APPENDIX 8.3

FURTHER GEO ENVIRONMENTAL INFORMATION

Former Nestle Factory, Hayes - Proposed Commercial Development

Further Geo-environmental Assessment 6 June 2016

Quality Management

Job No	CS-075666				
Project	Former Nestlé Factory, Hayes Proposed Commercial Development				
Location	Hayes, London Borough of Hillir	ngdon			
Title	Further Geo-environmental Asse	Further Geo-environmental Assessment			
Client	SEGRO plc				
Document Ref	CS-075666-PE-16-113-R				
File Reference	U:\CS-075666 - Project Lightning Hayes\Geotech\Reports\2016\CS-075666-PE-16-113-R Rev A.docx				
Date	6 June 2016				
Prepared by	PWE Signature (for file)				
Authorised by	NRB Signature (for file)				

Revision Status / History

Rev	Date	Issue / Purpose/ Comment	Prepared	Authorised
-	31/5/16	First Issue	PWE	NRB
А	6/6/16	Revision A – minor amendment to reflect project manager comments.	PWE	NRB

Report Conditions

This document has been prepared by Capita Property and Infrastructure Limited (Capita) for the titled project (or named part thereof) and should not be relied upon or used for any other project without prior written authorization being obtained from Capita. Capita accepts no responsibility or liability for the consequences of the use of this document, wholly or in part, for any other purpose than that for which it was commissioned. Any persons so using or relying upon this document for such other purpose do so at their own risk.

This report was prepared for the sole use of the named Client, and shall not be relied upon or transferred to any other party without the express written authorisation of Capita. It may contain material subject to copyright or obtained subject to license; unauthorised copying of this report will be in breach of copyright/license.

The findings and opinions provided in this document are given in good faith and are subject to the limitations and constraints imposed by the methods and information sources described in this report. Factual information, including, where stated, a visual inspection of the site, has been obtained from a variety of sources. Capita assumes the third party data to be reliable, but has not independently confirmed this; therefore, Capita cannot and does not guarantee the authenticity or reliability of third party information it has relied upon.

The findings and opinions presented in this report are relevant to the dates when the assessment was undertaken, but should not necessarily be relied upon to represent conditions at a substantially later date. Further information, ground investigation, construction activities, change of site use, or the passage of time may reveal conditions that were not indicated in the data presented and therefore could not have been considered in the preparation of the report. Where such information might impact upon stated opinions, Capita reserves the right to modify the opinions expressed in this report.

Where opinions expressed in this report are based on current available guidelines and legislation, no liability can be accepted by Capita for the effects of any future changes to such guidelines and legislation.

The limitations of liability of Capita for the contents of this document have been agreed with the Client, as set out in the terms and conditions of offer and related contract documentation.

Contents

1.	Summary	1
2. 2.1 2.2 2.3	Introduction Appointment Background and Report Purpose Previous Reports	3 3 3 3
3.2	Site Location, Description and History Location Site Description Previous Development History	5 5 5 5
4.1 4.2 4.3 4.4	Environmental Setting Geology Hydrogeology Hydrology Groundwater Abstractions	7 7 7 8 8
5.	Previous Investigations Findings	9
6.3	Supplementary Investigation Introduction Chemical Testing Geotechnical Testing Gas and Groundwater Monitoring	11 11 11 12 12
7.	Ground Conditions	13
7.1 7.2 7.3 7.4 7.5 7.6 7.7	Introduction Surfacing Made Ground Brickearth / Langley Silt Lynch Hill Gravel London Clay Visual/ Olfactory Evidence of Contamination Obstructions Groundwater / NAPL	13 13 13 13 14 14 14 14
3.	Soil Infiltration Rate Testing	16
9.1 9.2	Ground Gas Assessment Introduction Field Data Assessment and Recommendations	17 17 17 17
10.2	Generic Quantitative Risk Assessment Laboratory Analysis – Soils Groundwater	19 19 21

Contents

10.4 Discussion	22
11. Other Development Considerations	24
11.1 Waste Soils Characterisation	24
11.2 Existing/Imported Fill	24
11.3 Health, Safety and Environment	24

Appendices

Appendix A – Architect's Proposed Development Layout
Appendix B – Site Location Plan
Appendix C – Topographical Survey
Appendix D – Groundwater Abstraction Revocation Notice
Appendix E – Exploratory Hole Location Plan
Appendix F – 2016 Exploratory Hole Logs
Appendix G – Laboratory Chemical Analysis Reports
Appendix H – Monitoring Data

1. Summary

- 1.1 Capita Property and Infrastructure Limited was appointed by SEGRO plc (the Client) to undertake a Further Geo-environmental Assessment of the former Nestlé UK Ltd premises at North Hyde Gardens in Hayes, Middlesex. The assessment follows previous phases of investigation undertaken by Capita and others in 2014, and specifically relates to an area of just over 5 hectares proposed for commercial redevelopment. The remainder of the Nestle site (about 7 hectares) is to be developed separately for residential use and is not covered by this report.
- 1.2 The site was previously used for coffee manufacturing and, as of May 2016, remained occupied by numerous factory, office and warehouse-type buildings. External areas comprised either concrete service yards or macadam car parking and access routes. Manufacturing at the site ceased at the end of 2014 and it has been disused since June 2015.
- 1.3 The 2016 Capita ground investigation comprised five boreholes by conventional cable percussion (BH201 to BH205, maximum 5.4m deep) and six mechanically excavated trial pits (TP201 to TP206, maximum 2.5m deep), all located in external areas. Four further boreholes (BH206 to BH209, maximum 10.5m deep) were drilled inside the former Main Building using a reduced head-room cable percussion rig. Monitoring wells were installed in each of the boreholes
- 1.4 Reinforced concrete hardstandings were typically found to be about 0.3m thick, and the tarmacadam ranged between 0.1 and 0.25m. Underlying Made Ground generally comprised grey or brown sandy and/or clayey gravel with varying amounts of concrete, brick and tile fragments, with an average thickness of 0.9m.
- 1.5 The Langley Silt Formation ('Brickearth') was encountered below the Made Ground in the majority of exploratory holes, consisting of about 0.7m firm silty sand clay. This overlay between 0.9 and 3.3m of Lynch Hill Gravel, a unit of dense sandy flint gravel which thickened towards the west (and was absent from one borehole on the site's eastern boundary). The deepest lithology encountered was the London Clay Formation, reached at between 2.6 and 5.3mbgl. The base of the Clay was not proven (>10.5mbgl).
- 1.6 Monitoring of borehole standpipes indicated resting groundwater depths to be between about 0.9 and 1.5 mbgl and an indicative flow towards the south-east has been inferred. No free phase substances (LNAPL or DNAPL) were detected.
- 1.7 Laboratory chemical analysis was carried out on representative samples of soil and groundwater. The data was compared to Generic Assessment Criteria applicable to sites with a Commercial end use and protective of a Principal aquifer.
- 1.8 The laboratory data and field observations did not indicate severe or unacceptable chemical impacts to soils or groundwater. However previous phases of investigation did detect isolated impacts to soil from PAH and lead, and asbestos was detected in many of the Made Ground samples during the Capita investigations, particularly below the Main Building undercroft.

- 1.9 It is recommended that a watching brief be maintained during demolition of existing buildings. Where feasible, any asbestos observed in/on the ground should be hand picked by suitably qualified and experienced personnel, and removed from site to a licenced facility. Where this is not feasible, soils entrained with asbestos fragments may need to be removed in bulk.
- 1.10 The majority of the site will be surfaced with concrete hardstandings in the site's developed condition so risks to future site users will be low. Risks to demolition and construction workers can be mitigated through the use of appropriate PPE and damping down of soils. A cover layer (circa 600mm thick) of imported topsoil should be placed over areas of soft landscaping to protect new planting and mitigate any slight risks associated with potential direct human contact / ingestion.
- 1.11 Characteristic gas situation 1 is considered to apply in respect of ground gases and as such no special protection measures are necessary for the proposed new commercial buildings.
- 1.12 Soil infiltration rate testing undertaken as part of the 2016 investigation determined that soakaway drainage will not be suitable at the site.

2. Introduction

2.1 Appointment

2.1.1 Capita Property and Infrastructure Limited was appointed by SEGRO plc (the Client) to undertake a Further Geo-environmental Assessment of part of the former Nestlé UK Ltd premises at North Hyde Gardens in Hayes, Middlesex.

2.2 Background and Report Purpose

- 2.2.1 The former Nestle site comprises a coffee manufacturing plant which ceased production and closed at the end of 2014. SEGRO intends to bring forwards a new commercial development of light industrial / warehouse units covering the eastern part of the site. The remainder of the former Nestle property is to be redeveloped separately, by others, for residential use.
- 2.2.2 Prior to its closure Capita undertook a due diligence geo-environmental investigation covering the whole of the former factory. The findings of that investigation are presented in the following report:
 - Geo-environmental Investigation and Assessment, ref. CS075666-PE-14-211-R
 Revision A dated 24 November 2014.
- 2.2.3 This 2016 further assessment specifically relates to that part of the former Nestle facility being developed by SEGRO for new commercial properties. A drawing illustrating the development area boundaries is provided in Appendix A.
- 2.2.4 In the context of the above, the following objectives have been defined:
 - Summarise existing information regarding potential geo-environmental constraints.
 - Confirm the stratigraphy underlying the site through physical investigation.
 - Undertake further Generic Quantitative Risk Assessments to determine the potential significance of any ground contamination encountered.
 - Produce a Remediation Strategy based on the findings of the GQRA process.

2.3 Previous Reports

- 2.3.1 The following reports were produced for Nestlé UK Ltd by Geosyntec Consultants Ltd and were reviewed as part of Capita's November 2014 assessment:
 - Phase 1 Environmental Assessment of the Nestlé UK Ltd Facility in Hayes, Middlesex.
 Project ref. GCU0124020 dated September 2013.
 - Phase 2 Environmental Assessment of the Nestlé UK Ltd Facility in Hayes, Middlesex.
 Project ref. GCU0124024 dated June 2014.
 - Subsurface Asbestos Investigation: Main Building Undercroft & South-Eastern Surrounding Area. Project ref. GCU0124025 dated July 2014.

• Letter report titled *Update on Groundwater Monitoring Results post September-14* round dated 23 October 2014.

3. Site Location, Description and History

3.1 Location

3.1.1 The site is located off North Hyde Gardens in Hayes, approximately centred on post code UB3 4RF and at Ordnance Survey National Grid Reference 510100, 179190. A location plan is provided in Appendix B.

3.2 Site Description

- 3.2.1 The area covered by this assessment covers approximately 5.15 hectares in the eastern and northern part of the former Nestle premises, which extended to over 12 hectares in total. The study area was occupied by several buildings and areas of hardstanding (both macadam and concrete) and the main features were:
 - The Green Bean Warehouse, previously used for the storage of coffee beans.
 Comprised a double bay, single storey warehouse with reinforced concrete frame, masonry panels and duo pitched roof.
 - The Eden Building, used for packing and loading of finished products. Comprised a single storey warehouse with reinforced concrete frame, masonry panels and a flat roof.
 There was a canopy roof along the northern side of the building.
 - The Lodge, a former residential property in the south-eastern corner of the site. This
 was a two-storey (plus basement and attic) red brick building with mock timber framing.
 - The Main Building, of varying construction types and modified / added to on a number of occasions. The building occupied land to be developed by both SEGRO and the residential developer, with the SEGRO parts predominantly of reinforced concrete frame construction with masonry infill panels, and mostly 3 or 4 levels high. There is a large undercroft area, including support sleeper walls, below much of this building.
 - The Gatehouse, located in the central eastern part of the site.
 - A macadam surfaced car park covering much of the southern end of the site.
- 3.2.2 The site is relatively flat and reference to a recent topographical survey (see Appendix C) indicates ground levels range between about 31.4 and 30.5 mAOD, with a slight fall towards the west.
- 3.2.3 The site is bounded by Nestles Avenue to the south, North Hyde Gardens to the east and the Grand Union Canal to the north. The western boundary is not defined by physical features as it comprises the remainder of the former Nestle factory to be redeveloped separately.

3.3 Previous Development History

3.3.1 Information on the site's previous land use has been obtained from the 2013/14 Geosyntec reports and a Heritage Statement produced by CgMs in March 2016 (ref. HS/HB/21254).

- 3.3.2 The site is indicated to have comprised agricultural land from at least the 1860s until the 1910s, and the earliest part of the Main Building was completed circa 1914 for a cocoa factory.
- 3.3.3 During the First World War much of the site was commandeered for a munitions factory. The land surrounding the single factory building was occupied by numerous wooden huts used for shell manufacturing, with the huts linked to each other by raised walkways. Railway sidings connected the munitions works to the mainline to the north.
- 3.3.4 The munitions factory closed in 1919 and the site reverted to cocoa (and later coffee) production. The Main Building was extended in the 1930s and further modified and added to in the 1960s. The factory complex continued to expand throughout the second half of the twentieth century and many of the larger warehouse-type buildings were constructed in the 1970s.
- 3.3.5 The factory ceased production at the end of 2014 and the site was vacated by Nestle at the end of June 2015, since when it has been disused.

4. Environmental Setting

4.1 Geology

- 4.1.1 British Geological Survey online mapping indicates the site to be underlain by 'Worked Ground' over natural soils of the Lynch Hill Gravel Member. The Lynch Hill Gravel is part of the Maidenhead Formation and typically comprises river terrace sands and gravels. The underlying bedrock comprises the London Clay Formation (silty clay), which is expected to be circa 60m thick.
- 4.1.2 The 2014 Capita investigation recorded stratigraphy typically comprising:

Made Ground

Concrete or macadam hard surfacing (0.1 to 0.4m thick) over

0.15 to 1.5m (average 0.8m) clayey gravel or gravelly clay with fragments of concrete, brick and stone. The coarse grained fraction also included chalk, charcoal, ash, slag and metal fragments.

Discontinuous Langley Silt Formation ('Brickearth')

Observed in about half of the exploratory holes at an average thickness of 0.5m (ranging between 0.1 and 1.6m) and comprising firm gravelly and/or sandy silty clay.

Lynch Hill Gravel

Medium dense and dense orange-brown and dark brown sandy flint gravel, with occasional sand lenses, between 0.9 and 4.8m thick (average 3.2m).

London Clay

Reached at between 2.9 and 6.1mbgl and consisting of firm to stiff grey-brown silty clay.

4.2 Hydrogeology

- 4.2.1 The Lynch Hill Gravel is designated a Principal aquifer by the Environment Agency. The underlying London Clay Formation is categorised as an Unproductive stratum (i.e. a non aquifer).
- 4.2.2 The site is not situated within an EA-designated Groundwater Source Protection Zone.
- 4.2.3 Resting groundwater depths were recorded on three occasions by Geosyntec between December 2013 and May 2014 and ranged between about 0.6 and 2.5m below ground level. Monitoring by Capita indicated depths of between about 0.8 and 2.8mbgl within the Lynch Hill Gravel aquifer. Flow appeared to be generally directed towards the south-east at a gradient of approximately 1:130 to 1:150.

4.3 Hydrology

- 4.3.1 The nearest significant surface watercourse is the Grand Union Canal, which defines the site's northern boundary.
- 4.3.2 The River Crane is situated about 175m east and flows in a southerly direction, discharging into the River Thames about 10km to the south.

4.4 Groundwater Abstractions

- 4.4.1 It has previously been reported that two deep groundwater abstraction wells existed within the site boundaries. One was in use by Nestlé whilst the other is believed never to have been commissioned (apparently due to insufficient productivity).
- 4.4.2 The operational well was located centrally at the northern end of the Main Building (within the SEGRO demise) and was licensed for use as a boiler feed and for evaporative cooling. The permitted abstraction rate was up to 54m3/hour (1,296 m3/day) and the water was drawn from the deep Chalk aquifer, below the London Clay.
- 4.4.3 Capita understands that the operational well was decommissioned by Nestle prior to vacating the site and that the abstraction licence was revoked. A copy of the revocation notice is provided in Appendix D.
- 4.4.4 It is recommended that this well be capped and fully sealed in accordance with current regulations, as part of the demolition / enabling works for the proposed development.

5. Previous Investigations Findings

- 5.1 Two phases of intrusive investigations were undertaken by Geosyntec Ltd for Nestle in 2014, the first covering the whole of the former factory and the second specifically investigating the presence of asbestos-containing materials in the undercroft below the Main Building.
- 5.2 These investigations did not identify significant site-wide matters of concern in respect of ground contamination, however there were localised occurrences of suspected chemical impacts.
- 5.3 The Capita investigation was undertaken in October 2014 as part of SEGRO's pre-acquisition due diligence. It comprised a series of exploratory boreholes which extended into the top of the London Clay lithology and its conclusions broadly corresponded with those reached by Geosyntec.
- Drawings illustrating the locations of the previous exploratory holes are provided in Appendix E.

 The key findings of the investigations, as presented in the 2014 Capita report, were:
 - There was a degree of hydrocarbon impact both TPH and PAH substances to shallow Made ground soils at the northern / north-western end of the wider site. This was predominantly around the old boiler house and fuel storage tanks (e.g. at WS14, WS18, WS30, BH9). This is <u>outside</u> the SEGRO retained land and is not expected to impact the proposed commercial development.
 - ➤ There were marginally elevated hydrocarbons (mostly aromatics C16-C21) in shallow soil at BH1 and WS23 on the northern boundary, within the SEGRO demise.
 - Isolated PAH impacts to shallow soils were detected to the south-east of the Main Building (WS102), locally below in the undercroft (U21), and in the south-eastern part of the site (WS28). Some marginally elevated lead concentrations were also recorded. The lead and PAH impacts are most likely attributable to sporadic fragments of ash, slag or similar debris entrained within the Made Ground.
 - Fragments of asbestos-containing material and/or loose asbestos fibres were detected in shallow soils locally, including below the former boiler house (WS18, WS30 and WS28 – all outside the SEGRO demise), on the northern boundary (BH104, WS20, WS21) and in the south-eastern sector (BH5, BH109).
 - There were also sporadic positive detections of asbestos fibres in shallow soils below the Main Building. It is noted that of 88 soil samples analysed by Geosyntec, 72 recorded "no asbestos detectable" (relating to 17 of 28 sampling locations). 9 recorded "trace" levels and 7 recorded "quantifiable' concentrations up to a maximum of 0.001%.
 - Shallow perched groundwater was reported to be locally impacted to some extent by hydrocarbons – notably at BH103 – but again this was outside the proposed commercial development area. It is noted that there was no indication that the Principal gravel aguifer had been affected.

- ➤ There were isolated technical exceedances of generic assessment criteria for some metals and metalloids in groundwater at BH1 and BH2.
- There was no indication of elevated concentrations of hazardous ground gases.
- 5.5 It is noted that several historical 'environmental incidents' were listed in the Geosyntec reports.

 These predominantly related to fuel losses on the western side of the factory, outside the SEGRO development area.
- 5.6 We also note that Geosyntec made reference to possible mercury impacts to soils, reportedly observed by Nestlé operatives in shallow soils during construction of the coffee ground combustion plant. The source of the mercury was reported to be equipment used within a former boiler house. This is outside the SEGRO demise but the affected area was uncertain and was considered potentially to reach the western edge of the study site. It is noted that soil analysis undertaken for the previous investigations found no evidence of mercury contamination.

6. Supplementary Investigation

6.1 Introduction

- 6.1.1 Supplementary ground investigation works to provide more detailed information on the SEGRO development area were undertaken by Capita in March 2016. These comprised:
 - Five boreholes (BH201 to BH205) by conventional cable percussion, to base depths of between 5.0 and 5.4mbgl.
 - Four boreholes (BH206 to BH209) by using a reduced head-room ("cut down") cable percussion rig, to base depths of between 5.0 and 10.5mbgl. These boreholes were located inside the existing Main Building.
 - Six mechanically excavated trial pits (TP201 to TP206), to base depths of between 0.7 and 2.5mbgl. Soil infiltration rate testing was undertaken in four of these pits.
 - Installation of HDPE monitoring standpipes (50mm internal diameter) in all of the boreholes.
 - Collection of representative soil samples for laboratory chemical and geotechnical testing.
 - Groundwater samples were collected for chemical analysis from all of the 2016 boreholes and selected pre-existing wells.
 - Ground gas and water level monitoring was undertaken at the site on two occasions in March 2016.
- 6.1.2 Exploratory hole locations are indicated on drawing 502 in Appendix E and the borehole and trial pit logs are presented in Appendix F.

6.2 Chemical Testing

- 6.2.1 14No soil samples obtained from the exploratory holes were submitted to i2 Analytical Ltd, Watford for analysis of the following potential contaminants:
 - Total Petroleum Hydrocarbons (TPH) speciated for the Criteria Working Group (CWG) suite of hydrocarbon bands;
 - Speciated (US EPA 16) Polycyclic Aromatic Hydrocarbons (PAH);
 - Benzene, toluene, ethyl benzene and xylenes (BTEX)
 - Metals and metalloids (As, B (w/s), Cd, Cr, Cu, Hg, Ni, Pb, Se, V, Zn);
 - Water soluble sulphate;
 - pH;

- Asbestos (including quantification if positively detected)
- 6.2.2 Eleven groundwater samples, obtained from the 2016 Capita wells (BH201-209) two of the previously installed monitoring points (BH2 and BH109), were tested for some or all the following analysis suite:
 - Total Petroleum Hydrocarbons (TPH) speciated for the Criteria Working Group (CWG) suite of hydrocarbon bands;
 - Speciated (16) Polycyclic Aromatic Hydrocarbons (PAH);
 - Benzene, toluene, ethyl benzene and xylenes (BTEX)
 - Volatile Organic Compounds (VOC)
 - Metals and metalloids (As, B, Cd, Cr, Cu, Hg, Ni, Pb, Se, V, Zn);
 - pH;
 - Sulphate.
- 6.2.3 Results of all the chemical testing are presented in the laboratory reports in Appendix G.

6.3 Geotechnical Testing

6.3.1 In-situ geotechnical testing was undertaken at regular intervals during the investigation in the form of Standard Penetration Tests (SPTs); the results of this testing are presented on the borehole logs. Laboratory geotechnical testing was undertaken as part of the 2014 Capita assessment.

6.4 Gas and Groundwater Monitoring

6.4.1 Follow-up ground gas and groundwater monitoring was carried out on 22nd and 30th March 2016 and the full datasets presented in Appendix H.

7. Ground Conditions

7.1 Introduction

- 7.1.1 The stratigraphy recorded during the 2016 supplementary investigation was broadly in accordance with that previously encountered.
- 7.1.2 The table below summarises conditions encountered in the exploratory holes situated within the SEGRO development area:

Stratum	Thickness range (m)	Depth range to top of stratum (mbgl)	Depth range base depth (mbgl)
Concrete / Macadam	0.07 to 0.80	GL	0.06 to 0.80
Made Ground	0.15 to 2.3	0.07 to 0.8	0.45 to 2.45
Wade Ground	Average: 0.85	Average: 0.25	Average: 1.1
Langley Silt / Brickearth	0.2 to 1.6	0.35 to 2.5	0.85 to 3.0
Langley Silt / Brickearth	Average: 0.7	Average: 1.0	Average: 1.7
Lynch Hill Gravel	0.9 to 3.3	0.85 to 3.0	2.6 to 5.3
Lynch filli Gravei	Average: 2.3	Average: 1.5	Average: 4.0
London Clay	Not proven	2.6 to 5.3 m	Not proven
London Glay	140t ploveli	Average: 3.2	Not proven

7.2 Surfacing

- 7.2.1 All of the exploratory holes were positioned in areas surfaced with either reinforced concrete or tarmacadam.
- 7.2.2 The concrete ranged in thickness between about 0.2 and 0.8 m, typically circa 0.3m. The tarmacadam was generally between 0.1 and 0.25m thick.

7.3 Made Ground

7.3.1 Made Ground was encountered below the hard surfacing in all exploratory holes and ranged in thickness between 0.15 and 2.3 m, averaging 0.85 m. The stratum typically comprised grey or brown sandy and/or clayey gravel with varying amounts of concrete, brick and tile fragments. The coarse grained fraction also locally included fragments of chalk, charcoal, ash, slag and metal.

7.4 Brickearth / Langley Silt

7.4.1 A thin horizon of fine grained soils corresponding with the Langley Silt / Brickearth lithology was encountered in the majority of exploratory holes and comprised soft to firm silty sandy clay. Its thickness ranged between 0.35 and 2.5 m.

7.5 Lynch Hill Gravel

- 7.5.1 The Lynch Hill Gravel Member was present in all locations where the base of the Made Ground or Langley Silt was reached, except at BH202 situated on the site's eastern boundary. Its typically thickness ranged between 0.9 m (BH4) and 3.3 m (BH209) and increased towards the west. The stratum comprised medium dense and dense orange-brown and dark brown sandy flint gravel, with occasional sand lenses.
- 7.5.2 It is noted that the base of the gravel was not reached in BH209 (>8.5 mbgl).

7.6 London Clay

7.6.1 The London Clay Formation was encountered below the Lynch Hill Gravel in all of the cable percussion boreholes, at depths of between 2.6 and 5.3 mbgl. The lithology comprised firm brown and grey silty clay.

7.7 Visual/ Olfactory Evidence of Contamination

7.7.1 There were no observations of suspected ground contamination in the exploratory holes located within the SEGRO development area.

7.8 Obstructions

7.8.1 Buried obstructions were recorded during the two phases of investigation at the following locations and depths:

Borehole ID	Depth (mbgl)	Details (as indicated on the logs)	
BH109A		Concrete obstruction	
BHIU9A	0.6	(borehole re-positioned 10m south as BH109)	
TP203	0.65	Two armoured cables observed – assumed to be redundant electrical supply. The trial pit was abandoned.	

7.9 Groundwater / NAPL

- 7.9.1 Measurement of resting groundwater levels in selected monitoring wells was undertaken on two occasions in March 2016 using an oil/water interface probe. This is in addition to extensive monitoring undertaken across the site by Capita in October / November 2014.
- 7.9.2 Free phase hydrocarbons (LNAPL and DNAPL) were not detected on or below groundwater in any of the monitoring wells.
- 7.9.3 Water depth and level data for March 2016 data is presented in the following table:

Borehole ID	Water depth (mbgl)	Water level (mAOD)
BH1	0.89	29.62
BH2	1.01	29.43
BH3	1.00	29.19
BH5	1.40	27.87

Borehole ID	Water depth (mbgl)	Water level (mAOD)
WS22	0.80	29.59
BH109	1.55	28.27
BH201	1.56	28.52
BH202	1.18	29.27
BH203	0.76	29.60
BH204	0.40	28.96
BH205	1.16	28.97
BH206	1.64	29.46
BH207	1.72	29.38
BH208	1.65	29.45
BH209	1.71	29.39

7.9.4 This data concurs with the previous assessments that groundwater flow is directed towards the south-east, at an approximate gradient of 1:150 (0.66%).

8. Soil Infiltration Rate Testing

- 8.1 Soil infiltration rate testing was undertaken by Capita in four of the six trial pits formed at the site in March 2016.
- 8.2 Testing was undertaken in accordance with the procedures set out in BRE Digest 365 'Soakaway design' (2007). In summary, this comprised excavation of each trial pit to the required depth taking due consideration of site stratigraphy and groundwater level and then filling with clean tap water delivered by tanker. The water level was monitored over a period of hours and on completion each excavation was backfilled with arising.
- The results of the soakaway tests are presented in the table below.

Location	Water depth at test start (mbgl)	Base of Pit (mbgl)	Soil Infiltration Rate, f (m/sec)	Comments
TP202	1.12	1.80	3.76 x 10-6	Data extrapolated
TP204	1.05	1.65	Not determined	Water level did not fall during test period.
TP205	1.25	1.95	Not determined	Water level did not fall during test period.
TP206	1.13	1.75	Not determined	Water level did not fall during test period.

8.4 The data indicates infiltration rates to be negligible, likely due to a very shallow groundwater table. It is therefore concluded that soakaway drainage would not be feasible for the proposed development.

9. Ground Gas Assessment

9.1 Introduction

- 9.1.1 Capita attended site on three occasions in October / November 2014 to monitor wells installed across the wider Nestle site at that time. Methane was detected at trace concentrations in four of the thirteen locations (maximum 0.7% by volume) and the maximum concentration of carbon dioxide was 3.0%. Both of these maxima were recorded in wells situated outside the SEGRO demise.
- 9.1.2 The preceding Geosyntec investigation included gas monitoring undertaken in February and May 2014. Methane and carbon dioxide were detected at elevated concentrations in one location only (WS3, again outside the SEGRO demise) but this was attributed to a nearby leaking gas main. Excluding this anomalous and erroneous reading, methane was below limits of detection (<0.3% by volume) at all monitoring points and the carbon dioxide concentration ranged between <0.3% and 1.1% by volume.
- 9.1.3 The recent Capita wells (BH201 to BH209) were monitored for ground gases in March 2016 using a Geotechnical Instruments GA5000 infra-red gas analyser. This data builds upon and should be considered alongside the earlier information.

9.2 Field Data

9.2.1 The table below summarises the recent field data:

Standpipe	Maximum CH₄ (%v/v)	Maximum CO₂ (%v/v)	Minimum O₂ (%v/v)	Max Flow (I/hr)
BH201	0.0	0.2	19.3	0.2
BH202	0.5	0.4	18.2	0.3
BH203	0.0	0.1	20.7	16.9
BH204	0.0	0.1	21.2	0.0
BH205	0.0	0.3	21.0	2.8
BH206	0.0	0.1	18.9	0.1
BH207	0.0	0.5	19.2	0.0
BH208	0.0	0.1	21.1	0.0
BH209	0.0	0.1	21.5	0.1

NB: Analyser detection limits are 0.1% v/v for gas concentrations and 0.11/hr for flow rate.

9.3 Assessment and Recommendations

9.3.1 The latest field data indicates very low methane concentrations across the proposed commercial development area. Similarly, elevated concentrations of carbon dioxide were not detected. It is noted that a high gas flow rate was recorded at BH203 (16.9 l/hr) but in the absence of significant hazardous gas concentrations this is not considered to be of concern.

- 9.3.2 Ground gas risk assessment is based on BS 8485:2015 'Code of Practise for the design of protective measures for methane and carbon dioxide ground gases for new buildings' and CIRIA publication C665 'Assessing Risks posed by Hazardous Ground Gases to Buildings' (2007). The methodology utilises the determination of hazardous gas flow rates based upon gas concentrations multiplied by borehole flow rates, to define a characteristic gas situation ("CS") for the site.
- 9.3.3 On the basis of the available data it is suggested that the site falls within category CS1 after BS8485, corresponding to a very low hazard potential. As such no special ground gas protection measures are considered necessary for the proposed commercial development.
- 9.3.4 This corresponds with the findings of the previous Capita and Geosyntec assessments.

10. Generic Quantitative Risk Assessment

10.1 Introduction

- 10.1.1 In line with CLR11 (DEFRA & EA, 2004), a Generic Quantitative Risk Assessment (GQRA) has been undertaken to determine the significance of any recorded chemical impacts at the site. The GQRA comprises the comparison of the measured 'contaminant' concentrations with Generic Assessment Criteria (GACs).
- 10.1.2 The GACs for soil concentrations comprise either DEFRA Category 4 Screening Values (C4SLs), Land Quality Management Suitable 4 Use Levels (S4ULs) or values derived in house using CLEA version 1.6, all applicable to a "commercial" end use scenario. The GACs for "liquid" concentrations comprise either drinking water standards or environmental quality standards protective of a Principal Aquifer.
- 10.1.3 The relevant statistical tests have been undertaken on the laboratory data where appropriate. The findings of the GQRA are presented below and the test output datasheets are provided in Appendix G.
- 10.1.4 This discussion of soil data relates to the laboratory test results obtained during the 2016 investigations. Where relevant, reference is also made to earlier data from the 2014 reports (as summarised in Chapter 5 above).

10.2 Laboratory Analysis – Soils

10.2.1 Fourteen soil samples were laboratory screened for the presence of asbestos containing materials as part of the 2016 investigation. A positive identification was recorded in nine of these and they were subject to asbestos quantification analysis. The table below summarises the data:

Location	Depth (mbgl)	Asbestos ID	Total % Asbestos in Sample
TP202	8.0	Chrysotile – loose fibres	0.005
TP203	0.5	Chrysotile and amosite – insulation lagging and loose fibres	0.003
TP204	0.4	Chrysotile – insulation lagging	0.009
TP205	0.45	Chrysotile and crocidolite – insulation lagging	0.006
BH202	1.2	Chrysotile – loose fibres	<0.001
BH204	1.0	Chrysotile – loose fibres	<0.001
BH207	0.5	Chrysotile – loose fibres	0.001
BH207	1.5	Chrysotile and crocidolite – insulation lagging and loose fibres	0.022
BH208	0.5	Chrysotile – loose fibres	<0.001
BH109 (2014)	0.65	Chrysotile – loose fibres	Not quantified

Location	Depth (mbgl)	Asbestos ID	Total % Asbestos in Sample
BH109 (2014)	1.4	Chrysotile – loose fibres	Not quantified

10.2.2 The samples were also analysed for a suite of typical metal and metalloid contaminants. The table below summarises the results:

Determinand	GAC (mg/kg)	Range of Results (mg/kg)	No. samples exceeding GAC
Arsenic	640 a	8.5 - 19	0
Boron	110000 °	0.2 - 6	0
Cadmium	410 a	0.2 - 0.7	0
Chromium VI	49 a	24 - 44	0
Copper	39000 °	12 - 430	0
Lead	2230 a	6.3 - 770	0
Mercury	58 ^b	0.3 - 2.5	0
Nickel	980 b	19 - 45	0
Selenium	12000 b	1 - 1	0
Vanadium	5600 °	25 - 67	0
Zinc	660000 c	23 - 440	0

^a denotes DEFRA C4SL

S4ULs are copyright of Land Quality Management Limited and reproduced with permission; publication number S4UL3296. All rights reserved.

- 10.2.3 The results indicate no exceedances of the GACs in these samples.
- 10.2.4 Analysis was also carried out for the Total Petroleum Hydrocarbons Criteria Working Group (TPH-CWG) suite of Equivalent Carbon (EC) bands. Results are summarised as follows:

Determinand	GAC (mg/kg)	Range of Results (mg/kg)	No. samples exceeding GAC
Aliphatic >C5-C6	2600	<0.1	0
Aliphatic >C6-C8	5000	<0.1	0
Aliphatic >C8-C10	1200	<0.1	0
Aliphatic >C10-C12	6300	<1.0 - 1.9	0
Aliphatic >C12-C16	25000	<2.0 - 6.6	0
Aliphatic >C16-C21	-	<8 - 17	-
Aliphatic >C21-C35	-	<8 - 100	-
Aromatic C8-10	2200	<0.1	0
Aromatic C10-12	9700	<1	0
Aromatic C12-16	25000	<2.0 - 38	0
Aromatic C16-21	27000	<10 - 420	0

^b denotes LQM S4UL

^c denotes Capita GAC

Determinand	GAC (mg/kg)	Range of Results (mg/kg)	No. samples exceeding GAC
Aromatic C21-35	28000	<10 - 640	0

10.2.5 Results of analysis for Polycyclic Aromatic Hydrocarbons (PAH) were as follows:

Determinand	GAC (mg/kg)	Range of Results (mg/kg)	No. samples exceeding GAC
Benzo[a]anthracene	140	<0.1 - 27	0
Benzo[a]pyrene	14	<0.1 - 25	0
Benzo[b]fluoranthene	140	<0.1 - 32	0
Benzo[ghi]perylene	140	<0.05 - 12	0
Benzo[k]fluoranthene	150	<0.1 - 8.9	0
Chrysene	1400	<0.05 - 18	0
Dibenz[ah]anthracene	14	<0.1 - 3.8	0
Fluoranthene	54000	0.1 - 67	0
Indeno[123-cd]pyrene	140	0.1 - 13	0
Naphthalene	75	0.05 - 0.52	0
Pyrene	76000	0.1 - 59	0

10.2.6 Concentrations of benzene, toluene, ethylbenzene and xylenes (BTEX compounds) and MTBE (methyl tertiary butyl ether) were all below laboratory limits of detection (<1.0µg/kg)

10.3 Groundwater

10.3.1 Groundwater samples were obtained for laboratory analysis on 22nd March 2016 (from BH2, BH109 and BH201 to BH205) and on 30th March 2016 (from BH206 to BH209).

10.3.2 Metals / Metalloids

10.3.3 Results of analysis for metal and metalloid contaminants are summarised as follows:

Determinand	GAC (µg/l)	Range of Results (µg/l)	No. exceeding GAC
Arsenic	10	0.4 - 5.36	0
Boron	1000	91 - 310	0
Cadmium	3	0.02 - 1.7	0
Chromium VI	50	0.2 - 0.8	0
Copper	2000	0.7 - 18	0
Lead	10	0.2 - 2	0
Mercury	1	0.05 - 3.9	1
Nickel	20	2.9 - 36	3
Selenium	10	0.6 - 53	5
Zinc	5000	1.9 - 37	0

10.3.4 Marginal exceedances were recorded at the following locations:

Mercury (GAC: 1.0 µg/l)

BH203: 3.9 µg/l

Nickel (GAC: 20 µg/l)

BH203: 36 μg/l BH207: 28 μg/l BH208: 22 μg/l

Selenium (GAC: 10 µg/l)

BH205: 39 μg/l BH206: 53 μg/l BH207: 15 μg/l BH208: 12 μg/l BH209: 15 μg/l

10.3.5 Organics

10.3.6 Concentrations of TPH-CWG, VOCs, BTEX and PAHs were below laboratory method detection limits in all eleven of the water samples obtained in 2016.

10.4 Discussion

- 10.4.1 The results of the 2016 supplementary ground investigation broadly concur with those of the earlier investigations undertaken in 2014. It is considered that the laboratory analysis data and the field observations do not indicate severe or unacceptable chemical impacts to either soils or groundwater in the area and context of the proposed commercial redevelopment.
- 10.4.2 However as previously reported, the relatively persistent presence of asbestos in shallow soils does merit further consideration and risk mitigation. In many instances the asbestos has been recorded to comprise loose fibres at very low concentrations (<0.001), and in all but one sample the concentration was below 0.01% by mass. It is nevertheless anticipated that accumulations of asbestos containing materials may be encountered sporadically within the shallow soils. This may be as degraded insulation lagging, for examples below the Main Building ground floor slab, or in other forms such as asbestos cement locally entrained within the Made Ground.
- 10.4.3 It is recommended that a watching brief be maintained during the demolition contract with inspections of the ground formations during removal of existing slabs. Where feasible, the asbestos should be hand picked by suitably qualified and experienced personnel, and removed from site to a licenced facility. There may also be a requirement for a degree of 'bulk soil removal' if hand picking is not practical.
- 10.4.4 Previous phases of investigation detected isolated impacts to soil from TPH, PAH compounds and lead. These were not replicated in 2016 and, as previously reported, most likely related to small amounts of ash or clinker entrained within the Made Ground (see paragraph 5.4 above).

- 10.4.5 It is noted that almost the entire site will be surfaced with concrete or macadam in the site's developed condition. As such, risks to future site users from these impacts, or from any residual asbestos in the ground, will be low. Risks to both demolition and construction workers can be mitigated through the use of appropriate PPE and damping down of soils should this become necessary. A degree of protection is recommended to be installed in areas of new soft landscaping, comprising a cover layer (circa 600mm thick) of imported topsoil to the landscape architect's specification. This should mitigate any slight risks associated with potential direct human contact / ingestion.
- 10.4.6 It is considered that the sporadic, technical exceedances of the groundwater GACs for metals do not present any significant risk to controlled water resources. The data is consistent with that previously obtained from the site and does not merit further assessment. Furthermore it is noted that the extensive thickness of London Clay will prevent any hypothetical vertical migration down into the deeper Chalk aquifer.

11. Other Development Considerations

11.1 Waste Soils Characterisation

- 11.1.1 Any excavation works may potentially produce waste soils, for which appropriate waste management will be required. Off-site disposal of soil requires careful management and due consideration of appropriate legislation, guidance and Duty of Care responsibilities.
- 11.1.2 The chemical analysis data indicates that, where asbestos is not present, the majority of Made Ground soils would likely be classified as 'Non-Hazardous Waste', and the natural soils as 'Inert', should off-site disposal be required. However any soils with significant asbestos (or other chemical) impacts will likely fall within the more onerous 'Hazardous' category.
- 11.1.3 It must be noted that if off-site disposal is required it is for the receiving landfill to make the final determination of waste classification. In the event that disposal of Hazardous Waste is required, the material must undergo Waste Acceptance Criteria (WAC) testing. WAC testing has a typical turnaround time of a minimum 2 weeks and allowance for this should be made in any development programme.
- 11.1.4 It would be prudent to implement a Materials Management Plan for the site in accordance with the CL:AIRE Development Industry Code of Practise (CoP) entitled 'The Definition of Waste' (September 2008). This CoP allows the risk-based re-use of materials within the site boundary without the need for exemptions and adoption of waste classifications.

11.2 Existing/Imported Fill

11.2.1 Any existing/imported fill will be subject to specific quality requirements. Allowance should be made for the testing of imported fill materials prior to emplacement to ensure suitability.

11.3 Health, Safety and Environment

- 11.3.1 Consideration should be given to the level of PPE made available to site operatives, taking cognisance of the content and findings of this and previous reports. All relevant information should be forwarded to contractors/personnel working in the subsurface.
- 11.3.2 All work on site should be conducted in accordance with appropriate Health and Safety guidance, with particular reference to HSG66 "Protection of Workers and the General Public during the Development of Contaminated Land".
- 11.3.3 Care should be taken to minimise the risk of potentially contaminative incidents occurring during redevelopment. Good working practices should be adopted during construction works in order to minimise the risk of contamination occurring as a result of spillage or leakage of fuels, oils or chemicals stored or used at the site during re-development.
- 11.3.4 Any such materials should be sited on an impervious base within a bund and should be adequately secured. In particular, care should be taken to prevent fuel, oils or other mobile contamination sources from entering any surface water drains at the site.

- 11.3.5 Throughout any redevelopment works, due regard should be given to potential detrimental effects on the surroundings including noise, vibration, odour and dust.
- 11.3.6 Any such materials should be sited on an impervious base within a bund and should be adequately secured. In particular, care should be taken to prevent fuel, oils or other mobile contamination sources from entering any surface water drains at the site.
- 11.3.7 Throughout any redevelopment works, due regard should be given to potential detrimental effects on the surroundings including noise, vibration, odour and dust.

Appendix A – Architect's Proposed Development Layout

NOTES:

SUBJECT TO STATUTORY CONSENTS

SUBJECT TO SURVEY

COPYRIGHT RESERVED

GEA

TOTAL

1	sqm	sqft
Unit	6,647	71,545
FF Offices	612	6,590
Sub total	7,259	78,135
	•	
	Ha	acres
PLOT 1 AREA	1.232	3.04
2	sqm	sqft
Unit	2,034	21,895
FF Offices	272	2,930
Sub total	2,306	24,825
	•	
3	sqm	sqft
Unit	2,742	29,515
FF Offices	361	3,885
Sub total	3,103	33,400
4	sqm	sqft
Unit	7,826	84,240
FF&SF Offices	1,039	11,185
Sub total	8,865	95,425

	Ha	acres
PLOT AREA (Approx.)	5.157	12.74

DENSITY 41.8 %

21,533 231,785

1	01/04/2016	Landscape updated	AT	AC
н	23/03/2016	Unit 1 updated layout	AT	AC
G	21/03/2016	Unit 1 updated layout	AT	AC
F	09/03/2016	Unit 4 updated parking	AT	AC
Ε	23/02/2016	Area schedule & plot 1 boundary omitted	GZ	AC
D	19/02/2016	Updated area schedule	AT	AC
С	15/02/2016	Area schedule for unit 2, 3 & 4 added	GZ	AC
В	08/02/2016	Unit 1 updated	GZ	AC
Α	13/12/2015	Unit 1 and resdential layouti updated	GZ	AC
-	10/12/2015	First issue	GZ	AC
REV	DATE	NOTE	DRAW	CHCK

NESTLES AVENUE, HAYES SITE MASTER PLAN

SEGRO

DATE	SCALE	DRAWN	
DECEMBER 2015	1:1000 @ A1	GZ	
	STATUS	CHECKED	
	FEASIBILITY	AC	

DRAWING NUMBER 30680-FE-44I

SITE LAYOUT PLAN

1:1000

Appendix B – Site Location Plan

Drawing status

PRELIMINARY

Client

Projec

FORMER NESTLE SITE, HAYES

Drawing

SITE LOCATION PLAN

 Scale @ A4
 Drawn
 Checked

 N.T.S.
 WFJ
 PWE

 Project No.
 Date
 Office

 CS/075666
 21/11/14
 WATFORD

CAPITA

Property and infrastructure

Consulting Civil, Structural and Geo-environmental Engineers

London Tele No: (+44) 0 20 7870 9300 **Manchester** Tele No: (+44) 0 161 486 1521 Watford Tele No: (+44) 0 1923 817537 **Bristol** Tele No: (+44) 0 1275 840831

Capita Property and Infrastructure Ltd. www.capita.co.uk/property Reg. office 71 Victoria Street, Westminster, London SW1H 0XA • No: 2018542

Appendix C – Topographical Survey

				Date			
ARA	110331471	(79015.339	20.002	0.7	100004-074	(79100-801	10.00
ARO	010276.400	(7907).750	29.390	O-8	EDMINAL ROD	C194777.607	35.0
	E-0177.726	(79/27.17)	30.301	0.0	100764200	(19241-204	31.30
APK	010243-140	(7906)LX73	26.842	000	101011-003	(19063-510	21.00
	E4090000	(75065.77%	30.410	041	100001324	(19363.86)	10.20
APIG	1000133	75017.486	30.386	GHGA.	E-0000.240	(19079-106	MN
	E-01-02-034	(79000.691	30.000	0.01	1100000	(1920) 587	3631
APA	0.00000-101	75001.X71	31,266	1.1	E-0007.369	(1912)6-663	30.00
	100000	(79013.866	31.140	13	E10001130	(19107-00)	36.26
ARIO	100001-004	79065.041	31.475	i3	0.0026761	09075758	30.0
	010028-038	79008.905	31.130	5.6	E-10000 804	(79196.120	31.30
	E10304.704	(758)2.348	28.347	14	1000110	(19120.707	25.20
	E10304.806	(79000 EK3	28.284	1.6	1/00/12/08	(79150.400	31.33
	1007.03	(79068,773	38.231	18	11000.479	(19040-190	35.03
	E10196-877	(79062-104	26.350	1.0	100006.038	(19217.306	31.10
	E10106796	79004.264	30.233	1.10	10001370	(19275.543	25.54
	\$100.46.607	(79068.6%)	30.496	511	10910.170	(75006-620	3120

25 Buildings Surveyed Buildings

Buldreps	Continue Cable	KG.	240	
754	Committee entire	Pinc		
Kerk Inc		Gy	Sim	
Districting		4		
	Caropy Overhare	Dy		
Carrier Inc.	Verge	Per		
		504		
300,000		W.		
(•) ⊚ #				
-				
_		19	TH	
A, 4,			Siri.	
		Des		
			87	
8.0				
-				
Fence types		200	Sec.	
		Om		
		Au-		
VIII				
- 75		100	New	
		Par.		
		44	TOL	
-				
		Mile	MG	
-			Limp	
			E.	Interest Second

greenhatch group

ol. Panesenicka 93 40-761 Katowice Poland

Segro

Project Lightning Hayes

To	pograp Surve	
A0@ 1: 10	00	Oct 2014
AR/LP		C1263
Level deture	See OS No	

AR/LF		C1263
Level detum Grid orientation	See OS I	
Job number	20997	
Drawing No.		

20897_OGL

Appendix D – Groundwater Abstraction Revocation Notice

Mr P Hagmann Nestle UK Ltd 1 City Place Gatwick RH6 0PA Our reference:

NPS/WR/018583

Date:

27 February 2015

Dear Mr Hagmann

You asked to revoke (give up) a water abstraction licence

Licence number: TH/039/0036/011

Thank you for your application to revoke (give up) the above licence. I can confirm that we carried this out and this applies from 16 February 2015.

I would like to remind you that you are no longer legally allowed to abstract water from the place and for the purposes stated in the licence. If you want to abstract water again you may need to apply to us for a new licence. Any new application will normally have to be advertised and there is no guarantee that the application will be successful. Contact the Water Resources Permitting Support team on 0114 289 8340 to find out how likely you are to be granted a successful application in the future.

You will need to tell us how much water you abstracted until the licence was revoked (given up). We will send you a form to fill in and return to us at the end of March.

We might want to use your well or borehole as part of our groundwater observation network (depending on rights of access and an agreement over lease arrangements). If you are interested and are happy with this, please contact Michael Kehinde on 01707 632460 who will let you know what they need you to do. Michael may have already contacted you regarding this by the time you receive this letter.

For health and safety reasons, and to avoid groundwater becoming contaminated, if you do not agree to the above and do not plan to use the well or borehole, we advise you put it out of use by following the steps in the enclosed leaflet. Plain English Campaign's Crystal Mark does not apply to the enclosed leaflet.

Your licence was revoked (given up) from the date we received your request, but you are still liable for the charges until that date. We will send you a revised account shortly.

Yours sincerely

Gemma House Team Leader

Permitting Support Centre

Direct dial: 0114 289 8340 Direct fax: 0114 262 6697

Direct e-mail: PSC-WaterResources@environment-agency.gov.uk

Permitting and Support Centre, Water Resources Team, Quadrant 2, 99 Parkway Avenue, Sheffield, 89 4WF Customer services line: 03706 506 506

Email PSC-WaterResources@environment-agency.gov.uk Website: www.gov.uk/environment-agency

Appendix E – Exploratory Hole Location Plan

This drawing is copyright and owned by Capita, and is for use on this site only unless contractually stated otherwise.

DO NOT SCALE this drawing (printed or electronic versions). Contractors must check all dimensions from site.

All other design team elements, where indicated, have been imported from the consultant's drawings and reference should be made to the individual

consultant's drawings for exact setting out, size and type of component.

Discrepancies and / or ambiguities within this drawing, between it and information given elsewhere, must be reported immediately to the architect for clarification before proceeding.

All works are to be carried out in accordance with the latest British Standards and Codes of Practice unless specifically directed otherwise in the specification.

All setting out to be in accordance with the Architect's details. (the Architect's drawings to take precedence over any setting out shown on this drawing).

SAFETY, HEALTH AND ENVIRONMENTAL INFORMATION

where applicable.

It is assumed that all works on this drawing will be carried out by a competent contractor, working where appropriate to an approved method statement.

Refer to the relevant Construction (Design and Management) documentation

Rev Date By Description Rev' check

Drawing status

PRELIMINARY

Client

Project

NESTLES AVENUE, HAYES

Drawin

EXPLORATORY HOLE LOCATION PLAN

NDH	PWE
Date	Office
Apr 2016	WATFORD

CAPITA

Property and infrastructure

Consulting Civil, Structural and Geo-environmental Engineers

 London
 Watford

 Tele No: (+44) 0 20 7870 9300
 Tele No: (+44) 0 1923 817537

 Manchester
 Bristol

 Tele No: (+44) 0 161 486 1521
 Tele No: (+44) 0 1275 840831

 Capita Property and Infrastructure Ltd.
 www.capita.co.uk/property

 Reg. office 71 Victoria Street, Westminster, London SW1H 0XA • No: 2018542

Appendix F – 2016 Exploratory Hole Logs

C	ΆΙ	ΡI	T/	1	Capita Property and Oak House, Reeds C Hertfordshire WD24	rescent, Watfo	rd,		able Pe Boreho	rcussior le Log	Boreho BH2 Sheet	201
Proj	ect Name	e:	Former	r Nestle	e Factory, Hayes	Project Nu CS0756		Co-ords	Plant l Dan			
Loca	ation:		North H Hillingo		ardens, Hayes, Lond	don Borough	of	Level: 30.07 mAOD		Sca 1:5	0	
Clie	nt:		SEGR	O plc				Dates:	08/03/20	016	Logge PW	
Well	Water Strikes		Sample th (m)	Type	n Situ Testing Results	Depth (m)	Level (m)	Legend		Stratum Desc	cription	
	•	0. 1. 1.	90 20 20 20 00	D D SPT D SPT	N=49 (6,6/9,9,14,17) N=59 (12,13/16,17,13,13)	0.20 0.60 0.90 1.20	29.87 29.47 29.17 28.87		GROUND) Medium dens (MADE GROUND) Firm orange-t (BRICKEART) Medium dens	e brown sandy gra JND) prown slightly grav H)	sub-base. (MADE avel of brick and flint. relly silty sandy CLAY ilty sandy GRAVEL of L GRAVEL)	' =
		3. 3. 4.	00 50 90 00	SPT D U U D	N=22 (6,6/8,8,3,3) Blows = 42	3.30	26.77		Firm becomin CLAY FORM	g stiff grey-brown ATION)	silty CLAY. (LONDON	3
		5. 5.	80 00 00 40	D D SPT D	N=11 (2,2/3,2,3,3)	5.50	24.57	X - X - X - X - X - X - X - X - X - X -		End of Borehole a	ıt 5.500m	5 -
												7 -
Rema	ırks							Wa	iter Strike Details (me	tres below ground level)	9 -
50mm	n diamete	er HDP	E stand	lpipe in	stalled as indicated.	Date Encounter	red Depth	n Encountered	Depth of Casing	Water Depth after 20 minutes	Inflow Remark	(S
rinish	iea with t	oung, g	jas valv	e and f	lush steel cover.	08/03/2016 00:0	0:00	2.70	2.50	2.40		

C	A	PIT	ΓΑ	Oa	pita Property and ak House, Reeds C ertfordshire WD24	rescent, Watfo	rd,		able Per Borehol		BH20	
						Project Nu	ımber:			c Log	Sheet 1 Plant U	
Proje	ect Nam				ctory, Hayes	CS075	366	Co-ords	:		Dand	
_oca	ation:		orth Hyde illingdon	Garde	ens, Hayes, Lon	don Borough	of	Level: 30.44 mAOD		OD	Scale 1:50	
Clier	nt:	SI	EGRO plo	C		_		Dates:	23/03/201	6	Logged PWE	
ell	Water Strikes				tu Testing	Depth (m)	Level (m)	Legend		Stratum Desc	cription	
5.57 10.7		Depth ((m) Typ	be	Results				CONCRETE wi	th reinforcing ba	ar.	
۰		0.40	D	,		0.30	30.14		Medium dense and rock fragme		ravel of brick, concrete ROUND)	
		1.20 1.20			7 (1,1/2,1,2,2)	1.20	29.24		Firm brown and occasional brick	dark grey grave r fragments. (MA	elly clay with ADE GROUND)	
		1.80 2.00 2.00	D SP	T N=	9 (2,2/2,2,2,3)	1.80	28.64	X X X X X X X X X X X X X X X X X X X	Firm brown silty (BRICKEARTH	sandy clay with?)	n occasional rootlets.	
		2.70 3.00	D	١	ows = 41	2.70	27.74	X X X X X X X X X X X X X X X X X X X	Firm brown silty FORMATION)	CLAY. (LONDO	DN CLAY	
		3.50 3.70						× - × - × - × - × - × - × - × - × - × -				
		4.50 4.50 5.00	SP	T N=	:11 (3,2/3,2,3,3)	5.00	25.44			End of Borehole a	at 5.000m	
	rks							14-	tor Strike Dotoils /ms-	e below ground level	n	1
nm	diamete	er HDPE s bung, gas	standpipe valve an	e instal Id flush	led as indicated. steel cover.	Date Encounte	red Depth	Encountered	ter Strike Details (metre	Water Depth after 20 minutes	Inflow Remarks Groundwater not encou	

C	A	PIT	4	Capita Property and I Oak House, Reeds Cr Hertfordshire WD24	escent, Watfo			able Per Borehol		BHZ	203
Proi	ect Name	e. Form	er Nestle	e Factory, Hayes	Project Nu		Co-ords			Sheet Plant I	
	ation:			ardens, Hayes, Lond	CS075		Level: 30.36 mAOD		Dan Sca		
		Hilling	·							1:5 Logge	
lie	I		RO plc			Level	Dates:	10/03/201	6 	PW	
ell	Water Strikes	Samp Depth (m)	Type	n Situ Testing Results	Depth (m)	(m)	Legend		Stratum Desc	cription	
		0.20	D		0.10	30.26		CONCRETE. Dense brown serving fragments. (MA	andy gravel of b DE GROUND)	rick, concrete and roc	k
		0.90 1.10 1.20 2.00 2.00	D D SPT D SPT	N=60 (13,13/14,14,15,17) N=51 (9,10/10,12,13,16)	0.90 1.10	29.46 29.26	× × ·	Firm orange-bro (BRICKEARTH Medium dense fine to coarse fl) orange-brown s	ilty sandy GRAVEL of	:
		3.00 3.00 3.70	D SPT	N=39 (7,7/11,12,9,7)	3.70	26.66		Stiff grey-brown FORMATION)	n silty CLAY. (LO	ONDON CLAY	:
		4.00 4.50 5.00	D D	Blows = 40	5.00	25.36	xx_ xx_ xx_ xx_	TORMATION			
									End of Borehole a	at 9.000III	
	rks	ar HDDE oton	dnine in	stalled as indicated.				ater Strike Details (metre	es below ground level Water Depth after		1
				lush steel cover.	Date Encounte		2.60	Depth of Casing 2.50	20 minutes 2.30	Inflow Remark	KS

C	A	PI	TA	1	Capita Property and I Oak House, Reeds Cre Hertfordshire WD24	escent, Watfo			able Percus Borehole Lo		Borehole N BH204 Sheet 1 of	4
Proj	ect Name	e:	Forme	r Nestle	e Factory, Hayes	Project Nu CS075		Co-ords	:		Plant Use Dando	
Loca	ation:		North H		ardens, Hayes, Lond			Level:	29.36 mAOD		Scale 1:50	
Clie	nt:		SEGR	O plc				Dates:	09/03/2016		Logged B PWE	у
Well	Water Strikes	Der	Sample oth (m)	e and I	n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratu	m Descri	ption	
			0.20	D	recuito				CONCRETE with reinfo	orcing bar		
•			1.00	D		0.25	29.11	× · · · × · · · × · · · · · · · · · · ·	Compacted dark grey s concrete and tile fragm Firm brown slightly grav (BRICKEARTH)	ents. (MAI	DE GROUND)	1 -
		•	1.20 1.20 2.00	D SPT SPT	N=46 (10,12/10,11,12,13) N=45 (12,12/14,16,8,7)	1.20	28.16		Medium dense orange- fine ot coarse flint. (LYN	brown silty NCH HILL	y sandy GRAVEL of GRAVEL)	2 -
			2.60 3.30	D D		2.60	26.76		Firm brown and grey sil FORMATION)	Ity CLAY. (LONDON CLAY	3 -
		2	3.80 4.00 4.30 4.50	U D D SPT	Blows = 40 N=12 (2,2/3,3,3,3)			X				4 -
						5.00	24.36		End of B	orehole at 5	5.000m	6 - 7 - 8 - 9 -
								-				10 -
Rema				1			-	Wa	ter Strike Details (metres below gr	round level)		1
					stalled as indicated. lush steel cover.	Date Encounte		2.90	Depth of Casing Water De 20 mir 2.50 2.3	nutes	Inflow Remarks	

	A	PIT/	4	Capita Property and Ir Oak House, Reeds Cre Hertfordshire WD24 4	scent, Watfor	d,		able Pe Boreho	rcussion le Loa	BHZU	5
roi	ect Name	e· Forme	r Nestle	e Factory, Hayes	Project Nu		Co-ords	Sheet 1 of Plant Use			
_				ardens, Hayes, Londo	CS0756		00 0100			Dando Scale	
oc	ation:	Hilling		ardens, riayes, cond	on Bolough (Level:	30.13 m	AOD	1:50	
lie	nt:	SEGR	O plc			Laval	Dates:	10/03/20	016	Logged E PWE	3y —
ell	Water Strikes	Sampl Depth (m)	e and I	n Situ Testing Results	Depth (m)	Level (m)	Legend		Stratum Desc	ription	
		0.30	D	. toodito	0.15	29.98		Asphalt Medium dense	e grey-brown sand	ly gravel of brick and	
		0.60	D		0.60	29.53		•	•	. (MADE GROUND?)	-
		1.20	D		1.20	28.93		Firm orange-h	prown and grey silt	v CLAY	
		1.20 1.70	SPT	N=11 (2,2/2,2,3,4)	1.70	28.43	×——×	(BRICKEART	H)		
		2.00	SPT	N=60 (14,15/12,13,16,19)	1.70	20.40	× × × × × × × × × × × × × × × × × × ×	Medium dense (LYNCH HILL	e orange-brown sil GRAVEL)	lty sandy GRAVEL.	2
		2.70	D				* * * * * * *				
•		3.00 3.00	D SPT	N=27 (8,9/9,9,7,2)			× × × × × × × × × × × × × × × × × × ×				;
		3.80	D		3.60	26.53	××	Stiff grey and FORMATION)	brown silty CLAY.	(LONDON CLAY	
		4.00	U				××	ŕ			
		4.50	D				××				
		5.00	D		5.00	25.13			End of Borehole at	5.000m	
											!
					_						1
	arks	ar HDDE atam	dnine in	etalled as indicated					tres below ground level)		
nn isł	i diamete ned with l	ย ทบคะ stand oung, gas valv	apipe in re and f	stalled as indicated. lush steel cover.	Date Encountered		Encountered 2.10	Depth of Casing 2.00	Water Depth after 20 minutes 1.90	Inflow Remarks	

	A	PIT	Α	Capita Property and Ir Oak House, Reeds Cre Hertfordshire WD24 4	escent, Watford	d,		Cable Percussion Borehole Log			No. 6
Proj	ect Name	e: Forr	ner Nestle	e Factory, Hayes	Project Nur		Co-ords:			Sheet 1 c Plant Us Cut down	ed
_OC	ation:		h Hyde G	ardens, Hayes, Londo	on Borough o	of	Level:	31.1 mA	.OD	Scale 1:50	
Clie	nt:		RO plc				Dates:	23/03/20	016	Logged I	Зу
/ell	Water Strikes			n Situ Testing	Depth	Level (m)	Legend		Stratum Desc	ription	
	Strikes	Depth (m) Type	Results	(m)			CONCRETE	with reinforcing ba	r	
		0.50	D		0.22	30.88		Loose to med (MADE GROU	ium dense brown (JND?)	clayey gravelly sand.	
		1.00	SPT	N=5 (1,0/1,1,1,2)							1
		1.50	D								
		2.00	SPT	N=14 (1,2/2,3,4,5)							2
		2.50	D		2.50	28.60			e orange-brown S. flint. (LYNCH HILI	AND and GRAVEL of L GRAVEL)	
		3.00	SPT	N=50 (5,9/12,14,17,7)							3
		3.50	D								
		4.00	SPT	N=39 (2,5/4,9,11,15)							4
		4.50	D								
		5.00 5.20	SPT D	N=18 (2,4/4,5,5,4)	5.20	25.90	× × _ ×	Stiff brown an	nd grey silty CLAY.	(LONDON CLAY	
		5.80	D				× × ×				6
		6.50	SPT	N=18 (2,2/3,4,5,6)			X——X——X——X——X——X——X——X——X——X——X——X——X——				7
		8.00	D				× × ×				8
		8.50	U	Blows = 16			× × ×				
		9.00	D				X X X				,
		10.00	SPT	N=24 (2,4/5,6,6,7)					Continued on Nex	t Sheet	1
ma	arks						Wa	iter Strike Details (me	tres below ground level)		
mn	n diamete			istalled as indicated.	Date Encountered	ed Depth	n Encountered	Depth of Casing	Water Depth after 20 minutes	Inflow Remarks	
ıısr	iea with t	oung, gas v	aive and f	flush steel cover.	23/03/2016 00:00	:00	4.00	4.00	3.20		

	A	PI	TA	1	Capita Property a Oak House, Reed Hertfordshire WE	s Crescent, Watfo					ı 	Borehole No. BH206 Sheet 2 of 2	
Pro	ject Nam	e:	Forme	r Nestle	Factory, Hayes	Project N CS075		Co-ords	S:			Plant Used Cut down rig	
Loc	ation:		North I Hillinge	Hyde Ga don	ırdens, Hayes, L	ondon Borough	of	Level:	31.1 mA			Scale 1:50	
Clie	ent:		SEGR	O plc				Dates:	23/03/20)16		Logged By	
Well	Water Strikes	Der	Sample oth (m)	e and In	Situ Testing Results	Depth (m)	Level (m)	Legend		Stratum Description			
								XX					
						10.50 20.60		×	End of Borehole at 10.500m				
													11
													12
													13
													14
													15
													16
													17
													18
													19
													20
0mn	arks n diamete ned with b	er HD oung,	PE stand gas valv	dpipe ins ve and flu	stalled as indicate ush steel cover.	Pate Encount 23/03/2016 00:		Man Encountered	Depth of Casing 4.00	Water Depth after 20 minutes 3.20		nflow Remarks	

Location: N		PIT	Α	Capita Property and Oak House, Reeds (Hertfordshire WD2	Crescent, Watfo			able Percussion Borehole Log		Borehole No. BH207	
					Project Nu	ımber			Sheet 1 of 1 Plant Used		
Proje	ect Nam			e Factory, Hayes	CS075	666	Co-ords	: 	Cut down rig		
.oca	ation:		h Hyde G ngdon	ardens, Hayes, Lor	ndon Borough	Borough of		Level: 31.1 mAOD		Scale 1:50	
Clier	nt:	SEG	SRO plc				Dates:	23/03/2016	Logged By PWE	7	
ell	Water Strikes	Sam Depth (m)		n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Descr	iption		
		Deptil (III)) Type	Results	0.20	30.90		CONCRETE		\vdash	
		0.50	D		0.20	30.90		Firm dark brown gravelly clayey fragments. (MADE GROUND)	sand with brick		
		1.00	SPT	N=4 (1,0/1,1,1,1)							
		2.00	SPT	N=6 (1,1/1,2,2,1)	2.00	29.10					
		2.50	D	- (·,···, - , - ,'/	2.50	28.60		Medium dense brown clayey sar GROUND?)	,		
		3.00	SPT	50 (6,6/50 for	3.00	28.10		Firm brown gravelly sandy CLAY			
		3.50	D	235mm)	3.00	20.10		Medium dense orange-brown sili fine to coarse flint. (LYNCH HILL			
		4.00	SPT	50 (3,9/50 for 265mm)			× × × × × × × × × × × × × × × × × × ×				
		4.50	D		4.70	26.40	× × × × × × × × × × × × × × × × × × ×	Firm grey-brown silty CLAY. (LOI	NDON CLAY	-	
		5.00	SPT	N=12 (1,1/2,2,4,4)			× × ×	FORMATION)			
		5.70	D		5.70	25.40	×x^	End of Borehole at	5.700m		
										1	
	rks	ueee				· 	Wa	ter Strike Details (metres below ground level)	1	_	
mm nish	diamete ed with b	er HDPE sta oung, gas va	andpipe in alve and f	stalled as indicated lush steel cover.	Date Encounte	ered Depth	Encountered	Depth of Casing Water Depth after 20 minutes	Inflow Remarks		

CAPI		PIT	Ά	Capita Property and Oak House, Reeds (Hertfordshire WD2	Crescent, Watfo		Ca	BH208	Borehole No. BH208	
				T	Project Nu	ımher		Borehole Log	Sheet 1 of Plant Use	
Proj	ect Nam	e: For	mer Nestle	e Factory, Hayes	CS075		Co-ords	:	Cut down	
_008	ation:		th Hyde Gingdon	ardens, Hayes, Lor	ndon Borough	of	Level:	31.1 mAOD	Scale 1:50	
Clie	nt:	SEG	GRO plc				Dates:	24/03/2016	Logged B PWE	y
ell	Water Strikes			n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Desc	ription	
	000	Depth (m	n) Type	Results	+ ' '	30.95		30mm surface screed over reinf	orced CONCRETE	
		0.50	D		0.15	30.95		Loose silty sandy ashy gravel of fragments. (MADE GROUND)	concrete and rock	
		1.00	SPT	N=5 (1,0/1,1,1,2)	1.00	30.10	X—————————————————————————————————————	Firm light brown silty sandy CLA	Y. (BRICKEARTH)	
		1.50	D				×-×-× ××			
		2.00	SPT	50 (1,1/50 for 265mm)	2.00	29.10		Medium dense orange-brown si (LYNCH HILL GRAVEL)	ty sandy GRAVEL.	
		2.50	D				\(\times			
		3.00	SPT	50 (5,9/50 for 255mm)			* * * * * * * * *			
		3.50	D				* * * * * * * * *			
		4.00	SPT	50 (7,10/50 for 215mm)			× × × × × × × × × × × × × × × × × × ×			
		4.50	D				× × × × × × × × × × × × × × × × × × ×			
*		5.00 5.30	SPT	N=18 (8,6/6,4,4,4)	5.30	25.80	× * × ×			
		5.80	D				× × ×	Firm grey and brown silty CLAY. FORMATION)	(LONDON CLAY	
		0.00			6.30	24.80	××			
						200		End of Borehole at	6.300m	
										1
	irks n diamete	er HDPF st	andnine ir	stalled as indicated	l. D-4-5			ter Strike Details (metres below ground level) Poeth of Cosing Water Depth after	Infance C	
iish	ed with I	oung, gas v	alve and	lush steel cover.	Date Encounte	ered Depth	Encountered	Depth of Casing 20 minutes	Inflow Remarks	

CAPITA Capita Property and I Oak House, Reeds Cru Hertfordshire WD24				escent, Watfo		Cable Percussion Borehole Log			1	Borehole No. BH209	
	ect Nam			e Factory, Hayes	Project Nu		Co-ords		le Log	Plant U	
	ation:	North	Hyde G	ardens, Hayes, Lond	CS075 don Borough		Level:	31.1 mA	OD	Cut dow	
Clie		Hilling	odon RO plc				Dates:	29/03/20		1:50 Logged	Ву
	Water			n Situ Testing	Depth	Level		20/00/20		PWE	:
/ell	Strikes	Depth (m)	Туре	Results	(m)	(m)	Legend		Stratum Descr		
omechanisms of the control of the co		1.50 2.00 2.40 3.00 3.50 4.00 4.50 5.00 6.50 7.00 7.80 8.00	D SPT D SPT D D SPT	N=24 (1,0/1,3,8,12) 50 (2,5/50 for 225mm) 50 (1,7/50 for 170mm) N=47 (3,4/6,9,13,19) 50 (4,5/50 for 285mm) N=27 (1,2/6,6,7,8)	0.18 1.50 2.40	29.60 28.70	Income to come entire context in the same of the same	Medium dens			
											1
	arks	or UDDE -1	doi ·	otollod on indicate t		<u> </u>	Wa	ater Strike Details (me	tres below ground level)		
mn nish	n diamete ned with I	er HDPE star bung and gas	idpipe in valve. (stalled as indicated. Cover not installed.	Date Encounte	ered Depth	n Encountered	Depth of Casing	Water Depth after 20 minutes	Inflow Remarks	

CA		and Infrastructure ds Crescent, Watford, 024 4PH	Trial	Pit Log	Trial Pit No. TP201 Sheet 1 of 1
Project	Former Nestle Factory, Hayes	Project No.	Co-ords: -		Date:
Project F Name: Location: N	** *	CS075666	Level: 29.28		11/03/2016
Location:	North Hyde Gardens, Haves, London 8	orough of Hillingdon	Dimensions	2.00	Scale:
	cation: North Hyde Gardens, Hayes, London Borough	g	(m):	09	1:50
Client:	SEGRO plc		Depth	9.0	Logged by:

						_	
ke fe	Sampl	les & In S	Situ Testing	Depth	Level		State of Baseline
Water Strike	Depth	Туре	Results	(m)	(m)	Legend	Stratum Description
				0.30	28.98		Concrete with reinforcing bar. Compacted sandy gravel of brick, concrete and ceramic
	0.50	D		0.70	28.58		fragments in a reddish-brown silty clay matrix. (MADE GROUND) Soft dark grey gravelly silty clay with fragments of brick
	0.90	D		1.00	28.28		and concrete. (MADE GROUND) Soft to firm dark grey SILT/CLAY.
•				2.50	26.78		2
				2.30	20.76		End of Pit at 2.50m
							4
							5

Stability: Stable throughout. Water:

CAPITA Capita Property a Oak House, Reed Hertfordshire WD	ds Crescent, Watford,	Trial	Pit Log	Trial Pit No. TP202 Sheet 1 of 1
Project Name: Former Nestle Factory, Hayes	Project No. CS075666	Co-ords: - Level: 29.70		Date: 11/03/2016
Location: North Hyde Gardens, Hayes, London 8		Dimensions	1.80	Scale:
	or ough or i minigoon	(m):	99	1:50
Client: SEGRO plc		Depth 1.80	0 (Logged by: PWE

					_			
ter ke	Samp	les & In S	Situ Testing	Depth	Level	, ,	Stratum Bookstallon	
Stri	Depth	Туре	Results	(m)	(m)	Legena	Stratum Description	
Water Strike	-	1				Legend	Asphalt Compacted orange-brown sandy gravel subbase. (MADE GROUND) Firm dark brown slightly gravelly sandy CLAY. (BRICKEARTH) Medium dense orange-brown silty sandy GRAVEL of fine to coarse flint. (LYNCH HILL GRAVEL) End of Pit at 1.80m	1
								4 —
								5 -

Stability: Stable Water:

CAPITA Capita Property a Oak House, Reed Hertfordshire WD	ds Crescent, Watford,	Trial	Pit Log	Trial Pit No. TP203 Sheet 1 of 1
Project Name: Former Nestle Factory, Hayes	Project No. CS075666	Co-ords: - Level: 30.06		Date: 11/03/2016
Location: North Hyde Gardens, Hayes, London Bo	orough of Hillingdon	Dimensions (m):	2.10	Scale: 1:50
Client: SEGRO plc		Depth 0.70	0.6	Logged by: PWE

Depth	Level	Legend	Stratum Description

er Ke	Sampl	Samples & In Situ Testing		Depth	Level		12.1. 2.1.1.		
Waf	Depth	Туре	Results	(m)	(m)	Legend	Stratum Description		
Water Strike	Depth 0.50	Type D	Results	0.20 0.35 0.70		Legend	Asphalt Compacted dark grey sandy gravel of brick, macadam, concrete and tile fragments. (MADE GROUND) Medium dense dark orange-brown and grey gravelly sand with half bricks, concrete cobbles, flint and rock fragments. (MADE GROUND) End of Pit at 0.70m	1	
								4 —	

Remarks: 2No armoured cables, one with warning tiles over, encountered at 0.65mbgl. Cables are oriented NW-SE and E-W. E-W cable is surrounded by coarse sand. Trial pit abandoned and backfilled with arisings.

Stability: Stable Water:

C	Capita Property	and Infrastructure ds Crescent, Watford.	Trial	DitLog	Trial Pit No.
CA	Capita Property of Oak House, Ree Hertfordshire WE	IIIai	Pit Log	Sheet 1 of 1	
Project	Former Nestle Factory, Hayes	Project No.	Co-ords: -		Date:
Name:	ronner Nestie ractory, naves	CS075666	Level: 29.81		11/03/2016
Location	: North Hyde Gardens, Hayes, London B	Dimensions (m):	1.90	Scale: 1:50	
Client:	SEGRO pic		Depth	0.6	Logged by:

ke fe	Samp	les & In S	Situ Testing	Depth	Level		5 5	
Water Strike	Depth	Туре	Results	(m)	(m)	Legend	Stratum Description	
	0.40	D		0.30 0.50	29.51 29.31		CONCRETE with reinforcing bar Lean mix concrete / compacted granular sub-base. (MADE GROUND) Firm orange-brown slightly sandy silty CLAY.	-
	1.00	D		1.05	28.76		(BRICKEARTH) Medium dense orange-brown silty sandy GRAVEL of fine to coarse flint. (LYNCH HILL GRAVEL)	1 —
•				1.65	28.16		End of Pit at 1.65m	2 —
								-
								3 —
								4 -
								5 —

Stability: Stable Water: Slow seepage at base of pit.

CAPITA Capita Property a Oak House, Reed Hertfordshire WD	ds Crescent, Watford,	Trial	Pit Log	Trial Pit No. TP205 Sheet 1 of 1
Project Name: Former Nestle Factory, Hayes	Project No. CS075666	Co-ords: - Level: 30.47		Date: 11/03/2016
Location: North Hyde Gardens, Hayes, London Bo	orough of Hillingdon	Dimensions (m):	2.00	Scale: 1:50
Client: SEGRO plc		Depth 1.95	9.0	Logged by: PWE

ter ke	Samp	des & In S	itu Testing	Depth	Level			
Water Strike	Depth	Туре	Results	(m)	(m)	Legend	Stratum Description	
	0.45	D		0.30 0.50	30.17 29.97		CONCRETE with reinforcing bar. Compacted sandy gravel of concrete and brick fragments. (MADE GROUND) Firm orange-brown silty sandy CLAY. (BRICKEARTH)	
	1.50	D		1.35	29.12		Medium dense orange-brown silty sandy GRAVEL of fine to coarse flint. (LYNCH HILL GRAVEL)	1 -
				1.95	28.52	M. 27 (A.)	End of Pit at 1.95m	2 -
								3
								5

Stability: Stable Water:

Capita Property	and Infrastructure			Trial Pit No.
Oak House, Ree	ds Crescent, Watford,	Trial	Pit Log	TP206
Hertfordshire WE	J24 4PM		5	Sheet 1 of 1
Project Former Nestle Factory, Hayes	Project No.	Co-ords: -		Date:
Name:	CS075666	Level: 29.77		11/03/2016
Location: North Hyde Gardens, Hayes, London 8	orough of Hillingdon	Dimensions	1.70	Scale:
200ddom Horar Hydd ddiddro, Flaydd, Ediddi D	or odger or a minigoon	(m):	09	1:50
Client: SEGRO plc		Depth 1.75	0.6	Logged by: PWE

ter ke	Sampl	les & In S	Situ Testing	Depth	Level		12.0.2.0.0	
Water Strike	Depth	Туре	Results	(m)	(m)	Legend	Stratum Description	
				0.20	29.57		Asphalt Compacted sandy gravel of brick, concrete and rock fragments. (MADE GROUND)	
	0.75	D		0.60	29.17		Firm orange-brown and grey silty sandy CLAY. (BRICKEARTH)	
	1.50	D		1.10	i 28.67		Medium dense orange-brown clayey silty sandy GRAVEL of fine to coarse flint. (LYNCH HILL GRAVEL)	1 -
				1.75	28.02		End of Pit at 1.75m	2 —
								3 -
								4 —
								5 —

Stability: Stable Water:

Appendix G – Laboratory Chemical Analysis Reports

George Andrew

Capita Property and Infrastructure Ltd Oak House Reeds Crescent Watford i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

e: george.andrew@capita.co.uk

Analytical Report Number: 16-13362

Replaces Analytical Report Number: 16-13362, issue no. 2

Project / Site name: Project Lightning Samples received on: 14/03/2016

Your job number: CS075666 Samples instructed on: 16/03/2016

Your order number: Analysis completed by: 05/04/2016

Report Issue Number: 3 **Report issued on:** 05/04/2016

Samples Analysed: 8 soil samples

Signed:

Dr Irma Doyle Senior Account Manager

For & on behalf of i2 Analytical Ltd.

Signed:

Emma Winter Assistant Reporting Manager

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

I - b. C I - N b				E402C0	E40270	E40271	F40272	F40272
Lab Sample Number				549369	549370	549371	549372	549373
Sample Reference				TP202	TP203	TP204	TP205	BH202
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.80 11/03/2016	0.50 11/03/2016	0.40 11/03/2016	0.45 11/03/2016	1.20 09/03/2016
Date Sampled Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Tille Takeli	1	1		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	12	9.7	16	13	22
Total mass of sample received	kg	0.001	NONE	0.45	0.44	0.52	0.44	0.55
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	Chrysotile	Chrysotile & Amosite	Chrysotile	Chrysotile & Crocidolite	Chrysotile
Asbestos in Soil	Type	N/A	ISO 17025	Detected	Detected	Detected	Detected	Detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	0.005	0.003	0.009	0.006	< 0.001
Asbestos Quantification	%	0.001	ISO 17025	0.005	0.003	0.009	0.006	< 0.001
General Inorganics								
pH	pH Units	N/A	MCERTS	8.3	8.8	9.8	10.2	8.3
Water Soluble Sulphate (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.15	2.1	0.14	0.045	0.32
Total Organic Carbon (TOC)	%	0.1	MCERTS	0.7	1.7	0.8	0.2	1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	0.13	0.52	< 0.05	< 0.05	0.17
Acenaphthylene	mg/kg	0.1	MCERTS	< 0.10	0.94	0.14	< 0.10	< 0.10
Acenaphthene	mg/kg	0.1	MCERTS	< 0.10	2.8	0.28	0.10	0.18
Fluorene	mg/kg	0.1	MCERTS	< 0.10	2.5	0.54	< 0.10	< 0.10
Phenanthrene	mg/kg	0.1	MCERTS	0.77	20	4.1	0.39	1.4
Anthracene	mg/kg	0.1	MCERTS	0.15	8.1	1.2	0.17	0.16
Fluoranthene	mg/kg	0.1	MCERTS	2.4	67	9.2	0.44	2.8
Pyrene	mg/kg	0.1	MCERTS	2.0	59	8.1	0.38	2.4
Benzo(a)anthracene	mg/kg	0.1 0.05	MCERTS MCERTS	1.1 1.2	27 18	4.9 3.4	0.24 0.11	1.7 1.4
Chrysene Benzo(b)fluoranthene	mg/kg	0.03	MCERTS	1.2	32	6.6	0.22	2.1
Benzo(k)fluoranthene	mg/kg mg/kg	0.1	MCERTS	0.79	8.9	1.9	< 0.10	1.1
Benzo(a)pyrene	mg/kg	0.1	MCERTS	0.92	25	5.2	0.16	1.5
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	MCERTS	0.52	13	2.7	< 0.10	0.74
Dibenz(a,h)anthracene	mg/kg	0.1	MCERTS	< 0.10	3.8	0.88	< 0.10	< 0.10
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	0.61	12	2.8	< 0.05	0.89
Total PAH		0.00	HOLINIO	0.01				0.03
Speciated Total EPA-16 PAHs	mg/kg	1.6	MCERTS	11.8	299	52.0	2.21	16.3
Heavy Metals / Metalloids	1 ,		I	44	12	15	12	12
Arsenic (aqua regia extractable) Boron (water soluble)	mg/kg ma/ka	0.2	MCERTS MCERTS	11 2.9	13 6.0	15 1.9	12 < 0.2	13 3.6
	9,9	0.2	MCERTS	< 0.2	0.3	0.7	< 0.2 0.4	< 0.2
Cadmium (aqua regia extractable) Chromium (aqua regia extractable)	mg/kg	1	MCERTS	< 0.2 24	44	31	27	< 0.2 26
Copper (aqua regia extractable)	mg/kg	1	MCERTS	49	55	55	56	55
Lead (aqua regia extractable)	mg/kg mg/kg	1	MCERTS	130	770	630	230	220
Mercury (aqua regia extractable)	mg/kg mg/kg	0.3	MCERTS	0.9	< 0.3	< 0.3	< 0.3	2.0
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	28	25	27	20	2.0
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	42	48	49	43	< 1.0 51
variation (aqua regia extractable)	my/kg		HICKIS	290	310	נד	TJ	71

Lab Sample Number				549369	549370	549371	549372	549373
Sample Reference				TP202	TP203	TP204	TP205	BH202
Sample Number				None Supplied				
Depth (m)				0.80	0.50	0.40	0.45	1.20
Date Sampled				11/03/2016	11/03/2016	11/03/2016	11/03/2016	09/03/2016
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics								
Benzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Petroleum Hydrocarbons

Petroleum Hydrocarbons								
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	5.7	< 2.0	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	17	11	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	50	87	38	21
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	73	99	40	25
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	38	8.1	2.8	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	420	57	45	19
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	640	91	180	40
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	17	1100	160	220	61

Lab Sample Number				549374	549375	549376		
Sample Reference				BH203	BH204	BH205		
Sample Number				None Supplied	None Supplied	None Supplied		
Depth (m)				1.70	1.00	1.70		
Date Sampled				10/03/2016	09/03/2016	10/03/2016		
Time Taken				None Supplied	None Supplied	None Supplied		
			A					
		Limit of detection	Accreditation Status					l
Analytical Parameter	Units	ec mi	tat edi					i
(Soil Analysis)	ß	tio of	ᇥ					
		3 "	g					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1		
Moisture Content	%	N/A	NONE	10	11	15		
Total mass of sample received	kg	0.001	NONE	0.56	0.54	0.51		
Total mass of sample received	ĸy	0.001	NONE	0.50	0.51	0.51	1	
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	Chrysotile	-		
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Detected	Not-detected		
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	< 0.001	-		
Asbestos Quantification	%	0.001	ISO 17025	-	< 0.001	-		
		•		-	•	•	•	
General Inorganics								
pH	pH Units	N/A	MCERTS	9.8	9.6	7.9		
Water Soluble Sulphate (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.088	0.44	0.084		
Total Organic Carbon (TOC)	%	0.1	MCERTS	< 0.1	0.4	0.1		
<u> </u>				-	-		-	
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	0.40	< 0.05		
Acenaphthylene	mg/kg	0.1	MCERTS	< 0.10	0.34	< 0.10		
Acenaphthene	mg/kg	0.1	MCERTS	< 0.10	1.9	< 0.10		
Fluorene	mg/kg	0.1	MCERTS	< 0.10	5.0	< 0.10		
Phenanthrene	mg/kg	0.1	MCERTS	0.40	31	< 0.10		
Anthracene	mg/kg	0.1	MCERTS	< 0.10	8.5	< 0.10		
Fluoranthene	mg/kg	0.1	MCERTS	0.30	36	< 0.10		
Pyrene	mg/kg	0.1	MCERTS	0.21	27	< 0.10		
Benzo(a)anthracene	mg/kg	0.1	MCERTS	< 0.10	14	< 0.10		
Chrysene	mg/kg	0.05	MCERTS	< 0.05	12	< 0.05		
Benzo(b)fluoranthene	mg/kg	0.1	MCERTS	< 0.10	18	< 0.10		
Benzo(k)fluoranthene	mg/kg	0.1	MCERTS	< 0.10	6.0	< 0.10		
Benzo(a)pyrene	mg/kg	0.1	MCERTS	< 0.10	9.5	< 0.10		
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	MCERTS	< 0.10	4.9	< 0.10		
Dibenz(a,h)anthracene	mg/kg	0.1	MCERTS	< 0.10	0.67	< 0.10		
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	4.4	< 0.05		
Total PAH		1			T	I	T	
Speciated Total EPA-16 PAHs	mg/kg	1.6	MCERTS	< 1.60	180	< 1.60	I	i
Heavy Metals / Metalloids			T	0 -			1	
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	8.5	8.9	15		-
Boron (water soluble)	mg/kg	0.2	MCERTS	1.4	3.3	1.6		1
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2		
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	25	24	39		1
Copper (aqua regia extractable)	mg/kg	1	MCERTS	12	25	21		1
Lead (aqua regia extractable)	mg/kg	1	MCERTS	6.3	38	18		1
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	ļ	1
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	21	19	45		1
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	ļ	-
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	25	34	67		
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	23	35	53		1

Lab Sample Number				549374	549375	549376	
Sample Reference				BH203	BH204	BH205	
Sample Number				None Supplied	None Supplied	None Supplied	
Depth (m)				1.70	1.00	1.70	
Date Sampled				10/03/2016	09/03/2016	10/03/2016	
Time Taken				None Supplied	None Supplied	None Supplied	
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Monoaromatics							
Benzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	

Petroleum Hydrocarbons

Petroleum Hydrocarbons							
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	11	< 10	
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	28	< 2.0	
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	210	< 10	
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	200	< 10	
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	450	< 10	

Analytical Report Number: 16-13362

Project / Site name:

Your Order No:

Project Lightning

Certificate of Analysis - Asbestos Quantification

Methods:

Qualitative Analysis

The samples were analysed qualitatively for asbestos by polarising light and dispersion staining as described by the Health and Safety Executive in HSG 248.

Quantitative Analysis

"The analysis was carried out using our documented in-house method A006 based on HSE Contract Research Report No: 83/1996: Development and Validation of an analytical method to determine the amount of asbestos in soils and loose aggregates (Davies et al, 1996) and HSG 248. Our method includes initial examination of the entire representative sample, then fractionation and detailed analysis of each fraction, with quantification by hand picking and weighing.

The limit of detection (reporting limit) of this method is 0.001 %.

The method has been validated using samples of at least 100 g, results for samples smaller than this should be interpreted with caution.

Both Qualitative and Quantitative Analyses are UKAS accredited.

Sample Number	Sample ID	Sample Depth (m)	Sample Weight (g)	Asbestos Containing Material Types Detected (ACM)	PLM Results	Asbestos by hand picking/weighing (%)	Total % Asbestos in Sample
549369	TP202	0.80	102	Loose Fibres	Chrysotile	0.005	0.005
549370	TP203	0.50	120	Insulation Lagging & Loose Fibres	Chrysotile & Amosite	0.003	0.003
549371	TP204	0.40	125	Insulation Lagging	Chrysotile	0.009	0.009
549372	TP205	0.45	110	Insulation Lagging	Chrysotile & Crocidolite	0.006	0.006
549373	BH202	1.20	114	Loose Fibres	Chrysotile	< 0.001	< 0.001
549375	BH204	1.00	135	Loose Fibres	Chrysotile	< 0.001	< 0.001

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
549369	TP202	None Supplied	0.80	Brown loam and clay.
549370	TP203	None Supplied	0.50	Brown sandy loam with gravel and rubble.
549371	TP204	None Supplied	0.40	Brown loam and sand.
549372	TP205	None Supplied	0.45	Brown loam and clay.
549373	BH202	None Supplied	1.20	Brown clay and sand.
549374	BH203	None Supplied	1.70	Light brown sand with gravel.
549375	BH204	None Supplied	1.00	Light brown sandy clay.
549376	BH205	None Supplied	1.70	Brown clay and sand.

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
The analysis was carried out using documented inhouse method based on references.	HSE Report No: 83/1996, HSG 248, HSG 264 & SCA Blue Book (draft).	A006	D	ISO 17025
Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
Determination of pH in soil by addition of water followed by automated electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	D	MCERTS
Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Determination of water soluble sulphate by ICP- OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests, 2:1 water:soil extraction, analysis by ICP- OES.	L038-PL	D	MCERTS
Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L023-PL	D	MCERTS
Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method	L076-PL	W	MCERTS
	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques. The analysis was carried out using documented inhouse method based on references. Determination of water soluble boron in soil by hot water extract followed by ICP-OES. Determination of BTEX in soil by headspace GC-MS. Determination of metals in soil by aqua-regia digestion followed by ICP-OES. Moisture content, determined gravimetrically. Determination of pH in soil by addition of water followed by automated electrometric measurement. Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards. Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight. Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent). Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques. The analysis was carried out using documented inhouse method based on references. The analysis was carried out using documented inhouse method based on references. HSE Report No: 83/1996, HSG 248, HSG 264 & SCA Blue Book (draft). Determination of water soluble boron in soil by hot water extract followed by ICP-OES. Determination of BTEX in soil by headspace GC-MS. In-house method based on USEPA8260 Methods for the Determination of Metals in Soil. Moisture content, determined gravimetrically. Moisture content, determined gravimetrically. Determination of pH in soil by addition of water followed by automated electrometric measurement. Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards. Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight. Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent). Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate. Determination of hexane extractable hydrocarbons In-house method based on British Standard Methods and MCERTS requirements. 1n-house method based on British Standard Methods and MCERTS requirements. 1n-house method based on British Standard Methods and MCERTS requirements. 1n-house method based on British Standard Methods and MCERTS requirements. 1n-house method based on British Standard Methods and MCERTS requirements. 1n-house method based on British Standard Methods and MCERTS requirements. 1n-house method based on British Standard Methods and MCERTS requirements. 1n-house method based on British Standard Methods and MCERTS requirements.	Analytical Method Description Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques. The analysis was carried out using documented inhouse method based on references. The analysis was carried out using documented inhouse method based on references. HSE Report No: 83/1996, HSG 248, HSG 264 & SCA Blue Book (draft). Determination of water soluble boron in soil by hot water extract followed by ICP-OES. Determination of BTEX in soil by headspace GC-MS. Determination of metals in soil by aqua-regia digestion followed by ICP-OES. Moisture content, determined gravimetrically. Determination of PA in soil by addition of water followed by automated electrometric measurement. Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards. Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight. Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent). Determination of organic matter in soil by oxidising with potassium dichromate followed by the training of the potantial matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate. Determination of hexane extractable hydrocarbons In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests, 1990, Che	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques. The analysis was carried out using documented inhouse method based on references. Determination of water soluble boron in soil by hot water extract followed by ICP-OES. Determination of BTEX in soil by headspace GC-MS. Determination of metals in soil by aqua-regia digestion followed by ICP-OES. Moisture content, determined gravimetrically. Determination of pH in soil by addition of water followed by automated electrometric measurement. Determination of PH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards. Standard preparation for all samples unless otherwise detailed. Gravimetric determination of solice policy with polassium dichromate followed by ith polassium dichromate followed by ICP-OES. Analytical Method based on HSG 248 A001-PL Determination of water soluble sulphate by ICP-OES. In-house method based on SECOND SIGNAPPL In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil. In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards. Standard preparation for all samples unless otherwise detailed. Gravimetric determination of soil explication of the surrogate and internal standards. Standard preparation for or generative determination of soil explication of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent) and corrected for extraction ratio (soil equivalent). Determination of hexane extractable hydrocarbons In-house method based on BS1377 Part 3, 1023-PL Determination of hexane extractable hydrocarbons In-house method based on BS1377 Part 3, 1023-PL Determination of hexane extractable hydrocarbons In-house meth

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

George Andrew

Capita Property and Infrastructure Ltd Oak House Reeds Crescent Watford i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

e: george.andrew@capita.co.uk

Analytical Report Number: 16-13949

Project / Site name: Nestle, Hayes Samples received on: 23/03/2016

Your job number: CS075666 Samples instructed on: 23/03/2016

Your order number: ZLON Analysis completed by: 05/04/2016

Report Issue Number: 1 **Report issued on:** 05/04/2016

Samples Analysed: 7 water samples

Signed:

Rexona Rahman Reporting Manager

For & on behalf of i2 Analytical Ltd.

Signed:

Emma Winter Assistant Reporting Manager

all-

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Analytical Report Number: 16-13949 **Project / Site name: Nestle, Hayes**

Your	Order	No:	ZLO	N
------	-------	-----	-----	---

Sulphate as SO ₄	Your Order No: ZLON								
None Supplied None Supplie	Lab Sample Number	553091	553092	553093	553094	553095			
None Supplied None Supplie	Sample Reference				BH2	BH109	BH201	BH202	BH203
Page Sampled	Sample Number	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
None Supplied None Supplie	Depth (m)				None Supplied				
Central Inorganics Parameter (Water Analysis) Parameter (Water Analy	Date Sampled	22/03/2016	22/03/2016	22/03/2016	22/03/2016	22/03/2016			
Ceneral Inorganics Ceneral	Time Taken				None Supplied				
PH Mode M	•	Units	Limit of detection	Accreditation Status					
Sulphate as SO ₄	General Inorganics								
Total Organic Carbon (TOC) mg/l 0.1 ISO 17025 8.56 5.17 3.20 7.05 23.8	pН	pH Units							
Speciated PAHs Naphthalene pg/l 0.01 ISO 17025 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	Sulphate as SO ₄	μg/l		ISO 17025	29500	46700	66000	192000	39800
Naphthalene	Total Organic Carbon (TOC)	mg/l	0.1	ISO 17025	8.56	5.17	3.20	7.05	23.8
Naphthalene	Speciated PAHs								
Acenaphthylene μg/I 0.01 ISO 17025 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 <th< td=""><td></td><td>µa/l</td><td>0.01</td><td>ISO 17025</td><td>< 0.01</td><td>< 0.01</td><td>< 0.01</td><td>< 0.01</td><td>< 0.01</td></th<>		µa/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthene μg/l 0.01 ISO 1702S < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 <									
Fluorene									
Phenanthrene									
Anthracene									
Fluoranthene		1.5							
Pyrene									
Benzo(a)anthracene									
Chrysene	,								
Benzo(b)fluoranthene μg/l 0.01 ISO 17025 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01							< 0.01		
Benzo(k)fluoranthene									
Benzo(a)pyrene			0.01			< 0.01	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-cd)pyrene	Benzo(a)pyrene		0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenz(a,h)anthracene μg/l 0.01 NONE < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01			0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(ghi)perylene μg/l 0.01 NONE < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0	Dibenz(a,h)anthracene	μg/l	0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Total EPA-16 PAHs	Benzo(ghi)perylene		0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Total EPA-16 PAHs	Total PAH								
Heavy Metals / Metalloids Arsenic (dissolved) μg/l 0.15 ISO 17025 5.36 1.00 0.57 1.36 1.26 Boron (dissolved) μg/l 10 ISO 17025 91 93 100 180 170 Cadmium (dissolved) μg/l 0.02 ISO 17025 0.02 < 0.02	Total EPA-16 PAHs	μg/l	0.16	NONE	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16
Arsenic (dissolved) μg/l 0.15 ISO 17025 5.36 1.00 0.57 1.36 1.26 Boron (dissolved) μg/l 10 ISO 17025 91 93 100 180 170 Cadmium (dissolved) μg/l 0.02 ISO 17025 0.02 < 0.02	Heavy Metals / Metalloids	<u>.</u> , <u>s</u> .							
Boron (dissolved)		µa/I	0.15	ISO 17025	5.36	1.00	0.57	1.36	1.26
Cadmium (dissolved) µg/l 0.02 ISO 17025 0.02 < 0.02 0.05 0.04 0.05 Chromium (dissolved) µg/l 0.2 ISO 17025 0.3 0.3 0.3 0.8 0.4 Copper (dissolved) µg/l 0.5 ISO 17025 4.4 2.4 4.1 5.8 18 Lead (dissolved) µg/l 0.2 ISO 17025 2.0 0.4 0.3 1.4 0.2 Mercury (dissolved) µg/l 0.05 ISO 17025 0.16 < 0.05	,								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	· · · · · · · · · · · · · · · · · · ·					< 0.02			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$. ,								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Copper (dissolved)	μg/l	0.5	ISO 17025	4.4	2.4	4.1	5.8	18
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			0.5	ISO 17025	2.9		6.5	6.1	36
Vanadium (dissolved) μg/l 0.2 ISO 17025 1.6 0.6 0.7 2.8 1.3	Selenium (dissolved)	μg/l	0.6	1	1.6	0.8	< 0.6	2.6	6.3
Zinc (dissolved) μg/l 0.5 ISO 17025 3.3 3.4 2.8 37 3.5	Vanadium (dissolved)	μg/l	0.2	ISO 17025	1.6	0.6	0.7	2.8	1.3
	Zinc (dissolved)	μg/l	0.5	ISO 17025	3.3	3.4	2.8	37	3.5

Analytical Report Number: 16-13949 Project / Site name: Nestle, Hayes

Your Order No: ZLON

Tour Grace Hor Elect								
Lab Sample Number	553091	553092	553093	553094	553095			
Sample Reference	BH2	BH109	BH201	BH202	BH203			
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Depth (m)	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Date Sampled				22/03/2016	22/03/2016	22/03/2016	22/03/2016	22/03/2016
Time Taken				None Supplied				
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics								
Benzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Petroleum Hydrocarbons								
TPH-CWG - Aliphatic >C5 - C6	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C6 - C8	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C8 - C10	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C10 - C12	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C12 - C16	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C16 - C21	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C21 - C35	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (C5 - C35)	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C5 - C7	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C7 - C8	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C8 - C10	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C10 - C12	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C12 - C16	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C16 - C21	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C21 - C35	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (C5 - C35)	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10

Analytical Report Number: 16-13949 Project / Site name: Nestle, Hayes

Your Order No: ZLON

Your Order No: ZLON								
Lab Sample Number				553091	553092	553093	553094	553095
Sample Reference				BH2	BH109	BH201	BH202	BH203
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Depth (m)				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Date Sampled			22/03/2016	22/03/2016	22/03/2016	22/03/2016	22/03/2016	
Time Taken	ı	ı	1	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
			Accreditation Status					
Analytical Parameter	ç	Limit of detection	Sta					
(Water Analysis)	Units	Ğ F	atus					
		9 4	s tio					
			_					
VOCs			Troo 47005					
Chloromethane	μg/l	1	ISO 17025	-	-	< 1.0	-	-
Chloroethane	μg/l	1	ISO 17025 ISO 17025	-	-	< 1.0	-	-
Bromomethane Vinyl Chloride	μg/l	1	_	-	-	< 1.0	-	-
Trichlorofluoromethane	μg/l μg/l	1	NONE NONE		-	< 1.0 < 1.0	-	-
1,1-Dichloroethene	μg/l	1	ISO 17025	-	-	< 1.0	-	-
1,1,2-Trichloro-1,2,2-trifluoroethane	μg/l	1	ISO 17025	-	_	< 1.0		-
Cis-1,2-dichloroethene	μg/l	1	ISO 17025	-	_	< 1.0	_	-
MTBE (Methyl Tertiary Butyl Ether)	μg/l	1	ISO 17025	-	_	< 1.0	_	-
1,1-Dichloroethane	μg/l	1	ISO 17025	-	-	< 1.0	-	-
2,2-Dichloropropane	μg/l	1	ISO 17025	-	-	< 1.0	-	-
Trichloromethane	μg/l	1	ISO 17025	1	-	< 1.0	-	-
1,1,1-Trichloroethane	μg/l	1	ISO 17025	1	-	< 1.0	-	-
1,2-Dichloroethane	μg/l	1	ISO 17025	ı	-	< 1.0	-	-
1,1-Dichloropropene	μg/l	1	ISO 17025	-	-	< 1.0	-	-
Trans-1,2-dichloroethene	μg/l	1	ISO 17025	-	-	< 1.0	-	-
Benzene	μg/l	1	ISO 17025	-	-	< 1.0	-	-
Tetrachloromethane	μg/l	1	ISO 17025	-	-	< 1.0	-	-
1,2-Dichloropropane	μg/l	1	ISO 17025	-	-	< 1.0	-	-
Trichloroethene	μg/l	1	ISO 17025	-	-	< 1.0	-	-
Dibromomethane	μg/l	1	ISO 17025 ISO 17025	-	-	< 1.0	-	-
Bromodichloromethane	μg/l	1	ISO 17025	-	-	< 1.0	-	-
Cis-1,3-dichloropropene Trans-1,3-dichloropropene	μg/l μg/l	1	ISO 17025	-	-	< 1.0 < 1.0	-	-
Toluene	μg/l	1	ISO 17025			< 1.0		-
1,1,2-Trichloroethane	μg/l	1	ISO 17025	_	_	< 1.0	-	_
1,3-Dichloropropane	μg/l	1	ISO 17025	-	_	< 1.0	_	_
Dibromochloromethane	μg/l	1	ISO 17025	-	_	< 1.0	_	_
Tetrachloroethene	μg/l	1	ISO 17025	-	-	< 1.0	-	-
1,2-Dibromoethane	μg/l	1	ISO 17025	-	-	< 1.0	-	-
Chlorobenzene	μg/l	1	ISO 17025	-	-	< 1.0	-	-
1,1,1,2-Tetrachloroethane	μg/l	1	ISO 17025	-	-	< 1.0	-	-
Ethylbenzene	μg/l	1	ISO 17025	-	-	< 1.0	-	-
p & m-Xylene	μg/l	1	ISO 17025	-	-	< 1.0	-	-
Styrene	μg/l	1	ISO 17025	-	-	< 1.0	-	-
Tribromomethane	μg/l	1	ISO 17025	-	-	< 1.0	-	-
o-Xylene	μg/l "	1	ISO 17025	-	-	< 1.0	-	-
1,1,2,2-Tetrachloroethane	μg/l	1	ISO 17025	-	-	< 1.0	-	-
<u>Isopropylbenzene</u>	μg/l	1	ISO 17025	-	-	< 1.0	-	-
Bromobenzene n-Propylbenzene	μg/l μg/l	1	ISO 17025 ISO 17025	-	-	< 1.0 < 1.0	-	-
2-Chlorotoluene	μg/I μg/I	1	ISO 17025	-	-	< 1.0	-	-
4-Chlorotoluene	μg/l	1	ISO 17025	-	-	< 1.0	-	-
1,3,5-Trimethylbenzene	μg/l	1	ISO 17025	-	_	< 1.0	_	_
tert-Butylbenzene	μg/l	1	ISO 17025	-	-	< 1.0	-	_
1,2,4-Trimethylbenzene	μg/l	1	ISO 17025	-	-	< 1.0	-	-
sec-Butylbenzene	μg/l	1	ISO 17025	i	-	< 1.0	-	-
1,3-Dichlorobenzene	μg/l	1	ISO 17025	-	-	< 1.0	-	-
p-Isopropyltoluene	μg/l	1	ISO 17025	-	-	< 1.0	-	-
1,2-Dichlorobenzene	μg/l	1	ISO 17025	-	-	< 1.0	-	-
1,4-Dichlorobenzene	μg/l	1	ISO 17025	-	-	< 1.0	-	-
Butylbenzene	μg/l	1	ISO 17025	-	-	< 1.0	-	-
1,2-Dibromo-3-chloropropane	μg/l	1	ISO 17025	-	-	< 1.0	-	-
1,2,4-Trichlorobenzene	μg/l	1	ISO 17025	-	-	< 1.0	-	-
Hexachlorobutadiene	μg/l	1	ISO 17025	-	-	< 1.0	-	-
1,2,3-Trichlorobenzene	μg/l	1	ISO 17025	-	-	< 1.0	-	-

Your	Order	No:	ZL	ON
------	-------	-----	----	----

Your Order No: ZLON							
Lab Sample Number				553096	553097		
Sample Reference				BH204	BH205		
Sample Number				None Supplied	None Supplied		
Depth (m)				None Supplied	None Supplied		
Date Sampled				22/03/2016	22/03/2016		
Time Taken				None Supplied	None Supplied		
			A				
Annal Albert Bernamakan	_	Limit of detection	Accreditation Status				
Analytical Parameter	Units	ie ci	ta ti				
(Water Analysis)	W	할 육	ati S				
			9				
General Inorganics							
pH	pH Units	N/A	ISO 17025	7.8	7.6		
Sulphate as SO ₄	μg/l	45	ISO 17025	153000	244000		
Total Organic Carbon (TOC)	mg/l	0.1	ISO 17025	2.62	4.41		
Sussisted DAUs							
Speciated PAHs	1 "	0.01	100 17005	. 0.01	. 0.01	ı	
Naphthalene	μg/l	0.01	ISO 17025	< 0.01	< 0.01		
Acenaphthylene	μg/l	0.01	ISO 17025	< 0.01	< 0.01		
Acenaphthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01		-
Fluorene	μg/l	0.01	ISO 17025	< 0.01	< 0.01		
Phenanthrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01		
Anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01		
Fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01		
Pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01		
Benzo(a)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	-	
Chrysene	μg/l	0.01	ISO 17025	< 0.01	< 0.01		
Benzo(b)fluoranthene Benzo(k)fluoranthene	μg/l μg/l	0.01	ISO 17025 ISO 17025	< 0.01 < 0.01	< 0.01 < 0.01		
` /		0.01	ISO 17025	< 0.01	< 0.01		
Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	μg/l	0.01	NONE	< 0.01	< 0.01	1	
Dibenz(a,h)anthracene	μg/l μg/l	0.01	NONE	< 0.01	< 0.01	1	1
Benzo(ghi)perylene	μg/I μg/I	0.01	NONE	< 0.01	< 0.01		
penzo(giii)peryiene	μ <u>y</u> /1	0.01	NONE	< 0.01	< 0.01	1	
Total PAH							
Total EPA-16 PAHs	μg/l	0.16	NONE	< 0.16	< 0.16		
-	- F-3//					-	•
Heavy Metals / Metalloids						 	
Arsenic (dissolved)	μg/l	0.15	ISO 17025	0.68	0.46		
Boron (dissolved)	μg/l	10	ISO 17025	91	120		
Cadmium (dissolved)	μg/l	0.02	ISO 17025	< 0.02	0.05		
Chromium (dissolved)	μg/l	0.2	ISO 17025	0.7	< 0.2		
Copper (dissolved)	μg/l	0.5	ISO 17025	0.7	2.8		
Lead (dissolved)	μg/l	0.2	ISO 17025	0.5	0.3		
Mercury (dissolved)	μg/l	0.05	ISO 17025	0.10	0.05		
Nickel (dissolved)	μg/l	0.5	ISO 17025	3.1	8.2		
Selenium (dissolved)	μg/l	0.6	ISO 17025	3.8	39		
Vanadium (dissolved)	μg/l	0.2	ISO 17025	1.9	0.4		
Zinc (dissolved)	μg/l	0.5	ISO 17025	1.9	6.2		

Tour Order No. ZLON							
Lab Sample Number				553096	553097		
Sample Reference				BH204	BH205		
Sample Number				None Supplied	None Supplied		
Depth (m)		None Supplied	None Supplied				
Date Sampled	22/03/2016	22/03/2016					
Time Taken		None Supplied	None Supplied				
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status				
Monoaromatics							
Benzene	μg/l	1	ISO 17025	< 1.0	< 1.0		
Toluene	μg/l	1	ISO 17025	< 1.0	< 1.0		
Ethylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0		
p & m-xylene	μg/l	1	ISO 17025	< 1.0	< 1.0		
o-xylene	μg/l	1	ISO 17025	< 1.0	< 1.0		
MTBE (Methyl Tertiary Butyl Ether)	μg/l	1	ISO 17025	< 1.0	< 1.0		

Petroleum Hydrocarbons							
TPH-CWG - Aliphatic >C5 - C6	μg/l	10	NONE	< 10	< 10		
TPH-CWG - Aliphatic >C6 - C8	μg/l	10	NONE	< 10	< 10		
TPH-CWG - Aliphatic >C8 - C10	μg/l	10	NONE	< 10	< 10		
TPH-CWG - Aliphatic >C10 - C12	μg/l	10	NONE	< 10	< 10		
TPH-CWG - Aliphatic >C12 - C16	μg/l	10	NONE	< 10	< 10		
TPH-CWG - Aliphatic >C16 - C21	μg/l	10	NONE	< 10	< 10		
TPH-CWG - Aliphatic >C21 - C35	μg/l	10	NONE	< 10	< 10		
TPH-CWG - Aliphatic (C5 - C35)	μg/l	10	NONE	< 10	< 10		
TPH-CWG - Aromatic >C5 - C7	μg/l	10	NONE	< 10	< 10		
TPH-CWG - Aromatic >C7 - C8	μg/l	10	NONE	< 10	< 10		
TPH-CWG - Aromatic >C8 - C10	μg/l	10	NONE	< 10	< 10		
TPH-CWG - Aromatic >C10 - C12	μg/l	10	NONE	< 10	< 10		
TPH-CWG - Aromatic >C12 - C16	μg/l	10	NONE	< 10	< 10		
TPH-CWG - Aromatic >C16 - C21	μg/l	10	NONE	< 10	< 10		
TPH-CWG - Aromatic >C21 - C35	μg/l	10	NONE	< 10	< 10		
TPH-CWG - Aromatic (C5 - C35)	μg/l	10	NONE	< 10	< 10		

Sample Number	
Sample Number None Supplied None Suppli	
Depth (m) None Supplied Date Sampled 22(03/27016 23/27016 23/27016 23/27016 23/27016 23/27016 23/27016	
Date Sampled	
None Supplied None Supplie	
VOCs	
Chloromethane	
Description	
Vinyl Chloride μg/l 1 NONE < 1.0 < 1.0 Trichlorofluoromethane μg/l 1 NONE < 1.0	
Trichlorofluoromethane µg/l 1 NONE < 1.0 < 1.0 1,1-Dichloroethene µg/l 1 ISO 17025 < 1.0	
1,1-Dichloroethene µg/l 1 ISO 17025 < 1.0 < 1.0 1,1,2-Trichloro-1,2,2-trifluoroethane µg/l 1 ISO 17025 < 1.0	
1,1,2-Trichloro-1,2,2-trifluoroethane	
Cis-1,2-dichloroethene µg/l 1 ISO 17025 < 1.0 < 1.0 MTBE (Methyl Tertiary Butyl Ether) µg/l 1 ISO 17025 < 1.0	
MTBE (Methyl Tertiary Butyl Ether) µg/l 1 ISO 17025 < 1.0 < 1.0 1,1-Dichloroethane µg/l 1 ISO 17025 < 1.0	\longrightarrow
1,1-Dichloroethane µg/l 1 ISO 17025 < 1.0	+
2,2-Dichloropropane μg/l 1 ISO 17025 < 1.0 < 1.0 Trichloromethane μg/l 1 ISO 17025 < 1.0	-
Trichloromethane	$\neg \neg$
1,1,1-Trichloroethane µg/l 1 ISO 17025 < 1.0	
1,1-Dichloropropene μg/l 1 ISO 17025 < 1.0 < 1.0 Trans-1,2-dichloroethene μg/l 1 ISO 17025 < 1.0	
Trans-1,2-dichloroethene μg/l 1 ISO 17025 < 1.0 < 1.0 Benzene μg/l 1 ISO 17025 < 1.0	
Benzene μg/l 1 ISO 17025 < 1.0 < 1.0	
Tetrachloromethane μg/l 1 ISO 17025 < 1.0 < 1.0 1,2-Dichloropropane μg/l 1 ISO 17025 < 1.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
Dibromochloromethane $\mu g/l$ 1 ISO 17025 < 1.0 < 1.0	
Tetrachloroethene µg/l 1 ISO 17025 < 1.0 < 1,0	
Tetrachloroethene $\mu g/l$ 1 ISO 17025 < 1.0 < 1.0 1,2-Dibromoethane $\mu g/l$ 1 ISO 17025 < 1.0	
1,2-Diblomeetialie μg/l 1 ISO 17025 < 1.0 < 1.0 Chlorobenzene μg/l 1 ISO 17025 < 1.0 < 1.0	
1,1,1,2-Tetrachloroethane $\mu g/l$ 1 ISO 17025 < 1.0 < 1.0	
Ethylbenzene	
p & m-Xylene µg/l 1 ISO 17025 < 1.0 < 1.0	
Styrene μg/l 1 ISO 17025 < 1.0 < 1.0	
Tribromomethane μg/l 1 ISO 17025 < 1.0 < 1.0	
0-Xylene μg/l 1 ISO 17025 < 1.0 < 1.0	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
n-Propylbenzene µg/l 1 ISO 17025 < 1.0 < 1.0 n-Propylbenzene µg/l 1 ISO 17025 < 1.0 < 1.0	
2-Chlorotoluene	\neg
4-Chlorotoluene μg/l 1 ISO 17025 < 1.0 < 1.0	
1,3,5-Trimethylbenzene μg/l 1 ISO 17025 < 1.0 < 1.0	
tert-Butylbenzene µg/l 1 ISO 17025 < 1.0 < 1.0	
1,2,4-Trimethylbenzene μg/l 1 ISO 17025 < 1.0 < 1.0	
sec-Butylbenzene µg/l 1 ISO 17025 < 1.0 < 1.0	
1,3-Dichlorobenzene µg/l 1 ISO 17025 < 1.0 < 1.0	
p-Isopropyltoluene µg/l 1 ISO 17025 < 1.0 < 1.0	
1,2-Dichlorobenzene µg/l 1 ISO 17025 < 1.0 < 1.0 1,4-Dichlorobenzene µg/l 1 ISO 17025 < 1.0	\longrightarrow
1,7+Dichloroberizerie μg/ι 1 ISO 17025 < 1.0 < 1.0 Butylbenzene μg/ι 1 ISO 17025 < 1.0 < 1.0	
$\mu g/l$ 1 ISO 17025 < 1.0 < 1.0	-
1,2,4-Trichlorobenzene $\mu g/l$ 1 ISO 17025 < 1.0 < 1.0	
Hexachlorobutadiene $\mu g/l$ 1 ISO 17025 < 1.0 < 1.0	
1,2,3-Trichlorobenzene $\mu g/l$ 1 ISO 17025 < 1.0 < 1.0	

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Boron in water	Determination of boron by acidification followed by ICP-OES. Accredited matrices: SW PW GW	In-house method based on MEWAM	L039-PL	W	ISO 17025
BTEX and MTBE in water (Monoaromatics)	Determination of BTEX and MTBE in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	W	ISO 17025
Metals in water by ICP-MS (dissolved)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW.	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	W	ISO 17025
pH in water	Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L005-PL	W	ISO 17025
Speciated EPA-16 PAHs in water	Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L0102B-PL	W	NONE
Sulphate in water	Determination of sulphate in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Total organic carbon in water	Determination of dissolved organic carbon inlwater by TOC/DOC NDIR analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	ISO 17025
TPHCWG (Waters)	Determination of dichloromethane extractable hydrocarbons in water by GC-MS, speciation by interpretation.	In-house method	L070-PL	W	NONE
Volatile organic compounds in water	Determination of volatile organic compounds in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	W	ISO 17025

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

George Andrew

Capita Property and Infrastructure Ltd Oak House Reeds Crescent Watford i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

e: george.andrew@capita.co.uk

Analytical Report Number: 16-14414

Project / Site name: Nestle, Hayes Samples received on: 31/03	3/2016
---	--------

Your job number: CS075666 Samples instructed on: 01/04/2016

Your order number: ZLON Analysis completed by: 11/04/2016

Report Issue Number: 1 Report issued on: 11/04/2016

Samples Analysed: 6 soil samples

Signed:

Rexona Rahman Reporting Manager

For & on behalf of i2 Analytical Ltd.

Signed:

Emma Winter Assistant Reporting Manager

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates
 2 weeks from reporting
 2 weeks from reporting
 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Lab Sample Number				555699	555700	555701	555702	555703
Sample Reference				BH206	BH206	BH207	BH207	BH208
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.50	1.50	0.50	1.50	0.50
Date Sampled				23/03/2016	23/03/2016	23/03/2016	23/03/2016	23/03/2016
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	17	17	17	11	11
Total mass of sample received	kg	0.001	NONE	0.52	0.54	0.53	0.60	0.46
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	-	Chrysotile	Chrysotile & Crocidolite	Chrysotile
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Not-detected	Detected	Detected	Detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	1	-	0.001	0.022	< 0.001
Asbestos Quantification Total	%	0.001	ISO 17025	-	-	0.001	0.022	< 0.001
General Inorganics	pH Units	N/A	MCERTS	7.5	8.3	8.2	8.2	9.2
Water Soluble Sulphate (2:1 Leachate Equivalent)	q/l	0.00125	MCERTS	0.17	0.048	0.17	0.13	0.43
Total Organic Carbon (TOC)	%	0.00123	MCERTS	0.9	0.040	0.5	0.6	1.0
Speciated PAHs Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.03	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	0.23	< 0.10
Fluorene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	0.17	< 0.10
Phenanthrene	mg/kg	0.1	MCERTS	0.30	< 0.10	0.34	2.9	0.21
Anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	0.44	< 0.10
Fluoranthene	mg/kg	0.1	MCERTS	0.49	< 0.10	0.83	5.7	0.35
Pyrene	mg/kg	0.1	MCERTS	0.41	< 0.10	0.71	4.6	0.27
Benzo(a)anthracene	mg/kg	0.1	MCERTS	0.29	< 0.10	0.41	2.5	0.28
Chrysene	mg/kg	0.05	MCERTS	0.39	< 0.05	0.70	2.9	0.33
Benzo(b)fluoranthene	mg/kg	0.1	MCERTS	0.38	< 0.10	0.61	3.1	0.28
Benzo(k)fluoranthene	mg/kg	0.1	MCERTS	0.17	< 0.10	0.29	1.1	0.22
Benzo(a)pyrene	mg/kg	0.1	MCERTS	0.23	< 0.10	0.51	2.3	0.25
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	1.1	< 0.10
Dibenz(a,h)anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	1.4	< 0.05
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	1.6	MCERTS	2.66	< 1.60	4.40	28.5	2.19

Your Order No: ZLON

Lab Sample Number				555699	555700	555701	555702	555703
Sample Reference				BH206	BH206	BH207	BH207	BH208
Sample Number				None Supplied				
Depth (m)				0.50	1.50	0.50	1.50	0.50
Date Sampled				23/03/2016	23/03/2016	23/03/2016	23/03/2016	23/03/2016
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids	=	=		_	_	_	_	
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	19	13	13	14	9.1
Boron (water soluble)	mg/kg	0.2	MCERTS	1.6	1.6	0.9	0.7	2.9
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	0.3	< 0.2	0.2
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	34	34	37	28	28
Copper (aqua regia extractable)	mg/kg	1	MCERTS	58	24	430	53	260
Lead (aqua regia extractable)	mg/kg	1	MCERTS	220	21	590	100	34
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	2.5	< 0.3	0.4	1.1	1.0
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	32	28	33	27	34
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	37	52	49	43	46
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	120	57	230	120	440
Monoaromatics								
Benzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Petroleum Hydrocarbons

Petroleum Hydrocarbons								
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	1.9	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	3.5	6.6	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	8.9	12	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	56	100	< 8.0
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	69	120	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	< 10	19	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10	< 10	49	< 10
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	70	< 10

Lab Sample Number				555704			
Sample Reference				BH208			
Sample Number				None Supplied			
Depth (m)				1.50			
Date Sampled				23/03/2016			
Time Taken				None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status	·			
Stone Content	%	0.1	NONE	< 0.1			
Moisture Content	%	N/A	NONE	17			
Total mass of sample received	kg	0.001	NONE	0.57			
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-			
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected			
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-			
Asbestos Quantification Total	%	0.001	ISO 17025	-			
General Inorganics pH	pH Units	N/A	MCERTS	8.1		ı	ı
Water Soluble Sulphate (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.12			
Total Organic Carbon (TOC)	%	0.00123	MCERTS	0.3			
Speciated PAHs							
Naphthalene	mg/kg	0.05	MCERTS	< 0.05			
Acenaphthylene	mg/kg	0.1	MCERTS	< 0.10 < 0.10	!		
Acenaphthene	mg/kg	0.1	MCERTS	< 0.10			
Fluorene Phenanthrene	mg/kg	0.1	MCERTS MCERTS	< 0.10			
Anthracene	mg/kg mg/kg	0.1	MCERTS	< 0.10	1		
Fluoranthene	mg/kg	0.1	MCERTS	< 0.10	1		
Pyrene	mg/kg	0.1	MCERTS	< 0.10			
Benzo(a)anthracene	mg/kg	0.1	MCERTS	< 0.10			
Chrysene	mg/kg	0.05	MCERTS	< 0.05			
Benzo(b)fluoranthene	mg/kg	0.03	MCERTS	< 0.10			
Benzo(k)fluoranthene	mg/kg	0.1	MCERTS	< 0.10			
Benzo(a)pyrene	mg/kg	0.1	MCERTS	< 0.10	1		
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	MCERTS	< 0.10			
Dibenz(a,h)anthracene	mg/kg	0.1	MCERTS	< 0.10	1		
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	İ		
Total PAH Speciated Total EPA-16 PAHs	mg/kg	1.6	MCERTS	< 1.60	· · · · · · · · · · · · · · · · · · ·	·	· · · · · · · · · · · · · · · · · · ·
(-p	9,9			. 2.00			

Lab Sample Number				555704			
Sample Reference				BH208			
Sample Number				None Supplied			
Depth (m)				1.50			
Date Sampled	23/03/2016						
Time Taken				None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Heavy Metals / Metalloids						_	
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	9.9			
Boron (water soluble)	mg/kg	0.2	MCERTS	1.5			
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2			
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	29			
Copper (aqua regia extractable)	mg/kg	1	MCERTS	18			
Lead (aqua regia extractable)	mg/kg	1	MCERTS	27			
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3			
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	22			
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0			
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	45			
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	56			
Monoaromatics							
Benzene	μg/kg	1	MCERTS	< 1.0			
Toluene	μg/kg	1	MCERTS	< 1.0			
Ethylbenzene	μg/kg	1	MCERTS	< 1.0			
p & m-xylene	μg/kg	1	MCERTS	< 1.0			
o-xylene	μg/kg	1	MCERTS	< 1.0			
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0			

Petroleum Hydrocarbons						
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.1	MCERTS	< 0.1		
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.1	MCERTS	< 0.1		
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1		
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0		
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	2.0		
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0		
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0		
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10		
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.1	MCERTS	< 0.1		
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.1	MCERTS	< 0.1		
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1		
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0		
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0		
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10		
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10		
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10		

Analytical Report Number: 16-14414

Project / Site name: Nestle, Hayes
Your Order No: ZLON

Certificate of Analysis - Asbestos Quantification

Methods:

Qualitative Analysis

The samples were analysed qualitatively for asbestos by polarising light and dispersion staining as described by the Health and Safety Executive in HSG 248.

Quantitative Analysis

"The analysis was carried out using our documented in-house method A006 based on HSE Contract Research Report No: 83/1996: Development and Validation of an analytical method to determine the amount of asbestos in soils and loose aggregates (Davies et al, 1996) and HSG 248. Our method includes initial examination of the entire representative sample, then fractionation and detailed analysis of each fraction, with quantification by hand picking and weighing.

The limit of detection (reporting limit) of this method is 0.001 %.

The method has been validated using samples of at least 100 g, results for samples smaller than this should be interpreted with caution.

Both Qualitative and Quantitative Analyses are UKAS accredited.

Sample Number	Sample ID	Sample Depth (m)	Sample Weight (g)	Asbestos Containing Material Types Detected (ACM)	PLM Results	Asbestos by hand picking/weighing (%)	Total % Asbestos in Sample
555701	BH207	0.50	111	Loose Fibres	Chrysotile	0.001	0.001
555702	BH207	1.50	128	Insulation Lagging & Loose Fibres			0.022
555703	BH208	0.50	128	Loose Fibres	Chrysotile	< 0.001	< 0.001

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
555699	BH206	None Supplied	0.50	Brown loam and clay with gravel.
555700	BH206	None Supplied	1.50	Brown clay and sand with gravel.
555701	BH207	None Supplied	0.50	Brown loam and clay with gravel.
555702	BH207	None Supplied	1.50	Brown clay and sand with gravel.
555703	BH208	None Supplied	0.50	Brown loam and clay with gravel.
555704	BH208	None Supplied	1.50	Brown clay and sand with gravel.

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Asbestos Quantification - Gravimetric	The analysis was carried out using documented inhouse method based on references.	HSE Report No: 83/1996, HSG 248, HSG 264 & SCA Blue Book (draft).	A006	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	D	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate, water soluble, in soil	Determination of water soluble sulphate by ICP- OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests, 2:1 water:soil extraction, analysis by ICP-OES.	L038-PL	D	MCERTS
Total organic carbon in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L023-PL	D	MCERTS
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method	L076-PL	W	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

George Andrew

Capita Property and Infrastructure Ltd Oak House Reeds Crescent Watford i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

e: george.andrew@capita.co.uk

Analytical Report Number: 16-14418

Project / Site name: Nestle, Hayes Samples received on: 31/03/2016

Your job number: CS075666 Samples instructed on: 01/04/2016

Your order number: Analysis completed by: 11/04/2016

Report Issue Number: 1 **Report issued on:** 11/04/2016

Samples Analysed: 4 water samples

When

Signed:

Rexona Rahman Reporting Manager

For & on behalf of i2 Analytical Ltd.

Signed:

Emma Winter Assistant Reporting Manager

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Lab Sample Number				555723	555724	555725	555726	·
Sample Reference				BH206	BH207	BH208	BH209	
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	
Depth (m)				None Supplied	None Supplied	None Supplied	None Supplied	
Date Sampled				22/03/2016	22/03/2016	22/03/2016	22/03/2016	
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
General Inorganics								
pH	pH Units	N/A	ISO 17025	7.8	7.6	7.4	7.5	
Sulphate as SO ₄	μg/l	45	ISO 17025	232000	107000	105000	151000	
Total Organic Carbon (TOC)	mg/l	0.1	ISO 17025	9.36	23.5	24.2	8.46	
Speciated PAHs								
Naphthalene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Acenaphthylene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Acenaphthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Fluorene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Phenanthrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Benzo(a)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Chrysene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Benzo(b)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Benzo(k)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Benzo(a)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Indeno(1,2,3-cd)pyrene	μg/l	0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	
Dibenz(a,h)anthracene	μg/l	0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	
Benzo(ghi)perylene	μg/l	0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	
Total PAH								
Total EPA-16 PAHs	μg/l	0.16	NONE	< 0.16	< 0.16	< 0.16	< 0.16	
Heavy Metals / Metalloids	∎ E3/·							
Arsenic (dissolved)	μg/l	0.15	ISO 17025	0.71	0.90	4.92	0.40	
Boron (dissolved)	μg/I μg/I	10	ISO 17025	310	190	150	160	
Cadmium (dissolved)	μg/l	0.02	ISO 17025	1.7	0.26	0.09	0.12	
Chromium (dissolved)	μg/l	0.02	ISO 17025	0.5	0.3	0.4	0.7	
Copper (dissolved)	μg/l	0.5	ISO 17025	15	9.9	6.8	11	
Lead (dissolved)	μg/l	0.2	ISO 17025	0.6	0.5	1.0	0.7	
Mercury (dissolved)	μg/l	0.05	ISO 17025	< 0.05	< 0.05	< 0.05	0.18	
Nickel (dissolved)	μg/l	0.05	ISO 17025	3.4	28	22	8.4	
Selenium (dissolved)	μg/l	0.6	ISO 17025	53	15	12	15	
Vanadium (dissolved)	μg/l	0.2	ISO 17025	0.6	0.3	0.3	0.5	
Zinc (dissolved)	μg/l	0.5	ISO 17025	12	18	9.0	3.9	
	P9/1	,,,	100 1/020			2.0	5.7	

TPH-CWG - Aromatic >C5 - C7

TPH-CWG - Aromatic >C7 - C8

TPH-CWG - Aromatic >C8 - C10

TPH-CWG - Aromatic >C10 - C12

TPH-CWG - Aromatic >C12 - C16

TPH-CWG - Aromatic >C16 - C21

TPH-CWG - Aromatic >C21 - C35

TPH-CWG - Aromatic (C5 - C35)

Analytical Report Number: 16-14418 Project / Site name: Nestle, Hayes

Lab Sample Number				555723	555724	555725	555726			
Sample Reference			BH206	BH207	BH208	BH209				
Sample Number				None Supplied	None Supplied		None Supplied None Supplied			
Depth (m)				None Supplied	None Supplied	None Supplied				
Date Sampled		None Supplied None Supplied None Supplied None Supplied 22/03/2016 22/03/2016 22/03/2016 22/03/2016								
Time Taken		None Supplied	None Supplied	None Supplied	None Supplied					
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status							
Monoaromatics										
Benzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0			
Toluene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0			
Ethylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0			
p & m-xylene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0			
o-xylene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0			
MTBE (Methyl Tertiary Butyl Ether)	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0			
Petroleum Hydrocarbons										
TPH-CWG - Aliphatic >C5 - C6	μg/l	10	NONE	< 10	< 10	< 10	< 10			
TPH-CWG - Aliphatic >C6 - C8	μg/l	10	NONE	< 10	< 10	< 10	< 10	·		
TPH-CWG - Aliphatic >C8 - C10	μg/l	10	NONE	< 10	< 10	< 10	< 10			
TPH-CWG - Aliphatic >C10 - C12	μg/l	10	NONE	< 10	< 10	< 10	< 10	·		
TPH-CWG - Aliphatic >C12 - C16	μg/l	10	NONE	< 10	< 10	< 10	< 10	·		
TPH-CWG - Aliphatic >C16 - C21	μg/l	10	NONE	< 10	< 10	< 10	< 10			
TPH-CWG - Aliphatic >C21 - C35	μg/l	10	NONE	< 10	< 10	< 10	< 10			
TPH-CWG - Aliphatic (C5 - C35)	μg/l	10	NONE	< 10	< 10	< 10	< 10			

< 10

< 10

< 10

< 10

< 10 < 10

< 10 < 10

< 10

< 10

< 10

< 10

< 10 < 10

< 10 < 10

< 10

< 10

< 10

< 10

< 10 < 10

< 10 < 10

NONE

NONE

NONE

NONE

NONE

NONE

NONE NONE

< 10

< 10

< 10

< 10

< 10

< 10

< 10 < 10

10

10

10

10

10

10

10 10

μg/l

μg/l

μg/l

μg/l

μg/l

μg/l

μg/l

μg/l

Tss No	16-14418-1	Nestle	Haves	CS075666

Lab Cample Number			-	FFF733	EEE23.4	FFF70F	EEEZOC	
Lab Sample Number Sample Reference				555723 BH206	555724 BH207	555725 BH208	555726 BH209	
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	
Depth (m)				None Supplied	None Supplied	None Supplied	None Supplied	
Date Sampled				22/03/2016	22/03/2016	22/03/2016	22/03/2016	
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	
		d	Accreditation Status					
Analytical Parameter	Units	Limit of detection	cred Sta					
(Water Analysis)	iš.	it of	itat					
		5 7	ig					
VOCs			1					
Chloromethane	μg/l	1	ISO 17025	< 1.0	-	< 1.0	-	
Chloroethane	μg/l	1	ISO 17025	< 1.0	-	< 1.0	-	
Bromomethane	μg/l	1	ISO 17025	< 1.0	-	< 1.0	-	
Vinyl Chloride	μg/l	1	NONE	< 1.0	-	< 1.0	-	
Trichlorofluoromethane	μg/l	1	NONE ISO 17025	< 1.0	-	< 1.0	-	
1,1-Dichloroethene 1,1,2-Trichloro-1,2,2-trifluoroethane	μg/l	1	ISO 17025	< 1.0 < 1.0	-	< 1.0	-	
Cis-1,2-dichloroethene	μg/l μg/l	1	ISO 17025	< 1.0	-	< 1.0 < 1.0	-	
MTBE (Methyl Tertiary Butyl Ether)	μg/l	1	ISO 17025	< 1.0	-	< 1.0	-	
1,1-Dichloroethane	μg/l	1	ISO 17025	< 1.0	-	< 1.0	-	
2,2-Dichloropropane	μg/l	1	ISO 17025	< 1.0	-	< 1.0	-	
Trichloromethane	μg/l	1	ISO 17025	< 1.0	-	< 1.0	-	
1,1,1-Trichloroethane	μg/l	1	ISO 17025	< 1.0	-	< 1.0	-	
1,2-Dichloroethane 1.1-Dichloropropene	μg/l	1	ISO 17025 ISO 17025	< 1.0 < 1.0	-	< 1.0	-	
Trans-1,2-dichloroethene	μg/l μg/l	1	ISO 17025	< 1.0 < 1.0	-	< 1.0 < 1.0	-	
Benzene	μg/l	1	ISO 17025	< 1.0	-	< 1.0	-	
Tetrachloromethane	μg/l	1	ISO 17025	< 1.0	-	< 1.0	-	
1,2-Dichloropropane	μg/l	1	ISO 17025	< 1.0	-	< 1.0	-	
Trichloroethene	μg/l	1	ISO 17025	< 1.0	-	< 1.0	-	
Dibromomethane	μg/l	1	ISO 17025	< 1.0	-	< 1.0	-	
Bromodichloromethane	μg/l	1	ISO 17025	< 1.0	-	< 1.0	-	
Cis-1,3-dichloropropene	μg/l	1	ISO 17025 ISO 17025	< 1.0	-	< 1.0	-	
Trans-1,3-dichloropropene Toluene	μg/l μg/l	1	ISO 17025	< 1.0 < 1.0	-	< 1.0 < 1.0	-	
1,1,2-Trichloroethane	μg/l	1	ISO 17025	< 1.0	-	< 1.0	-	
1,3-Dichloropropane	µg/l	1	ISO 17025	< 1.0	-	< 1.0	-	
Dibromochloromethane	μg/l	1	ISO 17025	< 1.0	-	< 1.0	-	
Tetrachloroethene	μg/l	1	ISO 17025	< 1.0	-	< 1.0	-	
1,2-Dibromoethane	μg/l	1	ISO 17025	< 1.0	-	< 1.0	-	
Chlorobenzene	μg/l	1	ISO 17025	< 1.0	-	< 1.0	-	
1,1,1,2-Tetrachloroethane Ethylbenzene	μg/l	1	ISO 17025	< 1.0	-	< 1.0	-	
p & m-Xylene	μg/l μg/l	1	ISO 17025 ISO 17025	< 1.0 < 1.0	-	< 1.0 < 1.0	-	
Styrene	μg/l μg/l	1	ISO 17025	< 1.0	-	< 1.0	-	
Tribromomethane	μg/l	1	ISO 17025	< 1.0	-	< 1.0	-	
o-Xylene	μg/l	1	ISO 17025	< 1.0	-	< 1.0	-	
1,1,2,2-Tetrachloroethane	μg/l	1	ISO 17025	< 1.0	-	< 1.0	-	
Isopropylbenzene	μg/l	1	ISO 17025	< 1.0	-	< 1.0	-	
Bromobenzene	μg/l	1	ISO 17025	< 1.0	-	< 1.0	-	
n-Propylbenzene 2-Chlorotoluene	μg/l μg/l	1	ISO 17025 ISO 17025	< 1.0 < 1.0	-	< 1.0 < 1.0	-	
4-Chlorotoluene	μg/I μg/I	1	ISO 17025	< 1.0	-	< 1.0	-	
1,3,5-Trimethylbenzene	μg/l	1	ISO 17025	< 1.0	-	< 1.0	-	
tert-Butylbenzene	μg/l	1	ISO 17025	< 1.0	-	< 1.0	-	
1,2,4-Trimethylbenzene	μg/l	1	ISO 17025	< 1.0	-	< 1.0	-	
sec-Butylbenzene	μg/l	1	ISO 17025	< 1.0	-	< 1.0	-	
1,3-Dichlorobenzene	μg/l	1	ISO 17025	< 1.0	-	< 1.0	-	
p-Isopropyltoluene	μg/l	1	ISO 17025 ISO 17025	< 1.0	-	< 1.0	-	
1,2-Dichlorobenzene 1,4-Dichlorobenzene	μg/l μg/l	1	ISO 17025	< 1.0 < 1.0	-	< 1.0 < 1.0	-	
Butylbenzene	μg/l	1	ISO 17025	< 1.0	-	< 1.0	-	
1,2-Dibromo-3-chloropropane	μg/l	1	ISO 17025	< 1.0	-	< 1.0	-	
1,2,4-Trichlorobenzene	μg/l	1	ISO 17025	< 1.0	-	< 1.0	-	
Hexachlorobutadiene	μg/l	1	ISO 17025	< 1.0	-	< 1.0	-	
1,2,3-Trichlorobenzene	μg/l	1	ISO 17025	< 1.0	-	< 1.0	-	

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Boron in water	Determination of boron by acidification followed by ICP-OES. Accredited matrices: SW PW GW	In-house method based on MEWAM	L039-PL	W	ISO 17025
BTEX and MTBE in water (Monoaromatics)	Determination of BTEX and MTBE in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	W	ISO 17025
Metals in water by ICP-MS (dissolved)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW.	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	W	ISO 17025
pH in water	Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L005-PL	W	ISO 17025
Speciated EPA-16 PAHs in water	Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L0102B-PL	W	NONE
Sulphate in water	Determination of sulphate in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Total organic carbon in water	Determination of dissolved organic carbon inlwater by TOC/DOC NDIR analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	ISO 17025
TPHCWG (Waters)	Determination of dichloromethane extractable hydrocarbons in water by GC-MS, speciation by interpretation.	In-house method	L070-PL	W	NONE
Volatile organic compounds in water	Determination of volatile organic compounds in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	W	ISO 17025

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Sample ID	Other ID	Sample Type	Job	Sample Number	Sample Deviation Code	test name	test ref	Test Deviation code
BH206		W	16-14418			BTEX and MTBE in water (Monoaromatics)	L073B-PL	С
BH206		W	16-14418	555723	С	Boron in water	L039-PL	С
BH206		W	16-14418	555723	С	Metals in water by ICP-MS (dissolved)	L012-PL	С
BH206		W	16-14418	555723	С	Sulphate in water	L039-PL	С
BH206		W	16-14418	555723	С	Volatile organic compounds in water	L073B-PL	С
BH206		W	16-14418	555723	С	pH in water	L005-PL	С
BH207		W	16-14418	555724	С	BTEX and MTBE in water (Monoaromatics)	L073B-PL	С
BH207		W	16-14418	555724	С	Boron in water	L039-PL	С
BH207		W	16-14418	555724	С	Metals in water by ICP-MS (dissolved)	L012-PL	С
BH207		W	16-14418	555724	С	Sulphate in water	L039-PL	С
BH207		W	16-14418	555724	С	pH in water	L005-PL	С
BH208		W	16-14418	555725	С	BTEX and MTBE in water (Monoaromatics)	L073B-PL	С
BH208		W	16-14418	555725	С	Boron in water	L039-PL	С
BH208		W	16-14418	555725	С	Metals in water by ICP-MS (dissolved)	L012-PL	С
BH208		W	16-14418	555725	С	Sulphate in water	L039-PL	С
BH208		W	16-14418	555725	С	Volatile organic compounds in water	L073B-PL	С
BH208		W	16-14418	555725	С	pH in water	L005-PL	С
BH209		W	16-14418	555726	С	BTEX and MTBE in water (Monoaromatics)	L073B-PL	С
BH209		W	16-14418	555726	С	Boron in water	L039-PL	С
BH209		W	16-14418	555726	С	Metals in water by ICP-MS (dissolved)	L012-PL	С
BH209		W	16-14418	555726	С	Sulphate in water	L039-PL	С
BH209		W	16-14418	555726	С	pH in water	L005-PL	С

Soils

Summary of Statistics

Geology: 1 / Brickearth / RTD / London Clay

Site End Use:

Commercial

Soil Type:

Sand - 1% SOM

Project Number: CS075666 Client: SEGRO

Compound	GAC (mg/kg)	No. Samples	Range of values	exceed- ing GAC	Normality	No. Outliers	Test	UCL _{95%} (of the true population mean)	Test Result
Metals	(9,119)	Gampioo	(9/1.9/	0,10	rtormanty	Guillord	1001	population mount	root recurr
Arsenic SGV	640	14	8.5 - 19	0	Normal	1	t	13.8	PASS
Boron	110000		0.2 - 6	0	Normal	1	l t	2.9	PASS
Cadmium SGV	230		0.2 - 0.7	0	Not Normal	4	C	0.4	PASS
				_			-	-	l
Chromium VI	49		24 - 44	0	Normal	None	t	33.6	PASS
Copper	39000		12 - 430	0	Normal	2	t	138.9	PASS
Lead	2230		6.3 - 770	0	Normal	None	t	338.5	PASS
Mercury SGV	25.8		0.3 - 2.5	0	Not Normal	2	С	1.6	PASS
Nickel SGV	1800		19 - 45	0	Normal	1	t	30.8	PASS
Selenium SGV	13000	14	1 - 1	0	l				
Vanadium	5600		25 - 67	0	Normal	1	t	49.6	PASS
Zinc	660000	14	23 - 440	0	Normal	1	t	223.9	PASS
Non-Metals									
Inorganic Cyanide	16000	0							
TPH									
Aliphatic C5-6	2600		0.1 - 0.1	0					
Aliphatic C6-8	5000		0.1 - 0.1	0					
Aliphatic C8-10	1200	1	0.1 - 0.1	0					
Aliphatic C10-12	6300	14	1 - 1.9	0	Not Normal	1	С	1.3	PASS
Aliphatic C12-16	25000	14	2 - 6.6	0	Not Normal	3	С	4.5	PASS
Aliphatic C16-21	N/A	14	8 - 17	N/A	Not Normal	4	N/A	12.2	N/A
Aliphatic C21-35	N/A	14	8 - 100	N/A	Not Normal	None	N/A	66.9	N/A
Aliphatic C16-35	1200000		10 - 120	0	Not Normal	None	С	80.7	PASS
Aromatic C8-10	2200	14	0.1 - 0.1	0					
Aromatic C10-12	9700	14	1 - 1	0					
Aromatic C12-16	25000	14	2 - 38	0	Not Normal	4	С	20.1	PASS
Aromatic C16-21	27000	14	10 - 420	0	Not Normal	4	С	196.2	PASS
Aromatic C21-35	28000	14	10 - 640	0	Not Normal	6	С	290.1	PASS
VOCs									
Benzene SGV	16	14	0.01 - 0.01	0					
Chloroethene	0.04	0							
1,2-Dichloroethane	0.36	0							
Ethylbenzene SGV	510	14	0.01 - 0.01	0					
Naphthalene	75	0							
Tetrachloroethanes	63	1							
Tetrachloroethene	91	0							
Tetrachloromethane	1.7	0							
Toluene SGV	835	14	0.01 - 0.01	0					
1,1,1-Trichloroethane	390								
Trichloroethene	6.6								
Xylenes SGV	470		0.01 - 0.01	0					
SVOCs			0.01						
Benz[a]anthracene	140	14	0.1 - 27	0	Normal	6	t	7.4	PASS
Benzo[a]pyrene	76	1	0.1 - 25	0	Normal	7	t	6.5	PASS
Benzo[b]fluoranthene	140	1	0.1 - 32	0	Normal	7	t	9.0	PASS
Benzo[ghi]perylene	140	1	0.05 - 12	0	Not Normal	6	c	5.4	PASS
Benzo[k]fluoranthene	150		0.1 - 8.9	0	Normal	3	t	2.7	PASS
Chrysene	1400		0.05 - 18	0	Normal	4	t	5.4	PASS
Dibenz[ah]anthracene	1400	1	0.03 - 18	0	Not Normal	3	c	1.6	PASS
Fluoranthene	54000		0.1 - 5.6	0	Normal	7	t	18.1	PASS
Indeno[123-cd]pyrene	140		0.1 - 67	0	Not Normal	6	C	5.8	PASS
Naphthalene	75		0.1 - 13	0	Not Normal	4	C	0.3	PASS
Phenol SGV	685		0.00 - 0.52		ואטנואטווואו	4	'	0.3	FASS
•	I .	1	0.1 50		Normal	7		15.0	DAGG
Pyrene	76000	14	0.1 - 59	0	Normal	7	t	15.3	PASS

Appendix H – Monitoring Data

CAPITA

Ground Gas and Groundwater Monitoring Data Sheet

Project name: Project Lightning, Hayes Project number: CS-075666 Date: 29/10/2014

Monitoring Location	Ground level	Methane	Carbon Dioxide	Oxygen	Flow	Atmospheric Pressure	PID	LNAPL	Water Level	Water Level	Standpipe Base Depth	Comments
	(mAOD)	(% by vol)	(% by vol)	(% by vol)	(l/hr)	(mbar)	(ppm)	(mbgl)	(mbgl)	(mAOD)	(mbgl)	
BH101	31.27	0.0	0.3	20.5	0.1	1015	0.0	n/d	2.89	28.38	6.28	
BH102	31.01	0.0	0.1	18.7	0.1	1015	0.0	n/d	2.62	28.39	4.62	
BH103	31.20	0.0	0.0	18.7	0.2	1015	1.2	n/d	0.68	30.52	1.06	
BH104	31.00	0.3	1.1	15.3	7.7	1016	0.0	n/d	0.73	30.27	4.87	
BH107	31.29	0.1	0.5	20.3	0.0	1013	0.0	n/d	1.50	29.79	5.07	
BH108	30.90	0.0	2.1	18.4	0.0	1013	0.0	n/d	1.58	29.32	2.16	No water sample, not enough water
BH109	29.82	0.0	0.1	18.6	0.0	1012	1.4	n/d	1.56	28.26	3.54	
BH111	30.98	0.7	0.0	3.1	0.0	1013	220.0	n/d	2.66	28.32	4.44	
BH112	31.37	0.0	0.8	19.2	1.0	1012	0.0	n/d	Dry	Dry	2.17	No water sample, dry
BH113	31.08	0.1	2.8	9.9	0.1	1015	104.0	n/d	1.96	29.12	3.90	
BH1	30.51	-	-	-	-	-	0.0	n/d	0.71	29.80	3.99	No gas valve
BH2	30.44	-	-	-	-	-	0.0	n/d	0.83	29.61	3.96	No gas valve
BH3	30.19	-	-	-	-	-	0.0	n/d	0.84	29.35	3.49	No gas valve
BH4	29.53	-	-	-	-	-	0.0	n/d	1.15	28.38	3.12	No gas valve
BH5	29.27	-	-	-	-	-	0.0	n/d	1.27	28.00	4.19	No gas valve
BH6	30.15	-	-	-	-	-	0.0	n/d	1.59	28.56	4.06	No gas valve
BH7	31.17	-	-	-	-	-	0.0	n/d	1.49	29.68	5.04	No gas valve
BH8	31.14	-	-	-	-	-	0.0	n/d	1.04	30.10	3.36	No gas valve
BH9	31.20	-	-	-	-	-	1.8	n/d	2.82	28.38	5.19	No gas valve
WS13	31.21	0.0	0.3	20.0	0.0	1015	0.0	n/d	1.27	29.94	1.77	Gas valve too big
WS17	31.24	-	-	-	-	-	0.0	n/d	0.77	30.47	1.99	Gas valve too big
WS22	30.39	-	-	-	-	-	0.0	n/d	0.74	29.65	1.90	Gas valve too big

Equipment: GA 5000 Infra-red gas analyser

MiniREA PID Dip meter Logged by: GEA

Ground Gas and Groundwater Monitoring Data Sheet

Project name: Project Lightning, Hayes Project number: CS-075666 Date: 05/11/2014

Monitoring Location	Ground level	Methane	Carbon Dioxide	Oxygen	Flow	Atmospheric Pressure	PID	LNAPL	Water Level	Water Level	Standpipe Base Depth
	(mAOD)	(% by vol)	(% by vol)	(% by vol)	(l/hr)	(mbar)	(ppm)	(mbgl)	(mbgl)	(mAOD)	(mbgl)
BH101	31.27	0.0	0.4	20.7	1.1	1002	0		2.79	28.48	6.28
BH102	31.01	0.1	1.1	11.9	0.0	1002	0		2.51	28.50	4.62
BH103	31.20	No Reading	No Reading	No Reading	No Reading	No Reading	No Reading	No Reading	No Reading	No Reading	No Reading
BH104	31.00	0.0	0.5	20.3	6.9	1002	0.9		0.79	30.21	4.61
BH107	31.29	0.2	1.0	19.6	0.0	1001	0		1.39	29.90	5.06
BH108	30.90	0.0	2.4	17.2	0.0	999	0		1.41	29.49	2.15
BH109	29.82	0.0	0.1	20.4	0.0	1003	0.7		1.70	28.12	3.54
BH111	30.98	0.3	0.0	7.5	0.0	1002	144		2.56	28.42	4.44
BH112	31.37	0.0	0.9	19.1	1.0	1002	0		Dry	Dry	2.17
BH113	31.08	0.0	1.7	10.2	1.8	1001	59		1.42	29.66	3.78

Equipment: GA 5000 Infra-red gas analyser

Dip meter MiniREA PID Logged by: GEA

CAPITA

Ground Gas and Groundwater Monitoring Data Sheet

Project name: Project Lightning, Hayes Project number: CS-075666 Date: 18/11/2014

Monitoring Location	Ground level	Methane	Carbon Dioxide	Oxygen	Flow	Atmospheric Pressure	PID	LNAPL	Water Level	Water Level	Standpipe Base Depth
	(mAOD)	(% by vol)	(% by vol)	(% by vol)	(l/hr)	(mbar)	(ppm)	(mbgl)	(mbgl)	(mAOD)	(mbgl)
BH101	31.27	0.0	0.8	20.0	0.7	1008	0.0		2.70	28.57	6.31
BH102	31.01	0.5	1.1	6.1	0.0	1008	0.0		2.41	28.60	4.62
BH103	31.20	No Reading	No Reading	No Reading	No Reading	No Reading	No Reading	No Reading	No Reading	No Reading	No Reading
BH104	31.00	0.1	0.6	19.2	2.4	1008	1.4		0.77	30.23	4.63
BH107	31.29	0.2	1.0	18.1	0.0	1007	0.0		1.44	29.85	5.06
BH108	30.90	0.0	3.0	14.4	0.0	1006	0.0		1.44	29.46	2.15
BH109	29.82	0.0	0.1	17.8	0.0	1005	0.5		1.15	28.67	3.54
BH111	30.98	0.2	0.0	7.4	0.0	1008	127.0		2.46	28.52	4.44
BH112	31.37	0.0	1.3	18.6	0.0	1008	0.0		Dry	Dry	2.17
BH113	31.08	0.0	0.0	12.8	0.2	1006	51.0		1.50	29.58	3.75

Equipment: GA 5000 Infra-red gas analyser

Dip meter MiniREA PID Logged by: GEA

Ground Gas and Groundwater Monitoring Data Sheet

Project name: Former Nestle Factory, Hayes Project number: CS-075666 Date: 22/03/2016

Monitoring Location	Ground level	Methane	Carbon Dioxide	Oxygen	Flow	Atmospheric Pressure	Water Level	Water Level	Standpipe Base Depth
Borehole ID	(mAOD)	(% by vol)	(% by vol)	(% by vol)	(l/hr)	(mbar)	(mbgl)	(mAOD)	(mbgl)
BH1	30.51						0.89	29.62	3.96
BH2	30.44						1.01	29.43	3.96
BH3	30.19						1.00	29.19	3.47
BH5	29.27						1.40	27.87	4.21
WS22	30.39						0.80	29.59	1.89
BH109	29.82	0.0	6.1	3.4	0.0	1013	1.55	28.27	3.37
BH201	30.07	0.0	0.2	19.3	0.2	1013	1.56	28.52	4.18
BH202	30.44	0.5	0.4	18.2	0.3	1013	1.18	29.27	4.15
BH203	30.36	0.0	0.1	20.7	16.9	1013	0.76	29.60	4.18
BH204	29.36	0.0	0.1	21.2	0.0	1013	0.40	28.96	3.85
BH205	30.13	0.0	0.3	21.0	2.8	1013	1.16	28.97	4.17

Equipment: GA 5000 Infra-red gas analyser PID Start: 13:35 Atmos Press Background O2 Logged by: GEA/PWE Weather: Sunny

Dip meter Finish: 16:30 1013 21.2

Ground Gas and Groundwater Monitoring Data Sheet

Project name: Former Nestle Factory, Hayes Project number: CS-075666 Date: 30/03/2016

Monitoring Location	Ground level	Methane	Carbon Dioxide	Oxygen	Flow	Atmospheric Pressure	Water Level	Water Level	Standpipe Base Depth
Borehole ID	(mAOD)	(% by vol)	(% by vol)	(% by vol)	(l/hr)	(mbar)	(mbgl)	(mAOD)	(mbgl)
BH206	31.10	0.0	0.1	18.9	0.1	1007	1.64	29.46	5.17
BH207	31.10	0.0	0.5	19.2	0.0	1005	1.72	29.38	5.77
BH208	31.10	0.0	0.1	21.1	0.0	1007	1.65	29.45	6.27
BH209	31.10	0.0	0.1	21.5	0.1	1008	1.71	29.39	6.81

Equipment: GA 5000 Infra-red gas analyser Atmos Press Background O2 Logged by: GEA PID Start: 11:55 1005 20.7 Weather: Cloudy

Dip meter Finish: 14:20 1008 21.2

CAPITA

Capita Property and Infrastructure Limited

Oak House Reeds Crescent Watford Hertfordshire WD24 4QP

Tel +44 (0)1923 817537