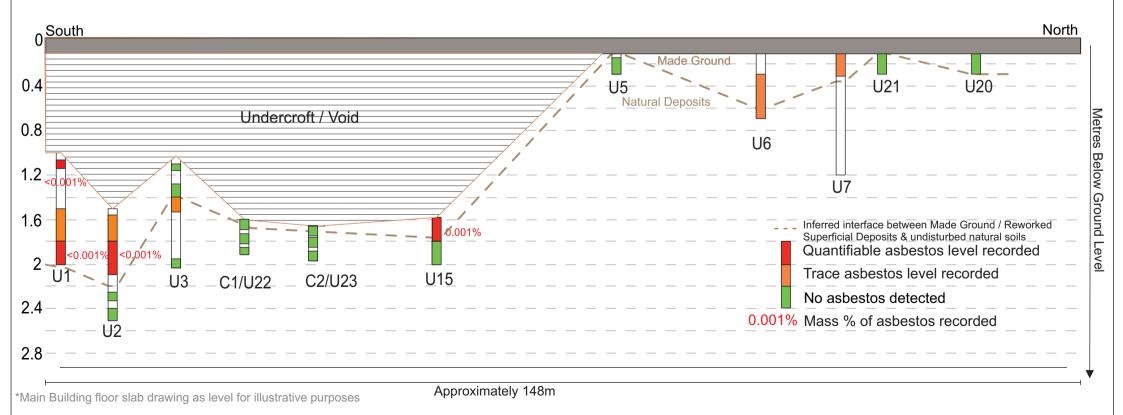

are 5.3m apart.

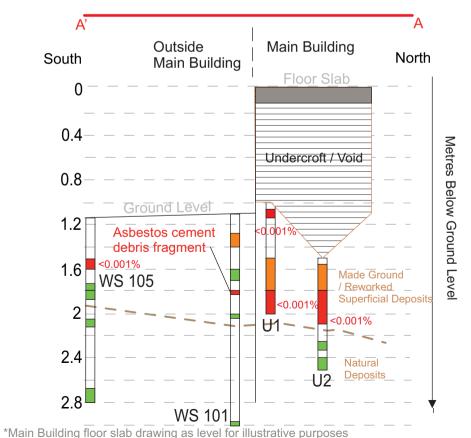

Surface Water Sewer Lines




Note: Column centres are 5.3m apart.

Complete Window Sample Investigation Array					
Nestle, Hayes GCU0124025					
Geosyntec consultants	Nestle UK Ltd	Figure 4			
Delph, UK	April 2014				





U18 - the only other location to
record a positive asbestos ID
screened subsequently recorded a
quantifiable mass of <0.001%

Undercroft and Asbestos Summary Section						
Nestle, Hayes GCU0124025						
Geosyntec consultants	Nestle UK Ltd	Figure 7				
Delph, UK	April 2014					

** - - - = Inferred interface between Made Ground / Reworked Natural Deposits and Undisturbed natural soils

Restle, Hayes

GCU0124025

Geosyntec Nestle UK Ltd

Delph, UK

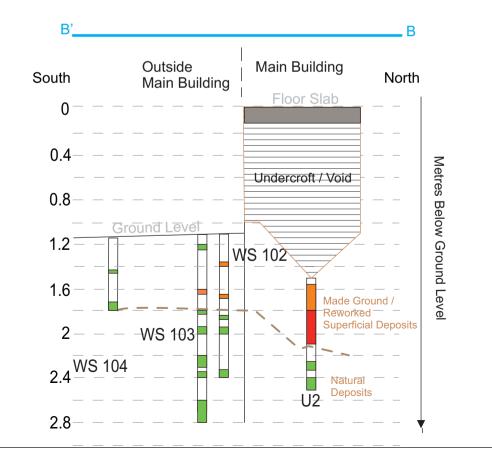

April 2014

Figure 8

Quantifiable asbestos level recorded
Trace asbestos level recorded
No asbestos detected

0.001% Mass % of asbestos recorded

Note: Column centres are 5.3m apart.

Geosyntec consultants

P P E N D I X

A

1) Development of restricted area

4) Decontaminating of drilling equipment

2) Service clearance and coring setup

5) Wrapping of soil core for transportation

3) Window sampling (drilling) of location

6) Gravelly clay observed at the base of soil core

Nestle Hayes ACM Investigation					
Nestle, Hayes GCU0125026					
Geosyntec consultants	Nestle UK Ltd	Photo Plate 1			
Delph, UK	April 2014	_			

Geosyntec Consultants

A P P E N D I X

Geosyntec Consultants Project: GCU0124025

Geosyntec	Client: Nestle Project Number: GCU0124025 Location: Hayes, Middlesex Date Drilled: 02/07/2014 Logged By: JF Driller: Geotron UK Ltd Coordinates: ,	Borehole Elevation Borehole Diameter Installation Diame Slot Size: Method: Window S	: ter:		WS101 Samble Reference:	
Depth (m)	Description		Observations	Sample	Sample / Field Test Result	
1.20 1.20		requent coarse, perficial deposits).				
Notes: Borehole hand	dug to 1.2 mbgl.					

Geosyntec Consultants Ltd Project Number: GCU0124025

	yntec nsultants	Client: Nestle Project Number: GCU0124025 Location: Hayes, Middlesex Date Drilled: 03/07/2014 Logged By: JF Driller: Geotron UK Ltd Coordinates: ,	Borehole Elevation: Borehole Diameter: Installation Diameter: Slot Size: Method: Window Sampling		Borehole Reference: WS102		
Depth (m)	Legend	Description		Observations	Sample	Sample / Field Test Result	
0.08		MADE GROUND: Asphalt					
		MADE GROUND: Concrete					
0.20		MADE GROUND: Engineered subbase brown sand and gravel.	e comprising of				
0.40		MADE GROUND: Medium brown san is fine to coarse. Occasional flecks of sl					
0.60		like particles. Gravelly Firm to Stiff CLAY. Gravel is fine to coarse and					
		subrounded. Occasional rootlets.					
- 1.00		Light Brown silty SAND AND GRAVE fine to coarse and subangular to subro 1.3mbgl on dense granular deposits.					
1.30		dug to 1.2 mbgl.					
	The same						

Geosyntec Consultants Ltd Project Number: GCU0124025

	yntec nsultants	Client: Nestle Project Number: GCU0124025 Location: Hayes, Middlesex Date Drilled: 03/07/2014 Logged By: JF Driller: Geotron UK Ltd	Borehole Elevation: Borehole Diameter: Installation Diameter: Slot Size: Method: Window Sampling		Borehole Reference: WS103		
		Coordinates: ,	1				1
Depth (m)	Legend	Description		Observations	Sample	Sample / Field Test Result	
0.01		MADE GROUND: Asphalt					
		MADE GROUND: Concrete					
0.26		Medium brown sandy firm-stiff CLAY medium. (possibly reworked superficia					
- 1.00		Firm to stiff brown CLAY. Rare rootlet fragments present.	s and gravel				
1.35		Light brown silty SAND AND GRAVE fine to coarse and subangular and subangular and subangular deposits.					
1.90							
-2							
Notes: Bor	ehole hand	dug to 1.0mbgl.					

Geosyntec Consultants Ltd Project Number: GCU0124025

	yntec	Client: Nestle Project Number: GCU0124025 Location: Hayes, Middlesex Date Drilled: 03/07/2014 Logged By: JF Driller: Geotron UK Ltd Coordinates: ,	Borehole Elevation: Borehole Diameter: Installation Diameter: Slot Size: Method: Window Sampling		Borehole Reference: WS104		
Depth (m)	Legend	Description		Observations	Sample	Sample / Field Test Result	
0.35		MADE GROUND: Asphalt and Concre					
		MADE GROUND: Engineered subbase brown sand and gravel.	e comprising of				
0.70		MADE GROUND: Concrete. Refusal o	n concrete at depth				
-							
⁻ 2							
Notes: Bor	ehole hand	dug to 0.8 mbgl.					

Geosyntec	Client: Nestle Project Number: GCU0124025 Location: Hayes, Middlesex Date Drilled: 02/07/2014 Logged By: JF Driller: Geotron UK Ltd Coordinates: ,	Borehole Elevation Borehole Diameter Installation Diame Slot Size: Method: Window S	:: ter:		ole Refer	
Depth (m)	Description		Observations	Sample	Sample / Field Test Result	
0.40	MADE GROUND: Concrete					
0.60	MADE GROUND: Light brown/grey with cobbles of brick. Sand is coarse. Constitution of the first series of t	Gravel is composed of ubangular cum brown silty el is fine to coarse.				
0.85		er. (possibly				
1.70 O	dug to 12 mbgl					

Geosyntec consultants

A P P E N D I X

Bevendean Dinnington, Sheffield South Yorkshire, S25 2RG Tel: 01909 560673 Carrera Court Church Lane

Unit 6

The Hyde Business Park Brighton, BN2 4JE Tel: 01273 621100 Prospect House

Personal Test Report

Report Number J038514/YA03 Contractor's Name Bardon Environmental Ltd

Date 26 Mar 2014

	The second secon		2010	Mestic, Italii Tiyue Galdells, Hayes, Middlesex, UB3 4KF	aldello,	dayes, min	diesex, open	ことすっ								
Lab location / Veh. Reg.	eg.	BF	BF13KNP		Re	Respirator type	0		Half Mask	Half Mask and Full Face	ace	Filter	Filter Diameter	er		22 mm
Flow meter reference	a)	>	V 80460 02		Mi	Micrometer reference	ference		SM 20			Temp	perature	Temperature at calibration	u	22°C
Thermometer reference	JCe	FB	BTT 11		R	HSE/NPL Tes	NPL Test slide ref.		3861			Press	sure at	Pressure at calibration		1000mh
Barometer reference		BT	BTT 11		Mic	Microscope reference	ference		N13			Grafic	Graticule diameter	meter		00 1112
Timer reference		BT	BTT 11		Filter	er box reference	ence		416			Thu C	000	Controd and blook E visible	3	Elia Co
													ממשומ	DIOCK O VISIL	a	7 ES
Sample Operative ref Name	Pump	Filter Head ref	Temp (°C)	Pressure (mb)	Flow Rate Start	Sample Start Time	Sample Stop Time	Flow Rate Stop	Duration (mins)	Sample Volume (I)	Average Flow Rate	Fibres Fields	ields	Limit of Detection (f/ml)	Calculated Result (f/ml)	Reported Result (f/ml)
YA001837 Richard Mattimore	sp012	885	12	N/A	4.0	10:05	10:20	4.0	15	09	4.00	4	200	0.080	0.0164	<0.08

Core drilling of U4 U4 N/A Core drilling of U4 Comments: [PERSONALMONITORINGPLAN]

Personal (P), usually performed with a 'personal' sampling unit, filter holder adjacent the wearers nose and mouth, to assess the exposure of the individual in relation to compliance with current 'Control of Asbestos Regulations', the suitability of respirator protection and the effectiveness of dust suppression measures, for example. Results are reported in relation to the current control

Any deviations to these standard tests shall be recorded as appropriate. This test type is as stated in HSG248

FOR AND ON BEHALF OF TERSUS CONSULTANCY LTD.

CONTRACTOR / CUSTOMER ACKNOWLEDGEMENT

Signature:

Signature:

: Mark Clover

Time: 10:45

Time: 10:45

: Kenny Rogers

This is not a certificate of re-occupation.

Page 1 of 1

05 Jul 2012 Issue 15

Prospect House The Hyde Business Park Bevendean Brighton, BN2 4JE Tel: 01273 621100

Contractor's Name Bardon Environmental Ltd

Dinnington, Sheffield South Yorkshire, S25 2RG Tel. 01009 560673

Carrera Court Church Lane Unit 6

Personal Test Report

Date 26 Mar 2014 Report Number J038514/YA02

Site Address	ess		Z	lestle, No	irth Hyde G	ardens,	Nestle, North Hyde Gardens, Hayes, Middlesex, UB3 4RF	dlesex, UB;	3 4RF								
Lab locat	Lab location / Veh. Reg.	eg.	B	BF13KNP		æ	Respirator type	96		Half Mas	Half Mask and Full Face	-ace	Filte	Filter Diameter	eter		22 mm
Flow met	Flow meter reference	Ф	>	V 80460 02	2	Σ	Micrometer reference	ference		SM 20			Ten	peratu	Temperature at calibration	lion	22°C
Thermon	hermometer reference	nce	B	BTT 11		Ĭ	HSE/NPL Test slide ref.	it slide ref.		3861			Pre	ssure	Pressure at calibration		1000mb
Baromete	Barometer reference		B	BTT 11		Σ	Microscope reference	ference		N13			Gra	icule d	Graticule diameter		mu 66
Timer reference	erence		B	BTT 11		Œ	Filter box reference	rence		416	1		Cen	tred an	Centred and block 5 visible	ible	YES
Sample	Operative Name	Pump	Filter Head ref	Temp (°C)	Pressure (mb)	Flow Rate Start	Sample Start Time	Sample Stop Time	Flow Rate Stop	Duration (mins)	Sample Volume (I)	Average Flow Rate	Fibres Fields	Fields	Limit of Detection (f/ml)	Calculated Result (f/ml)	Reported Result (f/ml)
YA001836	Lee Dando	sp062	587	12	1016	4.0	10:05	10:20	4.0	15	60	4.00	4.5	200	0.080	0.0185	<0.08
[PERSON	PERSONALMONITORINGPLAN	RINGPI		Comments: Core drilling U4 N/A Core drilling Personal (P), us	Comments: Core drilling of U4 U4 N/A Core drilling of U4 Personal (P), usually perf	ormed with	es 'bersonal' sa	mpling unit, filte	er holder a	diacent the we	aarers nose and	1 mouth, to asse	ass the ex	bosure of	the individual in	Somments: Core drilling of U4 JA NA Core drilling of U4 Core drilling of U4 Core drilling of U4 Personal (P), usually performed with a 'personal' sampling unit, filter holder idjacent the wearers nose and mouth, to assess the exposure of the individual in relation to compliance with current property of the individual in relation to compliance with current property of the individual in relation to compliance with current property of the individual in relation to compliance with current property of the individual in relation to compliance with current property of the individual in relation to compliance with current property of the individual in relation to compliance with current property of the individual in relation to compliance with current property of the individual in relation to compliance with current property of the individual in relation to compliance with current property of the individual in relation to compliance with current property of the individual in relation to compliance with current property of the individual in relation to compliance with current property of the individual in relation to compliance with current property of the individual in relation to compliance with current property of the individual in relation to compliance with current property of the individual in relation to compliance with current property of the individual in the compliance with current property of the compliance with current property of the c	nce with current
					Aspestos Keg	ulations , tr	ne suitability or Any deviat	respirator prote ions to these st	tandard tes	the effectivenc sts shall be rec	ess of dust supp limit. corded as appro	Intability of respirator protection and the effectiveness of dust suppression measures, for example. Results are limit. Any deviations to these standard tests shall be recorded as appropriate. This test type is as stated in HSG248.	res, for ex it type is a	ample. R	esults are report n HSG248	Contror of Aspessos Regulations, the suitability of respirator protection and the effectiveness of dust suppression measures, for example. Results are reported in relation to the current control limit. Any deviations to these standard tests shall be recorded as appropriate. This test type is as stated in HSG248	current control

FOR AND ON BEHALF OF TERSUS CONSULTANCY LTD.

CONTRACTOR / CUSTOMER ACKNOWLEDGEMENT

Signature:

Time: 10:45

: Kenny Rogers

: Mark Clover

Time: 10:45

This is not a certificate of re-occupation.

Signature:

Page 1 of 1

05 Jul 2012 Issue 15

South Yorkshire, S25 2RG Dinnington, Sheffield Carrera Court Church Lane

Contractor's Name Bardon Environmental Ltd

The Hyde Business Park Brighton, BN2 4JE Tel: 01273 621100 Prospect House Bevendean

Personal Test Report

Date 27 Mar 2014

Report Number J038487/YA01

Site Address	10		Ž	stle, No	rth Hyde G	ardens,	Nestle, North Hyde Gardens, Hayes, Middlesex, UB3 4RF	dlesex, UB	3 4RF			20					
Lab location / Veh. Reg.	/ Veh. Re	g.	BF	BF13KNP		Ŗ	Respirator type	96		Half Mask	Half Mask and Full Face	ace	Filte	Filter Diameter	ter		22 mm
Flow meter reference	reference		>	V 80460 02	2	Σ	Micrometer reference	ference		SM 20			Tem	peratur	Temperature at calibration	on	22°C
Thermometer reference	er reference	90	EB I	BTT 11		Ĭ	HSE/NPL Test slide ref.	st slide ref.		3861			Pres	ssure at	Pressure at calibration		1000mb
Barometer reference	eference		18	BTT 11		Σ	Microscope reference	eference		N13			Gral	Graticule diameter	ameter	Mary and Mary	99 mm
Timer reference	nce		LB	ВТТ 11		I	Filter box reference	rence		416			Cen	tred and	Centred and block 5 visible	ple	YES
Sample O	Operative Pump Name ref	Pump	Filter Head ref	Temp (°C)	Temp Pressure (°C)	Flow Rate Start	Sample Start Time	Sample Stop Time	Flow Rate Stop	Duration (mins)	Sample Volume (I)	Average Flow Rate	Fibres	Fibres Fields	Limit of Detection (f/ml)	Calculated Result (f/ml)	Reported Result (f/ml)
YA001852 mark clover		p5	ss2	89	1010	4.0	09:25	09:40	4.0	15	09	4.00	3	200	0.080	0.0123	<0.08

Comments: sampling undercroft of coffee stores between 11 and 21 coffee stores N/A [PERSONALMONITORINGPLAN]

sampling of undercroft

Personal (P), usually performed with a 'personal' sampling unit, filter holder adjacent the wearers nose and mouth, to assess the exposure of the individual in relation to compliance with current 'Control of Asbestos Regulations', the suitability of respirator protection and the effectiveness of dust suppression measures, for example. Results are reported in relation to the current control

Any deviations to these standard tests shall be recorded as appropriate. This test type is as stated in HSG248

FOR AND ON BEHALF OF TERSUS CONSULTANCY LTD.

CONTRACTOR / CUSTOMER ACKNOWLEDGEMENT

Signature:

: mark clover

Time: 09:50

Time: 09:50

: Kenny Rogers

This is not a certificate of re-occupation.

Signature:

Page 1 of 1

Personal Test Report

Prospect House

Unit 6 Carrera Court

25

Carrera Court
Church Lane
Dinniigton, Sheffield
South Yorkshire, S25 2RG
Tel. 01000 \$666573
Contractor's Name Bardon Environmental Ltd

Report Number J038487/YA02

Date 27 Mar 2014

Site Address	SS		ž	estle, No	rth Hyde G	ardens,	Hayes, Mid	Nestle, North Hyde Gardens, Hayes, Middlesex, UB3 4RF	4RF								
Lab locatio	Lab location / Veh. Reg.	-ge	98	BF13KNP		Re	Respirator type	ē		Half Mask	Half Mask and Full Face	эсе	Filte	Filter Diameter	ter		22 mm
Flow mete	Flow meter reference		>	V 80460 02	0.1	Ē	Micrometer reference	ference		SM 20			Tem	peratur	Temperature at calibration	on	22°C
Thermome	Thermometer reference	901	8	BTT 11		물	HSE/NPL Tes	PL Test slide ref.		3861			Pres	sure at	Pressure at calibration		1000mb
Barometer	Barometer reference		8	BTT 11		Σ	Microscope reference	ference		N13			Grat	Graticule diameter	ameter		99 µm
Timer reference	rence		(B)	BTT 11		匝	Filter box reference	rence		416			Cent	tred and	Centred and block 5 visible	ple	YES
Sample	Operative	Pump ref	Filter Head ref	Temp (°C)	Pressure (mb)	Flow Rate Start	Sample Start Time	Sample Stop Time	Flow Rate Stop	Duration (mins)	Sample Volume (I)	Average Flow Rate	Fibres Fields	Fields	Limit of Detection (f/ml)	Calculated Result (f/ml)	Reported Result (f/ml)
YA001853	Richard Mattimore	p5	554	æ	1010	4.0	10:05	10:20	4.0	15	09	4.00	4.5	200	0.080	0.0185	<0.08
PERSONA	PERSONALMONITORINGPLANJ	RINGPI		Comments: core drilling in coffee stores N/A core drilling by	Comments: core drilling in coffee stores next to 1J coffee stores N/A core drilling by 1J	se stores	next to 1J										
				Personal (F), usually per	formed with	a 'personal' sa	mpling unit, filte	er holder a	djacent the we	arers nose and	mouth, to asse	ass the ex	posure of	the individual in	Personal (P), usually performed with a 'personal' sampling unit, filter holder adjacent the wearers nose and mouth, to assess the exposure of the individual in relation to compliance with current Control of Asherber Devuluebras, the cultaking of exposure of the individual in relation to compliance with current Control of Asherber Devuluebras, the cultaking of exposure of the individual in relation to compliance with current	nce with currer

FOR AND ON BEHALF OF TERSUS CONSULTANCY LTD.

Any deviations to these standard tests shall be recorded as appropriate. This test type is as stated in HSG248

limit.

CONTRACTOR / CUSTOMER ACKNOWLEDGEMENT

Signature:

Signature:

: Mark Clover

Time: 10:32

Time: 10:32

: Kenny Rogers

This is not a certificate of re-occupation.

Prospect House The Hyde Business Park Bevendean

Unit 6

Brighton, BN2 4JE

Personal Test Report

Tel: 01273 621100 Contractor's Name Bardon Environmental Ltd South Yorkshire, \$25 2RG Dinnington, Sheffield Tel-04909-560673 Carrera Court Church Lane

Report Number J038487/YA02

Date 27 Mar 2014

Site Address			Nes	stle, Nor	th Hyde G	ardens, }	Hayes, Mide	Nestle, North Hyde Gardens, Hayes, Middlesex, UB3 4RF	4RF								
Lab location / Veh. Reg.	'eh. Reg.		BF	BF13KNP		Re	Respirator type	9		Half Mask	Half Mask and Full Face	ice	Filte	Filter Diameter	iter		22 mm
Flow meter reference	ence		8 /	V 80460 02		Mic	Micrometer reference	ference		SM 20			Tem	peratur	Temperature at calibration	no	22°C
Thermometer reference	eference		ВТ	BTT 11		E E	HSE/NPL Tes	NPL Test slide ref.		3861			Pres	sure at	Pressure at calibration		1000mb
Barometer reference	rence		BT	BTT 11		Mic	Microscope reference	ference		N13			Grat	Graticule diameter	ameter		99 mm
Timer reference	Ф		BT	BTT 11		Filter	er box reference	rence		416			Cen	ired and	Centred and block 5 visible	ole	YES
Sample Oper	Operative Pu	Pump ref	Filter Head ref	Temp (°C)	Pressure (mb)	Flow Rate Start	Sample Start Time	Sample Stop Time	Flow Rate Stop	Duration (mins)	Sample Volume (I)	Average Flow Rate	Fibres Fields	Fields	Limit of Detection (f/ml)	Calculated Result (f/ml)	Reported Result (f/ml)
YA001853 Rici	Richard P	p5	ss4	80	1010	4.0	10:05	10:20	4.0	15	09	4.00	4.5	200	0.080	0.0185	<0.08

core drilling in coffee stores next to 1J core drilling by 1J coffee stores N/A Comments: [PERSONALMONITORINGPLAN]

Personal (P), usually performed with a 'personal' sampling unit, filter holder adjacent the wearers nose and mouth, to assess the exposure of the individual in relation to compliance with current 'Control of Asbestos Regulations', the suitability of respirator protection and the effectiveness of dust suppression measures, for example. Results are reported in relation to the current control

Any deviations to these standard tests shall be recorded as appropriate. This test type is as stated in HSG248

FOR AND ON BEHALF OF TERSUS CONSULTANCY LTD.

CONTRACTOR / CUSTOMER ACKNOWLEDGEMENT

Signature:

: Mark Clover

Time: 10:32

Time: 10:32

: Kenny Rogers

Signature:

This is not a certificate of re-occupation.

Carrera Court Church Lane Unit 6

Contractor's Name Bardon Environmental Ltd

South Yorkshire, S25 2RG Dinnington, Sheffield Tel-01000 56067

Prospect House The Hyde Business Park Brighton, BN2 4JE Tel: 01273 621100 Bevendean

Personal Test Report

Date 27 Mar 2014

Report Number J038487/YA01

Site Address		Ž	estle, No	rth Hyde G	ardens,	Hayes, Mid	Nestle, North Hyde Gardens, Hayes, Middlesex, UB3 4RF	3 4RF								
Lab location / Veh. Reg.	Reg.	B	BF13KNP		ă.	Respirator type)e		Half Mask	Half Mask and Full Face	ace	Filte	Filter Diameter	eter		22 mm
Flow meter reference	ээ	>	V 80460 02	2	Σ	Micrometer reference	erence		SM 20			Ten	peratu	Temperature at calibration	ion	22°C
Thermometer reference	ence	œ	BTT 11		Ĭ	HSE/NPL Tes	NPL Test slide ref.		3861			Pre	ssure a	Pressure at calibration		1000mb
Barometer reference	ce	69	BTT 11		Σ	Microscope reference	eference		N13			Gra	ticule d	Graticule diameter	Y L	99 µm
Timer reference		B	BTT 11		Œ	Filter box reference	rence		416			Cer	ifred an	Centred and block 5 visible	ible	YES
Sample Operative	e Pump ref	Filter Head ref	Temp (°C)	Pressure (mb)	Flow Rate Start	Sample Start Time	Sample Stop Time	Flow Rate Stop	Duration (mins)	Sample Volume (I)	Average Flow Rate	Fibres	Fibres Fields	Limit of Detection (f/ml)	Calculated Result (f/ml)	Reported Result (f/ml)
YA001852 mark clover	er p5	ss2	8	1010	4.0	09:25	09:40	4.0	15	09	4.00	3	200	0.080	0.0123	<0.08
			Comments	nts:												

sampling undercroft of coffee stores between 11 and 21 coffee stores

sampling of undercroft [PERSONALMONITORINGPLAN]

Personal (P), usually performed with a 'personal' sampling unit, filter holder adjacent the wearers nose and mouth, to assess the exposure of the individual in relation to compliance with current 'Control of Asbestos Regulations', the suitability of respirator protection and the effectiveness of dust suppression measures, for example. Results are reported in relation to the current control

Any deviations to these standard tests shall be recorded as appropriate. This test type is as stated in HSG248

FOR AND ON BEHALF OF TERSUS CONSULTANCY LTD.

CONTRACTOR / CUSTOMER ACKNOWLEDGEMENT

Signature:

: mark clover

Time: 09:50

Time: 09:50

: Kenny Rogers

This is not a certificate of re-occupation.

Signature:

05 Jul 2012 Issue 15

Unit 6
Carrera Court
Church Lane
Dinnington, Sheffield
South Yorkshire, \$25 2RG

Contractor's Name Bardon Environmental Ltd

Prospect House The Hyde Business Park Bevendean Brighton, BN2 4JE

Personal Test Report

Bevendean Brighton, BN2 4JE Tel: 01273 621100 Report Number J039486/YA01

Date 01 Apr 2014

Site Address	SS		Ž	estle, No	orth Hyde G	ardens, l	Hayes, Mid	Nestle, North Hyde Gardens, Hayes, Middlesex, UB3 4RF	3 4RF								
Lab locatio	Lab location / Veh. Reg.	eg.	B	BF13KNP		Re	Respirator type	e		Half Mask	Half Mask and Full Face	ace	Filte	Filter Diameter	eter		22 mm
Flow meter	Flow meter reference		>	V 80460 02	12	ΞĔ	Micrometer reference	ference		SM 20			Terr	peratur	Temperature at calibration	on	22°C
Thermome	Thermometer reference	lce	B	BTT 11		H H	HSE/NPL Tes	JPL Test slide ref.		3861			Pres	ssure at	Pressure at calibration		1000mb
Barometer reference	reference		B	BTT 11		Mi	Microscope reference	erence		N13			Gra	Graticule diameter	ameter		99 µm
Timer reference	rence		B	BTT 11		Ē	Filter box reference	rence		458			Cen	tred an	Centred and block 5 visible	ble	YES
Sample ref	Operative Name	Pump	Filter Head ref	Temp (°C)	Pressure (mb)	Flow Rate Start	Sample Start Time	Sample Stop Time	Flow Rate Stop	Duration (mins)	Sample Volume (I)	Average Flow Rate	Fibres	Fibres Fields	Limit of Detection (f/ml)	Calculated Result (f/ml)	Reported Result (f/ml)
YA001870	Richard Mattimore	p5	ss1	12	1008	4.0	10:00	10:20	4.0	20	80	4.00	ဗ	200	090.0	0.0092	>0.06
PERSONA	[PERSONALMONITORINGPLAN]	RINGP		Comments: Core drilling 6K and 7K N/A Core drilling	Comments: Core drilling between 6K and 7K. 6K and 7K N/A Core drilling between 6K and 7K.	en 6K an	d 7K.										- >
				Personal ((P), usually per f Asbestos Reg	formed with	a 'personal' se e suitability of Any deviat	arsonal' sampling unit, filter holder adjacent the wearers nose and mouth, to assess the exposure of the individ tability of respirator protection and the effectiveness of dust suppression measures, for example. Results are limit. Any deviations to these standard tests shall be recorded as appropriate. This test type is as stated in HSG248.	er holder a ction and t	djacent the wer the effectivenes its shall be recc	arers nose and is of dust suppr limit. orded as approp	mouth, to asse ession measu priate. This tes	ss the ex res, for ex t type is a	posure of kample. R	the individual in esults are report HSG248	Personal (P), usually performed with a personal' sampling unit, filter holder adjacent the wearers nose and mouth, to assess the exposure of the individual in relation to compliance with current Control of Asbestos Regulations, the suitability of respirator protection and the effectiveness of dust suppression measures, for example. Results are reported in relation to the current control limit. Any deviations to these standard tests shall be recorded as appropriate. This test type is as stated in HSG248	nce with current

FOR AND ON BEHALF OF TERSUS CONSULTANCY LTD.

CONTRACTOR / CUSTOMER ACKNOWLEDGEMENT

Signature:

\ \ \ \ \ \

: Kenny Rogers

Time: 10:30

: Mark Clover

Signature:

Time: 10:30

This is not a certificate of re-occupation.

Unit 6 Carrera Court Church Lane Dinnington, Sheffield South Yorkshire, S25 2RG Tel: 01909 560673

Prospect House The Hyde Business Park Bevendean Brighton, BN2 4JE Tel: 01273 621100

REASSURANCE TEST REPORT

Job Number: J038514/YA04

Job Number J038514/YA04 Report Date 26 Mar 2014

Customer Name Bardon Environmental Ltd Contractor Bardon Environmental Ltd, President Park, President Way,

Sheffield, S4 7UR

Customer President Park, President Way, Address Sheffield, S4 7UR Site Address Nestle, North Hyde Gardens, Hayes, Middlesex, UB3 4RF,

Scope of Works

Site Supervisor

Brief Description of Work / Type of ACM / Location of ACM and Work Area / Any ACM to Remain by Design:

Reassurance following core drilling and window sampling of U4.

Mark Clover

26 Mar 2014

I confirm that the scope of works has been completed and is ready for Reassurance testing. *

Name Wark Clover

Date

Time 11:00

Preliminary Check of Site Conditions and Job Completeness

Method statement (Plan of work) on site and checked	Yes	DCU intact, operational and clean	Yes
Waste route free from obvious ACMs	Yes	Surrounding areas free from obvious ACMs	Yes

Signature

Comments

Reassurance following core drilling and window sampling of U4.

Reassurance (R), static sampling to establish ambient airborne fibre levels during or post work; following 'site assessment for re-occupation', or in association with 'minor'/non licensable work on asbestos. Usually includes a visual assessment (where ACM has been removed or treated) but not a dust disturbance by default. A visual assessment shall not be performed if the sample is obtained during work on ACM. Results are reported in relation to the clearance indicator. The sampling strategy may be dictated by the customer or the analyst; the area m2 or volume m3 of the work area may be calculated in order to help in generate a reasonable number of measurements. Where damaged ACM remains in situ then air quality may deteriorate after this test and subsequent evaluations of changes to the environmental conditions are not part of this test report. In this case the evaluation of air quality, expressed in fibres per millilitre of air, pertains to the sampling period only. Any deviations to these standard tests shall be recorded as appropriate.

This is not a certificate of re-occupation.

Visual Inspection

Start Time		11:05	Finish Time		11:35	
Dust and debris in work a	areaa	Yes	Work area	dry	Yes	
Presence of sprayed sea	lant	No	Inaccessible	e areas (if yes please indicate on diagram)	No	
Number of visuals under	aken	1	0.00		Value of the same	
723 000 723 124	and the same of the same of the same	april :		a 127 moe - 277 u	extent seem	SW42
Approximate Area/Enclo	sure dimensions			Length: 0 m Width: 0 m Height: 0 m Ap	prox. Area:0 m ²	Approx. Volume:0 m ³
Site Plan					64	THE BY SHIPS .
	Coffee stores	i i	YA001840 YA001841			
	20 (40)	3,27(0)	40			
		3	3d			
=	Coffee stores					
	16	[1	a			
	And Anthone is the Last ear of			8 FD 20		Lebor 6785
						glasses (

Comments:

General dust and debris from broken ceiling tiles, holes in plaster board walls. Plant equipment in various places.

Determination of airborne fibre concentrations

Lab locati	Lab location / Veh. Reg.	Reg.		BF13KNP	ΝP		Respirator type	or type		Half	Half Mask and Full Face	Full Face	_	-Ilter D	Filter Diameter			22 mm
Flow met	Flow meter reference	9		V 80460 02	0 02		Microme	Micrometer reference		SM 20	0			Temper	ature a	Temperature at calibration		22°C
Thermom	hermometer reference	ence		BTT 11			HSE/NP	HSE/NPL Test slide ref.	€.	3861				ressul	e at cal	Pressure at calibration		1000mb
Barometer reference	r referenc	Đ.		ВТТ 11			Microsco	Microscope reference		N13				3raticu	Graticule diameter	əter	3,	99 µm
Timer reference	ence			BTT 11			Filter box	Filter box reference		416				Centrec	and ble	Centred and block 5 visible		YES
Sample	Sample (s) location	Pump	Filter Head ref	Temp (°C)	Temp Pressure (°C)	Flow Rate Start	Sample Start Time	Brush Disturbance (mins)	Sample Stop Time	Flow Rate Stop	Duration (mins)	Ouration Sample Average (mins) Volume (l) Flow Rate	Average Flow Rate		Fibres Fields	Limit of Detection (f/ml)	Calculated Result (f/ml)	Reported Result (f/ml)
YA001840	40	BF15	883	12	1016	8.4	11:05	07.4	11:35	8.4	30	252	8.40	4	200	0,00	20000	200
YA001841	40	BF15	884	12	1016	8.4	11:05	Y/X	11:35	8.4	30	252	8.40	3.5	200	010.0	0.0030	10.0>
YA001842	Field Blank	N/A	ss1	12	1016	N/A	N/A	N/A	N/A	N/A	NA	N/A	N/A	NA	NIA		Field Blank	

Comments:

N/A

REPORTING RESULTS: These results have been obtained and reported under the requirements of our UKAS accreditation to ISO 17025:2005, applying the methods as detailed in HSG248. At least 20 fields must be read, and counting stops when either 100 fibres or 200 fields is reached. The uncountable or biased this statement and reasoning shall be noted on the report. Uncertainty budget: sampling and analysis is performed to an estimated level of confidence of 95%. ABBREVIATIONS finit: fibres per millilitre of air, I: litre, m: metre, °C: centigrade, mb: millibar, N/A: Not Applicable, NPU: Negative Pressure Unit, FMB Field Media Blank (media number of fields counted may be reduced where the volume is greater than 480 litres. Opinions and interpretations based on test results are outside the scope of UKAS accreditation. Where the results are < 0.010 f/ml the area has passed relative to the clearance indicator as required for CoR. At least 80% of the results should be < 0.010 f/ml, and all should be < 0.015 ffmt. Results are calculated to three decimal places to distinguish between 0.009 fff (which is acceptable) and 0.010 ffmt (which is unacceptable). If the sample appears to be

check). FILTER EVALUATION: Discrimination between asbestos and non-asbestos fibres is NOT undertaken in the application of the method for filler evaluation.

For and on behalf of Tersus Consultancy Ltd.

Kenny Rogers

26 Mar 2014

Date

Signature

Time 11:50

REASSURANCE TEST	REPORT			Job Number: J03	8514/YA04
Air Monitoring					
No of measurements tak	en	1			
Final assessment post	enclsoure/work area dismantling				
Former work area free o	f dust and debris	No	Waste route free from obv	vious ACM	Yes
Comments N/A					
For and on behalf of To	ersus Consultancy Ltd.				
	Kenny Rogers		Signature	KR	
Date	26 Mar 2014		Time	11:55	
Contractor/Customer	acknowledgement				
Name	Mark Clover		Company/Organisation	Bardon Environmental Ltd	
Signature	MC		Date	26 Mar 2014	

Unit 6 Carrera Court Church Lane Dinnington, Sheffield South Yorkshire, S25 2RG Tel: 01909 560673

Prospect House The Hyde Business Park Bevendean Brighton, BN2 4JE Tel: 01273 621100

REASSURANCE TEST REPORT

Job Number: J038487/YA04

Job Number	J038487/YA04	Report Date	27 Mar 2014
Customer Name	Bardon Environmental Ltd	Contractor	Bardon Environmental Ltd, President Park, President Way, Sheffield, S4 7UR
Customer Address	President Park, President Way, Sheffield, S4 7UR	Site Address	Nestle, North Hyde Gardens, Hayes, Middlesex, UB3 4RF ,

Scope of Works

Brief Description of Work / Type of ACM / Location of ACM and Work Area / Any ACM to Remain by Design:

Reassurance following core drilling in coffee stores between 1K and 1H

I confirm that the scope of works has been completed and is ready for Reassurance testing. *

Site Supervisor Name

Mark Clover

Signature

Date 27 Mar 2014 Time 10:40

Preliminary Check of Site Conditions and Job Completeness

Method statement (Plan of work) on site and checked	Yes	Transit route free from obvious ACMs	Yes
Waste route free from obvious ACMs	Yes	Surrounding areas free from obvious ACMs	Yes
Waste disposal / storage area checked and satisfactory	Yes		

Comments

Reassurance following core drilling in coffee stores between 1K and 1H

Reassurance (R), static sampling to establish ambient airborne fibre levels during or post work; following 'site assessment for re-occupation', or in association with 'minor'/non licensable work on asbestos. Usually includes a visual assessment (where ACM has been removed or treated) but not a dust disturbance by default. A visual assessment shall not be performed if the sample is obtained during work on ACM. Results are reported in relation to the clearance indicator. The sampling strategy may be dictated by the customer or the analyst; the area m2 or volume m3 of the work area may be calculated in order to help in generate a reasonable number of measurements. Where damaged ACM remains in situ then air quality may deteriorate after this test and subsequent evaluations of changes to the environmental conditions are not part of this test report. In this case the evaluation of air quality, expressed in fibres per millilitre of air, pertains to the sampling period only. Any deviations to these standard tests shall be recorded as appropriate.

This is not a certificate of re-occupation.

REASSURANCE TEST REPORT

Job Number: J038487/YA04

Air Monitoring			
No of measurements taken	1		
Final assessment post enclsoure/work area disman	tling	MENTAL BROKEL SCHOOL STARS	
Former work area free of dust and debris	No	Waste route free from obvious ACM	Yes
Comments			
N/A		ga ing 100 mg. Mga da ni ni wasa sa ka ma sa mara ni sa wa sa	
For and on behalf of Tersus Consultancy Ltd.		Moderates and temperatures and process are	
Kenny Rogers		Signature	
Date 27 Mar 2014		Time 12:07	

Contractor/Customer acknowledgement

Name Mark Clover

Signature

Company/Organisation Bardon Environmental Ltd

Date 27 Mar 2014

Determination of airborne fibre concentrations

77 90460 02					-	-		The same of the sa	-		-		
70 00		Micromet	ometer reference		SM 20	0			emper	iture at	Temperature at calibration		22°C
BTT 11		HSE/NPI	HSE/NPL Test slide ref	af.	3861			α.	ressur	Pressure at calibration	oration		1000mb
BTT 11		Microsco	pe reference		N13			0	Braticul	diame	ier		99 µm
BTT 11		Filter box	reference		416			O	entred	and blo	ck 5 visible		YES
Temp Pressure	Flow Rate Start	Sample Start Time	Brush Disturbance (mins)	Sample Stop Time	Flow Rate Stop	Duration (mins)	Sample Volume (I)		Fibres	Fields	Limit of Detection (f/ml)	Calculated Result (f/ml)	Reported Result (f/ml)
8 1010	8.4	11:10	VIII	11:40	8.4	30	252	8.40	2	200	0,00	1,000	0
1010	8.4	11:10	Y.Y	11:40	8.4	30	252	8.40	7:5	200	0.010	0.0017	r0.0>
17 7 80		Pressure (mb) 1010	Pressure Rate Si (mb) Start 1010 8.4	Pressure Flow (mb) Start Start 1010 8.4	Microscope reference	Microscope reference Filter box reference Filter box reference Rate Rate Start Time Disturbance Stop Time (mins) 11:40 11:40	Microscope reference N13	Microscope reference N13	Microscope reference N13 Filter box reference N13 Filter box reference A16 Flow (mins) Sample (mins) Start Time (mins) Start Time (mins) NIA 11:40 8.4 30 252 8.40 R.40 R	Microscope reference N13 Alice Filter box reference Rate Pressure Rate Pressure Rate Disturbance Stop Time Start Time Mins 11:40 8.4 11:10 8.4 11:10 MA 11:40 8.4 30 252 8.40	Microscope reference N13 Filter box reference N13 Filter box reference A16 Flow (mins) Sample (mins) Start Time (mins) Start Time (mins) NIA 11:40 8.4 30 252 8.40 R.40 R	Microscope reference N13 Filter box reference Rate (mins) Sample (mins) Start Time (mins) Start Time (mins) N/A 11:40 8.4 30 252 8.40	Microscope reference N13 Sample Flow Start Time Contract Start Start Time Contract Start Start Sta

N/A

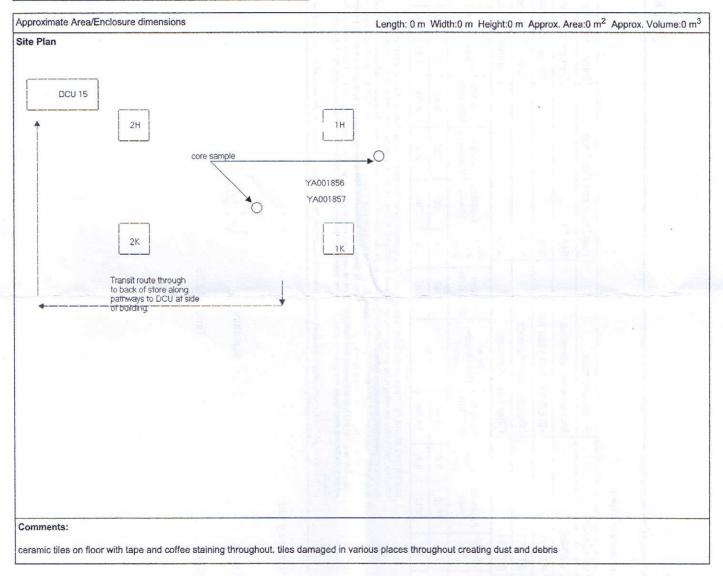
number of fields counted may be reduced where the volume is greater than 480 litres. Opinions and interpretations based on test results are outside the scope of UKAS accreditation.

uncountable or biased this statement and reasoning shall be noted on the report, Uncertainty budget: sampling and analysis is performed to an estimated level of confidence of 95% Where the results are < 0.010 f/ml the area has passed relative to the clearance indicator as required for CoR. At least 80% of the results should be < 0.010 f/ml, and all should be < 0.015 f/ml. Results are calculated to three decimal places to distinguish between 0.009 fff (which is acceptable) and 0.010 f/ml (which is unacceptable). If the sample appears to be ABBREVIATIONS firm: fibres per millilite of air, I: litre, m: metre, °C: centigrade, mb: millibar, NIA: Not Applicable, NPU: Negative Pressure Unit, FMB FleId Media Blank (media

FILTER EVALUATION: Discrimination between asbestos and non-asbestos fibres is NOT undertaken in the application of the method for filter evaluation.

check).

Signature


For and on behalf of Tersus Consultancy Ltd.

Kenny Rogers

Time 12:05

27 Mar 2014 Date

11:10	Finish Time	11:20
No	Work area dry	Yes
No	Inaccessible areas (if yes please indicate on diagram)	No
1		
	No	11:10 Finish Time No Work area dry No Inaccessible areas (if yes please indicate on diagram)

Unit 6 Carrera Court Church Lane Dinnington, Sheffield South Yorkshire, S25 2RG Tel: 01909 560673

Prospect House The Hyde Business Park Bevendean Brighton, BN2 4JE Tel: 01273 621100

REASSURANCE TEST REPORT

Job Number: J039486/YA03

Job Number J039486/YA03 Report Date 01 Apr 2014

Bardon Environmental Ltd, President Park, President Way, **Customer Name** Bardon Environmental Ltd Contractor

Sheffield, S4 7UR

President Park, President Way, Site Address Nestle, North Hyde Gardens, Hayes, Middlesex, UB3 4RF, Sheffield, S4 7UR Address

Scope of Works

Customer

Brief Description of Work / Type of ACM / Location of ACM and Work Area / Any ACM to Remain by Design:

Reassurance following core drilling between 6K and 7K

I confirm that the scope of works has been completed and is ready for Reassurance testing. *

Site Supervisor

Mark Clover Name

Signature

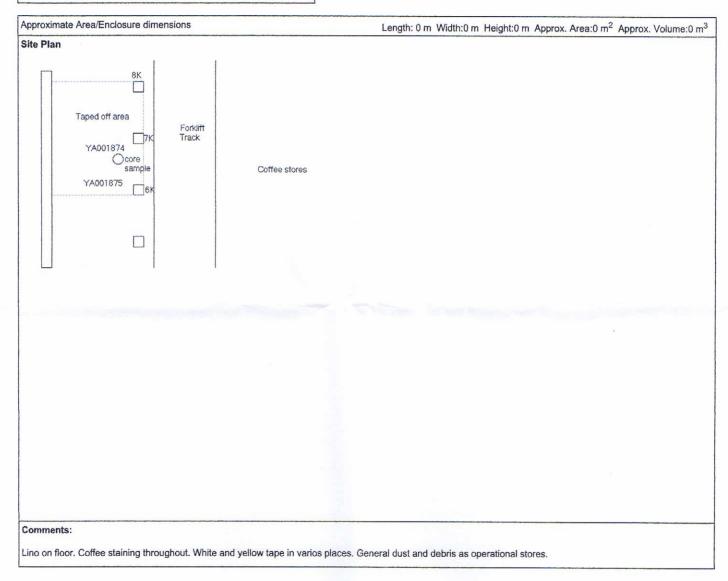
01 Apr 2014 Date

Time 10:35

Preliminary Check of Site Conditions and Job Completeness

Method statement (Plan of work) on site and checked	Yes	DCU intact, operational and clean	Yes
Surrounding areas free from obvious ACMs	Yes	Waste disposal / storage area checked and satisfactory	Yes

Comments


Reassurance following core drilling between 6K and 7K

Reassurance (R), static sampling to establish ambient airborne fibre levels during or post work; following 'site assessment for re-occupation', or in association with 'minor'/non licensable work on asbestos. Usually includes a visual assessment (where ACM has been removed or treated) but not a dust disturbance by default. A visual assessment shall not be performed if the sample is obtained during work on ACM. Results are reported in relation to the clearance indicator. The sampling strategy may be dictated by the customer or the analyst; the area m2 or volume m3 of the work area may be calculated in order to help in generate a reasonable number of measurements. Where damaged ACM remains in situ then air quality may deteriorate after this test and subsequent evaluations of changes to the environmental conditions are not part of this test report, in this case the evaluation of air quality, expressed in fibres per millilitre of air, pertains to the sampling period only. Any deviations to these standard tests shall be recorded as

This is not a certificate of re-occupation.

Job Number: J039486/YA03

Visual Inspection			
Start Time	11:25	Finish Time	11:30
Dust and debris in work area	Yes	Work area dry	Yes
Presence of sprayed sealant	No	Inaccessible areas (if yes please indicate on diagram)	No
Number of visuals undertaken	1		

REASSURANCE TEST REPORT

Determination of airborne fibre concentrations

Lab locati	Lab location / Veh. Reg.	Reg.		BF13KNP	П		Respirator type	or type		Half	Half Mask and Full Face	Full Face	-	Filter Diameter	ameter			22 mm
Flow met	Flow meter reference	90		V 80460 02	0.5		Microme	Micrometer reference		SM 20)			Temper	ature at	Temperature at calibration		22°C
Thermon	Thermometer reference	ence		BTT 11			HSE/NP	HSE/NPL Test slide ref.	-	3861				Pressure at calibration	e at call	bration		1000mb
Baromete	Barometer reference	9		BTT 11			Microsco	oscope reference		N13			3	Graticule diameter	e diame	ter		99 µm
Timer reference	erence			BTT 11			Filter box	Filter box reference		458)	Sentred	and blc	Centred and block 5 visible		YES
Sample ref	Sample(s) Pump location ref	Pump ref	Filter Head ref	Temp (°C)	Temp Pressure	Flow Rate Start	Sample Start Time	Brush Disturbance (mins)	Sample Stop Time	Flow Rate Stop	Duration (mins)	Sample Volume (I)	Average Flow Rate	Fibres Fields	Fields	Limit of Detection (f/ml)	Calculated Result (f/ml)	Reported Result (f/ml)
YA001874	Between 6K and 7K	sp012	ss2	12	1008	8.4	11:25	V/A	11:55	8.4	30	252	8.40	2.5	200	2	000	ç
YA001875	Between 6K and 7K	16.2	\$\$4	12	1008	8.4	11:25	K.	11:55	8.4	30	252	8.40	2	200	0.0.0	0.0022	10.05

Comments:

0.015 f/ml. Results are calculated to three decimal places to distinguish between 0.009 f/l (which is acceptable) and 0.010 f/ml (which is unacceptable). If the sample appears to be uncountable or biased this statement and reasoning shall be noted on the report. Uncertainty budget: sampling and analysis is performed to an estimated level of confidence of 95%. ABBREVIATIONS f/ml: fibres per millititre of air, I: litre, m: metre, °C: centigrade, mb: millibar, N/A: Not Applicable, NPU: Negative Pressure Unit, FMB Field Media Blank (media REPORTING RESULTS: These results have been obtained and reported under the requirements of our UKAS accreditation to ISO 17025:2005, applying the methods as detailed in HSG248. At least 20 fields must be read, and counting stops when either 100 fibres or 200 fields is reached. The number of fields counted may be reduced where the volume is greater than 480 litres. Opinions and interpretations based on test results are outside the scope of UKAS accreditation. Where the results are < 0.010 f/m the area has passed relative to the clearance indicator as required for CoR. At least 80% of the results should be < 0.010 f/m, and all should be <

check). FILTER EVALUATION: Discrimination between asbestos and non-asbestos fibres is NOT undertaken in the application of the method for filler evaluation.

For and on behalf of Tersus Consultancy Ltd.

Kenny Rogers

Date 01 Apr 2014

Signature

Time 12:10

REASSURANCE TEST REPORT

N/A

Job Number: J039486/YA03

Air Monitoring			
No of measurements taken	1		
Final assessment post enclsoure/work area dism	antling		
Former work area free of dust and debris	No	Waste route free from obvious ACM	Yes

For and on behalf of Tersus Consultancy Ltd.

Kenny Rogers

Signature

XC

Date 01 Apr 2014

Time 12:12

Contractor/Customer acknowledgement

Name Mark Clover

Company/Organisation

Bardon Environmental Ltd

Signature

MO

Date 01 Apr 2014

~ Whym

Job Number: J049788/CG02

BACKGROUND MONITORING REPORT

Job Number J049788/CG02 Report Date 02 Jul 2014 Customer Geosyntec Consultants, Gatehead Business Park, Delph New Contractor Geosyntec Consultants Name Road, Delph, Oldham, OL3 5DE Customer Gatehead Business Park, Delph New Site Address Nestle UK, North Hyde Gardens, Hayes, London, UB3 4RF, Road, Delph, Oldham, OL3 5DE **Address**

Scope of Works

Brief Description of Work / Type of ACM / Location of ACM and Work Area / Any ACM to Remain by Design:

Background Airtests During Drilling Into Soil To Sample In Main Building Ground Floor Storage Locations U22 And U23 Within Respirator Zone

I confirm that the scope of works has been completed and is ready for Background Monitoring testing. *

Site Supervisor

Name Andrew Morgan

Signature

Date 02 Jul 2014

Time 10:12

Preliminary Check of Site Conditions and Job Completeness

No questions have been answered for this stage.

Comments

Background Airtests Only

Permit To Work (Document) In Locations Clearly Displayed On Pillar

Works Carried Out In Respirator Zone Marked Off With Tape

Drilling Into Soil Via Access Points

Background (B), static samples taken to establish ambient airborne fibre levels prior to any activity which may lead to airborne asbestos contamination. Results are reported in relation to the clearance indicator. Any deviations to these standard tests shall be recorded as appropriate.

This is not a certificate of re-occupation.

05 Jul 2012 Issue 14 Page 1 of 4 J049788/CG02 Version 1

Visual Inspection
No questions have been answered for this stage.

Approximate Area/Enclosure dimensions

Length: 0 m Width: 0 m Height: 0 m Approx. Area: 0 m² Approx. Volume: 0 m³

Site Plan

Main Building Storage Locations U22 And U23

U22

U23

CQ000033

None

Comments:

Job Number: J049788/CG02

Determination of airborne fibre concentrations

Lab location / Veh. Reg.	MK60 ETF	R	espirator type			Non	ne	Filter Dia	meter				22 mm
Flow meter reference	V-61971-10	М	licrometer refer	ence		SM-	-G-24	Tempera	iture at	calibra	ntion		23°C
Thermometer reference	LBTT-13	Н	SE/NPL Test sl	ide ref.		381	5	Pressure	at cali	bratior	1		1022mb
Barometer reference	LBTT-13	M	licroscope refer	ence		A20)	Graticule	diame	ter			100 µm
Timer reference	LBTT-13	Fi	ilter box referen	ce		488	i I	Centred	and blo	ck 5 vi	sible		YES
Sample Rump Filter	Temp Prossure Flow	Sample	Brush	Sample	Flow	Duration	Sample	Average			Limit of	Calculate	Reported

Sample ref	Sample (s) location	Pump ref	Filter Head ref	Temp (^O C)	Pressure (mb)	Flow Rate Start	Sample Start Time	Brush Disturbance (mins)	Sample Stop Time	Flow Rate Stop	Duration (mins)	Sample Volume (I)	Average Flow Rate	Fibres	Fields	Limit of Detection (f/ml)	Calculated Result (f/ml)	Reported Result (f/ml)
CG000032	Areas U22 And U23	SP25	FH82	26	1013	8.6	10:16	N/A	11:16	8.7	60	519	8.65	3	200	0.010	0.0014	<0.01
CG000033	Areas U22 And U23	SP30	FH83	26	1013	8.6	10:18	N/A	11:18	8.6	60	516	8.60	3.5	200	0.010	0.0016	<0.01

Comments:

None

REPORTING RESULTS: These results have been obtained and reported under the requirements of our UKAS accreditation to ISO 17025:2005, applying the methods as detailed in HSG248. WHO fibre counting rules are applied, as detailed in HSG248. At least 20 fields must be read, and counting stops when either 100 fibres or 200 fields is reached. The number of fields counted may be reduced where the volume is greater than 480 litres. Opinions and interpretations based on test results are outside the scope of UKAS accreditation. Where the results are < 0.010 f/ml the area has passed relative to the clearance indicator as required for CoR. At least 80% of the results should be < 0.010 f/ml, and all should be < 0.015 f/ml. Results are calculated to three decimal places to distinguish between 0.009 f/l (which is acceptable) and 0.010 f/ml (which is unacceptable). If the sample appears to be uncountable or biased this statement and reasoning shall be noted on the report. Uncertainty budget: sampling and analysis is performed to an estimated level of confidence of 95%. ABBREVIATIONS f/ml: fibres per millilitre of air, I: litre, m: metre, °C: centigrade, mb: millibar, N/A: Not Applicable, NPU: Negative Pressure Unit, FMB Field Media Blank (media check).

FILTER EVALUATION: Discrimination between asbestos and non-asbestos fibres is NOT undertaken in the application of the method for filter evaluation.

For and on behalf of Tersus Consultancy Ltd.

Junaed Islam

Signature

Date 02 Jul 2014

Time 11:36

For and on behalf of Tersus Consultancy Ltd.

BACKGROUND MONITORING REPORT

Junaed Islam

Signature

Date 02 Jul 2014 Time 11:40

Contractor/Customer acknowledgement

Name Andrew Morgan Company/Organisation Geosyntec Consultants

Signature Date 02 Jul 2014

Job Number: J049788/CG03

REASSURANCE TEST REPORT

Job Number J049788/CG03 Report Date 02 Jul 2014

Customer Geosyntec Consultants Gatehead Business Park, Delph New Contractor Gatehead Business Park, Delph New C

Name Geosyntee Consultants Road, Delph, Oldham, OL3 5DE

Customer Address Gatehead Business Park, Delph New Road, Delph, Oldham, OL3 5DE Site Address Nestle UK, North Hyde Gardens, Hayes, London, UB3 4RF,

Scope of Works

Brief Description of Work / Type of ACM / Location of ACM and Work Area / Any ACM to Remain by Design:

Reassurance Airtests Following Drilling Into Soil To Sample In Main Building Ground Floor Storage Locations U22 And U23 Within Respirator Zone

I confirm that the scope of works has been completed and is ready for Reassurance testing. *

Site Supervisor

Name Andrew Morgan Signature

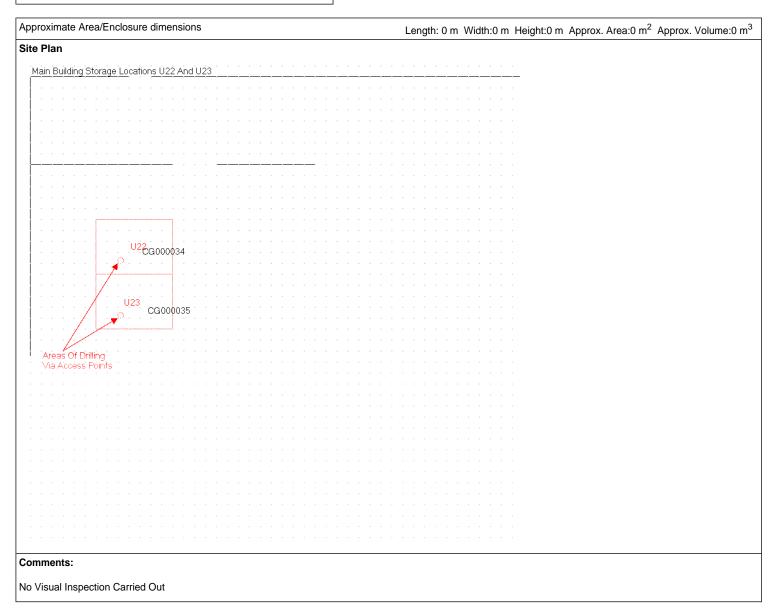
Date 02 Jul 2014 Time 11:52

Preliminary Check of Site Conditions and Job Completeness

Method statement (Plan of work) on site and checked Yes

Comments

Reassurance Airtests Only Permit To Work (Document) In Locations Clearly Displayed On Pillar Works Carried Out In Respirator Zone Marked Off With Tape Drilling Into Soil Via Access Points


Reassurance (R), static sampling to establish ambient airborne fibre levels during or post work; following 'site assessment for re-occupation', or in association with 'minor'/non licensable work on asbestos. Usually includes a visual assessment (where ACM has been removed or treated) but not a dust disturbance by default. A visual assessment shall not be performed if the sample is obtained during work on ACM. Results are reported in relation to the clearance indicator. The sampling strategy may be dictated by the customer or the analyst; the area m2 or volume m3 of the work area may be calculated in order to help in generate a reasonable number of measurements. Where damaged ACM remains in situ then air quality may deteriorate after this test and subsequent evaluations of changes to the environmental conditions are not part of this test report. In this case the evaluation of air quality, expressed in fibres per millilitre of air, pertains to the sampling period only. Any deviations to these standard tests shall be recorded as appropriate.

This is not a certificate of re-occupation.

05 Jul 2012 Issue 26 Page 1 of 4 J049788/CG03 Version 1

Visual Inspection

riodai inopositori			
Start Time	N/A	Finish Time	N/A
Number of visuals undertaken	0		

Job Number: J049788/CG03

Determination of airborne fibre concentrations

Lab location	on / Veh. F	Reg.		МІ	K60 ETF		Re	espirator type			No	one	Filter Dia	ameter				22 r	mm
Flow mete	er referenc	e		V-	61971-10		Mi	crometer refere	ence		SI	M-G-24	Tempera	ature at	calibra	ition		23°	С
Thermome	eter refere	ence		LE	3TT-13		Н	SE/NPL Test sl	ide ref.		38	315	Pressure	at cali	bration	1		102	22mb
Barometer	r referenc	е		LE	3TT-13		Mi	croscope refer	ence		A2	20	Graticule	diame	ter			100) µm
Timer refe	erence			LE	3TT-13		Fil	ter box referen	ce		48	38	Centred	and blo	ock 5 vi	sible		YES	3
Sample ref	Sample (s)	Pump ref	Filter Head	Temp	Pressure (mb)	Flow Rate	Sample Start	Brush Disturbance	Sample Stop	Flow Rate	Duratio	l Volume	Average Flow Rate	Fibres	Fields	Limit of Detection	Calculate Result (f/		Reported Result

Sample ref	Sample (s) location	Pump ref	Filter Head ref	Temp (^O C)	Pressure (mb)	Flow Rate Start	Sample Start Time	Brush Disturbance (mins)	Sample Stop Time	Flow Rate Stop	Duration (mins)	Sample Volume (I)	Average Flow Rate	Fibres	Fields	Limit of Detection (f/ml)	Calculated Result (f/ml)	Reported Result (f/ml)
CG000034	Areas U22 And U23	SP25	FH84	27	1013	8.7	11:58	N/A	12:58	8.7	60	522	8.70	2.5	200	0.010	0.0011	<0.01
CG000035	Areas U22 And U23	SP30	FH85	27	1013	8.6	12:00	N/A	13:00	8.6	60	516	8.60	3.5	200	0.010	0.0016	<0.01
CG000036	Field Blank	N/A	FH87	27	1013	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		Field Blank	

Comments:

None

REPORTING RESULTS: These results have been obtained and reported under the requirements of our UKAS accreditation to ISO 17025:2005, applying the methods as detailed in HSG248. WHO fibre counting rules are applied, as detailed in HSG248. At least 20 fields must be read, and counting stops when either 100 fibres or 200 fields is reached. The number of fields counted may be reduced where the volume is greater than 480 litres. Opinions and interpretations based on test results are outside the scope of UKAS accreditation. Where the results are < 0.010 f/ml the area has passed relative to the clearance indicator as required for CoR. At least 80% of the results should be < 0.010 f/ml, and all should be < 0.015 f/ml. Results are calculated to three decimal places to distinguish between 0.009 f/l (which is acceptable) and 0.010 f/ml (which is unacceptable). If the sample appears to be uncountable or biased this statement and reasoning shall be noted on the report. Uncertainty budget: sampling and analysis is performed to an estimated level of confidence of 95%. ABBREVIATIONS f/ml: fibres per millilitre of air, I: litre, m: metre, °C: centigrade, mb: millibar, N/A: Not Applicable, NPU: Negative Pressure Unit, FMB Field Media Blank (media check).

FILTER EVALUATION: Discrimination between asbestos and non-asbestos fibres is NOT undertaken in the application of the method for filter evaluation.

For and on behalf of Tersus Consultancy Ltd.

Junaed Islam

Signature

Date 02 Jul 2014

Time 13:16

Contractor/Customer acknowledgement

Date 02 Jul 2014

REASSURANCE TEST REPORT

Name Andrew Morgan Company/Organisation Geosyntec Consultants

Time

13:20

Signature Date 02 Jul 2014

Geosyntec consultants

A P P E N D I X

Jones Environmental Laboratory

Registered Address: Unit 3 Deeside Point, Zone 3, Deeside Industrial Park, Deeside, CH5 2UA. UK

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA

Geosyntec Consulting 1st Floor Gatehead Business Park Delph New Road Delph OL3 5DE

Tel: +44 (0) 1244 833780 Fax: +44 (0) 1244 833781

Attention: Mark Harris

Date: 9th April, 2014

Your reference : Hayes ACM Undercroft

Our reference : Test Report 14/4298 Batch 1

Location : Nestle Hayes

Date samples received : 28th March, 2014

Status: Final report

Issue:

Thirty six samples were received for analysis on 28th March, 2014. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Compiled By:

Paul Lee-Boden BSc Project Manager Bob Millward BSc FRSC Principal Chemist

Quiellward

Location: Nestle Hayes
Contact: Mark Harris

Note:

Analysis was carried out in accordance with our documented in-house methods PM042 and TM065 and HSG 248 by Stereo and Polarised Light Microscopy using Dispersion Staining Techniques and is covered by our UKAS accreditation. Samples are retained for not less than 6 months from the date of analysis unless specifically requested.

Opinions lie outside the scope of our UKAS accreditation.

Where the sample is not taken by a Jones Environmental Laboratory consultant, Jones Environmental Laboratory cannot be responsible for inaccurate or unrepresentative sampling.

If asbestos fibres are reported at trace levels there will not be enough fibres to quantify and will be less than 0.001%.

Signed on behalf of Jones Environmental Laboratory:

Gemma Newsome Asbestos Team Leader

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Date Of Analysis	Description	Asbestos Containing Material	Asbestos Results	Asbestos Level	Comments
14/4298	1	ZONE 2 U1	50mm-60mm	11	04/04/14	Soil-Silt/Brick/Stone	Free Fibres	Chrysotile	Quantifiable	
14/4298	1	ZONE 2 U1	250mm-400mm	12	04/04/14	soil/stones	Free Fibres	Chrysotile	Trace	
14/4298	1	ZONE 2 U1	400mm-500mm	16	04/04/14	Soil-Clay/Brick/Stone	Free Fibres	Chrysotile	Quantifiable	
14/4298	1	ZONE 2 U2	50mm-200mm	20	04/04/14	Soil-Silt/Brick/Stone	Free Fibres	Chrysotile	Trace	
14/4298	1	ZONE 2 U2	200mm-250mm	21	04/04/14	Soil-Silt/Brick/Stone	Free Fibres	Chrysotile	Quantifiable	
14/4298	1	ZONE 2 U2	600mm-650mm	22	04/04/14	Soil-Clay/Brick/Stone	None	NAD	NAD	
14/4298	1	ZONE 2 U2	800mm-850mm	23	04/04/14	soil/stones	None	NAD	NAD	
14/4298	1	ZONE 2 U3	50mm-100mm	24	08/04/14	soil/stones/clay	None	NAD	NAD	
14/4298	1	ZONE 2 U3	200mm-350mm	28	08/04/14	soil/clay	None	NAD	NAD	
14/4298	1	ZONE 2 U3	400mm-450mm	29	08/04/14	soil/clay	Free Fibres	Chrysotile	Trace	
14/4298	1	ZONE 2 U3	700mm-750mm	30	08/04/14	soil/stones	None	NAD	NAD	
14/4298	1	ZONE 2 U4	50mm-200mm	34	08/04/14	soil/stones	None	NAD	NAD	
14/4298	1	ZONE 2 U4	250mm-300mm	35	08/04/14	soil/clay/stones	None	NAD	NAD	
14/4298	1	ZONE 2 U4	360mm-390mm	36	08/04/14	soil/stones	None	NAD	NAD	

Location: Nestle Hayes
Contact: Mark Harris

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Date Of Analysis	Description	Asbestos Containing Material	Asbestos Results	Asbestos Level	Comments
14/4298	1	ZONE 3 U5	100mm-200mm	40	08/04/14	clay/stones	None	NAD	NAD	
14/4298	1	ZONE 3 U6	100mm-250mm	41	08/04/14	soil/stones	Free Fibres	Chrysotile	Trace	
14/4298	1	ZONE 3 U7	30mm-90mm	45	08/04/14	soil/stones	Free Fibres	Chrysotile	Trace	
14/4298	1	ZONE 3 U8	40mm-180mm	46	08/04/14	soil/stones	None	NAD	NAD	
14/4298	1	ZONE 1 U9	50mm-15mm	47	08/04/14	soil/clay	None	NAD	NAD	
14/4298	1	ZONE 1 U9	250mm-400mm	51	08/04/14	soil/clay	None	NAD	NAD	
14/4298	1	ZONE 1 U9	500mm-600mm	52	08/04/14	soil/clay	None	NAD	NAD	
14/4298	1	ZONE 1 U9	750mm-800mm	53	08/04/14	soil/clay	None	NAD	NAD	
14/4298	1	ZONE 1 U10	50mm-100mm	54	08/04/14	soil/clay	None	NAD	NAD	
14/4298	1	ZONE 1 U10	150mm-300mm	58	08/04/14	soil/clay	None	NAD	NAD	
14/4298	1	ZONE 1 U10	450mm-550mm	59	08/04/14	soil/clay	None	NAD	NAD	
14/4298	1	ZONE 1 U10	750mm-810mm	60	08/04/14	soil/clay	None	NAD	NAD	

Location: Nestle Hayes
Contact: Mark Harris

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Analysis	Reason				
	No deviating sample report results for job 14/4298									
•										

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.: 14/4298

SOILS

Please note we are only MCERTS accredited for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary. If we are instructed to keep samples, a storage charge of £1 (1.5 Euros) per sample per month will be applied until we are asked to dispose of them.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

WATERS

Please note we are not a Drinking Water Inspectorate (DWI) Approved Laboratory . It is important that detection limits are carefully considered when requesting water analysis.

UKAS accreditation applies to surface water and groundwater and one other matrix which is analysis specific, any other liquids are outside our scope of accreditation

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is guoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

Samples must be received in a condition appropriate to the requested analyses. All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. If this is not the case you will be informed and any test results that may be compromised highlighted on your deviating samples report.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

ABBREVIATIONS and ACRONYMS USED

#	UKAS accredited.
В	Indicates analyte found in associated method blank.
DR	Dilution required.
M	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance.
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
++	Result outside calibration range, results should be considered as indicative only and are not accredited.
*	Analysis subcontracted to a Jones Environmental approved laboratory.
СО	Suspected carry over
OC	Outside Calibration Range
NFD	No Fibres Detected
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS

JE Job No: 14/4298

Test Method No.	Description	Prep Method No. (if appropriate)	Description	UKAS	MCERTS (soils only)	Analysis done on As Received (AR) or Air Dried (AD)	Reported on dry weight basis
TM65	Asbestos Bulk Identification	PM42	Screening of soils for fibres			AR	
TM65	Asbestos Bulk Identification	PM42	Screening of soils for fibres	Yes		AR	

Jones Environmental Laboratory

Registered Address: Unit 3 Deeside Point, Zone 3, Deeside Industrial Park, Deeside, CH5 2UA, UK

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA

Geosyntec Consulting 1st Floor Gatehead Business Park Delph New Road Delph OL3 5DE

Tel: +44 (0) 1244 833780 Fax: +44 (0) 1244 833781

Attention: Mark Harris

Date: 9th April, 2014

Your reference : Hayes ACM Undercroft

Our reference: Test Report 14/4298 Batch 2

Location : Nestle Hayes

Date samples received: 3rd April, 2014

Status: Final report

Issue:

Forty two samples were received for analysis on 3rd April, 2014. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Compiled By:

Simon Gomery BSc Project Manager

5,600

Bob Millward BSc FRSC Principal Chemist

Rjuiellward

Location: Nestle Hayes
Contact: Mark Harris

Note:

Analysis was carried out in accordance with our documented in-house methods PM042 and TM065 and HSG 248 by Stereo and Polarised Light Microscopy using Dispersion Staining Techniques and is covered by our UKAS accreditation. Samples are retained for not less than 6 months from the date of analysis unless specifically requested.

Opinions lie outside the scope of our UKAS accreditation.

Where the sample is not taken by a Jones Environmental Laboratory consultant, Jones Environmental Laboratory cannot be responsible for inaccurate or unrepresentative sampling.

If asbestos fibres are reported at trace levels there will not be enough fibres to quantify and will be less than 0.001%.

Signed on behalf of Jones Environmental Laboratory:

Gemma Newsome Asbestos Team Leader

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Date Of Analysis	Description	Asbestos Containing Material	Asbestos Results	Asbestos Level	Comments
14/4298	2	ZONE1 U11	50mm-200mm	75	08/04/14	soil/clay	None	NAD	NAD	
14/4298	2	ZONE1 U11	250mm-400mm	79	08/04/14	soil/clay	None	NAD	NAD	
14/4298	2	ZONE1 U11	500mm-650mm	83	08/04/14	soil/clay	None	NAD	NAD	
14/4298	2	ZONE1 U11	800mm-890mm	87	09/04/14	soil/clay	None	NAD	NAD	
14/4298	2	ZONE1 U12	50mm-150mm	91	09/04/14	soil/clay	None	NAD	NAD	
14/4298	2	ZONE1 U12	200mm-350mm	95	09/04/14	soil/clay/stones	None	NAD	NAD	
14/4298	2	ZONE1 U12	500mm-650mm	99	09/04/14	Soil/Stone/Clay	None	NAD	NAD	
14/4298	2	ZONE1 U12	750mm-850mm	103	09/04/14	soil/clay	None	NAD	NAD	
14/4298	2	ZONE1 U13	25mm-200mm	107	09/04/14	soil/clay	None	NAD	NAD	
14/4298	2	ZONE1 U13	250mm-400mm	111	09/04/14	soil/clay	None	NAD	NAD	
14/4298	2	ZONE1 U13	550mm-650mm	115	09/04/14	Soil/Stone/Clay	None	NAD	NAD	
14/4298	2	ZONE1 U14	25mm-200mm	119	08/04/14	soil/stones	None	NAD	NAD	
14/4298	2	ZONE1 U14	250mm-400mm	123	09/04/14	soil/clay	None	NAD	NAD	
14/4298	2	ZONE1 U14	500mm-650mm	127	09/04/14	Soil/Stone/Clay	None	NAD	NAD	

Client Name: Geosyntec Consulting
Reference: Hayes ACM Undercroft

Location: Nestle Hayes
Contact: Mark Harris

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Date Of Analysis	Description	Asbestos Containing Material	Asbestos Results	Asbestos Level	Comments
14/4298	2	ZONE1 U14	700mm-790mm	131	09/04/14	soil/clay	None	NAD	NAD	
14/4298	2	ZONE2 U15	25mm-200mm	135	09/04/14	Soil/Clay/Stone	Free Fibres	Chrysotile	Quantifiable	
14/4298	2	ZONE2 U15	300mm-400mm	139	09/04/14	Soil/Stone/Clay	None	NAD	NAD	
14/4298	2	ZONE2 U16	50mm-200mm	143	09/04/14	Soil/Stone/Clay	None	NAD	NAD	
14/4298	2	ZONE2 U16	250mm-350mm	147	09/04/14	soil/clay/stones	None	NAD	NAD	
14/4298	2	ZONE2 U16	390mm-480mm	151	09/04/14	Soil/Stone/Clay	None	NAD	NAD	
14/4298	2	ZONE4 U17	50mm-150mm	155	09/04/14	soil/clay/stones	None	NAD	NAD	
14/4298	2	ZONE4 U17	200mm-280mm	159	09/04/14	Soil/Stone/Clay	None	NAD	NAD	
14/4298	2	ZONE4 U18	25mm-200mm	163	09/04/14	Soil/Stone	Free Fibres	Chrysotile	Quantifiable	
14/4298	2	ZONE4 U18	250mm-350mm	167	09/04/14	soil/clay	None	NAD	NAD	
14/4298	2	ZONE4 U18	380mm-470mm	171	09/04/14	soil/clay	None	NAD	NAD	
14/4298	2	ZONE4 U19	50mm-200mm	175	09/04/14	soil/clay	None	NAD	NAD	
14/4298	2	ZONE4 U19	300mm-450mm	179	09/04/14	soil/clay	None	NAD	NAD	
14/4298	2	ZONE4 U19	600mm-750mm	183	09/04/14	Soil/Clay/Stone	None	NAD	NAD	
14/4298	2	ZONE4 U19	900mm-1000mm	187	09/04/14	Soil/Stone/Clay	None	NAD	NAD	
14/4298	2	ZONE4 U20	0mm-100mm	191	09/04/14	Soil/Stone/Silt	None	NAD	NAD	
14/4298	2	ZONE 3 U21	20mm-100mm	195	09/04/14	Soil/Stone/Tar	None	NAD	NAD	

Client Name: Geosyntec Consulting
Reference: Hayes ACM Undercroft

Location: Nestle Hayes
Contact: Mark Harris

J E Job No.	Batch	Sample ID	Depth	J E Sample No.		Reason
					No deviating sample report results for job 14/4298	

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.: 14/4298

SOILS

Please note we are only MCERTS accredited for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary. If we are instructed to keep samples, a storage charge of £1 (1.5 Euros) per sample per month will be applied until we are asked to dispose of them.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

WATERS

Please note we are not a Drinking Water Inspectorate (DWI) Approved Laboratory . It is important that detection limits are carefully considered when requesting water analysis.

UKAS accreditation applies to surface water and groundwater and one other matrix which is analysis specific, any other liquids are outside our scope of accreditation

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

Samples must be received in a condition appropriate to the requested analyses. All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. If this is not the case you will be informed and any test results that may be compromised highlighted on your deviating samples report.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

ABBREVIATIONS and ACRONYMS USED

UKAS accredited.
Indicates analyte found in associated method blank.
Dilution required.
MCERTS accredited.
Not applicable
No Asbestos Detected.
None Detected (usually refers to VOC and/SVOC TICs).
No Determination Possible
Calibrated against a single substance.
Surrogate recovery outside performance criteria. This may be due to a matrix effect.
Results expressed on as received basis.
AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
Result outside calibration range, results should be considered as indicative only and are not accredited.
Analysis subcontracted to a Jones Environmental approved laboratory.
Suspected carry over
Outside Calibration Range
No Fibres Detected
Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS

Test Method No.	Description	Prep Method No. (if appropriate)	Description	UKAS	MCERTS (soils only)	Analysis done on As Received (AR) or Air Dried (AD)	Reported on dry weight basis
TM65	Asbestos Bulk Identification	PM42	Screening of soils for fibres			AR	
TM65	Asbestos Bulk Identification	PM42	Screening of soils for fibres	Yes		AR	

Registered Address: Unit 3 Deeside Point, Zone 3, Deeside Industrial Park, Deeside, CH5 2UA. UK

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA

Geosyntec Consulting 1st Floor Gatehead Business Park Delph New Road Delph OL3 5DE

Tel: +44 (0) 1244 833780 Fax: +44 (0) 1244 833781

MCERTS IN SUMMARIES ASSESS

Attention: Mark Harris

Date: 16th April, 2014

Your reference : Hayes ACM Undercroft

Our reference : Test Report 14/4298 Batch 2 Schedule B

Location : Nestle Hayes

Date samples received : 3rd April, 2014

Status: Final report

Issue:

Forty two samples were received for analysis on 3rd April, 2014. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Compiled By:

Paul Lee-Boden BSc

Project Manager

Bob Millward BSc FRSC Principal Chemist

Rjuiellward

Client Name: Geosyntec Consulting

Reference: Hayes ACM Undercroft

Location: Nestle Hayes
Contact: Mark Harris
JE Job No.: 14/4298

Report : Solid

JE Job No.:	14/4298			 	 	 	 _		
J E Sample No.	132-135	160-163	192-195						
Sample ID	U15	U18	U21						
Depth	25mm-200mm	25mm-200mm	20mm-100mm				Please se	e attached n	otes for all
COC No / misc								ations and a	
Containers		VJTB	VJTB						
Sample Date		<>	<>						
Sample Type	Soil	Soil	Soil						
Batch Number	2	2	2				LOD/LOR	Units	Method
Date of Receipt	03/04/2014	03/04/2014	03/04/2014				202/2011	00	No.
Arsenic **M	-	-	8.9				<0.5	mg/kg	TM30/PM15
Arsenic	17.2	-	-				<0.5	mg/kg	TM30/PM62
Cadmium #M	-	-	<0.1				<0.1	mg/kg	TM30/PM15
Cadmium	<0.1	-	-				<0.1	mg/kg	TM30/PM62
Chromium #M	- 20.1	-	11.7				<0.5	mg/kg	TM30/PM15
Chromium Copper **M	28.1	-	35				<0.5 <1	mg/kg	TM30/PM62 TM30/PM15
Copper Copper	23	-	-				<1 <1	mg/kg mg/kg	TM30/PM15
Lead *M	-	-	- <5				<5	mg/kg	TM30/PM15
Lead	158	-	-				<5	mg/kg	TM30/PM62
Mercury #M	-	-	<0.1				<0.1	mg/kg	TM30/PM15
Mercury	0.9	-	-				<0.1	mg/kg	TM30/PM62
Nickel #M	-	-	18.9				<0.7	mg/kg	TM30/PM15
Nickel	25.3	-	-				<0.7	mg/kg	TM30/PM62
Selenium #M	-	-	<1				<1	mg/kg	TM30/PM15
Selenium	<1	-	-				<1	mg/kg	TM30/PM62
Sulphur	-	-	0.02				<0.01	%	TM30/PM15
Sulphur	0.02	-	-				<0.01	%	TM30/PM62
Total Sulphate #M	-	-	203				<50	mg/kg	TM50/PM15 TM50/PM62
Total Sulphate Water Soluble Boron ***	334	-	0.4				<50 <0.1	mg/kg	TM74/PM32
Water Soluble Boron	2.4	-	-				<0.1	mg/kg mg/kg	TM74/PM61
Zinc *M	-	-	21				<5	mg/kg	TM30/PM15
Zinc	114	-	-				<5	mg/kg	TM30/PM62

Client Name: Geosyntec Consulting

Reference: Hayes ACM Undercroft

Location: Nestle Hayes
Contact: Mark Harris
JE Job No.: 14/4298

Report : Solid

JE JOB NO.:	14/4298					 	•		
J E Sample No.	132-135	160-163	192-195						
Sample ID	U15	U18	U21						
Depth	25mm-200mm	25mm-200mm	20mm-100mm				Please se	e attached r	otes for all
COC No / misc								ations and a	
Containers	VJTB	VJTB	VJTB						
Sample Date	<>	<>	<>						
Sample Type	Soil	Soil	Soil						1
Batch Number	2	2	2				LOD/LOR	Units	Method
Date of Receipt	03/04/2014	03/04/2014	03/04/2014				LODILOIT	Office	No.
PAH MS									
Naphthalene #M	0.10	-	<4.00				<0.04	mg/kg	TM4/PM8
Acenaphthylene	<0.03	-	<3.00				<0.03	mg/kg	TM4/PM8
Acenaphthene #M	<0.05	-	<5.00				<0.05	mg/kg	TM4/PM8
Fluorene #M	<0.04	-	<4.00				<0.04	mg/kg	TM4/PM8
Phenanthrene #M	0.11	-	<3.00				<0.03	mg/kg	TM4/PM8
Anthracene #	<0.04	-	<4.00				<0.04	mg/kg	TM4/PM8
Fluoranthene **M Pyrene **	0.11	-	<3.00 <3.00				<0.03 <0.03	mg/kg	TM4/PM8 TM4/PM8
Benzo(a)anthracene #	0.11	-	<6.00				<0.03	mg/kg mg/kg	TM4/PM8
Chrysene **M	0.09	_	<2.00				<0.02	mg/kg	TM4/PM8
Benzo(bk)fluoranthene #M	0.13	-	<7.00				<0.07	mg/kg	TM4/PM8
Benzo(a)pyrene #	0.08	-	<4.00				<0.04	mg/kg	TM4/PM8
Indeno(123cd)pyrene #M	<0.04	-	<4.00				<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene#	<0.04	-	<4.00				<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene#	<0.04	-	<4.00				<0.04	mg/kg	TM4/PM8
Coronene	<0.04	-	<4.00				<0.04	mg/kg	TM4/PM8
PAH 16 Total	0.8	-	<60.0				<0.6	mg/kg	TM4/PM8
PAH 17 Total	0.83	-	<64.00				<0.64	mg/kg	TM4/PM8
Benzo(b)fluoranthene	0.09	-	<5.00				<0.05	mg/kg	TM4/PM8
Benzo(k)fluoranthene	0.04	-	<2.00				<0.02	mg/kg	TM4/PM8
PAH Surrogate % Recovery	98	-	98				<0	%	TM4/PM8
Mineral Oil	<30	_	954				<30	mg/kg	TM5/PM16
Willional Oil	400		304				400	mg/kg	11010/110110
TPH CWG									
Aliphatics									
>C5-C6 #M	<0.1	-	<0.1				<0.1	mg/kg	TM36/PM12
>C6-C8 #M	<0.1	-	<0.1				<0.1	mg/kg	TM36/PM12
>C8-C10	<0.1	-	<0.1				<0.1	mg/kg	TM36/PM12
>C10-C12 *M	<0.2	-	<0.8				<0.2	mg/kg	TM5/PM16
>C12-C16 #M	<4	-	<16				<4	mg/kg	TM5/PM16
>C16-C21 #M	<7	-	<28				<7	mg/kg	TM5/PM16
>C21-C35 ^{#M}	<7	-	641				<7	mg/kg	TM5/PM16
Total aliphatics C5-35	<19	-	641				<19	mg/kg	TM5/TM36/PM12/PM16
									-
									}
									}
									1
									1
		l		<u> </u>			<u> </u>		1

Client Name: Geosyntec Consulting

Reference: Hayes ACM Undercroft

Location: Nestle Hayes
Contact: Mark Harris
JE Job No.: 14/4298

Report : Solid

JE JOB NO.:	14/4298			 	 	 	 -		
J E Sample No.	132-135	160-163	192-195						
Sample ID	U15	U18	U21				1		
Depth	25mm-200mm	25mm-200mm	20mm-100mm				Please se	e attached n	otes for all
COC No / misc								ations and a	
Containers	VJTB	VJTB	VJTB				İ		
Sample Date	< >	<>	<>				1		
-							1		
Sample Type	Soil	Soil	Soil				<u> </u>		
Batch Number	2	2	2				LOD/LOR	Units	Method
Date of Receipt	03/04/2014	03/04/2014	03/04/2014						No.
TPH CWG									
Aromatics									
>C5-EC7	<0.1	-	<0.1				<0.1	mg/kg	TM36/PM12
>EC7-EC8	<0.1	-	<0.1				<0.1	mg/kg	TM36/PM12
>EC8-EC10 *** >EC10-EC12	<0.1	-	<0.1				<0.1	mg/kg	TM36/PM12
>EC10-EC12 >EC12-EC16	<0.2 <4	_	<0.8 <16				<0.2	mg/kg mg/kg	TM5/PM16 TM5/PM16
>EC16-EC21	<7	_	<28				<7	mg/kg	TM5/PM16
>EC21-EC35	<7	-	1232				<7	mg/kg	TM5/PM16
Total aromatics C5-35	<19	-	1232				<19	mg/kg	TM5/TM36/PM12/PM16
Total aliphatics and aromatics(C5-35)	<38	-	1873				<38	mg/kg	TM5/TM36/PM12/PM16
MTBE#	<5	-	<5				<5	ug/kg	TM31/PM12
Benzene #	<5	-	<5				<5	ug/kg	TM31/PM12
Toluene #	<5	-	<5				<5	ug/kg	TM31/PM12
Ethylbenzene#	<5	-	<5				<5	ug/kg	TM31/PM12
m/p-Xylene #	<5	-	<5				<5	ug/kg	TM31/PM12
o-Xylene [#]	<5	-	<5				<5	ug/kg	TM31/PM12
PCB 28 #	<5	_	<100				<5	ug/kg	TM17/PM8
PCB 52#	<5	-	<100				<5 <5	ug/kg	TM17/PM8
PCB 101 #	<5	-	<100				<5	ug/kg	TM17/PM8
PCB 118#	<5	-	<100				<5	ug/kg	TM17/PM8
PCB 138#	<5	-	<100				<5	ug/kg	TM17/PM8
PCB 153#	<5	-	<100				<5	ug/kg	TM17/PM8
PCB 180 #	<5	-	<100				<5	ug/kg	TM17/PM8
Total 7 PCBs #	<35	-	<700				<35	ug/kg	TM17/PM8
Phenol #M	<0.01	-	<0.01				<0.01	mg/kg	TM26/PM21
Natural Moisture Content	-	_	1.6				<0.1	0/	PM4/PM0
Natural Moisture Content	-	-	1.0				<0.1	%	FIVI4/FIVIO
Hexavalent Chromium	<0.3	_	<0.3				<0.3	mg/kg	TM38/PM20
								9.19	
Free Cyanide	<0.5	-	<0.5				<0.5	mg/kg	TM89/PM45
Total Cyanide #M	<0.5	-	<0.5				<0.5	mg/kg	TM89/PM45
Total Organic Carbon #	-	-	0.79				<0.02	%	TM21/PM24
Sulphide	<10	-	<10				<10	mg/kg	TM106/PM45
Thiocyanate	<0.6	-	<0.6				<0.6	mg/kg	TM107/PM45
ANC at pH4	0.00	_	0.40				-0.02	mol/!	TM77/DM40
ANC at pH4 ANC at pH7	0.06 <0.03	-	0.18 <0.03				<0.03 <0.03	mol/kg mol/kg	TM77/PM0 TM77/PM0
ANO at pi ii	<0.03	_	₹0.03	<u>I</u>			₹0.03	mol/kg	I IVII I / FIVIU

Client Name: Geosyntec Consulting

Reference: Hayes ACM Undercroft

Location: Nestle Hayes
Contact: Mark Harris
JE Job No.: 14/4298

Report : Solid

JE JOB NO.:	14/4298						_		
J E Sample No.	132-135	160-163	192-195						
Sample ID	U15	U18	U21						
Depth	25mm-200mm	25mm-200mm	20mm-100mm				Please se	e attached n	otes for all
COC No / misc							abbrevi	ations and a	cronyms
Containers	VJTB	VJTB	VJTB						
Sample Date	<>	<>	<>						
Sample Type	Soil	Soil	Soil				ĺ		
Batch Number	2	2	2						Method
Date of Receipt	03/04/2014	03/04/2014	03/04/2014				LOD/LOR	Units	No.
Asbestos PCOM Quantification (Fibres)	0.001	<0.001	-				<0.001	mass %	TM65/PM42
Loss on Ignition#	-	-	2.0				<1.0	%	TM22/PM0
pH #M	8.03	-	8.56				<0.01	pH units	TM73/PM11
	<u> </u>	<u> </u>						<u> </u>	<u> </u>

Mass of sample taken (kg)	-		Moisture Content Ratio (%) =		29.7	
Mass of dry sample (kg) =	0.09		Dry Matter Content Ratio (%) =		77.1	
Particle Size <4mm =	>95%		, , ,			
JEFL Job No			14/4298	Landf	ceptance	
Sample No			134	1	nits	
Client Sample No			U15		Stable	
Depth/Other			25mm-200mm	Inert	Non-reactive	Hazardous
Sample Date			<>	Waste	Hazardous Waste in Non-	Waste
Batch No			2	Landfill	Hazardous	Landfill
Solid Waste Analysis					Landfill	
Total Organic Carbon (%)	-			3	5	6
Loss on Ignition (%)	-			-	-	10
Sum of BTEX (mg/kg)	<0.025			6	-	-
Sum of 7 PCBs (mg/kg)	< 0.035			1	-	-
Mineral Oil (mg/kg)	<30			500	-	-
PAH Sum of 17(mg/kg)	0.83			100	-	-
pH (pH Units)	8.03			-	>6	-
ANC to pH 7 (mol/kg)	< 0.03			-	to be evaluated	to be evaluated
ANC to pH 4 (mol/kg)	0.06			-	to be evaluated	to be evaluated
Eluate Analysis		conc ⁿ ched A ₁₀		le	values for co aching test 12457-2 at l	using
	mg/l	mg/kg			mg/kg	
Arsenic	0.0037	0.037		0.5	2	25
Barium	0.013	0.13		20	100	300
Cadmium	< 0.0005	<0.005		0.04	1	5
Chromium	< 0.0015	<0.015		0.5	10	70
Copper	0.009	0.09		2	50	100
Mercury	<0.001	<0.01		0.01	0.2	2
Molybdenum	0.007	0.07		0.5	10	30
Nickel	< 0.002	<0.02		0.4	10	40
Lead	<0.005	<0.05		0.5	10	50
Antimony	0.003	0.03		0.06	0.7	5
Selenium	<0.003	<0.03		0.1	0.5	7
Zinc	0.008	0.08		4	50	200
Chloride	10.4	104		800	15000	25000
Fluoride	0.8	8		10	150	500
Sulphate as SO4	14.21	142.1		1000	20000	50000
Total Dissolved Solids	167	1669		4000	60000	100000
Phenol	<0.01	<0.1		1	-	-
Dissolved Organic Carbon	10	100		500	800	1000

Mass of sample taken (kg)	-		Moisture Content Ratio (%) =		2.6	
Mass of dry sample (kg) =	0.09		Dry Matter Content Ratio (%) =		97.5	
Particle Size <4mm =	>95%		, ,			
JEFL Job No			14/4298	Landf	ceptance	
Sample No			194		nits	
Client Sample No			U21		Stable	
Depth/Other			20mm-100mm	Inert Waste	Non-reactive	Hazardous
Sample Date			<>		Hazardous Waste in Non-	Waste
Batch No			2	Landfill	Hazardous	Landfill
Solid Waste Analysis					Landfill	
Total Organic Carbon (%)	0.79			3	5	6
Loss on Ignition (%)	2.0			-	-	10
Sum of BTEX (mg/kg)	<0.025			6	-	-
Sum of 7 PCBs (mg/kg)	<0.700			1	-	-
Mineral Oil (mg/kg)	954			500	-	-
PAH Sum of 17(mg/kg)	<64.00			100	-	-
pH (pH Units)	8.56			-	>6	-
ANC to pH 7 (mol/kg)	< 0.03			-	to be evaluated	to be evaluated
ANC to pH 4 (mol/kg)	0.18			-	to be evaluated	to be evaluated
Eluate Analysis		conc ⁿ ched A ₁₀		le	values for co aching test 12457-2 at l	using
	mg/l	mg/kg			mg/kg	
Arsenic	<0.0025	<0.025		0.5	2	25
Barium	< 0.003	<0.03		20	100	300
Cadmium	<0.0005	<0.005		0.04	1	5
Chromium	<0.0015	<0.015		0.5	10	70
Copper	<0.007	<0.07		2	50	100
Mercury	<0.001	<0.01		0.01	0.2	2
Molybdenum	<0.002	<0.02		0.5	10	30
Nickel	<0.002	<0.02		0.4	10	40
Lead	<0.005	<0.05		0.5	10	50
Antimony	<0.002	<0.02		0.06	0.7	5
Selenium	<0.003	<0.03		0.1	0.5	7
Zinc	<0.003	<0.03		4	50	200
Chloride	0.4	4		800	15000	25000
Fluoride	<0.3	<3		10	150	500
Sulphate as SO4	0.49	4.9		1000	20000	50000
Total Dissolved Solids	<35	<350		4000	60000	100000
Phenol	<0.01	<0.1		1	-	-
Dissolved Organic Carbon	6	60		500	800	1000

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.: 14/4298

SOILS

Please note we are only MCERTS accredited for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary. If we are instructed to keep samples, a storage charge of £1 (1.5 Euros) per sample per month will be applied until we are asked to dispose of them.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

WATERS

Please note we are not a Drinking Water Inspectorate (DWI) Approved Laboratory . It is important that detection limits are carefully considered when requesting water analysis.

UKAS accreditation applies to surface water and groundwater and one other matrix which is analysis specific, any other liquids are outside our scope of accreditation

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

Samples must be received in a condition appropriate to the requested analyses. All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. If this is not the case you will be informed and any test results that may be compromised highlighted on your deviating samples report.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

ABBREVIATIONS and ACRONYMS USED

#	UKAS accredited.
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance.
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
++	Result outside calibration range, results should be considered as indicative only and are not accredited.
*	Analysis subcontracted to a Jones Environmental approved laboratory.
СО	Suspected carry over
OC	Outside Calibration Range
NFD	No Fibres Detected
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS

Test Method No.	Description	Prep Method No. (if appropriate)	Description	UKAS	MCERTS (soils only)	Analysis done on As Received (AR) or Air Dried (AD)	Reported on dry weight basis
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465 and BS1377.	PM0	No preparation is required.				
TM4	16 PAH by GC-MS, modified USEPA 8270	PM8	In-house method based on USEPA 3510. ISO 17025 accredited extraction method for organic extraction from solid samples using an end over end agitator.			AR	Yes
TM4	16 PAH by GC-MS, modified USEPA 8270	PM8	In-house method based on USEPA 3510. ISO 17025 accredited extraction method for organic extraction from solid samples using an end over end agitator.	Yes		AR	Yes
TM4	16 PAH by GC-MS, modified USEPA 8270	PM8	In-house method based on USEPA 3510. ISO 17025 accredited extraction method for organic extraction from solid samples using an end over end agitator.	Yes	Yes	AR	Yes
TM5	In-House method based on USEPA 8015B. Determination of Extractable Petroleum Hydrocarbons (EPH) in the carbon chain length range of C8-40 by GC-FID. Accredited to ISO 17025 on soil and water samples and MCERTS (carbon banding only) on soils. All accreditation is matrix specific.	PM16	Aliphatic/Aromatic fractionation			AR	Yes
TM5	In-House method based on USEPA 8015B. Determination of Extractable Petroleum Hydrocarbons (EPH) in the carbon chain length range of C8-40 by GC-FID. Accredited to ISO 17025 on soil and water samples and MCERTS (carbon banding only) on soils. All accreditation is matrix specific.	PM16	Aliphatic/Aromatic fractionation	Yes	Yes	AR	Yes
TM5/TM36	TPH CWG by GC-FID	PM12/PM16	CWG GC-FID			AR	Yes
TM17	PCB 7 Congeners and WHO 12 PCBs by GC-MS	PM8	In-house method based on USEPA 3510. ISO 17025 accredited extraction method for organic extraction from solid samples using an end over end agitator.	Yes		AR	Yes
TM20	TDS, TSS and TS - gravimetric	PM0	No preparation is required.			AR	Yes

TM21	TOC and TC by Combustion	PM24	Eltra preparation	Yes		AD	Yes
------	--------------------------	------	-------------------	-----	--	----	-----

Test Method No.	Description	Prep Method No. (if appropriate)	Description	UKAS	MCERTS (soils only)	Analysis done on As Received (AR) or Air Dried (AD)	Reported on dry weight basis
TM22	Loss on Ignition (LOI) - gravimetric	PM0	No preparation is required.	Yes		AD	Yes
TM26	PhenoIs by HPLC	PM0	No preparation is required.			AR	Yes
TM26	Phenols by HPLC	PM21	Methanol : NaOH extraction	Yes	Yes	AR	Yes
TM27	In-House method based on USEPA 9056. Analysis of samples using a Dionex Ion-Chromatograph instrument.	PM0	No preparation is required.			AR	Yes
ТМ30	Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry) using Thermo iCAP 6000 series instrument. Accredited to ISO 17025 for soils and waters and MCERTS accredited for Soils. All accreditation is matrix specific.	PM15	In-house method based on USEPA 3010A. Acid digestion of dried and crushed solid samples using Aqua Regia reflux.			AD	Yes
TM30	Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry) using Thermo iCAP 6000 series instrument. Accredited to ISO 17025 for soils and waters and MCERTS accredited for Soils. All accreditation is matrix specific.	PM15	In-house method based on USEPA 3010A. Acid digestion of dried and crushed solid samples using Aqua Regia reflux.	Yes	Yes	AD	Yes
ТМ30	Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry) using Thermo iCAP 6000 series instrument. Accredited to ISO 17025 for soils and waters and MCERTS accredited for Soils. All accreditation is matrix specific.	PM17	CEN PR12457-2 10:1 1 batch leach	Yes		AR	Yes
TM30	Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry) using Thermo iCAP 6000 series instrument. Accredited to ISO 17025 for soils and waters and MCERTS accredited for Soils. All accreditation is matrix specific.	PM62	Aqua Regia extraction (Soils) (as received sample)			AR	Yes
TM31	In-house method based on USEPA 8015B. Determination of Methyltertbutylether, Benzene, Toluene, Ethylbenzene and Xylene by headspace GC-FID. Accredited to ISO 17025 for soils and waters and MCERTS accredited for soils. Accreditation is matrix specific.	PM12	In-house method based on USEPA 5021. Preparation of solid and liquid samples for headspace analysis. Samples are spiked with surrogates to facilitate quantification. ISO 17025 accredited extraction method. All accreditation is matrix specific			AR	Yes

TM31	In-house method based on USEPA 8015B. Determination of Methyltertbutylether, Benzene, Toluene, Ethylbenzene and Xylene by headspace GC-FID. Accredited to ISO 17025 for soils and waters and MCERTS accredited for soils. Accreditation is matrix specific.	PM12	In-house method based on USEPA 5021. Preparation of solid and liquid samples for headspace analysis. Samples are spiked with surrogates to facilitate quantification. ISO 17025 accredited extraction method. All accreditation is matrix specific	Yes		AR	Yes
------	---	------	--	-----	--	----	-----

Test Method No.	Description	Prep Method No. (if appropriate)	Description	UKAS	MCERTS (soils only)	Analysis done on As Received (AR) or Air Dried (AD)	Reported on dry weight basis
TM36	In-House method based on USEPA 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C5-12 by headspace GC-FID. Accredited to ISO 17025 on soil and water samples and MCERTS accredited (carbon banding only) on soils. All accreditation is matrix specific.	PM12	In-house method based on USEPA 5021. Preparation of solid and liquid samples for headspace analysis. Samples are spiked with surrogates to facilitate quantification. ISO 17025 accredited extraction method. All accreditation is matrix specific			AR	Yes
TM36	In-House method based on USEPA 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C5-12 by headspace GC-FID. Accredited to ISO 17025 on soil and water samples and MCERTS accredited (carbon banding only) on soils. All accreditation is matrix specific.	PM12	In-house method based on USEPA 5021. Preparation of solid and liquid samples for headspace analysis. Samples are spiked with surrogates to facilitate quantification. ISO 17025 accredited extraction method. All accreditation is matrix specific	Yes	Yes	AR	Yes
TM38	Ionic analysis using the Thermo Aquakem Photometric Automatic Analyser. Accredited to ISO17025 and MCERTS for most analytes. All accreditation is matrix specific.	PM0	No preparation is required.	Yes		AR	Yes
TM38	Ionic analysis using the Thermo Aquakem Photometric Automatic Analyser. Accredited to ISO17025 and MCERTS for most analytes. All accreditation is matrix specific.	PM20	in-house method based on USEPA 1311 (TCLP). Solid samples are extracted with two parts de-ionised water to one part solid material for analysis of the extract for various parameters.			AR	Yes
TM50	Total Sulphate by ICP-OES	PM15	In-house method based on USEPA 3010A. Acid digestion of dried and crushed solid samples using Aqua Regia reflux.	Yes	Yes	AD	Yes
TM50	Total Sulphate by ICP-OES	PM62	Aqua Regia extraction (Soils) (as received sample)			AR	Yes
TM60	TOC/DOC by NDIR	PM0	No preparation is required.			AR	Yes
TM65	Asbestos Bulk Identification	PM42	Screening of soils for fibres			AR	Yes
TM73	pH in by Metrohm	PM11	1:2.5 soil/water extraction	Yes	Yes	AR	No

TM74	Water Soluble Boron by ICP-OES	PM32	Preparation of soils for WSB	Yes	Yes	AD	Yes
------	--------------------------------	------	------------------------------	-----	-----	----	-----

Test Method No.	Description	Prep Method No. (if appropriate)	Description	UKAS	MCERTS (soils only)	Analysis done on As Received (AR) or Air Dried (AD)	Reported on dry weight basis
TM74	Water Soluble Boron by ICP-OES	PM61	Preparation of soils for WSB (as received sample)			AR	Yes
TM77	ANC at pH4 and pH7 by Metrohm	PM0	No preparation is required.			AR	No
TM89	In-house method based on USEPA method OIA-1667. Determination of cyanide by Flow Injection Analyser. ISO17025 accredited method for soils and waters and MCERTS on soils. Accreditation is matrix specific.	PM45	Cyanide & Thiocyanate prep for soils			AR	Yes
TM89	In-house method based on USEPA method OIA-1667. Determination of cyanide by Flow Injection Analyser. ISO17025 accredited method for soils and waters and MCERTS on soils. Accreditation is matrix specific.	PM45	Cyanide & Thiocyanate prep for soils	Yes	Yes	AR	Yes
TM106	Sulphide by CFA	PM45	Cyanide & Thiocyanate prep for soils			AR	Yes
TM107	Thiocyanate by CFA	PM45	Cyanide & Thiocyanate prep for soils			AR	Yes
NONE	No Method Code	PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465 and BS1377.			AR	

_				
				I

Registered Address: Unit 3 Deeside Point, Zone 3, Deeside Industrial Park, Deeside, CH5 2UA. UK

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA

Geosyntec Consulting 1st Floor Gatehead Business Park Delph New Road Delph OL3 5DE

Tel: +44 (0) 1244 833780 Fax: +44 (0) 1244 833781

Attention: Mark Harris

Date: 16th April, 2014

Your reference : Hayes ACM Undercroft

Our reference : Test Report 14/4298 Batch 1 Schedule B

Location : Nestle Hayes

Date samples received : 28th March, 2014

Status: Final report

Issue:

Thirty six samples were received for analysis on 28th March, 2014. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Compiled By:

Paul Lee-Boden BSc Project Manager Bob Millward BSc FRSC Principal Chemist

Rjuiellward

Client Name: Geosyntec Consulting

Reference: Hayes ACM Undercroft

Location: Nestle Hayes
Contact: Mark Harris
JE Job No.: 14/4298

Report : Solid

JE Job No.:	14/4298										
J E Sample No.	11	12-15	16	21	31-34	37-40					
Sample ID	U1	U1	U1	U2	U4	U5					
Depth	50mm-60mm	250mm-400mm	400mm-500mm	200mm-250mm	50mm-200mm	100mm-200mm			Please se	e attached n	otos for all
COC No / misc										ations and a	
Containers	В	BVJT	В	В	VJTB	VJTB					
Sample Date	<>	<>	<>	<>	<>	<>					
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil					
Batch Number	1	1	1	1	1	1			LOD/LOR	Units	Method
Date of Receipt	28/03/2014	28/03/2014	28/03/2014	28/03/2014	28/03/2014	28/03/2014			LOD/LOR	Office	No.
Arsenic #M	-	-	-	-	9.8	11.0			<0.5	mg/kg	TM30/PM15
Arsenic	-	10.8	-	-	-	-			<0.5	mg/kg	TM30/PM62
Cadmium ^{#M}	-	-	-	-	<0.1	<0.1			<0.1	mg/kg	TM30/PM15
Cadmium	-	<0.1	-	-	-	-			<0.1	mg/kg	TM30/PM62
Chromium #M	-	-	-	-	24.5	14.0			<0.5	mg/kg	TM30/PM15
Chromium	-	24.5	-	-	-	-			<0.5	mg/kg	TM30/PM62
Copper #M	-	- 15	-	-	20	26			<1	mg/kg	TM30/PM15
Copper Lead *M	-	15	-	-	13	- 52			<1 <5	mg/kg mg/kg	TM30/PM62 TM30/PM15
Lead	-	83	-	-	-	-			<5 <5	mg/kg	TM30/PM62
Mercury **M	-	-	-	_	<0.1	0.2			<0.1	mg/kg	TM30/PM15
Mercury	-	1.7	-	-	-	-			<0.1	mg/kg	TM30/PM62
Nickel *M	-	-	-	-	19.1	11.8			<0.7	mg/kg	TM30/PM15
Nickel	-	19.6	-	-	-	-			<0.7	mg/kg	TM30/PM62
Selenium #M	-	-	-	-	<1	<1			<1	mg/kg	TM30/PM15
Selenium	-	<1	-	-	-	-			<1	mg/kg	TM30/PM62
Sulphur	-	-	-	-	<0.01	0.20			<0.01	%	TM30/PM15
Sulphur	-	0.07	-	-	-	-			<0.01	%	TM30/PM62
Total Sulphate #M	-	-	-	-	191	5590			<50	mg/kg	TM50/PM15
Total Sulphate	-	756	-	-	-	-			<50	mg/kg	TM50/PM62
Water Soluble Boron #M	-	-	-	-	0.6	2.9			<0.1	mg/kg	TM74/PM32
Water Soluble Boron Zinc **M	-	1.0	-	-	41	- 19			<0.1 <5	mg/kg mg/kg	TM74/PM61 TM30/PM15
Zinc	-	74	-	_	-	-			<5 <5	mg/kg	TM30/PM62
2.110		7.7							10	mg/kg	111100/111102
											İ
											}
											}
											1
											ĺ
											1

Client Name: Geosyntec Consulting

Reference: Hayes ACM Undercroft

Location: Nestle Hayes
Contact: Mark Harris
JE Job No.: 14/4298

Report : Solid

JE JOB NO	14/4290						 	 	•		
J E Sample No.	11	12-15	16	21	31-34	37-40					
Sample ID	U1	U1	U1	U2	U4	U5					
Depth	50mm-60mm	250mm-400mm	400mm-500mm	200mm-250mm	50mm-200mm	100mm-200mm			Please se	e attached n	otes for all
COC No / misc										ations and a	
Containers	В	BVJT	В	В	VJTB	VJTB					
Sample Date	<>	<>	<>	<>	<>	<>					
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil					
Batch Number	1	1	1	1	1	1			LOD/LOR	Units	Method
Date of Receipt	28/03/2014	28/03/2014	28/03/2014	28/03/2014	28/03/2014	28/03/2014					No.
PAH MS											
Naphthalene #M	-	<0.04	-	-	<0.04	<0.04			<0.04	mg/kg	TM4/PM8
Acenaphthylene	-	<0.03	-	-	<0.03	<0.03			<0.03	mg/kg	TM4/PM8
Acenaphthene #M	-	<0.05	-	-	<0.05	<0.05			<0.05	mg/kg	TM4/PM8
Fluorene #M	-	<0.04	-	-	<0.04	<0.04			<0.04	mg/kg	TM4/PM8 TM4/PM8
Phenanthrene **M Anthracene **	-	0.20	-	-	<0.03 <0.04	<0.03 <0.04			<0.03 <0.04	mg/kg mg/kg	TM4/PM8
Fluoranthene #M	<u>-</u>	0.42	<u>-</u>	-	<0.04	<0.03			<0.03	mg/kg	TM4/PM8
Pyrene #	-	0.36	-	-	<0.03	<0.03			<0.03	mg/kg	TM4/PM8
Benzo(a)anthracene#	-	0.19	-	-	<0.06	<0.06			<0.06	mg/kg	TM4/PM8
Chrysene **M	-	0.25	-	-	<0.02	<0.02			<0.02	mg/kg	TM4/PM8
Benzo(bk)fluoranthene #M	-	0.41	-	-	<0.07	<0.07			<0.07	mg/kg	TM4/PM8
Benzo(a)pyrene#	-	0.19	-	-	<0.04	<0.04			<0.04	mg/kg	TM4/PM8
Indeno(123cd)pyrene #M	-	0.15	-	-	<0.04	<0.04			<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene #	-	<0.04	-	-	<0.04	<0.04			<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene#	-	0.14	-	-	<0.04	<0.04			<0.04	mg/kg	TM4/PM8
Coronene	-	<0.04	-	-	<0.04	<0.04			<0.04	mg/kg	TM4/PM8
PAH 16 Total	-	2.4	-	-	<0.6	<0.6			<0.6	mg/kg	TM4/PM8
PAH 17 Total	-	2.37	-	-	<0.64	<0.64 <0.05			<0.64	mg/kg	TM4/PM8 TM4/PM8
Benzo(b)fluoranthene Benzo(k)fluoranthene	-	0.30	-	-	<0.05 <0.02	<0.05			<0.05 <0.02	mg/kg mg/kg	TM4/PM8
PAH Surrogate % Recovery	<u>-</u>	98	<u>-</u>	<u>-</u>	105	109			<0.02	//////////////////////////////////////	TM4/PM8
Mineral Oil	-	139	-	-	<30	<30			<30	mg/kg	TM5/PM16
TPH CWG											
Aliphatics											ļ
>C5-C6 #M	-	<0.1	-	-	<0.1	<0.1			<0.1	mg/kg	TM36/PM12
>C6-C8 #M	-	<0.1	-	-	<0.1	<0.1			<0.1	mg/kg	TM36/PM12
>C8-C10	-	<0.1	-	-	<0.1	<0.1			<0.1	mg/kg	TM36/PM12
>C10-C12 **M	-	<0.2	-	-	<0.2	<0.2			<0.2	mg/kg	TM5/PM16
>C12-C16 #M	-	<4 8	-	-	<4	<4			<4	mg/kg	TM5/PM16 TM5/PM16
>C16-C21 **M >C21-C35 **M	-	122	-	-	<7 <7	<7 <7			<7 <7	mg/kg mg/kg	TM5/PM16
Total aliphatics C5-35	-	130	- -	- -	<19	<19			<19	mg/kg	TM5/TM36/PM12/PM16
Total displication on the		100			V10	110			V10	mg/kg	
											İ
											<u> </u>

Client Name: Geosyntec Consulting

Reference: Hayes ACM Undercroft

Location: Nestle Hayes
Contact: Mark Harris
JE Job No.: 14/4298

Report : Solid

-	14/4290							1	•		
J E Sample No.	11	12-15	16	21	31-34	37-40					
Sample ID	U1	U1	U1	U2	U4	U5					
Depth	50mm-60mm	250mm-400mm	400mm-500mm	200mm-250mm	50mm-200mm	100mm-200mm			Places co	e attached r	otos for all
COC No / misc										ations and a	
Containers	В	BVJT	В	В	VJTB	VJTB			1		
		БУЛІ			VJIB						
Sample Date	<>	<>	<>	<>	<>	<>			ļ		
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil					
Batch Number	1	1	1	1	1	1			LOD/LOR	Units	Method
Date of Receipt	28/03/2014	28/03/2014	28/03/2014	28/03/2014	28/03/2014	28/03/2014			LOD/LOR	Office	No.
TPH CWG											
Aromatics											
>C5-EC7	-	<0.1	-	-	<0.1	<0.1			<0.1	mg/kg	TM36/PM12
>EC7-EC8	-	<0.1	-	-	<0.1	<0.1			<0.1	mg/kg	TM36/PM12
>EC8-EC10 #M	-	<0.1	-	-	<0.1	<0.1			<0.1	mg/kg	TM36/PM12
>EC10-EC12	-	<0.2	-	-	<0.2	<0.2			<0.2	mg/kg	TM5/PM16
>EC12-EC16	-	<4	-	-	<4	<4			<4	mg/kg	TM5/PM16
>EC16-EC21	-	<7 145	-	-	<7	<7			<7	mg/kg	TM5/PM16 TM5/PM16
>EC21-EC35 Total aromatics C5-35	-	145 145	-	-	<7 <19	<7 <19			<7 <19	mg/kg mg/kg	TM5/PM16 TM5/TM36/PM12/PM16
Total aliphatics and aromatics(C5-35)	-	275	-	-	<38	<38			<38	mg/kg	TM5/TM36/PM12/PM16
Total alphatics and aromatics(00 00)	_	2/3	_	_	\ 30	\ 30			\ 30	mg/kg	
MTBE#	-	<5	-	-	<5	<5			<5	ug/kg	TM31/PM12
Benzene #	-	<5	-	-	<5	<5			<5	ug/kg	TM31/PM12
Toluene #	-	<5	-	-	<5	<5			<5	ug/kg	TM31/PM12
Ethylbenzene #	-	<5	-	-	<5	<5			<5	ug/kg	TM31/PM12
m/p-Xylene #	-	<5	-	-	<5	<5			<5	ug/kg	TM31/PM12
o-Xylene#	-	<5	-	-	<5	<5			<5	ug/kg	TM31/PM12
PCB 28#	-	<5	-	-	<5	<5			<5	ug/kg	TM17/PM8
PCB 52#	-	<5	-	-	<5	<5			<5	ug/kg	TM17/PM8
PCB 101 #	-	<5	-	-	<5	<5			<5	ug/kg	TM17/PM8
PCB 118# PCB 138#	-	<5 -5	-	-	<5 -5	<5 <5			<5 <5	ug/kg	TM17/PM8 TM17/PM8
PCB 138 PCB 153#	-	<5 <5	-	-	<5 <5	<5 <5			<5 <5	ug/kg ug/kg	TM17/PM8
PCB 180 #	_	<5	_	_	<5	<5 <5			<5	ug/kg	TM17/PM8
Total 7 PCBs#	-	<35	-	-	<35	<35			<35	ug/kg	TM17/PM8
										3 3	
Phenol **M	-	<0.01	-	-	<0.01	<0.01			<0.01	mg/kg	TM26/PM21
Natural Moisture Content	-	-	-	-	13.9	16.3			<0.1	%	PM4/PM0
Hexavalent Chromium	-	<0.3	-	-	<0.3	<0.3			<0.3	mg/kg	TM38/PM20
Free Cyanide	-	<0.5	-	-	<0.5	<0.5			<0.5	mg/kg	TM89/PM45
Total Cyanide #M	-	<0.5	-	-	<0.5	<0.5			<0.5	mg/kg	TM89/PM45
Tatal Ossasia O #					0.44	0.14			40.00	0/	TM24/DM24
Total Organic Carbon #	-	-	-	-	0.14	0.14			<0.02	%	TM21/PM24
Sulphide	_	<10	_	_	<10	<10			<10	mg/kg	TM106/PM45
Thiocyanate	-	<0.6	-	-	<0.6	<0.6			<0.6	mg/kg	TM107/PM45
.,,		.5.0			.5.0	.5.0			.5.0	9' 119	
ANC at pH4	-	0.34	-	-	0.52	1.03			<0.03	mol/kg	TM77/PM0
ANC at pH7	-	<0.03	-	-	0.06	0.21			<0.03	mol/kg	TM77/PM0

Client Name: Geosyntec Consulting

Reference: Hayes ACM Undercroft

Location: Nestle Hayes
Contact: Mark Harris
JE Job No.: 14/4298

Report : Solid

	14/4290								-		
J E Sample No.	11	12-15	16	21	31-34	37-40					
Sample ID	U1	U1	U1	U2	U4	U5					
Depth	50mm-60mm	250mm-400mm	400mm-500mm	200mm-250mm	50mm-200mm	100mm-200mm			Please se	e attached n	otes for all
COC No / misc									abbrevi	ations and a	cronyms
Containers	В	BVJT	В	В	VJTB	VJTB					
Sample Date			<>	<>							
		<>			<>	<>					
Sample Type		Soil	Soil	Soil	Soil	Soil					
Batch Number		1	1	1	1	1			LOD/LOR	Units	Method No.
Date of Receipt	28/03/2014	28/03/2014	28/03/2014	28/03/2014	28/03/2014	28/03/2014					
Asbestos PCOM Quantification (Fibres)		-	<0.001	<0.001	-	-			<0.001	mass %	TM65/PM42
Loss on Ignition # pH ***	-	8.18	-	-	2.3 8.43	1.5 8.41			<1.0 <0.01	% pH units	TM22/PM0 TM73/PM11
рн	-	0.10	-	-	0.43	0.41			<0.01	pri units	TIVI73/FIVITI
											}
											}
											}

Mass of sample taken (kg)	-		Moisture Content Ratio (%) =		14.1	
Mass of dry sample (kg) =	0.09		Dry Matter Content Ratio (%) =		87.7	
Particle Size <4mm =	>95%		, , ,			
JEFL Job No			14/4298	Landf	ill Waste Ac	ceptance
Sample No			15		Criteria Lim	nits
Client Sample No			U1		Stable	
Depth/Other			250mm-400mm	Inert	Non-reactive	Hazardous
Sample Date			⇔	Waste	Hazardous Waste in Non-	Waste
Batch No			1	Landfill	Hazardous	Landfill
Solid Waste Analysis					Landfill	
Total Organic Carbon (%)	-			3	5	6
Loss on Ignition (%)	-			-	-	10
Sum of BTEX (mg/kg)	<0.025			6	-	-
Sum of 7 PCBs (mg/kg)	< 0.035			1	-	-
Mineral Oil (mg/kg)	139			500	-	-
PAH Sum of 17(mg/kg)	2.37			100	-	-
pH (pH Units)	8.18			-	>6	-
ANC to pH 7 (mol/kg)	< 0.03			-	to be evaluated	to be evaluated
ANC to pH 4 (mol/kg)	0.34			-	to be evaluated	to be evaluated
Eluate Analysis		conc ⁿ ched A ₁₀		le	values for co aching test 12457-2 at	using
	mg/l	mg/kg			mg/kg	
Arsenic	<0.0025	<0.025		0.5	2	25
Barium	0.006	0.06		20	100	300
Cadmium	< 0.0005	<0.005		0.04	1	5
Chromium	< 0.0015	<0.015		0.5	10	70
Copper	< 0.007	<0.07		2	50	100
Mercury	<0.001	<0.01		0.01	0.2	2
Molybdenum	0.009	0.09		0.5	10	30
Nickel	< 0.002	<0.02		0.4	10	40
Lead	<0.005	<0.05		0.5	10	50
Antimony	< 0.002	<0.02		0.06	0.7	5
Selenium	< 0.003	<0.03		0.1	0.5	7
Zinc	< 0.003	<0.03		4	50	200
Chloride	1.9	19		800	15000	25000
Fluoride	0.7	7		10	150	500
Sulphate as SO4	45.58	455.6		1000	20000	50000
Total Dissolved Solids	164	1639		4000	60000	100000
Phenol	<0.01	<0.1		1	-	-
Dissolved Organic Carbon	10	100		500	800	1000

Mass of sample taken (kg)	-		Moisture Content Ratio (%) =		24.3	
Mass of dry sample (kg) =	0.09		Dry Matter Content Ratio (%) =		80.5	
Particle Size <4mm =	>95%					
	ī			•		
JEFL Job No			14/4298	Land	ill Waste Ac	
Sample No			33		Criteria Lin	nits
Client Sample No			U4	1	Stable	
Depth/Other			50mm-200mm	Inert	Non-reactive	Hazardous
Sample Date			<>	Waste	Hazardous Waste in Non-	
Batch No			1	Landfill	Hazardous Landfill	Landfill
Solid Waste Analysis					Lanum	
Total Organic Carbon (%)	0.14			3	5	6
Loss on Ignition (%)	2.3			-	-	10
Sum of BTEX (mg/kg)	<0.025			6	-	-
Sum of 7 PCBs (mg/kg)	< 0.035			1	-	-
Mineral Oil (mg/kg)	<30			500	-	-
PAH Sum of 17(mg/kg)	<0.64			100	-	-
pH (pH Units)	8.43			-	>6	-
ANC to pH 7 (mol/kg)	0.06			-	to be evaluated	to be evaluated
ANC to pH 4 (mol/kg)	0.52			-	to be evaluated	to be evaluated
Eluate Analysis		conc ⁿ ched A ₁₀		le	values for co aching test 12457-2 at l	using
	mg/l	mg/kg			mg/kg	
Arsenic	<0.0025	<0.025		0.5	2	25
Barium	0.031	0.31		20	100	300
Cadmium	<0.0005	<0.005		0.04	1	5
Chromium	0.0017	0.017		0.5	10	70
Copper	<0.007	<0.07		2	50	100
Mercury	<0.001	<0.01		0.01	0.2	2
Molybdenum	0.004	0.04		0.5	10	30
Nickel	<0.002	<0.02		0.4	10	40
Lead	0.007	0.07		0.5	10	50
Antimony	<0.002	<0.02		0.06	0.7	5
Selenium	<0.003	<0.03		0.1	0.5	7
Zinc	0.007	0.07		4	50	200
Chloride	7.1	71		800	15000	25000
Fluoride	0.8	8		10	150	500
Sulphate as SO4	24.04	240.4		1000	20000	50000
Total Dissolved Solids	122	1220		4000	60000	100000
Phenol	<0.01	<0.1		1	-	-
Dissolved Organic Carbon	14	140		500	800	1000

Mass of sample taken (kg)	-		Moisture Content Ratio (%) =		17.6	
Mass of dry sample (kg) =	0.09		Dry Matter Content Ratio (%) =		85.1	
Particle Size <4mm =	>95%					
JEFL Job No			14/4298	Land	ill Waste Ac	
Sample No			39		Criteria Lim	nits
Client Sample No			U5		Stable	
Depth/Other			100mm-200mm	Inert	Hazardous	
Sample Date			⇔	Waste	Hazardous Waste in Non-	Waste Landfill
Batch No			1	Landfill	Hazardous	
Solid Waste Analysis					Landfill	
Total Organic Carbon (%)	0.14			3	5	6
Loss on Ignition (%)	1.5			-	-	10
Sum of BTEX (mg/kg)	<0.025			6	-	-
Sum of 7 PCBs (mg/kg)	< 0.035			1	-	-
Mineral Oil (mg/kg)	<30			500	-	-
PAH Sum of 17(mg/kg)	<0.64			100	-	-
pH (pH Units)	8.41			-	>6	-
ANC to pH 7 (mol/kg)	0.21			-	to be evaluated	to be evaluated
ANC to pH 4 (mol/kg)	1.03			-	to be evaluated	to be evaluated
Eluate Analysis		conc ⁿ ched A ₁₀		le	values for co aching test 12457-2 at I	using
	mg/l	mg/kg			mg/kg	
Arsenic	<0.0025	<0.025		0.5	2	25
Barium	0.015	0.15		20	100	300
Cadmium	<0.0005	<0.005		0.04	1	5
Chromium	0.0017	0.017		0.5	10	70
Copper	<0.007	<0.07		2	50	100
Mercury	<0.001	<0.01		0.01	0.2	2
Molybdenum	0.016	0.16		0.5	10	30
Nickel	< 0.002	<0.02		0.4	10	40
Lead	<0.005	<0.05		0.5	10	50
Antimony	<0.002	<0.02		0.06	0.7	5
Selenium	<0.003	<0.03		0.1	0.5	7
Zinc	<0.003	<0.03		4	50	200
Chloride	30.2	302		800	15000	25000
Fluoride	0.5	5		10	150	500
Sulphate as SO4	139.26	1392.4		1000	20000	50000
Total Dissolved Solids	543	5429		4000	60000	100000
Phenol	<0.01	<0.1		1	-	-
Dissolved Organic Carbon	<2	<20		500	800	1000

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.: 14/4298

SOILS

Please note we are only MCERTS accredited for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary. If we are instructed to keep samples, a storage charge of £1 (1.5 Euros) per sample per month will be applied until we are asked to dispose of them.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

WATERS

Please note we are not a Drinking Water Inspectorate (DWI) Approved Laboratory . It is important that detection limits are carefully considered when requesting water analysis.

UKAS accreditation applies to surface water and groundwater and one other matrix which is analysis specific, any other liquids are outside our scope of accreditation

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

Samples must be received in a condition appropriate to the requested analyses. All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. If this is not the case you will be informed and any test results that may be compromised highlighted on your deviating samples report.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

ABBREVIATIONS and ACRONYMS USED

#	UKAS accredited.
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance.
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
++	Result outside calibration range, results should be considered as indicative only and are not accredited.
*	Analysis subcontracted to a Jones Environmental approved laboratory.
СО	Suspected carry over
ОС	Outside Calibration Range
NFD	No Fibres Detected
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS

Test Method No.	Description	Prep Method No. (if appropriate)	Description	UKAS	MCERTS (soils only)	Analysis done on As Received (AR) or Air Dried (AD)	Reported on dry weight basis
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465 and BS1377.	PM0	No preparation is required.				
TM4	16 PAH by GC-MS, modified USEPA 8270	PM8	In-house method based on USEPA 3510. ISO 17025 accredited extraction method for organic extraction from solid samples using an end over end agitator.			AR	Yes
TM4	16 PAH by GC-MS, modified USEPA 8270	PM8	In-house method based on USEPA 3510. ISO 17025 accredited extraction method for organic extraction from solid samples using an end over end agitator.	Yes		AR	Yes
TM4	16 PAH by GC-MS, modified USEPA 8270	PM8	In-house method based on USEPA 3510. ISO 17025 accredited extraction method for organic extraction from solid samples using an end over end agitator.	Yes	Yes	AR	Yes
TM5	In-House method based on USEPA 8015B. Determination of Extractable Petroleum Hydrocarbons (EPH) in the carbon chain length range of C8-40 by GC-FID. Accredited to ISO 17025 on soil and water samples and MCERTS (carbon banding only) on soils. All accreditation is matrix specific.	PM16	Aliphatic/Aromatic fractionation			AR	Yes
TM5	In-House method based on USEPA 8015B. Determination of Extractable Petroleum Hydrocarbons (EPH) in the carbon chain length range of C8-40 by GC-FID. Accredited to ISO 17025 on soil and water samples and MCERTS (carbon banding only) on soils. All accreditation is matrix specific.	PM16	Aliphatic/Aromatic fractionation	Yes	Yes	AR	Yes
TM5/TM36	TPH CWG by GC-FID	PM12/PM16	CWG GC-FID			AR	Yes
TM17	PCB 7 Congeners and WHO 12 PCBs by GC-MS	PM8	In-house method based on USEPA 3510. ISO 17025 accredited extraction method for organic extraction from solid samples using an end over end agitator.	Yes		AR	Yes
TM20	TDS, TSS and TS - gravimetric	PM0	No preparation is required.			AR	Yes

TM21	TOC and TC by Combustion	PM24	Eltra preparation	Yes		AD	Yes
------	--------------------------	------	-------------------	-----	--	----	-----

Test Method No.	Description	Prep Method No. (if appropriate)	Description	UKAS	MCERTS (soils only)	Analysis done on As Received (AR) or Air Dried (AD)	Reported on dry weight basis
TM22	Loss on Ignition (LOI) - gravimetric	PM0	No preparation is required.	Yes		AD	Yes
TM26	PhenoIs by HPLC	PM0	No preparation is required.			AR	Yes
TM26	PhenoIs by HPLC	PM21	Methanol : NaOH extraction	Yes	Yes	AR	Yes
TM27	In-House method based on USEPA 9056. Analysis of samples using a Dionex Ion-Chromatograph instrument.	PM0	No preparation is required.			AR	Yes
ТМ30	Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry) using Thermo iCAP 6000 series instrument. Accredited to ISO 17025 for soils and waters and MCERTS accredited for Soils. All accreditation is matrix specific.	PM15	In-house method based on USEPA 3010A. Acid digestion of dried and crushed solid samples using Aqua Regia reflux.			AD	Yes
ТМ30	Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry) using Thermo iCAP 6000 series instrument. Accredited to ISO 17025 for soils and waters and MCERTS accredited for Soils. All accreditation is matrix specific.	PM15	In-house method based on USEPA 3010A. Acid digestion of dried and crushed solid samples using Aqua Regia reflux.	Yes	Yes	AD	Yes
ТМ30	Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry) using Thermo iCAP 6000 series instrument. Accredited to ISO 17025 for soils and waters and MCERTS accredited for Soils. All accreditation is matrix specific.	PM17	CEN PR12457-2 10:1 1 batch leach	Yes		AR	Yes
TM30	Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry) using Thermo iCAP 6000 series instrument. Accredited to ISO 17025 for soils and waters and MCERTS accredited for Soils. All accreditation is matrix specific.	PM62	Aqua Regia extraction (Soils) (as received sample)			AR	Yes
TM31	In-house method based on USEPA 8015B. Determination of Methyltertbutylether, Benzene, Toluene, Ethylbenzene and Xylene by headspace GC-FID. Accredited to ISO 17025 for soils and waters and MCERTS accredited for soils. Accreditation is matrix specific.	PM12	In-house method based on USEPA 5021. Preparation of solid and liquid samples for headspace analysis. Samples are spiked with surrogates to facilitate quantification. ISO 17025 accredited extraction method. All accreditation is matrix specific			AR	Yes

TM31	In-house method based on USEPA 8015B. Determination of Methyltertbutylether, Benzene, Toluene, Ethylbenzene and Xylene by headspace GC-FID. Accredited to ISO 17025 for soils and waters and MCERTS accredited for soils. Accreditation is matrix specific.	PM12	In-house method based on USEPA 5021. Preparation of solid and liquid samples for headspace analysis. Samples are spiked with surrogates to facilitate quantification. ISO 17025 accredited extraction method. All accreditation is matrix specific	Yes		AR	Yes
------	---	------	--	-----	--	----	-----

JE Job No: 14/4298

Test Method No.	Description	Prep Method No. (if appropriate)	Description	UKAS	MCERTS (soils only)	Analysis done on As Received (AR) or Air Dried (AD)	Reported on dry weight basis
TM36	In-House method based on USEPA 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C5-12 by headspace GC-FID. Accredited to ISO 17025 on soil and water samples and MCERTS accredited (carbon banding only) on soils. All accreditation is matrix specific.	PM12	In-house method based on USEPA 5021. Preparation of solid and liquid samples for headspace analysis. Samples are spiked with surrogates to facilitate quantification. ISO 17025 accredited extraction method. All accreditation is matrix specific			AR	Yes
TM36	In-House method based on USEPA 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C5-12 by headspace GC-FID. Accredited to ISO 17025 on soil and water samples and MCERTS accredited (carbon banding only) on soils. All accreditation is matrix specific.	PM12	In-house method based on USEPA 5021. Preparation of solid and liquid samples for headspace analysis. Samples are spiked with surrogates to facilitate quantification. ISO 17025 accredited extraction method. All accreditation is matrix specific	Yes	Yes	AR	Yes
TM38	Ionic analysis using the Thermo Aquakem Photometric Automatic Analyser. Accredited to ISO17025 and MCERTS for most analytes. All accreditation is matrix specific.	PM0	No preparation is required.	Yes		AR	Yes
TM38	Ionic analysis using the Thermo Aquakem Photometric Automatic Analyser. Accredited to ISO17025 and MCERTS for most analytes. All accreditation is matrix specific.	PM20	in-house method based on USEPA 1311 (TCLP). Solid samples are extracted with two parts de-ionised water to one part solid material for analysis of the extract for various parameters.			AR	Yes
TM50	Total Sulphate by ICP-OES	PM15	In-house method based on USEPA 3010A. Acid digestion of dried and crushed solid samples using Aqua Regia reflux.	Yes	Yes	AD	Yes
TM50	Total Sulphate by ICP-OES	PM62	Aqua Regia extraction (Soils) (as received sample)			AR	Yes
TM60	TOC/DOC by NDIR	PM0	No preparation is required.			AR	Yes
TM65	Asbestos Bulk Identification	PM42	Screening of soils for fibres			AR	Yes
TM73	pH in by Metrohm	PM11	1:2.5 soil/water extraction	Yes	Yes	AR	No

TM74	Water Soluble Boron by ICP-OES	PM32	Preparation of soils for WSB	Yes	Yes	AD	Yes
------	--------------------------------	------	------------------------------	-----	-----	----	-----

JE Job No: 14/4298

Test Method No.	Description	Prep Method No. (if appropriate)	Description	UKAS	MCERTS (soils only)	Analysis done on As Received (AR) or Air Dried (AD)	Reported on dry weight basis
TM74	Water Soluble Boron by ICP-OES	PM61	Preparation of soils for WSB (as received sample)			AR	Yes
TM77	ANC at pH4 and pH7 by Metrohm	PM0	No preparation is required.			AR	No
TM89	In-house method based on USEPA method OIA-1667. Determination of cyanide by Flow Injection Analyser. ISO17025 accredited method for soils and waters and MCERTS on soils. Accreditation is matrix specific.	PM45	Cyanide & Thiocyanate prep for soils			AR	Yes
TM89	In-house method based on USEPA method OIA-1667. Determination of cyanide by Flow Injection Analyser. ISO17025 accredited method for soils and waters and MCERTS on soils. Accreditation is matrix specific.	PM45	Cyanide & Thiocyanate prep for soils	Yes	Yes	AR	Yes
TM106	Sulphide by CFA	PM45	Cyanide & Thiocyanate prep for soils			AR	Yes
TM107	Thiocyanate by CFA	PM45	Cyanide & Thiocyanate prep for soils			AR	Yes
NONE	No Method Code	PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465 and BS1377.			AR	

_				

Bardon Environmental Ltd

President Park President Way Sheffield Unit 6, Carrera Court, Church Lane, Dinnington, Sheffield, S25 2RG (0)1909 560 673, (0)1909 550 418

www.tersusgroup.co.uk, info@tersusgroup.co.uk

For the attention of Given Sigauke

REPORT OF ANALYTICAL EXAMINATION FOR ASBESTOS IN BULK SAMPLE(S)

Job number J039473

Number of samples 32

Date sampled / received 31 Mar 2014

Date analysed Kay Michie, 1 Apr 2014

Analyst Kay Michie

Sampled By (S) Client Supplied Sample

Site address Nestle, North Hyde Gardens, Hayes, Middlesex, UB3

4RF

METHOD OF ANALYSIS

The sample(s) were analysed using Polarised Light Microscopy and McCrone Dispersion Staining by the method given in HSG248, Appendix 2. This is an accredited test method under ISO 17025. We disclaim responsibility for the accuracy of information provided by and sampling undertaken by the client. "Trace" is reported as defined in HSG248 where applicable. All opinions and descriptions ie. non asbestos fibre types and material types in this report fall outside the scope of our accreditation.

Sample ref. no.	Customer ref. no.	Building	Floor level	Room	Position	Item	Material	Conclusion
BS007938	IN/IC./ / IN ISTA/IT	Main building	Below ground	Undercroft	Telecommunications Room	Paper coated fibreboard debris	Asbestos Textiles/Paper	Chrysotile
BS007939	MC/200314/02	Main building	Below ground	Undercroft	Telecommunications Room	Paper coated fibreboard debris	Asbestos Textiles/Paper	Chrysotile
BS007940	111/11 / 21 11 1 3 1 21/1 1 3	Main building	Below ground	IIIInaareratt	Floor to left of columns B1 + B2	Hessian textile	inot applicable	No Asbestos Detected

Sample ref. no.	Customer ref.	Building	Floor level	Room	Position	Item	Material	Conclusion
BS007941	MC/200314/04	Main building	Below ground	Undercroft	Floor to left of column C1	Woven cable sheathing	Not applicable	No Asbestos Detected
BS007942	MC/200314/05	Main building	Below ground	Undercroft	Floor to left of column C1	Woven textile rope debris	Asbestos Insulation/Coating	Amo + Chrys + Croc
BS007943	MC/200314/06	Main building	Below ground	Undercroft	Floor between columns A1 A2 B1 + B2	Dust/debris	Not applicable	No Asbestos Detected
BS007944	MC/200314/07	Main building	Below ground	Undercroft	Floor between columns C1 C2 D1 + D2	Dust/debris	Not applicable	No Asbestos Detected
BS007945	MC/200314/08	Main building	Below ground	Undercroft	Floor between columns F2 + F3	Woven textile rope debris	Asbestos Insulation/Coating	Chrysotile + Crocidolite
BS007946	MC/200314/09	Main building	Below ground	Undercroft	Floor between columns F4 + F5	Dust/debris	Not applicable	No Asbestos Detected
BS007947	MC/200314/10	Main building	Below ground	Undercroft	Floor between columns F1 + F2	Woven textile rope sheathing	Not applicable	No Asbestos Detected
BS007948	MC/200314/11	Main building	Below ground	Undercroft	Floor between columns I1 + I2	Dust/debris	Not applicable	No Asbestos Detected
BS007949	MC/200314/12	Main building	Below ground	Undercroft	Pipework to garden elevation	Pipe insulation	Asbestos Insulation/Coating	Amo + Chrys + Croc
BS007950	MC/200314/13	Main building	Below ground	Undercroft	Pipework to garden elevation	Pipe insulation debris	Asbestos Insulation/Coating	Amo + Chrys + Croc
BS007951	MC/200314/14	Main building	Below ground	Undercroft	Floor between columns I0 + H0	Pipe insulation debris	Asbestos Insulation/Coating	Amo + Chrys + Croc
BS007952	MC/200314/15	Main building	Below ground	Undercroft	Pipework to garden elevation	Pipe insulation	Asbestos Insulation/Coating	Amo + Chrys + Croc

Sample ref. no.	Customer ref.	Building	Floor level	Room	Position	Item	Material	Conclusion
BS007953	MC/200314/16		Below ground	Undercroft	Pipework to garden elevation	Pipe insulation residue	Asbestos Insulation/Coating	Amo + Chrys + Croc
BS007954	MC/200314/17		Below ground	Undercroft	Floor between columns I2 + I3	Dust/debris	Not applicable	No Asbestos Detected
BS007955	MC/200314/18		Below ground	Undercroft	Floor of concrete slab between columns I2 + I3	Cement debris	Asbestos Cement	Chrysotile
BS007956	MC/200314/19	Main building	Below ground	Undercroft	Floor to garden elevation	Pipe insulation debris	Asbestos Insulation/Coating	Amo + Chrys + Croc
BS007957	MC/200314/20		Below ground		Floor between columns J2 J3 K2 + K3	Dust/debris	Not applicable	No Asbestos Detected
BS007958	MC/200314/21		Below ground	Undercroft	Floor btween columns I4 I5 J4 + J5	Dust/debris	Not applicable	No Asbestos Detected
BS007959	MC/200314/22	Main building	Below ground	Undercroft	Horizontal pipe beside column C10	Pipe insulation	Asbestos Insulation/Coating	Amo + Chrys + Croc
BS007960	MC/200314/23		Below ground	Undercroft	Floor beside column C10	Pipe insulation debris	Asbestos Insulation/Coating	Amo + Chrys + Croc
BS007961	MC/200314/24		Below ground	Undercroft	Pipework between columns 12C + 13C	Pipe insulation	Asbestos Insulation/Coating	Amo + Chrys + Croc
BS007962	MC/200314/25	Main building	Below ground	Undercroft	Floor between columns 12C + 13C	Pipe insulation debris	Asbestos Insulation/Coating	Amo + Chrys + Croc
BS007963	MC/200314/26	Main building	Below ground	Undercroft	Pipework between columns 10C + 10D	Pipe insulation	Asbestos Insulation/Coating	Amo + Chrys + Croc
BS007964	MC/200314/27	Main building	Below ground	Undercroft	Floor between columns 10C + 10D	Pipe insulation debris	Asbestos Insulation/Coating	Amo + Chrys + Croc

Sample ref. no.	Customer ref. no.	Building	Floor level	Room	Position	Item	Material	Conclusion
BS007965	MC/200314/28		Below ground	Undercroft	Floor between columns B9 C9 B10 + C10	Dust debris	Not applicable	No Asbestos Detected
BS007966	MC/200314/29	l	Below ground		Floor between columns C8 D8 C9 + D9	Dust/debris	Not applicable	No Asbestos Detected
BS007967	MC/200314/30	l	Below ground	Undercroft	Floor between columns G10 H10 G11 + H11	Dust/debris	Not applicable	No Asbestos Detected
BS007968	MC/200314/31	l	Below ground		Floor between columns F8 G8 F9 + G9	Dust/debris	Not applicable	No Asbestos Detected
BS007969	MC/200314/32	I	Below ground		Floor between columns D10 + D11	Woven textile rope debris	Not applicable	No Asbestos Detected

Authorised signatures Kay Michie

Samantha Banks

Bardon Environmental Ltd

President Park President Way Sheffield Unit 6, Carrera Court, Church Lane, Dinnington, Sheffield, S25 2RG (0)1909 560 673, (0)1909 550 418

www.tersusgroup.co.uk, info@tersusgroup.co.uk

For the attention of Given Sigauke

REPORT OF ANALYTICAL EXAMINATION FOR ASBESTOS IN BULK SAMPLE(S)

Job number J040345

Number of samples 27

Date sampled / received 8 Apr 2014

Date analysed Kay Michie, 10 Apr 2014

Analyst Kay Michie

Sampled By (S) Client Supplied Sample

Site address Nestle UK, North Hyde Gardens, Hayes, London, UB3

4RF

METHOD OF ANALYSIS

The sample(s) were analysed using Polarised Light Microscopy and McCrone Dispersion Staining by the method given in HSG248, Appendix 2. This is an accredited test method under ISO 17025. We disclaim responsibility for the accuracy of information provided by and sampling undertaken by the client. "Trace" is reported as defined in HSG248 where applicable. All opinions and descriptions ie. non asbestos fibre types and material types in this report fall outside the scope of our accreditation.

Sample ref. no.	Customer ref. no.	Building	Floor level	Room	Position	Item	Material	Conclusion
BS008655	MC/200314/33	Main Building	Below ground	Under croft	Floor beneath hatch 5a	Dust and debris	Dust/Debris	Amosite
BS008656	MC/200314/34	Main Building	Below ground	Under croft	Floor to right of column H18	Dust and debris	Dust/Debris	Amosite
BS008657	MC/200314/35	Main Building	Below ground	Under croft	Floor to left of column H18	Dust and debris	Dust/Debris	Amosite

Sample ref. no.	Customer ref.	Building	Floor level	Room	Position	Item	Material	Conclusion
BS008658	MC/200314/36	Main Building	Below ground	Under croft	Floor between columns h18 and i18	Dust and debris	Dust/Debris	Amosite
BS008659	MC/200314/37	Main Building	Below ground	Under croft	Floor between columns h18 and i18	Dust and debris	Dust/Debris	Chrysotile + Amosite
BS008660	MC/200314/38	Main Building	Below ground	Under croft	Floor between columns h18 and i18	Dust and debris	Dust/Debris	Chrysotile + Amosite
BS008661	MC/200314/39	Main Building	Below ground	Under croft	Floor between columns h19 and i19	Dust and debris	Dust/Debris	Amosite
BS008662	MC/200314/40	Main Building	Below ground	Under croft	Floor between columns h19 and i19	Dust and debris	Dust/Debris	Amosite
BS008663	MC/200314/41	Main Building	Below ground	Under croft	beneath hatch 5a		Asbestos Insulation/Coating	Chrysotile + Amosite
BS008664	MC/200314/42	Main Building	Below ground	Under croft	Horizontal pipe to end wall beneath hatch 5a	Pipe insulation	Asbestos Insulation/Coating	Chrysotile + Amosite
BS008665	MC/200314/43	Main Building	Below ground	Under croft	nine in hatch 5	Pipe insulation debris	Asbestos Insulation/Coating	Chrysotile + Amosite
BS008666	MC/200314/44	Main Building	Below ground	Under croft	nine in hatch 5	Pipe insulation debris	Asbestos Insulation/Coating	Chrysotile + Amosite
BS008667	MC/200314/45	Main Building	Below ground	Under croft	Horizontal pipe between columns h19 and h20	Pipe insulation	Asbestos Insulation/Coating	Amo + Chrys + Croc
BS008668	MC/200314/46	Main Building	Below ground	Under croft	Horizontal pipe between columns h19 and h20	Pipe insulation	Asbestos Insulation/Coating	Amo + Chrys + Croc
BS008669	MC/200314/47	Main Building	Below ground	Under croft	Floor between columns h18 and h19	Dust and debris	Dust/Debris	Chrysotile + Amosite

Sample ref. no.	Customer ref. no.	Building	Floor level	Room	Position	Item	Material	Conclusion
BS008670	MC/200314/48	Main Building	Below ground	Under croft	Floor between columns h19 and h20	Dust and debris	Dust/Debris	Chrysotile
BS008671	MC/200314/49	Main Building	Below ground	Under croft	Floor between columns h18 and h19	Dust and debris	Dust/Debris	Amosite
BS008672	MC/200314/50	Main Building	Below ground	Under croft	Floor between columns h19 and h20	Dust and debris	Dust/Debris	Amo + Chrys + Croc
BS008673	MC/200314/51	Main Building	Below ground	Under croft	Floor between columns h18 and i18	Dust and debris	Not applicable	No Asbestos Detected
BS008674	MC/200314/52	Main Building	Below ground	Under croft	Floor between columns i18 and i19	Dust and debris	Not applicable	No Asbestos Detected
BS008675	MC/200314/53	Main Building	Below ground	Under croft	Floor between columns i19 and i20	Dust and debris	Not applicable	No Asbestos Detected
BS008676	MC/200314/54	Main Building	Below ground	Under croft	Floor between columns h20 and i20	Dust and debris	Not applicable	No Asbestos Detected
BS008677	MC/200314/55	Main Building	Below ground	Under croft	Floor between columns h17-h17-i16 and i17	Dust and debris	Not applicable	No Asbestos Detected
BS008678	MC/200314/56	Main Building	Below ground	Under croft	Floor between columns h15-h16-i15 and i16	Dust and debris	Not applicable	No Asbestos Detected
BS008679	MC/200314/57	Main Building	Below ground	Under croft	Floor between columns h14-h15-i14 and i15	Dust and debris	Not applicable	No Asbestos Detected
BS008680	MC/200314/58	Main Building	Below ground	Under croft	Floor between columns i14-i15-j14 and j15	Dust and debris	Not applicable	No Asbestos Detected
BS008681	MC/200314/59	Main Building	Below ground	Under croft	Floor between columns h18 and i18	Dust and debris	Asbestos Insulation/Coating	Amo + Chrys + Croc

Authorised signatures

Kay Michie

Samantha Banks

J.Balla

Bardon Environmental Ltd

President Park President Way Sheffield Unit 6, Carrera Court, Church Lane, Dinnington, Sheffield, S25 2RG (0)1909 560 673, (0)1909 550 418

www.tersusgroup.co.uk, info@tersusgroup.co.uk

For the attention of Given Sigauke

REPORT OF ANALYTICAL EXAMINATION FOR ASBESTOS IN BULK SAMPLE(S)

Job number J040911

Number of samples 50

Date sampled / received 14 Apr 2014

Date analysed Gemma Drury

Kay Michie, 16 Apr 2014

Analyst Gemma Drury Kay Michie

Sampled By (S) Client Supplied Sample

Site address Nestle UK, North Hyde Gardens, Hayes, London,

METHOD OF ANALYSIS

The sample(s) were analysed using Polarised Light Microscopy and McCrone Dispersion Staining by the method given in HSG248, Appendix 2. This is an accredited test method under ISO 17025. We disclaim responsibility for the accuracy of information provided by and sampling undertaken by the client. "Trace" is reported as defined in HSG248 where applicable. All opinions and descriptions ie. non asbestos fibre types and material types in this report fall outside the scope of our accreditation.

Sample ref. no.	Customer ref. no.	Building	Floor level	Room	Position	Item	Material	Conclusion
BS008953	MC/200314/60		Below Ground	Under Croft	Floor between columns H34 + H24	Dust/Debris	Not applicable	No Asbestos Detected
BS008954	MC/200314/61		Below Ground	Under Croft	Floor between columns H21 + H22	Dust/Debris	Not applicable	No Asbestos Detected
BS008955	MC/200314/62		Below Ground	Under Croft	Floor between columns H20 H21 I20 + I21	Dust/Debris	Not applicable	No Asbestos Detected

Sample ref.	Customer ref.	Building	Floor level	Room	Position	Item	Material	Conclusion
BS008956	MC/200314/63	Main Building	Below Ground	Under Croft	Floor between columns H20 H21 I20 + I21	Dust/Debris	Not applicable	No Asbestos Detected
BS008957	MC/200314/64	Main Building	Below Ground	Under Croft	Floor between columns I19 + J19	Dust/Debris	Not applicable	No Asbestos Detected
BS008958	MC/200314/65	Main Building			Dust/Debris	Not applicable	No Asbestos Detected	
BS008959	MC/200314/66	Main Building	Below Under Floor between columns J19 + J20		Dust/Debris	Not applicable	No Asbestos Detected	
BS008960	MC/200314/67	Main Building	Below Ground	Under Croft	Floor between columns J24 + J25	Dust/Debris	Not applicable	No Asbestos Detected
BS008961	MC/200314/68	Main Building	Below Ground	Under Croft	Floor between columns K17 + K18	Dust/Debris	Not applicable	No Asbestos Detected
BS008962	MC/200314/69	Main Building	Below Ground	Under Croft	Floor between columns J23 J24 K23 + K24	Dust/Debris	Not applicable	No Asbestos Detected
BS008963	MC/200314/70	Main Building	Below Ground	Under Croft	Floor between columns K18 K19 L18 + L19	Dust/Debris	Not applicable	No Asbestos Detected
BS008964	MC/200314/71	Main Building	Below Ground	Under Croft	Floor between columns K23 K24 L23 + L24	Dust/Debris	Not applicable	No Asbestos Detected
BS008965	MC/200314/72	Main Building	Below Ground	Under Croft	Floor between columns K20 K21 L20 + L21	Dust/Debris	Not applicable	No Asbestos Detected
BS008966	MC/200314/73	Main Building	Below Ground	Under Croft	Floor between columns K24 K25 L24 + L25	Dust/Debris	Not applicable	No Asbestos Detected
BS008967	MC/200314/74	Main Building	Below Ground	Under Croft	Floor between columns J26 J27 K26 + K27	Dust/Debris	Not applicable	No Asbestos Detected

Sample ref. no.	Customer ref. no.	Building	Floor level	Room	Position	Item	Material	Conclusion
BS008968	MC/200314/75	Main Building	Below Ground	Under Croft	Floor between columns I25 I26 J25 + J26	Dust/Debris	Not applicable	No Asbestos Detected
BS008969	MC/200314/76	Main Building	Below Ground	Service Trench A	Surface of pipe to floor	Pipe insulation residue	Not applicable	No Asbestos Detected
BS008970	MC/200314/77	Main Building	Below Ground	Service Trench A	Surface of pipe to floor	Pipe insulation residue	Not applicable	No Asbestos Detected
BS008971	MC/200314/78	Main Building	Below Ground	Service Trench A	Surface of pipe to floor	Pipe insulation residue	Not applicable	No Asbestos Detected
BS008972	MC/200314/79	Main Building	Below Ground	Service Trench B	Pipe to ceiling	Woven textile sheathing	Not applicable	No Asbestos Detected
BS008973	MC/200314/80	Main Building	Below Ground	Service Trench B	Floor beneath Hatch B	Insulation debris	Insulation	Amo + Chrys + Croc
BS008974	MC/200314/81	Main Building	Below Ground	Service Trench B	Floor to Trench B	Insulation debris	Insulation	Amo + Chrys + Croc
BS008975	MC/200314/82	Main Building	Below Ground	Service Trench B	Floor to Trench B	Insulation debris	Insulation	Amo + Chrys + Croc
BS008976	MC/200314/83	Main Building	Below Ground	Service Trench B	Floor to Trench B	Insulation debris	Insulation	Amo + Chrys + Croc
BS008977	MC/200314/84	Main Building	Below Ground	Service Trench B	Floor to Trench B	Insulation debris	Insulation	Amo + Chrys + Croc
BS008978	MC/200314/85	Main Building	Below Ground	Service Trench B	Floor to Trench B	Insulation debris	Insulation	Amo + Chrys + Croc
BS008979	MC/200314/86	Main Building	Below Ground	Service Trench B	Floor to Trench B	Insulation debris	Insulation	Amo + Chrys + Croc

Sample ref. no.	Customer ref. no.	Building	Floor level	Room	Position	Item	Material	Conclusion
BS008980	MC/200314/87	Main Building	Below Ground	Service Trench B	Floor to Trench B	Insulation debris	Insulation	Amo + Chrys + Croc
Beige loose	insulation. Dam	p						
BS008981	MC/200314/88	Main Building	Below Ground	Service Trench C	Pipe to right hand wall towards stores lobby	Pipe insulation	Insulation	Amo + Chrys + Croc
BS008982	MC/200314/89	Main Building	Below Ground	Service Trench C	Upper small bore pipe	Pipe insulation	Insulation	Amo + Chrys + Croc
BS008983	MC/200314/90	Main Building	Below Ground	Service Trench C	Lower large bore pipe	Pipe insulation	Insulation	Amo + Chrys + Croc
BS008984	MC/200314/91	Main Building	Below Ground	Service Trench C	Small bore pipe to right hand wall	Pipe insulation	Insulation	Crocidolite
BS008985	MC/200314/92	Main Building	Below Ground	Service Trench C	Flange to upper small bore pipe	Gasket	Gaskets	Chrysotile
BS008986	MC/200314/93	Main Building	Below Ground	Service Trench D	Ceiling pipe 4M from Hatch D	Woven textile ducting	Not applicable	No Asbestos Detected
BS008987	MC/200314/94	Main Building	Below Ground	Service Trench D	Floor to trench. Start of right hand duct	Dust/Debris	Not applicable	No Asbestos Detected
BS008988	MC/200314/95	Main Building	Below Ground	Service Trench D	Floor to trench. End of right hand duct	Dust/Debris	Not applicable	No Asbestos Detected
BS008989	MC/200314/96	Main Building	Below Ground	Service Trench D	Floor to trench. Start of left hand duct	Dust/Debris	Not applicable	No Asbestos Detected
BS008990	MC/200314/97	Main Building	Below Ground	Service Trench D	Floor to trench. Centre of left hand duct	Dust/Debris	Not applicable	No Asbestos Detected
BS008991	MC/200314/98	Main Building	Below Ground	Service Trench D	Floor to trench. End of left hand duct	Dust/Debris	Not applicable	No Asbestos Detected

Sample ref. no.	Customer ref. no.	Building	Floor level	Room	Position	Item	Material	Conclusion
BS008992	MC/200314/99	Main Building	Below Ground	Service Trench E	Floor beneath Hatch E	II IIIQT/I IANTIQ	Not applicable	No Asbestos Detected
BS008993	MC/200314/100	Main Building	Below Ground	Service Trench E	Floor 4M from Hatch E	II IIIQT/I IANTIQ	Not applicable	No Asbestos Detected
BS008994	MC/200314/101	Main Building	Below Ground	Service Trench E	Floor to start of right hand duct	II JI ICT/I JAhrie	Not applicable	No Asbestos Detected
BS008995	MC/200314/102	Main Building	Below Ground	Service Trench E	Floor to centre of right hand duct	Dust/Debris	Not applicable	No Asbestos Detected
BS008996	MC/200314/103	Main Building	Below Ground	Service Trench E	Floor to centre of left hand duct	II II ICT/I IANTIC	Not applicable	No Asbestos Detected
BS008997	MC/200314/104	Main Building	Below Ground	Service Trench E	Floor to end of left hand duct	II)IIIST/I JANTIS	Not applicable	No Asbestos Detected
BS008998	MC/200314/105	Main Building	Below Ground	Service Trench E Towards Canal	Floor 5metres from Hatch E	Dust/Debris	Not applicable	No Asbestos Detected
BS008999	MC/200314/106	Main Building	Below Ground	Service Trench E Towards Canal	Floor below water. 15metres from Hatch E	Dust/Debris	Not applicable	No Asbestos Detected
BS009000	MC/200314/107	Main Building	Below Ground	Service Trench E Towards Canal	Floor below water. 35metres from Hatch E	Dust/Debris	Not applicable	No Asbestos Detected
BS009001	MC/200314/108	Main Building	Below Ground	Service Trench F (right hand duct)	Floor 10metres from Main Trench	Dust/Debris	Not applicable	No Asbestos Detected
BS009002	MC/200314/109	Main Building	Below Ground	Service Trench F	Floor 45metres from Hatch F below water	Dust/Debris	Not applicable	No Asbestos Detected

Authorised signatures

Kay Michie

Kay Michie

Registered Address: Unit 3 Deeside Point, Zone 3, Deeside Industrial Park, Deeside, CH5 2UA, UK

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA

Geosyntec Consulting 30-32 Botanic Road Glasnevin Dublin Ireland

Tel: +44 (0) 1244 833780 Fax: +44 (0) 1244 833781

Attention: Andrew Morgan

Date : 21st July, 2014

Your reference : GCU0124025

Our reference: Test Report 14/7722 Batch 1 Schedule A

Location : Nestle, Hayes

Date samples received: 4th July, 2014

Status: Final report

Issue:

Thirty five samples were received for analysis on 4th July, 2014. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Compiled By:

Kim Mills

Project Co-ordinator

Bob Millward BSc FRSC Principal Chemist

Rjuiellward

Client Name: Geosyntec Consulting

Reference: GCU0124025 Location: Nestle, Hayes

Contact: Andrew Morgan
JE Job No.: 14/7722

Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

JE Job No.:	14/7722										-		
J E Sample No.	2	4	5	7	9	10	12	14	16	17			
Sample ID	WS101	WS101	WS101	WS101	WS101	WS105	WS105	WS105	WS105	WS105			
Depth	0.2-0.3	0.5-0.6	0.7-0.75	1.1-1.15	1.9-2.0	0.4-0.5	0.65-0.7	0.95-1.0	0.7-0.75	1.6-1.7		e attached n	
COC No / misc											abbrevi	ations and a	cronyms
Containers	В	В	В	В	В	В	В	В	В	В			
Sample Date	02/07/2014	02/07/2014	02/07/2014	02/07/2014	02/07/2014	02/07/2014	02/07/2014	02/07/2014	02/07/2014	02/07/2014			
Sample Type	Soil												
Batch Number	1	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method
Date of Receipt	04/07/2014	04/07/2014	04/07/2014	04/07/2014	04/07/2014	04/07/2014	04/07/2014	04/07/2014	04/07/2014	04/07/2014			No.
Arsenic#	-	-	-	-	-	-	-	-	-	-	<0.5	mg/kg	TM30/PM15
Arsenic	-	-	-	-	-	-	-	-	-	-	<0.5	mg/kg	TM30/PM62
Cadmium #	-	-	-	-	-	-	-	-	-	-	<0.1	mg/kg	TM30/PM15
Cadmium	-	-	-	-	-	-	-	-	-	-	<0.1	mg/kg	TM30/PM62
Chromium #	-	-	-	-	-	-	-	-	-	-	<0.5	mg/kg	TM30/PM15
Chromium	-	-	-	-	-	-	-	-	-	-	<0.5	mg/kg	TM30/PM62
Copper#	-	-	-	-	-	-	-	-	-	-	<1	mg/kg	TM30/PM15
Copper	-	-	-	-	-	-	-	-	-	-	<1	mg/kg	TM30/PM62
Lead#	-	-	-	-	-	-	-	-	-	-	<5	mg/kg	TM30/PM15
Lead	-	-	-	-	-	-	-	-	-	-	<5	mg/kg	TM30/PM62
Mercury #	-	-	-	-	-	-	-	-	-	-	<0.1	mg/kg	TM30/PM15
Mercury	-	-	-	-	-	-	-	-	-	-	<0.1	mg/kg	TM30/PM62
Nickel #	-	-	-	-	-	-	-	-	-	-	<0.7	mg/kg	TM30/PM15
Nickel #	-	-	-	-	-	-	-	-	-	-	<0.7	mg/kg	TM30/PM62
Selenium#	-	-	-	-	-	-	-	-	-	-	<1	mg/kg	TM30/PM15
Selenium	-	-	-	-	-	-	-	-	-	-	<1	mg/kg %	TM30/PM62 TM30/PM15
Sulphur Sulphur	-	-	-	-	-	-	-	-	-	-	<0.01 <0.01	%	TM30/PM62
Total Sulphate #	-	-	-	-	-	-	-	-	-	-	<0.01 <50		TM50/PM62
Total Sulphate	-	-	-	-	-	-	-	-	-	-	<50 <50	mg/kg mg/kg	TM50/PM62
Water Soluble Boron #	_	_	-	_	_	_	_	_	_	_	<0.1	mg/kg	TM74/PM32
Water Soluble Boron	-	-	-	-	-	_	_	-	_	-	<0.1	mg/kg	TM74/PM61
Zinc#	_	_	_	_	_	_	_	_	_	_	<5	mg/kg	TM30/PM15
Zinc	-	_	-	-	-	-	-	-	-	-	<5	mg/kg	TM30/PM62
												9.19	

Client Name: Geosyntec Consulting

Reference: GCU0124025 Location: Nestle, Hayes Contact: Andrew Morgan

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

Report : Solid

JE Job No.: 14/7722

JE Job No.:	14/7722												
J E Sample No.	2	4	5	7	9	10	12	14	16	17			
Sample ID	WS101	WS101	WS101	WS101	WS101	WS105	WS105	WS105	WS105	WS105			
Depth	0.2-0.3	0.5-0.6	0.7-0.75	1.1-1.15	1.9-2.0	0.4-0.5	0.65-0.7	0.95-1.0	0.7-0.75	1.6-1.7		e attached n	
COC No / misc											abbrevi	ations and a	cronyms
Containers	В	В	В	В	В	В	В	В	В	В			
Sample Date	02/07/2014	02/07/2014	02/07/2014	02/07/2014	02/07/2014	02/07/2014	02/07/2014	02/07/2014	02/07/2014	02/07/2014			
Sample Type	Soil												
										Į.			
Batch Number	1	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method No.
Date of Receipt	04/07/2014	04/07/2014	04/07/2014	04/07/2014	04/07/2014	04/07/2014	04/07/2014	04/07/2014	04/07/2014	04/07/2014			
PAH MS													
Naphthalene #	-	-	-	-	-	-	-	-	-	-	<0.04	mg/kg	TM4/PM8
Acenaphthylene	-	-	-	-	-	-	-	-	-	-	<0.03	mg/kg	TM4/PM8
Acenaphthene #	-	-	-	-	-	-	-	-	-	-	<0.05	mg/kg	TM4/PM8
Fluorene #	-	-	-	-	-	-	-	-	-	-	<0.04	mg/kg	TM4/PM8
Phenanthrene # Anthracene #	-	-	-	-	-	-	-	-	-	-	<0.03	mg/kg	TM4/PM8 TM4/PM8
Anthracene " Fluoranthene #	-	-	-	-	-	-	-	-	-	-		mg/kg	TM4/PM8
Pyrene #	-	-	-	-	-	-	-	-	-	-	<0.03	mg/kg mg/kg	TM4/PM8
Benzo(a)anthracene #	-	-	-	-	_	-	_	_	_	<u>-</u>	<0.06	mg/kg	TM4/PM8
Chrysene #	-	-	_	_	_	-	-	_	_	_	<0.02	mg/kg	TM4/PM8
Benzo(bk)fluoranthene #	-	-	-	-	-	-	-	-	-	-	<0.07	mg/kg	TM4/PM8
Benzo(a)pyrene #	-	-	-	-	-	-	_	_	-	-	<0.04	mg/kg	TM4/PM8
Indeno(123cd)pyrene #	-	-	-	-	-	-	-	-	-	-	<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene #	-	-	-	-	-	-	-	-	-	-	<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene #	-	-	-	-	-	-	-	-	-	-	<0.04	mg/kg	TM4/PM8
Coronene	-	-	-	-	-	-	-	-	-	-	<0.04	mg/kg	TM4/PM8
PAH 16 Total	-	-	-	-	-	-	-	-	-	-	<0.6	mg/kg	TM4/PM8
PAH 17 Total	-	-	-	-	-	-	-	-	-	-	<0.64	mg/kg	TM4/PM8
Benzo(b)fluoranthene	-	-	-	-	-	-	-	-	-	-	<0.05	mg/kg	TM4/PM8
Benzo(k)fluoranthene	-	-	-	-	-	-	-	-	-	-	<0.02	mg/kg	TM4/PM8
PAH Surrogate % Recovery	-	-	-	-	-	-	-	-	-	-	<0	%	TM4/PM8
Mineral Oil (C10-C40)	-	-	-	-	-	-	-	-	-	-	<30	mg/kg	TM5/PM16
TPH CWG													
Aliphatics													
>C5-C6#	-	-	-	-	-	-	-	-	-	-	<0.1	mg/kg	TM36/PM12
>C6-C8#	-	-	-	-	-	-	-	-	-	-	<0.1	mg/kg	TM36/PM12
>C8-C10	-	-	-	-	-	-	-	-	-	-	<0.1	mg/kg	TM36/PM12
>C10-C12#	-	-	-	-	-	-	-	-	-	-	<0.2	mg/kg	TM5/PM16
>C12-C16#	-	-	-	-	-	-	-	-	-	-	<4	mg/kg	TM5/PM16
>C16-C21 #	-	-	-	-	-	-	-	-	-	-	<7	mg/kg	TM5/PM16
>C21-C35#	-	-	-	-	-	-	-	-	-	-	<7	mg/kg	TM5/PM16
Total aliphatics C5-35	-	-	-	-	-	-	-	-	-	-	<19	mg/kg	TM5/TM36/PM12/PM16

Client Name: Geosyntec Consulting

Reference: GCU0124025 Location: Nestle, Hayes Contact: Andrew Morgan

JE Job No.: 14/7722

Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

JE Job No.:	14/7722										ı		
J E Sample No.	2	4	5	7	9	10	12	14	16	17			
Sample ID	WS101	WS101	WS101	WS101	WS101	WS105	WS105	WS105	WS105	WS105			
Depth	0.2-0.3	0.5-0.6	0.7-0.75	1.1-1.15	1.9-2.0	0.4-0.5	0.65-0.7	0.95-1.0	0.7-0.75	1.6-1.7	Please se	e attached r	notes for all
COC No / misc												ations and a	
Containers	В	В	В	В	В	В	В	В	В	В			
Sample Date	02/07/2014	02/07/2014	02/07/2014	02/07/2014	02/07/2014	02/07/2014	02/07/2014	02/07/2014	02/07/2014	02/07/2014			
Sample Type	Soil												
Batch Number	1	1	1	1	1	1	1	1	1	1			Method
Date of Receipt	04/07/2014	04/07/2014	04/07/2014	04/07/2014	04/07/2014	04/07/2014	04/07/2014	04/07/2014	04/07/2014	04/07/2014	LOD/LOR	Units	No.
TPH CWG													
Aromatics													
>C5-EC7	-	-	-	_	-	-	-	_	-	-	<0.1	mg/kg	TM36/PM12
>EC7-EC8	_	-	_	_	_	-	_	_	_	-	<0.1	mg/kg	TM36/PM12
>EC8-EC10#	-	_	_	_	_	_	_	_	_	_	<0.1	mg/kg	TM36/PM12
>EC8-EC10 >EC10-EC12	_	-	-	-	-	-	-	-	-	-	<0.1	mg/kg	TM5/PM16
>EC10-EC12 >EC12-EC16	-	-	-	-	-	-	-	-	-	-	<0.2	mg/kg	TM5/PM16
>EC16-EC21		_	_	_	_	_	_	_	_	_	<7	mg/kg	TM5/PM16
>EC10-EC21 >EC21-EC35	-	-	-	-	-	-	_	_		_	<7		TM5/PM16
Total aromatics C5-35	-	-	-	-	-	-	-	-	-	-		mg/kg	TM5/TM36/PM12/PM16
	-	-	-	-	-	-	-	-	-	-	<19	mg/kg	TM5/TM36/PM12/PM16
Total aliphatics and aromatics(C5-35)	-	-	-	-	-	-	-	-	-	-	<38	mg/kg	TMS/TMS0PWI2PWI0
MTBE#	-	-	-	-	-	-	-	-	-	-	<5	ug/kg	TM31/PM12
Benzene#	-	-	-	-	-	-	-	-	-	-	<5	ug/kg	TM31/PM12
Toluene #	-	-	-	-	-	-	-	-	-	-	<5	ug/kg	TM31/PM12
Ethylbenzene#	-	-	-	-	-	-	-	-	-	-	<5	ug/kg	TM31/PM12
m/p-Xylene #	-	-	-	_	-	-	-	_	-	-	<5	ug/kg	TM31/PM12
o-Xylene #	-	-	-	_	-	-	-	_	-	-	<5	ug/kg	TM31/PM12
, , ,												0 0	
PCB 28#	-	-	-	-	-	-	-	-	-	-	<5	ug/kg	TM17/PM8
PCB 52#	-	-	-	-	-	-	-	-	-	-	<5	ug/kg	TM17/PM8
PCB 101 #	-	-	-	-	-	-	-	-	-	-	<5	ug/kg	TM17/PM8
PCB 118#	-	-	-	-	-	-	-	-	-	-	<5	ug/kg	TM17/PM8
PCB 138#	-	-	-	-	-	-	-	-	-	-	<5	ug/kg	TM17/PM8
PCB 153#	-	-	-	-	-	-	-	-	-	-	<5	ug/kg	TM17/PM8
PCB 180 #	-	-	-	-	-	-	-	-	-	-	<5	ug/kg	TM17/PM8
Total 7 PCBs#	-	-	-	-	-	-	-	-	-	-	<35	ug/kg	TM17/PM8
Phenol#	-	-	-	-	-	-	-	-	-	-	<0.01	mg/kg	TM26/PM21
Natural Moisture Content	-	-	-	-	-	-	-	-	-	-	<0.1	%	PM4/PM0
Hexavalent Chromium	-	-	-	-	-	-	-	-	-	-	<0.3	mg/kg	TM38/PM76
Free Cyanide	-	-	-	-	-	-	-	-	-	-	<0.5	mg/kg	TM89/PM45
Total Cyanide #	-	-	-	-	-	-	-	-	-	-	<0.5	mg/kg	TM89/PM45
Total Organic Carbon #	-	-	-	-	-	-	-	-	-	-	<0.02	%	TM21/PM24
Sulphide	-	-	-	-	-	-	-	-	-	-	<10	mg/kg	TM106/PM45
Thiocyanate	-	-	-	-	-	-	-	-	-	-	<0.6	mg/kg	TM107/PM45
ANC at pH4	-	-	-	-	-	-	-	-	-	-	<0.03	mol/kg	TM77/PM0
ANC at pH7	-	-	-	-	-	-	-	-	-	-	<0.03	mol/kg	TM77/PM0

Client Name: Geosyntec Consulting

Reference: GCU0124025 Location: Nestle, Hayes Contact: Andrew Morgan

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

Report : Solid

JE Job No.:	14/7722												
J E Sample No.	2	4	5	7	9	10	12	14	16	17			
Sample ID	WS101	WS101	WS101	WS101	WS101	WS105	WS105	WS105	WS105	WS105			
Depth	0.2-0.3	0.5-0.6	0.7-0.75	1.1-1.15	1.9-2.0	0.4-0.5	0.65-0.7	0.95-1.0	0.7-0.75	1.6-1.7		e attached n	
COC No / misc											abbrevi	ations and ad	cronyms
Containers	В	В	В	В	В	В	В	В	В	В			
Sample Date	02/07/2014	02/07/2014	02/07/2014	02/07/2014	02/07/2014	02/07/2014	02/07/2014	02/07/2014	02/07/2014	02/07/2014			
Sample Type	Soil												
Batch Number	1	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method
Date of Receipt	04/07/2014	04/07/2014	04/07/2014	04/07/2014	04/07/2014	04/07/2014	04/07/2014	04/07/2014	04/07/2014	04/07/2014	LOD/LOR	Offics	No.
Loss on Ignition#	-	-	-	-	-	-	-	-	-	-	<1.0	%	TM22/PM0
pH#	-	-	-	-	-	-	-	-	-	-	<0.01	pH units	TM73/PM11
Mass of Dry Sample	45.7	45.9	50.1	47.3	52.4	46.7	51.5	53.1	49.5	53.4	<0.1		PM4/PM0
wass of Dry Sample	45.7	45.9	50.1	47.3	52.4	46.7	51.5	53.1	49.5	53.4	<0.1	g	PIVI4/PIVIU

Geosyntec Consulting Client Name:

GCU0124025 Reference: Location: Nestle, Hayes Andrew Morgan

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

Report : Solid

Contact: JE Job No.:

Sulphur - 0.13 -	No container Part	JE Job No.:	14/7722												
Page	No. No.	J E Sample No.	19	21-24	25	27	28	29-32	33-36	39	40	41			
COC No / misc	COC No / misc	Sample ID	WS102	WS102	WS102	WS104	WS104	WS103	WS103	U23	U23	U23			
Containers	Containers B	Depth	0.25	0.55	0.77	0.35-0.45	0.6-0.7	0.3	0.75-0.9	0.0-0.04	0.04-0.08	0.08-0.15	Please se	e attached n	otes for all
Sample Date Sample Date Sample Date Soli S	Sample Date 03/07/2014 03	COC No / misc											abbrevi	ations and a	cronyms
Sample Type Soil	Sample Type Soil	Containers	В	VJTB	В	В	В	VJTB	VJTB	Т	Т	Т			
Pate of Receips Pate of Re	Batch Number 1	Sample Date	03/07/2014	03/07/2014	03/07/2014	03/07/2014	03/07/2014	03/07/2014	03/07/2014	02/03/2014	02/03/2014	02/03/2014			
Pate of Receips Pate of Re	Batch Number 1	Sample Type	Soil	Soil			Soil				Soil				
Date of Receipt 04/07/2014	Date of Receipt 04/07/2014														
Arsenic	Arsenic												LOD/LOR	Units	
Arsenic	Arsenic - 12.8	-											0.5		T1400/D1445
Cadmium " - NDP	Cadmium*														
Cadmium - 0.6 -	Cadmium														
Chromium*	Chromium* - NDP 40.4 <0.5 mg/kg TM30/PM15 Chromium - 15.2														
Chromium	Chromium														
Copper " - NDP - - - 20 - - - 1 M30/PM15 Copper - 18 - - - - - - - - - - - 1 M30/PM62 Lead - NDP - - - 22 - - - 5 mg/kg TM30/PM15 Mercury " NDP - <th> Copper</th> <th></th>	Copper														
Copper - 18 - </th <th> Copper</th> <th></th>	Copper														
Lead " - NDP	Lead - NDP														
Lead	Lead - 280														
Mercury" - NDP -	Mercury* - NDP -														
Mercury - <.0.1	Mercury - <.0.1														
Nickel # - NDP 25.2 <0.7 mg/kg TM30/PM15 Nickel - 14.3 25.2 <0.7 mg/kg TM30/PM15 Nickel - 14.3	Nickel	•	-		-		-	-		-	-	-			
Nickel - 14.3	Nickel - 14.3		_		_	-	-	-	25.2	-	_	_			
Selenium # - NDP - <t< th=""><th> Selenium</th><th></th><th></th><th></th><th></th><th>-</th><th>-</th><th></th><th></th><th></th><th></th><th>_</th><th></th><th></th><th></th></t<>	Selenium					-	-					_			
Selenium - <1	Selenium - <1 - - - - - - - - -		-		-	-	-	-	<1	-	-	-			
Sulphur - NDP - - - 0.02 - - - - TM30/PM15 Sulphur - 0.13 -	Sulphur - NDP 0.02 <0.01 % TM30/PM15 Sulphur - 0.13 <0.01 % TM30/PM15 Sulphur - 0.13 <0.01 % TM30/PM62 Total Sulphate - NDP 154 <50 mg/kg TM50/PM62 Total Sulphate - 6187 <50 mg/kg TM50/PM62 Water Soluble Boron - NDP <0.1 mg/kg TM74/PM32 Water Soluble Boron - 1.1 <0.1 mg/kg TM74/PM61 Zinc - NDP <50 mg/kg TM30/PM15		-		-	-	-	-		-	-	-			TM30/PM62
Total Sulphate # - NDP 154 550 mg/kg TM50/PM15 Total Sulphate - 6187 550 mg/kg TM50/PM15 Total Sulphate - 6187	Total Sulphate	Sulphur	-	NDP	-	-	-	-	0.02	-	-	-	<0.01		
Total Sulphate - 6187	Total Sulphate - 6187	Sulphur	-	0.13	-	-	-	-	-	-	-	-	<0.01	%	TM30/PM62
Total Sulphate - 6187	Total Sulphate - 6187	Total Sulphate #	-	NDP	-	-	-	-	154	-	-	-	<50	mg/kg	TM50/PM15
Water Soluble Boron - 1.1 -	Water Soluble Boron - 1.1 -	Total Sulphate	-	6187	-	-	-	-	-	-	-	-	<50	mg/kg	TM50/PM62
Zinc# - NDP 54 <5 mg/kg TM30/PM15	Zinc# - NDP 54 <5 mg/kg TM30/PM15	Water Soluble Boron #	-	NDP	-	-	-	-	1.3	-	-	-	<0.1	mg/kg	TM74/PM32
		Water Soluble Boron	-	1.1	-	-	-	-	-	-	-	-	<0.1	mg/kg	TM74/PM61
Zinc	Zine - 55	Zinc#	-	NDP	-	-	-	-	54	-	-	-	<5	mg/kg	TM30/PM15
		Zinc	-	55	-	-	-	-	-	-	-	-	<5	mg/kg	TM30/PM62
			I	I	I	I	I	I	I	I		l			1

Geosyntec Consulting Client Name:

GCU0124025 Reference: Nestle, Hayes Location: Andrew Morgan

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

Report : Solid

Contact:

JE Job No.:	14/7722												
J E Sample No.	19	21-24	25	27	28	29-32	33-36	39	40	41			
Sample ID	WS102	WS102	WS102	WS104	WS104	WS103	WS103	U23	U23	U23			
Depth	0.25	0.55	0.77	0.35-0.45	0.6-0.7	0.3	0.75-0.9	0.0-0.04	0.04-0.08	0.08-0.15		e attached n	
COC No / misc											abbrevi	ations and a	cronyms
Containers	В	VJTB	В	В	В	VJTB	VJTB	Т	Т	Т			
Sample Date	03/07/2014	03/07/2014	03/07/2014	03/07/2014	03/07/2014	03/07/2014	03/07/2014	02/03/2014	02/03/2014	02/03/2014			
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil			
Batch Number	1	1	1	1	1	1	1	1	1	1			Method
Date of Receipt	04/07/2014	04/07/2014	04/07/2014	04/07/2014	04/07/2014	04/07/2014	04/07/2014	04/07/2014	04/07/2014	04/07/2014	LOD/LOR	Units	No.
PAH MS													
Naphthalene #	-	27.78 _F	-	-	-	-	<0.04	-	-	-	<0.04	mg/kg	TM4/PM8
Acenaphthylene	-	11.28 _F	-	-	-	-	<0.03	-	-	-	<0.03	mg/kg	TM4/PM8
Acenaphthene #	-	108.62 _F	-	-	-	-	<0.05	-	-	-	<0.05	mg/kg	TM4/PM8
Fluorene #	_	145.60 _F	-	_	_	_	<0.04	_	_	_	<0.04	mg/kg	TM4/PM8
Phenanthrene #	_	761.54 _F	_	_	_	_	0.15	_	_	_	<0.03	mg/kg	TM4/PM8
Anthracene #	_	348.71 _F	-	_	_	-	0.08	-	-	-	<0.04	mg/kg	TM4/PM8
Fluoranthene#	_	980.50 _F	-	-	-	-	0.35	-	-	-	<0.03	mg/kg	TM4/PM8
Pyrene #	_	756.72 _F	-	_	_	_	0.29	_	_	_	<0.03	mg/kg	TM4/PM8
Benzo(a)anthracene #	_	329.32 _F	-	-	_	-	0.22	-	_	-	<0.06	mg/kg	TM4/PM8
Chrysene #	_	319.68 _F	-	-	_	-	0.18	_	_	_	<0.02	mg/kg	TM4/PM8
Benzo(bk)fluoranthene #	_	467.81 _F	-	_	_	_	0.24	-	_	_	<0.07	mg/kg	TM4/PM8
Benzo(a)pyrene #	_	309.51 _F	-	-	_	-	0.18	-	_	-	<0.04	mg/kg	TM4/PM8
Indeno(123cd)pyrene #	_	173.05 _F	-	_	_	_	0.10	_	_	_	<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene #	_	33.16 _F	-	_	_	-	<0.04	_	_	_	<0.04	mg/kg	TM4/PM8
	-	152.13 _F	-	<u> </u>	- -	-	0.08	-	-	<u>-</u>	<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene # Coronene	-		-	- -	-	-	<0.04	-	_	<u>-</u>	<0.04	mg/kg	TM4/PM8
PAH 16 Total	_	23.89 _F 4925.4 _F	-	- -	-	-	1.9	_	_	_	<0.6	mg/kg	TM4/PM8
PAH 17 Total	_	4949.30 _F	-	- -	-	-	1.87	-	-	<u>-</u>	<0.64	mg/kg	TM4/PM8
Benzo(b)fluoranthene	-	-	-	<u> </u>	- -	_	0.17	-	-	<u>-</u>	<0.05	mg/kg	TM4/PM8
	-	336.82 _F 130.99 _F	-	-	_	<u> </u>	0.17	-			<0.03		TM4/PM8
Benzo(k)fluoranthene	-	-	-	-	-		112	-	-	-	<0.02	mg/kg %	TM4/PM8
PAH Surrogate % Recovery	-	128 _F	-	-	-	-	112	-	-	-	<0	70	TIVI4/PIVIO
Mineral Oil (C10-C40)	-	242	-	-	-	-	<30	-	-	-	<30	mg/kg	TM5/PM16
TPH CWG													
Aliphatics													
>C5-C6#	-	<0.1	-	-	-	-	<0.1	-	-	-	<0.1	mg/kg	TM36/PM12
>C6-C8#	-	<0.1	-	-	-	-	<0.1	-	-	-	<0.1	mg/kg	TM36/PM12
>C8-C10	-	0.1	-	-	-	-	<0.1	-	-	-	<0.1	mg/kg	TM36/PM12
>C10-C12#	-	1.7	-	-	-	-	<0.2	-	-	-	<0.2	mg/kg	TM5/PM16
>C12-C16#	-	52	-	-	-	-	<4	-	-	-	<4	mg/kg	TM5/PM16
>C16-C21 #	_	76	-	-	-	-	<7	-	-	-	<7	mg/kg	TM5/PM16
>C21-C35#	-	97	-	-	-	-	<7	-	-	-	<7	mg/kg	TM5/PM16
Total aliphatics C5-35	_	227	_	_	_	-	<19	_	_	-	<19	mg/kg	TM5/TM36/PM12/PM16
rotal anphatics so so							110				1.0	9/.19	
	l	1	l	l	l			l	l				

Client Name: Geosyntec Consulting

Reference: GCU0124025 Location: Nestle, Hayes Contact: Andrew Morgan

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

Report : Solid

JE Job No.: 14/7722

JE Job No.:	14/7722												
J E Sample No.	19	21-24	25	27	28	29-32	33-36	39	40	41]		
Sample ID	WS102	WS102	WS102	WS104	WS104	WS103	WS103	U23	U23	U23			
Depth	0.25	0.55	0.77	0.35-0.45	0.6-0.7	0.3	0.75-0.9	0.0-0.04	0.04-0.08	0.08-0.15		e attached r	
COC No / misc											abbievi	ations and a	Cronyma
Containers	В	VJTB	В	В	В	VJTB	VJTB	Т	Т	Т			
Sample Date	03/07/2014	03/07/2014	03/07/2014	03/07/2014	03/07/2014	03/07/2014	03/07/2014	02/03/2014	02/03/2014	02/03/2014			
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil			
Batch Number	1	1	1	1	1	1	1	1	1	1	100/100	11-7-	Method
Date of Receipt	04/07/2014	04/07/2014	04/07/2014	04/07/2014	04/07/2014	04/07/2014	04/07/2014	04/07/2014	04/07/2014	04/07/2014	LOD/LOR	Units	No.
TPH CWG													
Aromatics													
>C5-EC7	-	<0.1	-	-	-	-	<0.1	-	-	-	<0.1	mg/kg	TM36/PM12
>EC7-EC8	-	<0.1	-	-	-	-	<0.1	-	-	-	<0.1	mg/kg	TM36/PM12
>EC8-EC10#	-	<0.1	-	-	-	-	<0.1	-	-	-	<0.1	mg/kg	TM36/PM12
>EC10-EC12	-	49.5 _D	-	-	-	-	<0.2	-	-	-	<0.2	mg/kg	TM5/PM16
>EC12-EC16	-	1031 _D	-	-	-	-	<4	-	-	-	<4	mg/kg	TM5/PM16
>EC16-EC21	-	6906 _D	-	-	-	-	<7	-	-	-	<7	mg/kg	TM5/PM16
>EC21-EC35 Total aromatics C5-35	-	9662 _D	-	-	-	-	<7 <19	-	-	-	<7 <19	mg/kg mg/kg	TM5/PM16 TM5/TM36/PM12/PM16
Total aliphatics and aromatics(C5-35)	-	17876 _D	-	<u> </u>	-	-	<38	-		-	<38	mg/kg	TM5/TM36/PM12/PM16
Total ampriation and aromation(ee co)		тогор					100				100	mg/kg	
MTBE#	-	<5	-	-	-	-	<5	-	-	-	<5	ug/kg	TM31/PM12
Benzene#	-	<5	-	-	-	-	<5	-	-	-	<5	ug/kg	TM31/PM12
Toluene #	-	<5	-	-	-	-	<5	-	-	-	<5	ug/kg	TM31/PM12
Ethylbenzene #	-	<5	-	-	-	-	<5	-	-	-	<5	ug/kg	TM31/PM12
m/p-Xylene #	-	<5	-	-	-	-	<5	-	-	-	<5	ug/kg	TM31/PM12
o-Xylene #	-	<5	-	-	-	-	<5	-	-	-	<5	ug/kg	TM31/PM12
PCB 28 #	-	<100 _E	-	-	-	-	<5	-	-	-	<5	ug/kg	TM17/PM8
PCB 52#	-	<100 _E	-	-	-	-	<5	-	-	-	<5	ug/kg	TM17/PM8
PCB 101 # PCB 118 #	-	<100 _E	-	-	-	-	<5 <5	-	-	-	<5 <5	ug/kg ug/kg	TM17/PM8 TM17/PM8
PCB 118	-	<100E	-	-	-	-	<5 <5	-	-	-	<5 <5	ug/kg ug/kg	TM17/PM8
PCB 153#	-	<100E	-	-	-	-	<5	-	-	-	<5	ug/kg	TM17/PM8
PCB 180 #	-	<100 _E	-	-	-	-	<5	-	-	-	<5	ug/kg	TM17/PM8
Total 7 PCBs#	-	<700 _E	-	-	-	-	<35	-	-	-	<35	ug/kg	TM17/PM8
Phenol #	-	1.90 _D	-	-	-	-	<0.01	-	-	-	<0.01	mg/kg	TM26/PM21
Natural Moisture Content	-	NDP	-	-	-	-	21.2	-	-	-	<0.1	%	PM4/PM0
Harranalant Ohnanina	-	.0.0	-			_	.0.2		_	-	.0.0		TM00/DM70
Hexavalent Chromium	-	<0.3	-	-	-	-	<0.3	-	-	-	<0.3	mg/kg	TM38/PM76
Free Cyanide	_	<0.5	-	-	_	-	<0.5	_	-	-	<0.5	mg/kg	TM89/PM45
Total Cyanide #	-	<0.5	-	-	-	-	<0.5	-	-	-	<0.5	mg/kg	TM89/PM45
,													
Total Organic Carbon #	-	NDP	-	-	-	-	0.27	-	-	-	<0.02	%	TM21/PM24
Sulphide	-	13	-	-	-	-	<10	-	-	-	<10	mg/kg	TM106/PM45
Thiocyanate	-	<0.6	-	-	-	-	<0.6	-	-	-	<0.6	mg/kg	TM107/PM45
ANC at pH4	-	1.06	-	-	-	-	0.06	-	-	-	<0.03	mol/kg	TM77/PM0
ANC at pH7	-	0.23	-	-	-	-	<0.03	-	-	-	<0.03	mol/kg	TM77/PM0

Client Name: Geosyntec Consulting

Reference: GCU0124025 Location: Nestle, Hayes Contact: Andrew Morgan

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

Report : Solid

JE Job No.:	14/7722										_		
J E Sample No.	19	21-24	25	27	28	29-32	33-36	39	40	41			
Sample ID	WS102	WS102	WS102	WS104	WS104	WS103	WS103	U23	U23	U23			
Depth		0.55	0.77	0.35-0.45	0.6-0.7	0.3	0.75-0.9	0.0-0.04	0.04-0.08	0.08-0.15		e attached n	
COC No / misc											apprevi	ations and ad	cronyms
Containers	В	VJTB	В	В	В	VJTB	VJTB	Т	Т	Т			
Sample Date	03/07/2014	03/07/2014	03/07/2014	03/07/2014	03/07/2014	03/07/2014	03/07/2014	02/03/2014	02/03/2014	02/03/2014			
Sample Type	Soil												
Batch Number	1	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method
Date of Receipt	04/07/2014	04/07/2014	04/07/2014	04/07/2014	04/07/2014	04/07/2014	04/07/2014	04/07/2014	04/07/2014	04/07/2014			No.
Loss on Ignition#	-	NDP	-	-	-	-	4.9	-	-	-	<1.0	%	TM22/PM0
pH#	-	11.38	-	-	-	-	8.16	-	-	-	<0.01	pH units	TM73/PM11
Mass of Dry Sample	50.0	45.4	47.1	51.3	51.5	50.8	47.0	41.8	41.1	49.0	<0.1	g	PM4/PM0

Client Name: Geosyntec Consulting

Reference: GCU0124025 Location: Nestle, Hayes Contact: Andrew Morgan

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

Report : Solid

Contact: Andrew Market JE Job No.: 14/7722

JE Job No.:	14/7722			 						
J E Sample No.	42	43	44							
Sample ID	U22	U22	U22							
Depth	0.0-0.05	0.05-0.11	0.11-0.17							
COC No / misc		0.03-0.11	0.11-0.17						e attached n ations and a	
Containers	Т	Т	Т							
Sample Date										
Sample Type	Soil	Soil	Soil							
Batch Number	1	1	1					LOD/LOR	Units	Method No.
Date of Receipt	04/07/2014	04/07/2014	04/07/2014							
Arsenic #	-	-	-					<0.5	mg/kg	TM30/PM15
Arsenic #	-	-	-					<0.5	mg/kg	TM30/PM62
Cadmium # Cadmium	-	-	-					<0.1 <0.1	mg/kg mg/kg	TM30/PM15 TM30/PM62
Chromium#	-	-	-					<0.5	mg/kg	TM30/PM15
Chromium	-	-	-					<0.5	mg/kg	TM30/PM62
Copper#	-	-	-					<1	mg/kg	TM30/PM15
Copper	-	-	-					<1	mg/kg	TM30/PM62
Lead [#]	-	-	-					<5	mg/kg	TM30/PM15
Lead	-	-	-					<5	mg/kg	TM30/PM62
Mercury #	-	-	-					<0.1	mg/kg	TM30/PM15
Mercury Nickel #	-	-	-					<0.1 <0.7	mg/kg	TM30/PM62 TM30/PM15
Nickel	-	-	-					<0.7	mg/kg mg/kg	TM30/PM62
Selenium #	-	-	-					<1	mg/kg	TM30/PM15
Selenium	-	-	-					<1	mg/kg	TM30/PM62
Sulphur	-	-	-					<0.01	%	TM30/PM15
Sulphur	-	-	-					<0.01	%	TM30/PM62
Total Sulphate #	-	-	-					<50	mg/kg	TM50/PM15
Total Sulphate	-	-	-					<50	mg/kg	TM50/PM62
Water Soluble Boron # Water Soluble Boron	-	-	-					<0.1	mg/kg	TM74/PM32 TM74/PM61
Zinc#	-	-	-					<0.1 <5	mg/kg mg/kg	TM30/PM15
Zinc	-	-	-					<5	mg/kg	TM30/PM62
									0 0	
										i
			•			•	•			

Client Name: Geosyntec Consulting

Reference: GCU0124025 Location: Nestle, Hayes

Andrew Morgan

Contact: Andrew Market JE Job No.: 14/7722

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

Report : Solid

JE Job No.:	14/7722	1	1	1	1	1	1	1				
J E Sample No.	42	43	44									
Sample ID	U22	U22	U22									
Depth	0.0-0.05	0.05-0.11	0.11-0.17									
	0.0-0.05	0.05-0.11	0.11-0.17								e attached n ations and a	
COC No / misc												,
Containers	Т	Т	Т									
Sample Date	02/03/2014	02/03/2014	02/03/2014									
Sample Type	Soil	Soil	Soil									
Batch Number	1	1	1									Markad
Date of Receipt										LOD/LOR	Units	Method No.
PAH MS	04/07/2014	04/07/2014	04/07/2014									
Naphthalene #	_	_	_							<0.04	mg/kg	TM4/PM8
Acenaphthylene	-	<u> </u>	<u> </u>							<0.03	mg/kg	TM4/PM8
Acenaphthene #	-	-	-							<0.05	mg/kg	TM4/PM8
Fluorene #	-	-	-							<0.04	mg/kg	TM4/PM8
Phenanthrene #	-	-	-							<0.03	mg/kg	TM4/PM8
Anthracene #	-	-	-							<0.04	mg/kg	TM4/PM8
Fluoranthene#	-	-	-							<0.03	mg/kg	TM4/PM8
Pyrene #	-	-	-							<0.03	mg/kg	TM4/PM8
Benzo(a)anthracene #	-	-	-							<0.06	mg/kg	TM4/PM8
Chrysene #	-	-	-							<0.02	mg/kg	TM4/PM8
Benzo(bk)fluoranthene #	-	-	-							<0.07	mg/kg	TM4/PM8
Benzo(a)pyrene #	-	-	-							<0.04	mg/kg	TM4/PM8
ndeno(123cd)pyrene#	-	-	-							<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene #	-	-	-							<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene #	-	-	-							<0.04	mg/kg	TM4/PM8
Coronene	-	-	-							<0.04	mg/kg	TM4/PM8
PAH 16 Total	-	-	-							<0.6	mg/kg	TM4/PM8
PAH 17 Total	-	-	-							<0.64	mg/kg	TM4/PM8
Benzo(b)fluoranthene	-	-	-							<0.05	mg/kg	TM4/PM8
Benzo(k)fluoranthene	-	-	-							<0.02	mg/kg	TM4/PM8
PAH Surrogate % Recovery	-	-	-							<0	%	TM4/PM8
Mineral Oil (C10-C40)	-	-	-							<30	mg/kg	TM5/PM16
TPH CWG												
Aliphatics												
>C5-C6#	-	-	-							<0.1	mg/kg	TM36/PM12
>C6-C8#	-	-	-							<0.1	mg/kg	TM36/PM12
>C8-C10	-	-	-							<0.1	mg/kg	TM36/PM12
>C10-C12#	-	-	-							<0.2	mg/kg	TM5/PM16
>C12-C16#	-	-	-							<4	mg/kg	TM5/PM16
>C16-C21 #	-	-	-							<7	mg/kg	TM5/PM16
>C21-C35#	-	-	-							<7	mg/kg	TM5/PM16
Total aliphatics C5-35	-	-	-							<19	mg/kg	TM5/TM36/PM12/PM1
							L					

Client Name: Geosyntec Consulting

Reference: GCU0124025 Location: Nestle, Hayes

Andrew Morgan

Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

JE Job No.:	14/7722

Contact:

	1-7/1/22						1		
J E Sample No.	42	43	44						
Sample ID	U22	U22	U22						
Depth	0.0-0.05	0.05-0.11	0.11-0.17				Please se	e attached r	notes for all
COC No / misc								ations and a	
Containers	Т	Т	Т						
Sample Date	02/03/2014	02/03/2014	02/03/2014						
Sample Type		Soil	Soil						
Batch Number	1	1	1						
Date of Receipt							LOD/LOR	Units	Method No.
TPH CWG	04/07/2014	04/07/2014	04/07/2014						
Aromatics									
>C5-EC7	-	-	-				<0.1	mg/kg	TM36/PM12
>EC7-EC8	-	-	-				<0.1	mg/kg	TM36/PM12
>EC8-EC10#	-	-	-				<0.1	mg/kg	TM36/PM12
>EC10-EC12	-	-	-				<0.2	mg/kg	TM5/PM16
>EC12-EC16	-	-	-				<4	mg/kg	TM5/PM16
>EC16-EC21	-	-	-				<7	mg/kg	TM5/PM16
>EC21-EC35	-	-	-				<7	mg/kg	TM5/PM16
Total aromatics C5-35	-	-	-				<19	mg/kg	TM5/TM36/PM12/PM16
Total aliphatics and aromatics(C5-35)	-	-	-				<38	mg/kg	TM5/TM36/PM12/PM16
MTBE#	_	_	_				<5	ug/kg	TM31/PM12
Benzene #	-	-	-				<5	ug/kg	TM31/PM12
Toluene #	-	-	-				<5	ug/kg	TM31/PM12
Ethylbenzene #	-	-	-				<5	ug/kg	TM31/PM12
m/p-Xylene #	-	-	-				<5	ug/kg	TM31/PM12
o-Xylene #	-	-	-				<5	ug/kg	TM31/PM12
PCB 28 #	-	-	-				<5	ug/kg	TM17/PM8
PCB 52#	-	-	-				<5	ug/kg	TM17/PM8
PCB 101 #	-	-	-				<5	ug/kg	TM17/PM8
PCB 118 #	-	-	-				<5	ug/kg	TM17/PM8
PCB 138 [#] PCB 153 [#]	-	-	-				<5 <5	ug/kg	TM17/PM8 TM17/PM8
PCB 180 #	_	_	_				<5 <5	ug/kg ug/kg	TM17/PM8
Total 7 PCBs#	-	-	-				<35	ug/kg	TM17/PM8
								0 0	
Phenoi#	-	-	-				<0.01	mg/kg	TM26/PM21
Natural Moisture Content	-	-	-				<0.1	%	PM4/PM0
Hexavalent Chromium	-	-	-				<0.3	mg/kg	TM38/PM76
Face Consider	-	-	_				.0.5		TM89/PM45
Free Cyanide Total Cyanide #	-	-	-				<0.5 <0.5	mg/kg mg/kg	TM89/PM45
Total Cyanide	-	-	-				<0.5	mg/kg	11009/110143
Total Organic Carbon #	-	-	-				<0.02	%	TM21/PM24
-									
Sulphide	-	-	-				<10	mg/kg	TM106/PM45
Thiocyanate	-	-	-				<0.6	mg/kg	TM107/PM45
ANC at pH4	-	-	-				<0.03	mol/kg	TM77/PM0
ANC at pH7	-	-	-				<0.03	mol/kg	TM77/PM0

Geosyntec Consulting Client Name:

GCU0124025 Reference: Nestle, Hayes Location:

Contact: Andrew Morgan JE Job No.:

14/7722

Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

Sample No. 42 43 44		•				1					
Depth 0.0-0.05 0.05-0.11 0.11-0.17 Please see attached notes for all abbreviations and acronyms	J E Sample No.	42	43	44							
COC No / misc Containers T T T Sample Date Sample Type Soil Batch Number 1 1 1 1 1 LOD/LOR Date of Receipt 04/07/2014 04/07/2014 04/07/2014 050ss on Ignition #	Sample ID	U22	U22	U22							
COC No / misc Containers T T T T Sample Date Sample Type Soil Batch Number 1 1 1 1 Date of Receipt 04/07/2014 04/07/2014 04/07/2014 05/05 on Ignition #	Depth	0.0-0.05	0.05-0.11	0.11-0.17					Please se	e attached n	otes for all
Sample Date 02/03/2014 02/03/2014 02/03/2014 02/03/2014 02/03/2014 Oz/03/2014 Oz	COC No / misc								abbrevi	ations and a	cronyms
Sample Type Soil	Containers	Т	Т	Т							
Batch Number 1 1 1 1	Sample Date	02/03/2014	02/03/2014	02/03/2014							
Date of Receipt 04/07/2014 04/07/2014 04/07/2014 Units Method No. .oss on Ignition # - - - - - 1.0 % TM22/PM0 .H # - - - - - TM73/PM11	Sample Type	Soil	Soil	Soil							
Date of Receipt 04/07/2014 04/07/2014 04/07/2014 NO. .oss on Ignition # - - - 41.0 % TM22/PM0 .H # - - - 40.01 pH units TM73/PM11	Batch Number	1	1	1					LOD/LOR	Units	
H# <0.01 pH units TM73/PM11		04/07/2014	04/07/2014	04/07/2014							
lass of Dry Sample 42.2 43.7 47.1	рн	-	-	-					<0.01	pri units	TIVI7 3/FIVITT
	Mass of Dry Sample	42.2	43.7	47.1					<0.1	g	PM4/PM0

CEN 10:1 LEACHATE RESULTS PrEN 12547-2

Mass of sample taken (kg)	-		Moisture Content Ratio (%) =		21.9	
Mass of dry sample (kg) =	0.09		Dry Matter Content Ratio (%) =		82.0	
Particle Size <4mm =	>95%					
JEFL Job No			14/7722	Landf	ill Waste Ac	ceptance
Sample No			23		Criteria Lim	nits
Client Sample No			WS102		Stable	
Depth/Other			0.55	Inert	Non-reactive	Hazardous
Sample Date			03/07/2014	Waste	Hazardous Waste in Non-	Waste
Batch No			1	Landfill	Hazardous	Landfill
Solid Waste Analysis					Landfill	
Total Organic Carbon (%)	NDP			3	5	6
Loss on Ignition (%)	NDP			-	-	10
Sum of BTEX (mg/kg)	<0.025			6	-	-
Sum of 7 PCBs (mg/kg)	<0.700			1	-	-
Mineral Oil (mg/kg)	242			500	-	-
PAH Sum of 17(mg/kg)	4949.30			100	-	-
pH (pH Units)	11.38			-	>6	-
ANC to pH 7 (mol/kg)	0.23			-	to be evaluated	to be evaluated
ANC to pH 4 (mol/kg)	1.06			-	to be evaluated	to be evaluated
Eluate Analysis	_	conc ⁿ ched A ₁₀		le	values for co aching test 12457-2 at l	using
	mg/l	mg/kg			mg/kg	
Arsenic	0.0042	0.042		0.5	2	25
Barium	0.013	0.13		20	100	300
Cadmium	<0.0005	<0.005		0.04	1	5
Chromium	<0.0015	<0.015		0.5	10	70
Copper	0.020	0.20		2	50	100
Mercury	<0.001	<0.01		0.01	0.2	2
Molybdenum	0.008	0.08		0.5	10	30
Nickel	0.003	0.03		0.4	10	40
Lead	<0.005	<0.05		0.5	10	50
Antimony	<0.002	<0.02		0.06	0.7	5
Selenium	< 0.003	<0.03		0.1	0.5	7
Zinc	< 0.003	<0.03		4	50	200
Chloride	12.8	128		800	15000	25000
Fluoride	0.4	4		10	150	500
Sulphate as SO4	28.83	288.2		1000	20000	50000
Total Dissolved Solids	307	3069		4000	60000	100000
Phenol	0.38	3.8		1	-	-
Dissolved Organic Carbon	21	210		500	800	1000

CEN 10:1 LEACHATE RESULTS PrEN 12547-2

Mass of sample taken (kg)	-		Moisture Content Ratio (%) =		20.8	
Mass of dry sample (kg) =	0.09		Dry Matter Content Ratio (%) =		82.8	
Particle Size <4mm =	>95%					
JEFL Job No			14/7722	Landi	fill Waste Ac	contanco
Sample No			35	Landi	Criteria Lin	
Client Sample No			WS103			
Depth/Other			0.75-0.9	┪	Stable Non-reactive	l
Sample Date			03/07/2014	Inert Waste	Hazardous	Hazardous Waste
Batch No			1	Landfill	Waste in Non- Hazardous	Landfill
Solid Waste Analysis			·	1	Landfill	
Total Organic Carbon (%)	0.27			3	5	6
Loss on Ignition (%)	4.9			-	-	10
Sum of BTEX (mg/kg)	<0.025			6	_	-
Sum of 7 PCBs (mg/kg)	<0.035			1	_	_
Mineral Oil (mg/kg)	<30			500	-	_
PAH Sum of 17(mg/kg)	1.87			100	_	-
pH (pH Units)	8.16			-	>6	-
ANC to pH 7 (mol/kg)	<0.03			_	+	to be evaluated
ANC to pH 4 (mol/kg)	0.06			_	to be evaluated	to be evaluated
Eluate Analysis		conc ⁿ ched A ₁₀		le	values for co aching test 12457-2 at	using
	mg/l	mg/kg			mg/kg	
Arsenic	0.0040	0.040		0.5	2	25
Barium	0.074	0.74		20	100	300
Cadmium	<0.0005	<0.005		0.04	1	5
Chromium	0.0024	0.024		0.5	10	70
Copper	0.015	0.15		2	50	100
Mercury	<0.001	<0.01		0.01	0.2	2
Molybdenum	0.005	0.05		0.5	10	30
Nickel	<0.002	<0.02		0.4	10	40
Lead	0.026	0.26		0.5	10	50
Antimony	<0.002	<0.02		0.06	0.7	5
Selenium	<0.003	<0.03		0.1	0.5	7
Zinc	0.032	0.32		4	50	200
Chloride	22.6	226		800	15000	25000
Fluoride	1.5	15		10	150	500
Sulphate as SO4	50.95	509.3		1000	20000	50000
Total Dissolved Solids	493	4928		4000	60000	100000
Phenol	<0.01	<0.1		1	-	-
Dissolved Organic Carbon	15	150		500	800	1000

Jones Environmental Laboratory

Asbestos Analysis

Client Name: Geosyntec Consulting

Reference: GCU0124025
Location: Nestle, Hayes
Contact: Andrew Morgan

Note:

Analysis was carried out in accordance with our documented in-house methods PM042 and TM065 and HSG 248 by Stereo and Polarised Light Microscopy using Dispersion Staining Techniques and is covered by our UKAS accreditation. Samples are retained for not less than 6 months from the date of analysis unless specifically requested.

Opinions lie outside the scope of our UKAS accreditation.

Where the sample is not taken by a Jones Environmental Laboratory consultant, Jones Environmental Laboratory cannot be responsible for inaccurate or unrepresentative sampling.

If asbestos fibres are reported at trace levels there will not be enough fibres to quantify and will be less than 0.001%.

Signed on behalf of Jones Environmental Laboratory:

Gemma Newsome Asbestos Team Leader

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Date Of Analysis	Description	Asbestos Containing Material	Asbestos Results	Asbestos Level	Comments
14/7722	1	WS101	0.2-0.3	2	11/07/14	Soil	Free Fibres	Chrysotile	Trace	
14/7722	1	WS101	0.5-0.6	4	11/07/14	Soil	None	NAD	NAD	
14/7722	1	WS101	0.7-0.75	5	11/07/14	Soil	Asbestos Cement Debris	Chrysotile	Quantifiable	
14/7722	1	WS101	1.1-1.15	7	11/07/14	Soil	None	NAD	NAD	
14/7722	1	WS101	1.9-2.0	9	11/07/14	Soil	None	NAD	NAD	
14/7722	1	WS105	0.4-0.5	10	11/07/14	Soil / Stones	Free Fibres	Chrysotile	Quantifiable	
14/7722	1	WS105	0.65-0.7	12	11/07/14	Soil / Stones	None	NAD	NAD	
14/7722	1	WS105	0.95-1.0	14	11/07/14	Soil / Stones	None	NAD	NAD	
14/7722	1	WS105	0.7-0.75	16	10/07/14	Soil/Stone	None	NAD	NAD	
14/7722	1	WS105	1.6-1.7	17	11/07/14	Soil / Stones	None	NAD	NAD	
14/7722	1	WS102	0.25	19	10/07/14	Soil/Stone/Brick	Free Fibres	Chrysotile	Trace	
14/7722	1	WS102	0.55	24	10/07/14	Soil-Silt/Brick/Stone/Veg	Free Fibres	Chrysotile	Trace	
14/7722	1	WS102	0.77	25	10/07/14	Soil/Stone	None	NAD	NAD	
14/7722	1	WS104	0.35-0.45	27	10/07/14	Soil/Stone	None	NAD	NAD	

Client Name: Geosyntec Consulting

Reference: GCU0124025 Location: Nestle, Hayes Contact: Andrew Morgan

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Date Of Analysis	Description	Asbestos Containing Material	Asbestos Results	Asbestos Level	Comments
14/7722	1	WS104	0.6-0.7	28	10/07/14	Soil/Stone	None	NAD	NAD	
14/7722	1	WS103	0.3	32	11/07/14	Soil/Stone	None	NAD	NAD	
14/7722	1	WS103	0.75-0.9	36	10/07/14	Soil-Clay/Brick/Stone	None	NAD	NAD	
14/7722	1	U23	0.0-0.04	39	11/07/14	Soil/Clay	None	NAD	NAD	
14/7722	1	U23	0.04-0.08	40	11/07/14	Soil/Stone	None	NAD	NAD	
14/7722	1	U23	0.08-0.15	41	11/07/14	Soil/Clay	None	NAD	NAD	
14/7722	1	U22	0.0-0.05	42	11/07/14	Soil/Clay	None	NAD	NAD	
14/7722	1	U22	0.05-0.11	43	11/07/14	Soil/Clay	None	NAD	NAD	
14/7722	1	U22	0.11-0.17	44	11/07/14	Soil/Clay	None	NAD	NAD	

NDP Reason Report

Client Name: Geosyntec Consulting Matrix : Solid

Reference: GCU0124025
Location: Nestle, Hayes
Contact: Andrew Morgan

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	NDP Reason
14/7722	1	WS102	0.55	21-24	Asbestos detected in sample

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.: 14/7722

SOILS

Please note we are only MCERTS accredited for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary. If we are instructed to keep samples, a storage charge of £1 (1.5 Euros) per sample per month will be applied until we are asked to dispose of them.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

WATERS

Please note we are not a Drinking Water Inspectorate (DWI) Approved Laboratory . It is important that detection limits are carefully considered when requesting water analysis.

UKAS accreditation applies to surface water and groundwater and one other matrix which is analysis specific, any other liquids are outside our scope of accreditation

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

Samples must be received in a condition appropriate to the requested analyses. All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. If this is not the case you will be informed and any test results that may be compromised highlighted on your deviating samples report.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

ABBREVIATIONS and ACRONYMS USED

#	UKAS accredited.
В	Indicates analyte found in associated method blank.
DR	Dilution required.
M	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
++	Result outside calibration range, results should be considered as indicative only and are not accredited.
*	Analysis subcontracted to a Jones Environmental approved laboratory.
СО	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
ОС	Outside Calibration Range
Α	x2 Dilution
D	x10 Dilution
Е	x20 Dilution
F	x50 Dilution

Test Method No.	Description	Prep Method No. (if appropriate)	Description	UKAS	MCERTS (soils only)	Analysis done on As Received (AR) or Air Dried (AD)	Reported on dry weight basis
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465 and BS1377.	PM0	No preparation is required.				
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465 and BS1377.	PM0	No preparation is required.			AR	Yes
TM4	16 PAH by GC-MS, modified USEPA 8270	PM8	In-house method based on USEPA 3510. ISO 17025 accredited extraction method for organic extraction from solid samples using an end over end agitator.			AR	Yes
TM4	16 PAH by GC-MS, modified USEPA 8270	PM8	In-house method based on USEPA 3510. ISO 17025 accredited extraction method for organic extraction from solid samples using an end over end agitator.	Yes		AR	Yes
TM5	In-House method based on USEPA 8015B. Determination of Extractable Petroleum Hydrocarbons (EPH) in the carbon chain length range of C8-40 by GC-FID. Accredited to ISO 17025 on soil and water samples and MCERTS (carbon banding only) on soils. All accreditation is matrix specific.	PM16	Aliphatic/Aromatic fractionation			AR	Yes
TM5	In-House method based on USEPA 8015B. Determination of Extractable Petroleum Hydrocarbons (EPH) in the carbon chain length range of C8-40 by GC-FID. Accredited to ISO 17025 on soil and water samples and MCERTS (carbon banding only) on soils. All accreditation is matrix specific.	PM16	Aliphatic/Aromatic fractionation	Yes		AR	Yes
TM5/TM36	TPH CWG by GC-FID	PM12/PM16	CWG GC-FID			AR	Yes
TM17	PCB 7 Congeners and WHO 12 PCBs by GC-MS	PM8	In-house method based on USEPA 3510. ISO 17025 accredited extraction method for organic extraction from solid samples using an end over end agitator.	Yes		AR	Yes
TM20	TDS, TSS and TS - gravimetric	PM0	No preparation is required.			AR	Yes
TM21	TOC and TC by Combustion	PM24	Eltra preparation	Yes		AD	Yes

Test Method No.	Description	Prep Method No. (if appropriate)	Description	UKAS	MCERTS (soils only)	Analysis done on As Received (AR) or Air Dried (AD)	Reported on dry weight basis
TM22	Loss on Ignition (LOI) - gravimetric	PM0	No preparation is required.	Yes		AD	Yes
TM26	PhenoIs by HPLC	PM0	No preparation is required.			AR	Yes
TM26	PhenoIs by HPLC	PM21	Methanol : NaOH extraction	Yes		AR	Yes
TM27	In-House method based on USEPA 9056. Analysis of samples using a Dionex Ion-Chromatograph instrument.	PM0	No preparation is required.			AR	Yes
TM30	Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry) using Thermo iCAP 6000 series instrument. Accredited to ISO 17025 for soils and waters and MCERTS accredited for Soils. All accreditation is matrix specific.	PM15	In-house method based on USEPA 3010A. Acid digestion of dried and crushed solid samples using Aqua Regia reflux.			AD	Yes
TM30	Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry) using Thermo iCAP 6000 series instrument. Accredited to ISO 17025 for soils and waters and MCERTS accredited for Soils. All accreditation is matrix specific.	PM15	In-house method based on USEPA 3010A. Acid digestion of dried and crushed solid samples using Aqua Regia reflux.	Yes		AD	Yes
TM30	Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry) using Thermo iCAP 6000 series instrument. Accredited to ISO 17025 for soils and waters and MCERTS accredited for Soils. All accreditation is matrix specific.	PM17	CEN PR12457-2 10:1 1 batch leach	Yes		AR	Yes
TM30	Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry) using Thermo iCAP 6000 series instrument. Accredited to ISO 17025 for soils and waters and MCERTS accredited for Soils. All accreditation is matrix specific.	PM62	Aqua Regia extraction (Soils) (as received sample)			AR	Yes
TM31	In-house method based on USEPA 8015B. Determination of Methyltertbutylether, Benzene, Toluene, Ethylbenzene and Xylene by headspace GC-FID. Accredited to ISO 17025 for soils and waters and MCERTS accredited for soils. Accreditation is matrix specific.	PM12	In-house method based on USEPA 5021. Preparation of solid and liquid samples for headspace analysis. Samples are spiked with surrogates to facilitate quantification. ISO 17025 accredited extraction method. All accreditation is matrix specific			AR	Yes
TM31	In-house method based on USEPA 8015B. Determination of Methyltertbutylether, Benzene, Toluene, Ethylbenzene and Xylene by headspace GC-FID. Accredited to ISO 17025 for soils and waters and MCERTS accredited for soils. Accreditation is matrix specific.	PM12	In-house method based on USEPA 5021. Preparation of solid and liquid samples for headspace analysis. Samples are spiked with surrogates to facilitate quantification. ISO 17025 accredited extraction method. All accreditation is matrix specific	Yes		AR	Yes

Test Method No.	Description	Prep Method No. (if appropriate)	Description	UKAS	MCERTS (soils only)	Analysis done on As Received (AR) or Air Dried (AD)	Reported on dry weight basis
TM36	In-House method based on USEPA 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C5-12 by headspace GC-FID. Accredited to ISO 17025 on soil and water samples and MCERTS accredited (carbon banding only) on soils. All accreditation is matrix specific.	PM12	In-house method based on USEPA 5021. Preparation of solid and liquid samples for headspace analysis. Samples are spiked with surrogates to facilitate quantification. ISO 17025 accredited extraction method. All accreditation is matrix specific			AR	Yes
TM36	In-House method based on USEPA 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C5-12 by headspace GC-FID. Accredited to ISO 17025 on soil and water samples and MCERTS accredited (carbon banding only) on soils. All accreditation is matrix specific.	PM12	In-house method based on USEPA 5021. Preparation of solid and liquid samples for headspace analysis. Samples are spiked with surrogates to facilitate quantification. ISO 17025 accredited extraction method. All accreditation is matrix specific	Yes		AR	Yes
TM38	Ionic analysis using the Thermo Aquakem Photometric Automatic Analyser. Accredited to ISO17025 and MCERTS for most analytes. All accreditation is matrix specific.	PM0	No preparation is required.	Yes		AR	Yes
TM38	Ionic analysis using the Thermo Aquakem Photometric Automatic Analyser. Accredited to ISO17025 and MCERTS for most analytes. All accreditation is matrix specific.	PM76	As received samples are extracted using Sodium Hydroxide			AR	Yes
TM50	Total Sulphate by ICP-OES	PM15	In-house method based on USEPA 3010A. Acid digestion of dried and crushed solid samples using Aqua Regia reflux.	Yes		AD	Yes
TM50	Total Sulphate by ICP-OES	PM62	Aqua Regia extraction (Soils) (as received sample)			AR	Yes
TM60	TOC/DOC by NDIR	PM0	No preparation is required.			AR	Yes
TM65	Asbestos Bulk Identification	PM42	Screening of soils for fibres			AR	
TM65	Asbestos Bulk Identification	PM42	Screening of soils for fibres	Yes		AR	
TM73	pH in by Metrohm	PM11	1:2.5 soil/water extraction	Yes		AR	No

Test Method No.	Description	Prep Method No. (if appropriate)	Description	UKAS	MCERTS (soils only)	Analysis done on As Received (AR) or Air Dried (AD)	Reported on dry weight basis
TM74	Water Soluble Boron by ICP-OES	PM32	Preparation of soils for WSB	Yes		AD	Yes
TM74	Water Soluble Boron by ICP-OES	PM61	Preparation of soils for WSB (as received sample)			AR	Yes
TM77	ANC at pH4 and pH7 by Metrohm	PM0	No preparation is required.			AR	No
TM89	In-house method based on USEPA method OIA-1667. Determination of cyanide by Flow Injection Analyser. ISO17025 accredited method for soils and waters and MCERTS on soils. Accreditation is matrix specific.	PM45	Cyanide & Thiocyanate prep for soils			AR	Yes
TM89	In-house method based on USEPA method OIA-1667. Determination of cyanide by Flow Injection Analyser. ISO17025 accredited method for soils and waters and MCERTS on soils. Accreditation is matrix specific.	PM45	Cyanide & Thiocyanate prep for soils	Yes		AR	Yes
TM106	Sulphide by CFA	PM45	Cyanide & Thiocyanate prep for soils			AR	Yes
TM107	Thiocyanate by CFA	PM45	Cyanide & Thiocyanate prep for soils			AR	Yes
NONE	No Method Code	PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465 and BS1377.			AR	

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA

Geosyntec Consulting 30-32 Botanic Road Glasnevin Dublin Ireland

Tel: +44 (0) 1244 833780

Fax: +44 (0) 1244 833781

Andrew Morgan Attention:

Date : 22nd July, 2014

GCU0124025 Your reference:

Test Report 14/7722 Batch 1 Schedule B Our reference:

Location: Nestle, Hayes 4th July, 2014

Status: Final report

Issue:

Date samples received :

Thirty five samples were received for analysis on 4th July, 2014. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Compiled By:

Paul Lee-Boden BSc **Project Manager**

Bob Millward BSc FRSC Principal Chemist

Rjuiellward

Client Name: Geosyntec Consulting

GCU0124025 Reference: Location: Nestle, Hayes

Andrew Morgan Contact: 14/7722 JE Job No.:

Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

JE Job No.:	14/7722	 	 	 	 	 _		
J E Sample No.	10							
Sample ID	WS105							
Depth	0.4-0.5					Please se	e attached n	otes for all
COC No / misc						abbrevia	ations and ac	cronyms
Containers	В							
Sample Date	02/07/2014							
Sample Type	Soil							
Batch Number	1					LOD/LOR	Units	Method
Date of Receipt	04/07/2014					LOD/LOR	Office	No.
Asbestos PCOM Quantification (Fibres)	<0.001					<0.001	mass %	TM65/PM42

Client Name: Geosyntec Consulting

Reference: GCU0124025 Location: Nestle, Hayes Contact: Andrew Morgan

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Analysis	Reason
					No deviating sample report results for job 14/7722	

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.: 14/7722

SOILS

Please note we are only MCERTS accredited for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary. If we are instructed to keep samples, a storage charge of £1 (1.5 Euros) per sample per month will be applied until we are asked to dispose of them.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

WATERS

Please note we are not a Drinking Water Inspectorate (DWI) Approved Laboratory . It is important that detection limits are carefully considered when requesting water analysis.

UKAS accreditation applies to surface water and groundwater and one other matrix which is analysis specific, any other liquids are outside our scope of accreditation

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

Samples must be received in a condition appropriate to the requested analyses. All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. If this is not the case you will be informed and any test results that may be compromised highlighted on your deviating samples report.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

ABBREVIATIONS and ACRONYMS USED

#	UKAS accredited.
В	Indicates analyte found in associated method blank.
DR	Dilution required.
M	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
++	Result outside calibration range, results should be considered as indicative only and are not accredited.
*	Analysis subcontracted to a Jones Environmental approved laboratory.
СО	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
OC	Outside Calibration Range

Test Method No.	Description	Prep Method No. (if appropriate)	Description	UKAS	MCERTS (soils only)	Analysis done on As Received (AR) or Air Dried (AD)	Reported on dry weight basis
TM65	Asbestos Bulk Identification	PM42	Screening of soils for fibres			AR	Yes

Registered Address: Unit 3 Deeside Point, Zone 3, Deeside Industrial Park, Deeside, CH5 2UA. UK

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA

Geosyntec Consulting 30-32 Botanic Road Glasnevin Dublin Ireland

Tel: +44 (0) 1244 833780 Fax: +44 (0) 1244 833781

Attention: Andrew Morgan

Date: 15th July, 2014

Your reference : GCU00124-025

Our reference : Test Report 14/7724 Batch 1

Location: Nestle Hayes

Date samples received: 4th July, 2014

Status: Final report

Issue:

Eight samples were received for analysis on 4th July, 2014. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Compiled By:

Paul Lee-Boden BSc Project Manager

Bob Millward BSc FRSC Principal Chemist

Rjuiellward

Client Name: Geosyntec Consulting

Reference: GCU00124-025
Location: Nestle Hayes

Contact: Andrew Morgan

JE Job No.: 14/7724

Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

JE Job No.:	14/7724									_,		
J E Sample No.	1	2	3	4	5	6	7	8				
Sample ID	WS102	WS102	WS103	WS103	WS103	WS103	WS103	WS103				
Depth	1.0-1.1	1.25-1.3	0.5-0.6	0.7-0.75	0.9-1.0	1.2-1.3	1.35-1.45	1.7-1.9		Please se	e attached n	otes for all
COC No / misc										abbrevia	ations and a	cronyms
Containers	В	В	В	В	В	В	В	В				
Sample Date	03/07/2014	03/07/2014	03/07/2014	03/07/2014	03/07/2014	03/07/2014	03/07/2014	03/07/2014				
Sample Type		Soil										
Batch Number		1	1	1	1	1	1	1				
Date of Receipt			04/07/2014	04/07/2014		04/07/2014	04/07/2014			LOD/LOR	Units	Method No.
Mass of Dry Sample	53.7	53.8	50.7	49.1	43.0	49.1	47.8	48.1		<0.1	g	PM4/PM0

Client Name: Geosyntec Consulting

Reference: GCU00124-025
Location: Nestle Hayes
Contact: Andrew Morgan

Note:

Analysis was carried out in accordance with our documented in-house methods PM042 and TM065 and HSG 248 by Stereo and Polarised Light Microscopy using Dispersion Staining Techniques and is covered by our UKAS accreditation. Samples are retained for not less than 6 months from the date of analysis unless specifically requested.

Opinions lie outside the scope of our UKAS accreditation.

Where the sample is not taken by a Jones Environmental Laboratory consultant, Jones Environmental Laboratory cannot be responsible for inaccurate or unrepresentative sampling.

If asbestos fibres are reported at trace levels there will not be enough fibres to quantify and will be less than 0.001%.

Signed on behalf of Jones Environmental Laboratory:

Gemma Newsome Asbestos Team Leader

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Date Of Analysis	Description	Asbestos Containing Material	Asbestos Results	Asbestos Level	Comments
14/7724	1	WS102	1.0-1.1	1	10/07/14	soil/stones	None	NAD	NAD	
14/7724	1	WS102	1.25-1.3	2	10/07/14	soil/stones	None	NAD	NAD	
14/7724	1	WS103	0.5-0.6	3	10/07/14	soil/stones	Free Fibres	Chrysotile	Trace	
14/7724	1	WS103	0.7-0.75	4	10/07/14	soil	None	NAD	NAD	
14/7724	1	WS103	0.9-1.0	5	10/07/14	soil	None	NAD	NAD	
14/7724	1	WS103	1.2-1.3	6	10/07/14	soil/stones	None	NAD	NAD	
14/7724	1	WS103	1.35-1.45	7	10/07/14	Soil-Clay/Brick/Stone	None	NAD	NAD	
14/7724	1	WS103	1.7-1.9	8	10/07/14	Soil-Clay/Brick/Stone	None	NAD	NAD	

Client Name: Geosyntec Consulting

Reference: GCU00124-025
Location: Nestle Hayes
Contact: Andrew Morgan

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Analysis	Reason
					No deviating sample report results for job 14/7724	

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.: 14/7724

SOILS

Please note we are only MCERTS accredited for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary. If we are instructed to keep samples, a storage charge of £1 (1.5 Euros) per sample per month will be applied until we are asked to dispose of them.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

WATERS

Please note we are not a Drinking Water Inspectorate (DWI) Approved Laboratory . It is important that detection limits are carefully considered when requesting water analysis.

UKAS accreditation applies to surface water and groundwater and one other matrix which is analysis specific, any other liquids are outside our scope of accreditation

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

Samples must be received in a condition appropriate to the requested analyses. All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. If this is not the case you will be informed and any test results that may be compromised highlighted on your deviating samples report.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

ABBREVIATIONS and ACRONYMS USED

#	UKAS accredited.
В	Indicates analyte found in associated method blank.
DR	Dilution required.
M	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
++	Result outside calibration range, results should be considered as indicative only and are not accredited.
*	Analysis subcontracted to a Jones Environmental approved laboratory.
СО	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
OC	Outside Calibration Range

Test Method No.	Description	Prep Method No. (if appropriate)	Description	UKAS	MCERTS (soils only)	Analysis done on As Received (AR) or Air Dried (AD)	Reported on dry weight basis
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465 and BS1377.	PM0	No preparation is required.			AR	Yes
TM65	Asbestos Bulk Identification	PM42	Screening of soils for fibres			AR	
TM65	Asbestos Bulk Identification	PM42	Screening of soils for fibres	Yes		AR	

Registered Address: Unit 3 Deeside Point, Zone 3, Deeside Industrial Park, Deeside, CH5 2UA. UK

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA

Geosyntec Consulting 30-32 Botanic Road Glasnevin Dublin Ireland

Tel: +44 (0) 1244 833780 Fax: +44 (0) 1244 833781

Attention: Andrew Morgan

Date: 31st July, 2014

Your reference : GCU0124025

Our reference : Test Report 14/7722 Batch 1 Schedule C

Location : Nestle, Hayes

Date samples received : 4th July, 2014

Status: Final report

Issue:

Thirty five samples were received for analysis on 4th July, 2014. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Compiled By:

Paul Lee-Boden BSc Project Manager Bob Millward BSc FRSC Principal Chemist

Rjuiellward

Client Name: Geosyntec Consulting

Reference: GCU0124025 Location: Nestle, Hayes

Andrew Morgan

JE Job No.: 14/7722

Contact:

Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

J E Sample No.	10							
Sample ID	WS105							
Depth	0.4-0.5					Please se	otes for all	
COC No / misc							cronyms	
Containers	В							
Sample Date	02/07/2014							
Sample Type	Soil							
Batch Number	1							Method
Date of Receipt	04/07/2014					LOD/LOR	Units	No.
PAH MS								
Naphthalene #	<0.80 _D					<0.04	mg/kg	TM4/PM8
Acenaphthylene	1.10 _D					<0.03	mg/kg	TM4/PM8
Acenaphthene #	<1.00 _D					<0.05	mg/kg	TM4/PM8
Fluorene #	<0.80 _D					<0.04	mg/kg	TM4/PM8
Phenanthrene #	1.84 _D					<0.03	mg/kg	TM4/PM8
Anthracene #	1.48 _D					<0.04	mg/kg	TM4/PM8
Fluoranthene#	13.92 _D					<0.03	mg/kg	TM4/PM8
Pyrene #	14.23 _D					< 0.03	mg/kg	TM4/PM8
Benzo(a)anthracene #	8.90 _D					<0.06	mg/kg	TM4/PM8
Chrysene#	6.36 _D					<0.02	mg/kg	TM4/PM8
Benzo(bk)fluoranthene#	11.94 _D					<0.07	mg/kg	TM4/PM8
Benzo(a)pyrene #	7.08 _D					<0.04	mg/kg	TM4/PM8
Indeno(123cd)pyrene#	4.03 _D					<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene #	<0.80 _D					<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene #	4.27 _D					<0.04	mg/kg	TM4/PM8
Coronene	<0.80 _D					<0.04	mg/kg	TM4/PM8
PAH 17 Total	75.15 _D					<0.64	mg/kg	TM4/PM8
Benzo(b)fluoranthene	8.60 _D					<0.05	mg/kg	TM4/PM8
Benzo(k)fluoranthene	3.34 _D					<0.02	mg/kg	TM4/PM8
PAH Surrogate % Recovery	122 _D					<0	%	TM4/PM8
N. 1011 (040 040)	70							T115/D1110
Mineral Oil (C10-C40)	79					<30	mg/kg	TM5/PM16
MTBE#	<5					<5	ug/kg	TM31/PM12
Benzene #	<5					<5	ug/kg	TM31/PM12
Toluene #	<5					<5	ug/kg	TM31/PM12
Ethylbenzene #	<5					<5	ug/kg	TM31/PM12
m/p-Xylene #	<5					<5	ug/kg	TM31/PM12
o-Xylene#	<5					<5	ug/kg	TM31/PM12
	_					_		T1447/D140
PCB 28#	<5					<5	ug/kg	TM17/PM8
PCB 52#	<5					<5	ug/kg	TM17/PM8
PCB 101 #	<5					<5	ug/kg	TM17/PM8
PCB 118#	<5					<5	ug/kg	TM17/PM8
PCB 138#	<5					<5	ug/kg	TM17/PM8
PCB 153#	<5					<5	ug/kg	TM17/PM8
PCB 180#	<5					<5	ug/kg	TM17/PM8
Total 7 PCBs #	<35					<35	ug/kg	TM17/PM8
ANC at pH4	0.66					<0.03	mol/kg	TM77/PM0
ANC at pH7	0.31					<0.03	mol/kg	TM77/PM0
рН #	9.30					<0.01	pH units	TM73/PM11

CEN 10:1 LEACHATE RESULTS PrEN 12547-2

Mass of sample taken (kg)	-		Moisture Content Ratio (%) =		7.1	
Mass of dry sample (kg) =	0.09		Dry Matter Content Ratio (%) =		93.4	
Particle Size <4mm =	>95%					
	ī			T		
JEFL Job No			14/7722	Land	ill Waste Ac	-
Sample No			10		Criteria Lim	nits
Client Sample No			WS105		Stable	
Depth/Other			0.4-0.5	Inert	Non-reactive Hazardous	Hazardous
Sample Date			02/07/2014	Waste in Non-	Waste	
Batch No			1	Landfill	Hazardous Landfill	Landfill
Solid Waste Analysis		ı			Lunum	
Total Organic Carbon (%)	-			3	5	6
Loss on Ignition (%)	-			-	-	10
Sum of BTEX (mg/kg)	<0.025			6	-	-
Sum of 7 PCBs (mg/kg)	<0.035			1	-	-
Mineral Oil (mg/kg)	79			500	-	-
PAH Sum of 17(mg/kg)	75.15			100	-	-
pH (pH Units)	9.30			-	>6	-
ANC to pH 7 (mol/kg)	0.31			-	to be evaluated	to be evaluated
ANC to pH 4 (mol/kg)	0.66			-	to be evaluated	to be evaluated
Eluate Analysis		conc ⁿ ched A ₁₀		le	values for co aching test I 12457-2 at I	using
	mg/l	mg/kg			mg/kg	
Arsenic	0.0081	0.081		0.5	2	25
Barium	0.013	0.13		20	100	300
Cadmium	<0.0005	<0.005		0.04	1	5
Chromium	0.0015	0.015		0.5	10	70
Copper	<0.007	<0.07		2	50	100
Mercury	<0.001	<0.01		0.01	0.2	2
Molybdenum	0.002	0.02		0.5	10	30
Nickel	<0.002	<0.02		0.4	10	40
Lead	0.026	0.26		0.5	10	50
Antimony	0.006	0.06		0.06	0.7	5
Selenium	< 0.003	<0.03		0.1	0.5	7
Zinc	0.005	0.05		4	50	200
Chloride	22.1	221		800	15000	25000
Fluoride	1.8	18		10	150	500
Sulphate as SO4	22.44	224.5		1000	20000	50000
Total Dissolved Solids	136	1361		4000	60000	100000
Phenol	<0.01	<0.1		1	-	-
Dissolved Organic Carbon	4	40		500	800	1000

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.: 14/7722

SOILS

Please note we are only MCERTS accredited for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary. If we are instructed to keep samples, a storage charge of £1 (1.5 Euros) per sample per month will be applied until we are asked to dispose of them.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

WATERS

Please note we are not a Drinking Water Inspectorate (DWI) Approved Laboratory . It is important that detection limits are carefully considered when requesting water analysis.

UKAS accreditation applies to surface water and groundwater and one other matrix which is analysis specific, any other liquids are outside our scope of accreditation

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

Samples must be received in a condition appropriate to the requested analyses. All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. If this is not the case you will be informed and any test results that may be compromised highlighted on your deviating samples report.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

ABBREVIATIONS and ACRONYMS USED

#	UKAS accredited.
В	Indicates analyte found in associated method blank.
DR	Dilution required.
M	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
++	Result outside calibration range, results should be considered as indicative only and are not accredited.
*	Analysis subcontracted to a Jones Environmental approved laboratory.
СО	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
OC	Outside Calibration Range
Α	x5 Dilution
D	x20 Dilution

Test Method No.	Description	Prep Method No. (if appropriate)	Description	UKAS	MCERTS (soils only)	Analysis done on As Received (AR) or Air Dried (AD)	Reported on dry weight basis
TM4	16 PAH by GC-MS, modified USEPA 8270	PM8	In-house method based on USEPA 3510. ISO 17025 accredited extraction method for organic extraction from solid samples using an end over end agitator.			AR	Yes
TM4	16 PAH by GC-MS, modified USEPA 8270	PM8	In-house method based on USEPA 3510. ISO 17025 accredited extraction method for organic extraction from solid samples using an end over end agitator.	Yes		AR	Yes
TM5	In-House method based on USEPA 8015B. Determination of Extractable Petroleum Hydrocarbons (EPH) in the carbon chain length range of C8-40 by GC-FID. Accredited to ISO 17025 on soil and water samples and MCERTS (carbon banding only) on soils. All accreditation is matrix specific.	PM16	Aliphatic/Aromatic fractionation			AR	Yes
TM17	PCB 7 Congeners and WHO 12 PCBs by GC-MS	PM8	In-house method based on USEPA 3510. ISO 17025 accredited extraction method for organic extraction from solid samples using an end over end agitator.	Yes		AR	Yes
TM20	TDS, TSS and TS - gravimetric	PM0	No preparation is required.			AR	Yes
TM26	PhenoIs by HPLC	PM0	No preparation is required.			AR	Yes
TM27	In-House method based on USEPA 9056. Analysis of samples using a Dionex Ion-Chromatograph instrument.	PM0	No preparation is required.			AR	Yes
TM30	Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry) using Thermo iCAP 6000 series instrument. Accredited to ISO 17025 for soils and waters and MCERTS accredited for Soils. All accreditation is matrix specific.	PM17	CEN PR12457-2 10:1 1 batch leach	Yes		AR	Yes
TM31	In-house method based on USEPA 8015B. Determination of Methyltertbutylether, Benzene, Toluene, Ethylbenzene and Xylene by headspace GC-FID. Accredited to ISO 17025 for soils and waters and MCERTS accredited for soils. Accreditation is matrix specific.	PM12	In-house method based on USEPA 5021. Preparation of solid and liquid samples for headspace analysis. Samples are spiked with surrogates to facilitate quantification. ISO 17025 accredited extraction method. All accreditation is matrix specific			AR	Yes
TM31	In-house method based on USEPA 8015B. Determination of Methyltertbutylether, Benzene, Toluene, Ethylbenzene and Xylene by headspace GC-FID. Accredited to ISO 17025 for soils and waters and MCERTS accredited for soils. Accreditation is matrix specific.	PM12	In-house method based on USEPA 5021. Preparation of solid and liquid samples for headspace analysis. Samples are spiked with surrogates to facilitate quantification. ISO 17025 accredited extraction method. All accreditation is matrix specific	Yes		AR	Yes

Test Method No.	Description	Prep Method No. (if appropriate)	Description	UKAS	MCERTS (soils only)	Analysis done on As Received (AR) or Air Dried (AD)	Reported on dry weight basis
TM38	Ionic analysis using the Thermo Aquakem Photometric Automatic Analyser. Accredited to ISO17025 and MCERTS for most analytes. All accreditation is matrix specific.	PM0	No preparation is required.	Yes		AR	Yes
TM60	TOC/DOC by NDIR	PM0	No preparation is required.			AR	Yes
TM73	pH in by Metrohm	PM11	1:2.5 soil/water extraction	Yes		AR	No
TM77	ANC at pH4 and pH7 by Metrohm	PM0	No preparation is required.			AR	No
NONE	No Method Code	PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465 and BS1377.			AR	